Spectral Geometry Processing

Misha Kazhdan

[Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes... [Vallet and Levy, 2008] Spectral Geometry Processing with Manifold Harmonics [Bhat et al., 2008] Fourier Analysis of the 2D Screened Poisson Equation... And much, much, much, more...

Outline

- Motivation
- Laplacian Spectrum
- Applications
- Conclusion

Recall:

Given a signal, $f:[0,2\pi) \to \mathbb{R}$, we can write it out in terms of its *Fourier decomposition*:

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

 $\hat{f}_k \in \mathbb{C}$ is the k-th Fourier coefficients of f.

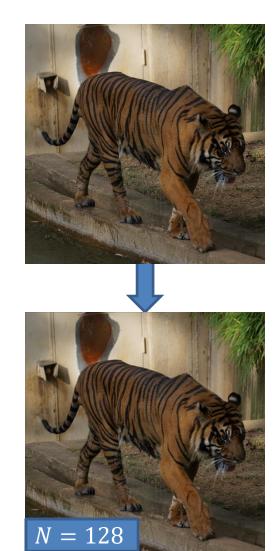
$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

Frequency Decomposition:

For smaller $N \in \mathbb{Z}$, the finite sum:

$$f^{N}(\theta) = \sum_{k=-N}^{N} \hat{f}_{k} \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

represents the lower frequency components of f.



$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

Filtering:

By modulating the values of \hat{f}_k as a function of frequency, we can realize different signal filters:

$$\hat{f}_k \leftarrow \begin{cases} \hat{f}_k & \text{if } |k| < N \\ 0 & \text{otherwise} \end{cases}$$



$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

Filtering:

By modulating the values of \hat{f}_k as a function of frequency, we can realize different signal filters:

$$\hat{f}_k \leftarrow \hat{f}_k \cdot e^{-k^2}$$

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

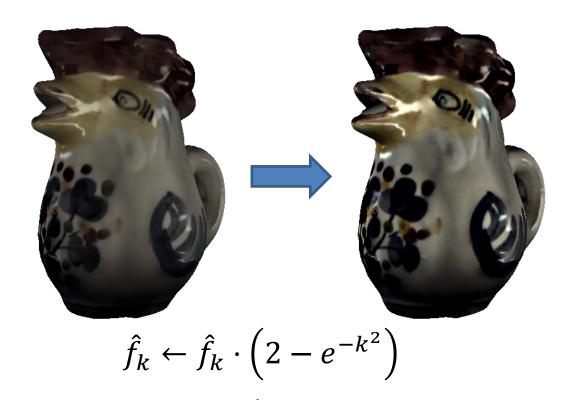
Filtering:

By modulating the values of \hat{f}_k as a function of frequency, we can realize different signal filters:

$$\hat{f}_k \leftarrow \hat{f}_k \cdot \left(2 - e^{-k^2}\right)$$

Goal:

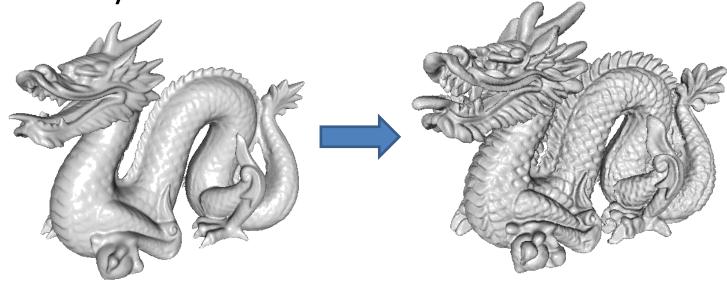
We would like to extend this type of processing to signals defined on surfaces*:



^{*}For simplicity, we assume all surfaces are w/o boundary.

Goal:

We would like to extend this type of processing to signals defined on surfaces* and even to the geometry of the surface itself:



$$\hat{f}_k \leftarrow \hat{f}_k \cdot \left(2 - e^{-k^2}\right)$$

^{*}For simplicity, we assume all surfaces are w/o boundary.

$$f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

In Euclidean space we can use the FFT to obtain the Fourier decomposition efficiently.

For signals on surfaces, what is the analog?

Outline

- Motivation
- Laplacian Spectrum
 - Fourier ↔ Laplacian
 - FEM discretization
- Applications
- Conclusion

How do we obtain the Fourier decomposition?

Recall:

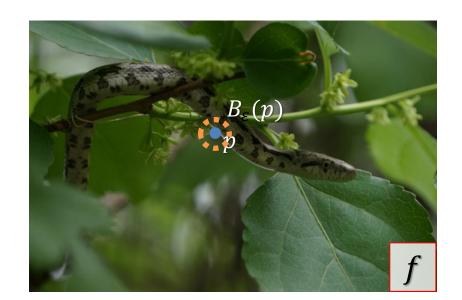
In Euclidean space, the *Laplacian*, is the operator that takes a function and returns the sum of (unmixed) second partial derivatives:

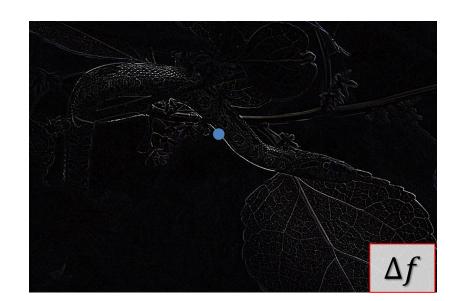
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} + \cdots$$

Informally:

The Laplacian gives the difference between the value at a point and the average in the vicinity:

$$\Delta f(p) \sim \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \Big(\operatorname{Avg}_{B_{\varepsilon}(p)}(f) - f(p) \Big)$$





Note:

The complex exponential $\zeta^k(\theta) = \frac{e^{ik\theta}}{\sqrt{2\pi}}$ has Laplacian:

$$\frac{\partial^2}{\partial \theta^2} \left(\frac{e^{ik\theta}}{\sqrt{2\pi}} \right)$$

Note:

The complex exponential $\zeta^k(\theta) = \frac{e^{ik\theta}}{\sqrt{2\pi}}$ has Laplacian:

$$\frac{\partial^2}{\partial \theta^2} \left(\frac{e^{ik\theta}}{\sqrt{2\pi}} \right) = (ik) \frac{\partial}{\partial \theta} \left(\frac{e^{ik\theta}}{\sqrt{2\pi}} \right)$$

Note:

The complex exponential
$$\zeta^k(\theta) = \frac{e^{ik\theta}}{\sqrt{2\pi}}$$
 has Laplacian:
$$\frac{\partial^2}{\partial \theta^2} \left(\frac{e^{ik\theta}}{\sqrt{2\pi}}\right) = (ik) \frac{\partial}{\partial \theta} \left(\frac{e^{ik\theta}}{\sqrt{2\pi}}\right) = -k^2 \cdot \frac{e^{ik\theta}}{\sqrt{2\pi}}$$

 $\zeta^k(\theta) = \frac{e^{i\kappa\theta}}{\sqrt{2\pi}}$ is an eigenfunction of the Laplacian with eigenvalue $-k^2$.

Note:

Similarly,
$$\zeta^{kl}(\theta, \phi) = \frac{e^{ik\theta} \cdot e^{il\phi}}{2\pi}$$
 has Laplacian:
$$\left(\frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial \phi^2}\right) \left(\frac{e^{ik\theta} \cdot e^{il\phi}}{2\pi}\right) = -(k^2 + l^2) \cdot \left(\frac{e^{ik\theta} \cdot e^{il\phi}}{2\pi}\right)$$

 $\zeta^{kl}(\theta,\phi) = \frac{e^{ik\theta} \cdot e^{il\phi}}{2\pi}$ is an eigenfunction of the Laplacian with eigenvalue $-(k^2+l^2)$.

Approach:

- Though we cannot compute the FFT for signals on general surfaces, we can define a Laplacian.
- To compute the Fourier decomposition of a signal, f, on a mesh we decompose f as the linear combination of eigenvectors of the Laplacian:

$$f(x) = \sum_{i=1}^{n} \hat{f}_i \cdot \boldsymbol{\phi}^i(x)$$
 with $\Delta \boldsymbol{\phi}^i = \lambda_i \cdot \boldsymbol{\phi}^i$.

This is called the harmonic decomposition of f.

How do we know the eigenvectors of the Laplacian form a basis?

Claim:

The Laplacian is a symmetric operator.

⇒ The eigenvectors of a symmetric operator form an orthogonal basis (and have real eigenvalues).

Preliminaries:

– [Definition of the Laplacian]

$$\Delta f = \operatorname{div}(\nabla f)$$

- [Product Rule] $\operatorname{div}(f \cdot \vec{v}) = f \cdot \operatorname{div}(\vec{v}) + \langle \nabla f, \vec{v} \rangle$

– [Inner Product on Functions] Given a surface $S \subset \mathbb{R}^3$:

$$\langle f, g \rangle_{\mathcal{S}} = \int_{\mathcal{S}} f(x) \cdot g(x) \ dx$$

– [Divergence Theorem*]

$$\int_{S} [\operatorname{div}(\vec{v})](p) = \int_{\partial S} \langle \vec{v}(s), \vec{n}(s) \rangle \, ds$$

The Laplacian is a symmetric operator

Given a surface $S \subset \mathbb{R}^3$, we want to show that for any functions $f, g: S \to \mathbb{R}$ we have:

$$\langle \Delta f, g \rangle_{\mathcal{S}} = \langle f, \Delta g \rangle_{\mathcal{S}}$$

$$\int_{S} \Delta f \cdot g \ dx = \int_{S} f \cdot \Delta g \ dx$$

Proof:

By the definition of the Laplacian:

$$\Delta f = \operatorname{div}(\nabla f)$$

$$\langle \Delta f, g \rangle_{S} = \int_{S} \Delta f \cdot g \, dx$$
$$= \int_{S} \operatorname{div}(\nabla f) \cdot g \, dx$$

Proof:

By the product rule:

$$\operatorname{div}(f \cdot \vec{v}) = f \cdot \operatorname{div}(\vec{v}) + \langle \nabla f, \vec{v} \rangle$$

$$\langle \Delta f, g \rangle_{S} = \int_{S} \Delta f \cdot g \, dx$$

$$= \int_{S} \operatorname{div}(\nabla f) \cdot g \, dx$$

$$= \int_{S} (\operatorname{div}(g \cdot \nabla f) - \langle \nabla f, \nabla g \rangle) \, dx$$

Proof:

By the Divergence Theorem*:

$$\int_{S} [\operatorname{div}(\vec{v})](p) = \int_{\partial S} \langle \vec{v}(s), \vec{n}(s) \rangle \, ds = 0$$

$$\langle \Delta f, g \rangle_{S} = \int_{S} \Delta f \cdot g \, dx$$

$$= \int_{S} \operatorname{div}(\nabla f) \cdot g \, dx$$

$$= \int_{S} (\operatorname{div}(g \cdot \nabla f) - \langle \nabla f, \nabla g \rangle) \, dx$$

$$= -\int_{S} \langle \nabla f, \nabla g \rangle \, dx$$

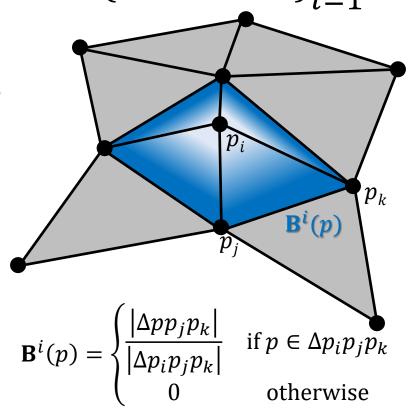
What happens in the discrete setting?

1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.

Often these are defined to be the "hat" functions centered at vertices.

- Piecewise linear
 - ⇒ Gradients are constant within each triangle
- Interpolatory

$$\Rightarrow \mathbf{B}^i(p_j) = \delta_{ij}$$



1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.

Having chosen a basis, we can think of a vector $\mathbf{f} \in \mathbb{R}^n$ as a "discrete" function:

$$\mathbf{f} \leftrightarrow f(p) = \sum_{i=1}^{N} f_i \cdot \mathbf{B}^i(p)$$

If we use the hat functions as a basis, then:

$$f(p_j) = \sum_{i=1}^{n} f_i \cdot \mathbf{B}^i(p_j)$$

1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.

Having chosen a basis, we can think of a vector $\mathbf{f} \in \mathbb{R}^n$ as a "discrete" function:

$$\mathbf{f} \leftrightarrow f(p) = \sum_{i=1}^{N} f_i \cdot \mathbf{B}^i(p)$$

If we use the hat functions as a basis, then:

$$f(p_j) = \sum_{i=1}^{N} f_i \cdot \mathbf{B}^i(p_j) = \sum_{i=1}^{N} f_i \cdot \delta_{ij}$$

1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.

Having chosen a basis, we can think of a vector $\mathbf{f} \in \mathbb{R}^n$ as a "discrete" function:

$$\mathbf{f} \leftrightarrow f(p) = \sum_{i=1}^{n} f_i \cdot \mathbf{B}^i(p)$$

If we use the hat functions as a basis, then:

$$f(p_j) = \sum_{i=1}^{N} f_i \cdot \mathbf{B}^i(p_j) = \sum_{i=1}^{N} f_i \cdot \delta_{ij} = f_j$$

1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.

[WARNING]:

In general, given:

- $-\mathcal{L}$: A continuous linear operator
- $-\mathbf{f} \in \mathbb{R}^n \leftrightarrow f(p)$: A discrete function

The function $\mathcal{L}(f)$ will *not* be in the space of functions spanned by $\left\{\mathbf{B}^i\colon S\to\mathbb{R}\right\}_{i=1}^n$.

- 1. To enable computation, we restrict ourselves to a *finite-dimensional* space of functions, spanned by basis functions $\{\mathbf{B}^i : S \to \mathbb{R}\}_{i=1}^n$.
- 2. Given a continuous linear operator \mathcal{L} , we discretize the operator by *projecting*:

$$g = \mathcal{L}(f)$$

$$\Downarrow$$

$$\langle g, \mathbf{B}^j \rangle_S = \langle \mathcal{L}(f), \mathbf{B}^j \rangle_S \quad \forall j$$

$$\langle g, \mathbf{B}^j \rangle_S = \langle \mathcal{L}(f), \mathbf{B}^j \rangle_S \quad \forall j$$

Writing out the discrete functions:

$$g(p) = \sum_{i=1}^{n} g_i \cdot \mathbf{B}^i(p) \quad \text{and} \quad f(p) = \sum_{i=1}^{n} f_i \cdot \mathbf{B}^i(p)$$

$$\downarrow \downarrow$$

$$\sum_{i=1}^{n} g_i \cdot \langle \mathbf{B}^i, \mathbf{B}^j \rangle_S = \sum_{i=1}^{n} f_i \cdot \langle \mathcal{L}(\mathbf{B}^i), \mathbf{B}^j \rangle_S \quad \forall j$$

$$\sum_{i=1}^{n} g_i \cdot \langle \mathbf{B}^i, \mathbf{B}^j \rangle_{\mathcal{S}} = \sum_{i=1}^{n} f_i \cdot \langle \mathcal{L}(\mathbf{B}^i), \mathbf{B}^j \rangle_{\mathcal{S}} \quad \forall j$$

Setting M and L to be the matrices:

$$\mathbf{M}_{ij} = \langle \mathbf{B}^{i}, \mathbf{B}^{j} \rangle_{S} \text{ and } \mathbf{L}_{ij} = \langle \mathcal{L}(\mathbf{B}^{i}), \mathbf{B}^{j} \rangle_{S}$$

$$\sum_{j=1}^{n} \mathbf{M}_{ij} \cdot \mathbf{g}_{j} = \sum_{j=1}^{n} \mathbf{L}_{ij} \cdot \mathbf{f}_{j} \quad \forall i$$

$$\mathbf{M} \cdot \mathbf{g} = \mathbf{L} \cdot \mathbf{f}$$

$$\mathbf{M}_{ij} = \langle \mathbf{B}^i, \mathbf{B}^j \rangle_{\mathcal{S}}$$
 and $\mathbf{L}_{ij} = \langle \mathcal{L}(\mathbf{B}^i), \mathbf{B}^j \rangle_{\mathcal{S}}$

When
$$\mathcal{L} = \Delta$$
, we have: $\mathbf{L}_{ij} = \langle \Delta \mathbf{B^i}, \mathbf{B}^j \rangle_S$

$$\mathbf{M}_{ij} = \langle \mathbf{B}^i, \mathbf{B}^j \rangle_{\mathcal{S}}$$
 and $\mathbf{L}_{ij} = \langle \mathcal{L}(\mathbf{B}^i), \mathbf{B}^j \rangle_{\mathcal{S}}$

Both the mass and stiffness matrices are symmetric and positive (semi)-definite.

When $\mathcal{L} = \Delta$, we have:

$$\mathbf{L}_{ij} = \langle \Delta \mathbf{B}^{\mathbf{i}}, \mathbf{B}^{j} \rangle_{\mathcal{S}} = -\langle \nabla \mathbf{B}^{i}, \nabla \mathbf{B}^{j} \rangle_{\mathcal{S}} = -\mathbf{S}_{ij}$$

Definition:

The matrix **M** is called the *mass matrix*.

The matrix **S** is called the *stiffness matrix*.

$$\mathbf{M}_{ij} = \langle \mathbf{B}^i, \mathbf{B}^j \rangle_{\mathcal{S}}$$
 and $\mathbf{S}_{ij} = \langle \nabla \mathbf{B}^i, \nabla \mathbf{B}^j \rangle_{\mathcal{S}}$

Setting $\{\mathbf{B}^i : S \to \mathbb{R}\}$ to the hat functions, the matrix \mathbf{M} is:

$$\mathbf{M}_{ij} = \begin{cases} \frac{\left|T_{ij}^{1}\right| + \left|T_{ij}^{2}\right|}{12} & \text{if } j \in N(i) \\ \sum_{k \in N(i)} \mathbf{M}_{ik} & \text{if } i = j \end{cases}$$

$$\mathbf{M}_{ij} = \langle \mathbf{B}^i, \mathbf{B}^j \rangle_{\mathcal{S}}$$
 and $\mathbf{S}_{ij} = \langle \nabla \mathbf{B}^i, \nabla \mathbf{B}^j \rangle_{\mathcal{S}}$

Setting $\{\mathbf{B}^i: S \to \mathbb{R}\}$ to the hat functions, the matrix \mathbf{L} is the "cotangent-Laplacian":

$$\mathbf{S}_{ij} = \begin{cases} -(\cot \alpha + \cot \beta) & \text{if } j \in N(i) \\ -\sum_{k \in N(i)} \mathbf{S}_{ik} & \text{if } i = j \end{cases}$$

$$\mathbf{M}_{ij} = \begin{cases} \frac{\left|T_{ij}^{1}\right| + \left|T_{ij}^{2}\right|}{12} & \text{if } j \in N(i) \\ \sum_{k \in N(i)} \mathbf{M}_{ik} & \text{if } i = j \end{cases} \text{ and } \mathbf{S}_{ij} = \begin{cases} -(\cot \alpha + \cot \beta) & \text{if } j \in N(i) \\ -\sum_{k \in N(i)} \mathbf{S}_{ik} & \text{if } i = j \end{cases}$$

Observations:

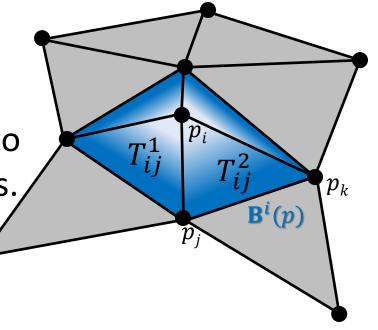
[Sparsity]
 Entry (i, j) can only be non-zero if vertex i and vertex j are neighbors in the mesh.

$$\mathbf{M}_{ij} = \begin{cases} \frac{\left|T_{ij}^{1}\right| + \left|T_{ij}^{2}\right|}{12} & \text{if } j \in N(i) \\ \sum_{k \in N(i)} \mathbf{M}_{ik} & \text{if } i = j \end{cases} \text{ and } \mathbf{S}_{ij} = \begin{cases} -(\cot \alpha + \cot \beta) & \text{if } j \in N(i) \\ -\sum_{k \in N(i)} \mathbf{S}_{ik} & \text{if } i = j \end{cases}$$

Observations:

– [Authalicity]

The mass matrix is invariant to area-preserving deformations.



$$\mathbf{M}_{ij} = \begin{cases} \frac{\left|T_{ij}^{1}\right| + \left|T_{ij}^{2}\right|}{12} & \text{if } j \in N(i) \\ \sum_{k \in N(i)} \mathbf{M}_{ik} & \text{if } i = j \end{cases} \text{ and } \mathbf{S}_{ij} = \begin{cases} -(\cot \alpha + \cot \beta) & \text{if } j \in N(i) \\ -\sum_{k \in N(i)} \mathbf{S}_{ik} & \text{if } i = j \end{cases}$$

Observations:

– [Authalicity]
 The mass matrix is invariant to area-preserving deformations.

[Conformality]
 The stiffness matrix is invariant to angle-preserving deformations.

[WARNING]:

Given a discrete function $\mathbf{f} \leftrightarrow f(p)$, the vector:

$$\mathbf{g} = -\mathbf{S} \cdot \mathbf{f}$$

does not correspond to the Laplacian of f(p).

The coefficients of the Laplacian of f(p) satisfy:

$$\mathbf{M} \cdot \mathbf{g} = -\mathbf{S} \cdot \mathbf{f}$$

$$\downarrow \mathbf{g} = -\mathbf{M}^{-1} \cdot \mathbf{S} \cdot \mathbf{f}$$

Laplacian Spectrum:

In the continuous setting, the spectrum of the

Laplacian,
$$\{(\boldsymbol{\phi}^i: S \to \mathbb{R}, -\lambda_i \in \mathbb{R}^{\geq 0})\}$$
, satisfies:

$$\Delta \boldsymbol{\phi}^i = -\lambda_i \cdot \boldsymbol{\phi}^i$$

And the $\{\phi^i\}$ form an orthonormal basis:

$$\langle \boldsymbol{\phi}^i, \boldsymbol{\phi}^j \rangle_S = \int_S \boldsymbol{\phi}^i(p) \cdot \boldsymbol{\phi}^j(p) dp = \delta_{ij}$$

The Spectrum of the Laplacian

Interpreting the Eigenvalues:

If ϕ is a (unit-norm) eigenfunction of the Laplacian, with eigenvalue λ :

$$\Delta \phi = -\lambda \cdot \phi$$

$$\downarrow \qquad \qquad \langle \Delta \phi, \phi \rangle_S = -\lambda \cdot \langle \phi, \phi \rangle_S$$

$$\downarrow \qquad \qquad \downarrow$$

$$-\langle \nabla \phi, \nabla \phi \rangle_S = -||\nabla \phi||_S^2 = -\lambda$$

 \Rightarrow The eigenvalue λ is a measure of how much ϕ changes, i.e. the frequency of ϕ .

Laplacian Spectrum:

In the discrete setting, the spectrum of the Laplacian, $\{(\boldsymbol{\phi}^i \in \mathbb{R}^n, \lambda_i \in \mathbb{R}^{\geq 0})\}$, satisfies: $\mathbf{S} \cdot \boldsymbol{\phi}^i = \lambda_i \cdot \mathbf{M} \cdot \boldsymbol{\phi}^i$

And the $\{ \phi^i \}$ form an orthonormal basis:

$$\langle \boldsymbol{\phi}^i, \boldsymbol{\phi}^j \rangle_{\scriptscriptstyle S} = \left(\boldsymbol{\phi}^i \right)^{\mathsf{T}} \cdot \mathbf{M} \cdot \left(\boldsymbol{\phi}^j \right) = \delta_{ij}$$

Finding the $\{(\phi^i, \lambda_i)\}$ requires solving the generalized eigenvalue problem.

How do we compute the spectral decomposition?

Getting the Dominant Eigenvector

Assume matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, with (unit-norm) spectrum $\{(\boldsymbol{\phi}^i, \lambda_i)\}$.

Given $\mathbf{v} \in \mathbb{R}^n$, we have the decomposition:

$$\mathbf{v} = \sum_{i=1}^{n} v_{i} \cdot \boldsymbol{\phi}^{i}$$

$$\Rightarrow \quad \mathbf{A} \cdot \mathbf{v} = \sum_{i=1}^{n} v_{i} \cdot \lambda_{i} \cdot \boldsymbol{\phi}^{i}$$

$$\Rightarrow \quad \mathbf{A}^{k} \cdot \mathbf{v} = \sum_{i=1}^{n} v_{i} \cdot \lambda_{i}^{k} \cdot \boldsymbol{\phi}^{i}$$

Getting the Dominant Eigenvector

$$\mathbf{A}^k \cdot \mathbf{v} = \sum_{i=1}^n v_i \cdot \lambda_i^k \cdot \boldsymbol{\phi}^i$$

Without loss of too much generality, assume λ_n is the largest eigenvalue, $|\lambda_i/\lambda_n| < 1$ for $i \neq n$.

$$\mathbf{A}^k \cdot \mathbf{v} = \lambda_n^k \sum_{i=1}^n v_i \cdot \left(\frac{\lambda_i}{\lambda_n}\right)^k \cdot \boldsymbol{\phi}^i$$

Then $(\lambda_i/\lambda_n)^k \to 0$ as $k \to \infty$, for $i \neq n$.

$$\Rightarrow \frac{\mathbf{A}^k \cdot \mathbf{v}}{|\mathbf{A}^k \cdot \mathbf{v}|} \to \boldsymbol{\phi}^n \quad \text{as} \quad k \to \infty$$

Getting the Dominant Eigenvector

ArnoldiDominant ($A \in \mathbb{R}^{n \times n}$)

- 1. $\mathbf{v} \leftarrow \mathsf{RandomVector}()$
- 2. while(...)
- 3. $\mathbf{v} \leftarrow \mathbf{A} \cdot \mathbf{v}$
- 4. $\mathbf{v} \leftarrow \mathbf{v}/|\mathbf{v}|$
- 5. $\lambda \leftarrow \langle Av, v \rangle$
- 6. return (\mathbf{v}, λ)

Getting the Sub-Dominant Eigenvector

If the matrix **A** is symmetric, the eigenvectors will be orthogonal:

ArnoldiSubDominant($\mathbf{A} \in \mathbb{R}^{n \times n}$)

- 1. $(\mathbf{v}^0, \lambda_0) \leftarrow ArnoldiDominant(A)$
- 2. $v^1 \leftarrow RandomVector()$
- 3. while(...)
- 4. $\mathbf{v}^1 \leftarrow \mathbf{A} \cdot \mathbf{v}^1$
- 5. $\mathbf{v}^1 \leftarrow \mathbf{v}^1 \langle \mathbf{v}^1, \mathbf{v}^0 \rangle \cdot \mathbf{v}^0$
- 6. $\mathbf{v}^1 \leftarrow \mathbf{v}^1/|\mathbf{v}^1|$
- 7. $\lambda_1 \leftarrow \langle \mathbf{A} \cdot \mathbf{v}^1, \mathbf{v}^1 \rangle$
- 8. return (\mathbf{v}^1 , λ_1)

Getting the Sub-Dominant Eigenvector

If the matrix **A** is symmetric, the eigenvectors will be orthogonal:

ArnoldiSubDominant($\mathbf{A} \in \mathbb{R}^{n \times n}$)

- 1. $(\mathbf{v}^0, \lambda_0) \leftarrow ArnoldiDominant(A)$
- 2. $v^1 \leftarrow RandomVector()$
- 3. while(...)
- 4. $\mathbf{v}^1 \leftarrow \mathbf{A} \cdot \mathbf{v}^1$
- 5. $\mathbf{v}^1 \leftarrow \mathbf{v}^1 \langle \mathbf{v}^1, \mathbf{v}^0 \rangle \cdot \mathbf{v}^0$

A similar approach can be applied to:

- Solving the generalized eigenvalue problem
- Finding the eigenvectors with smallest eigenvalues
- Finding the eigenvectors with eigenvalues closest to λ

Outline

- Motivation
- Laplacian Spectrum
- Applications
 - Signal/Geometry Filtering
 - Partial Differential Equations
 - Complexity and Approximation
- Conclusion

Signal/Geometry Filtering

```
Harmonic Decomposition (S \subset \mathbb{R}^3, \mathbf{f} \in \mathbb{R}^n)

1. (\mathbf{M}, \mathbf{S}) \leftarrow \mathsf{MassAndStiffness}(S)

2. \{(\boldsymbol{\phi}^i, \lambda_i)\}_{i=1}^n \leftarrow \mathsf{GeneralizedEigen}(\mathbf{M}, \mathbf{S})

3. For each i \in [1, n]: \mathbf{f}^\top \cdot \mathbf{M} \cdot \boldsymbol{\phi}^i

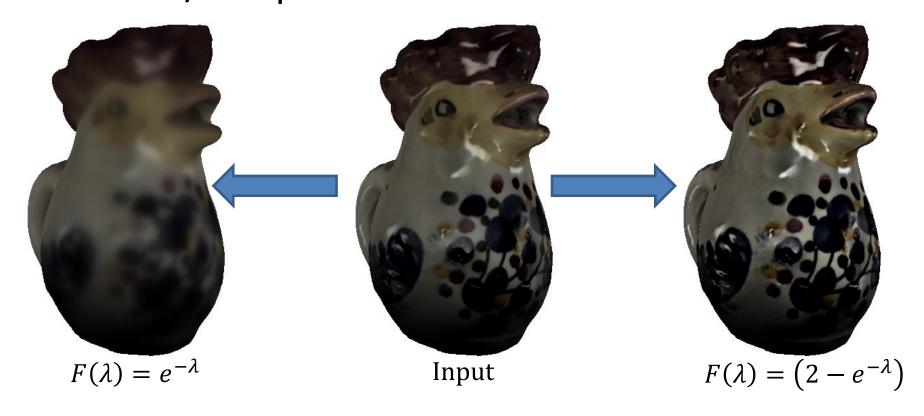
4. \hat{f}_i \leftarrow \langle \mathbf{f}, \boldsymbol{\phi}^i \rangle_S
```

Process($F: \mathbb{R} \to \mathbb{R}$)

- 1. $\mathbf{g} \leftarrow 0$
- 2. For each $i \in [1, n]$:
- 3. $\hat{g}_i \leftarrow \hat{f}_i \cdot F(\lambda_i)$
- 4. $\mathbf{g} \leftarrow \mathbf{g} + \hat{g}_i \cdot \boldsymbol{\phi}^i$
- 5. return g

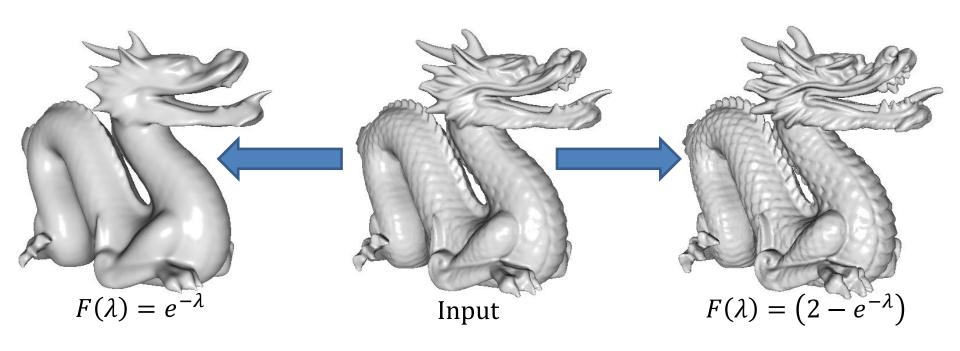
Signal Filtering

Given a color at each vertex, we can modulate the frequency coefficients of each channel to smooth/sharpen the colors.



Geometry Filtering

Using the position of the vertices as the signal, we can modulate the frequency coefficients of each coordinate to smooth/sharpen the shape.



Partial Differential Equations

Recall:

The Laplacian of a function at a point $p \in S$ is the difference between the value at p and the average value of its neighbors.

Newton's Law of Cooling:

The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings.

Translating this into the PDE, if h(p, t) is the heat at position $p \in S$ at time t, then:

$$\frac{\partial h}{\partial t} = \eta \cdot \Delta h$$

Newton's Law of Cooling:

The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings.

Goal:

Given an initial heat distribution $h^0: S \to \mathbb{R}$, find the solution to the PDE:

$$\frac{\partial h}{\partial t} = \eta \cdot \Delta h$$

such that:

$$h(p,0) = h^0(p)$$

$$\frac{\partial h}{\partial t} = \eta \cdot \Delta h$$

Note:

Let $\{(\boldsymbol{\phi}^i, -\lambda_i)\}_{i=1}^n$ be the Laplacian spectrum.

 \Rightarrow The functions:

$$e^{-\eta\lambda_i t}\cdot \boldsymbol{\phi}^i(p)$$

are solutions to the PDE.

 \Rightarrow Any linear sum of these is a solution.

Note:

The PDE only sees ηt .

⇒ Solving for longer time with less diffusive material is the same as solving for shorter time with a more diffusive material.

$$\frac{\partial h}{\partial t} = \eta \cdot \Delta h$$

Compute the harmonic decomposition of h^0 :

$$h^0(p) = \sum_{i=1}^n \hat{h}_i^0 \cdot \boldsymbol{\phi}^i(p)$$

Then consider the function:

$$h(p,t) = \sum_{i=0}^{n} \hat{h}_{i}^{0} \cdot e^{-\eta \lambda_{i} t} \cdot \boldsymbol{\phi}^{i}(p)$$

- It is a solution to the heat equation.
- -It satisfies $h(p,0) = h^0(p)$.

Heat Diffusion (Colors)

Harmonic Decomposition ($S \subset \mathbb{R}^3$, $h^0: S \to \mathbb{R}$)

1. ...

Process($t \in [0, \infty)$)

- 1. $\mathbf{g} \leftarrow 0$
- 2. For each $i \in [1, n]$:
- 3. $\hat{g}_i \leftarrow \hat{h}_i^0 \cdot e^{-\eta \lambda_i t}$
- 4. $\mathbf{g} \leftarrow \mathbf{g} + \hat{g}_i \cdot \boldsymbol{\phi}^i$
- 5. return g

Heat Diffusion (Geometry)

Harmonic Decomposition ($S \subset \mathbb{R}^3$, $h^0: S \to \mathbb{R}^3$)

1. ...

Process($t \in [0, \infty)$)

- 1. $\mathbf{g} \leftarrow 0$
- 2. For each $i \in [1, n]$:
- 3. $\hat{g}_i \leftarrow \hat{h}_i^0 \cdot e^{-\eta \lambda_i t}$
- 4. $\mathbf{g} \leftarrow \mathbf{g} + \hat{g}_i \cdot \boldsymbol{\phi}^i$
- 5. return g

Heat Diffusion (Geometry)

[WARNING]:

- 1. As the geometry diffuses, the areas and angles of the triangles change.
 - \Rightarrow The mass and stiffness matrices change.
 - \Rightarrow The harmonic decomposition changes.
 - If we take this into account, we get a non-linear PDE called *mean curvature flow*.
- 2. Mean curvature flow can create singularities.

Wave Equation

The acceleration of a wave's height is proportional to the difference in height of the surrounding.

Translating this into the PDE, if h(p, t) is the height at position $p \in S$ at time t, then:

$$\frac{\partial^2 h}{\partial t^2} = \eta \cdot \Delta h$$

Wave Equation

The acceleration of a wave's height is proportional to the difference in height of the surrounding.

Goal:

Given an initial height distribution $h^0: S \to \mathbb{R}$, find the solution to the PDE:

$$\frac{\partial^2 h}{\partial t^2} = \eta \cdot \Delta h$$

such that:

$$h(p,0) = h^0(p)$$
 and $\frac{\partial h}{\partial t}(p,0) = 0$

Wave Equation
$$\left| \frac{\partial^2 h}{\partial t^2} = \eta \cdot \Delta h \right|$$

Note:

If $\{(\boldsymbol{\phi}^i, -\lambda_i)\}_{i=1}^n$ are the eigenfunctions/values of the Laplacian, then:

$$\cos(\sqrt{\eta \lambda_i}t) \cdot \boldsymbol{\phi}^i(p)$$
 and $\sin(\sqrt{\eta \lambda_i}t) \cdot \boldsymbol{\phi}^i(p)$ are solutions to the PDE.

 \Rightarrow Any linear sum is a solution to the PDE.

Wave Equation
$$\left| \frac{\partial^2 h}{\partial t^2} = \eta \cdot \Delta h \right|$$

Compute the harmonic decomposition of h^0 :

$$h^0(p) = \sum_{i=1}^n \hat{h}_i^0 \cdot \boldsymbol{\phi}^i(p)$$

Then consider the function:

$$h(p,t) = \sum_{i=0}^{n} \hat{h}_{i}^{0} \cdot \cos(\sqrt{\eta \lambda_{i}} t) \cdot \boldsymbol{\phi}^{i}(p)$$

- —It is a solution to the wave equation.
- It satisfies $h(p,0) = h^0(p)$.
- It satisfies $\frac{\partial h}{\partial t}(p,0) = 0$.

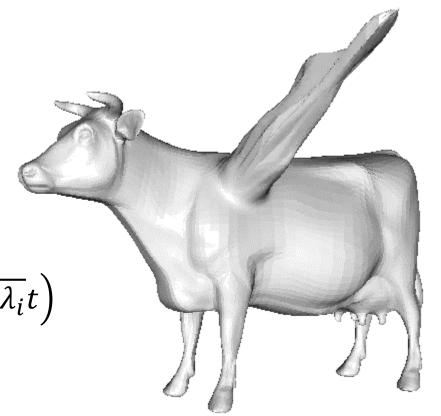
Wave Equation

Harmonic Decomposition ($S \subset \mathbb{R}^3$, $h^0: S \to \mathbb{R}$)

1. ...

Process($t \in [0, \infty)$)

- 1. $\mathbf{g} \leftarrow 0$
- 2. For each $i \in [1, n]$:
- 3. $\hat{g}_i \leftarrow \hat{h}_i^0 \cdot \cos(\sqrt{\eta \lambda_i} t)$
- 4. $\mathbf{g} \leftarrow \mathbf{g} + \hat{g}_i \cdot \boldsymbol{\phi}^i$
- 5. return g



How practical is it to use the spectral decomposition?

Complexity

Challenge:

If we have a mesh with n vertices we get n generalized eigenvectors.

* $O(n^2)$ storage / $O(>n^2)$ computation.

Approximate:

Sometimes a low-frequency solution will do.

 $\checkmark O(kn)$ storage

Sometimes a numerically inaccurate solution will do.

 $\checkmark O(n)$ storage / O(?) computation

Approximate Spectral Processing

Preliminaries:

Let **M** be the mass matrix, **S** the stiffness matrix, and $\{(\boldsymbol{\phi}^i, \lambda_i)\}$ the spectrum, we have:

$$\mathbf{M} \cdot \boldsymbol{\phi}^i = \mathbf{M} \cdot \boldsymbol{\phi}^i \qquad \mathbf{S} \cdot \boldsymbol{\phi}^i = \lambda_i \cdot \mathbf{M} \cdot \boldsymbol{\phi}^i$$

Taking α times the 1st equation plus β times the 2nd:

$$(\alpha \mathbf{M} + \beta \mathbf{S}) \cdot \boldsymbol{\phi}^i = (\alpha + \beta \lambda_i) \cdot \mathbf{M} \cdot \boldsymbol{\phi}^i$$

Multiplying by $(\alpha \mathbf{M} + \beta \mathbf{L})^{-1}$:

$$\boldsymbol{\phi}^{i} = (\alpha + \beta \lambda_{i}) \cdot ((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \boldsymbol{\phi}^{i}$$

$$\frac{1}{(\alpha + \beta \lambda_{i})} \cdot \boldsymbol{\phi}^{i} = ((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \boldsymbol{\phi}^{i}$$

Approximate Spectral Processing

Preliminaries:

$$(\gamma + \delta \lambda_i) \cdot \mathbf{M} \cdot \boldsymbol{\phi}^i = (\gamma \mathbf{M} + \delta \mathbf{S}) \cdot \boldsymbol{\phi}^i$$

$$\frac{1}{(\alpha + \beta \lambda_i)} \cdot \boldsymbol{\phi}^i = ((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \cdot \mathbf{M}) \cdot \boldsymbol{\phi}^i$$

Combining these, we get:

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i}$$

$$= (\gamma + \delta \lambda_{i}) \cdot ((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \boldsymbol{\phi}^{i}$$

$$= \frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}} \cdot \boldsymbol{\phi}^{i}$$

Example (Signal Smoothing):

The goal is to obtain a smoothed signal:

$$\hat{f}_i \leftarrow \hat{f}_i \cdot F(\lambda_i)$$

We can relax the condition that $F(\lambda) = e^{-\lambda}$ and use a different filter $F: \mathbb{R} \to \mathbb{R}$.

The new filter should:

- preserve the low frequencies
- decay at higher frequencies

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i} = (\frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}}) \cdot \boldsymbol{\phi}^{i}$$

Smoothing ($\alpha = 1, \gamma = 1, \delta = 0$):

Consider the solution to the linear system:

$$\mathbf{g} = ((\mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \mathbf{f}$$

Taking the spectral decomposition of **f**:

$$\mathbf{g} = \sum \hat{f}_i \cdot \left((\mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M} \right) \cdot \boldsymbol{\phi}^i$$
$$= \sum \hat{f}_i \cdot \frac{1}{1 + \beta \lambda_i} \cdot \boldsymbol{\phi}^i$$

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i} = (\frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}}) \cdot \boldsymbol{\phi}^{i}$$

Smoothing ($\alpha = 1, \gamma = 1, \delta = 0$):

Consider the solution to the linear system:

$$\mathbf{g} = ((\mathbf{M} + \beta \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \mathbf{f}$$

Solving this linear system is equivalent to filtering with:

$$F(\lambda) = \frac{1}{1 + \beta \lambda}$$

with β the rate of decay of higher frequencies.

$$=\sum \hat{f}_i \cdot \frac{1}{1+\beta\lambda_i} \cdot \boldsymbol{\phi}^i$$

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i} = (\frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}}) \cdot \boldsymbol{\phi}^{i}$$

Sharpening ($\alpha = 1, \gamma = 1, \delta = \beta \sigma$):

Consider the solution to the linear system:

$$\mathbf{g} = ((\mathbf{M} + \beta \mathbf{L})^{-1} \circ (\mathbf{M} + \beta \sigma \mathbf{L})) \cdot \mathbf{f}$$

Taking the spectral decomposition of **f**:

$$\mathbf{g} = \sum \hat{f}_i \cdot \frac{1 + \sigma \beta \lambda_i}{1 + \beta \lambda_i} \cdot \boldsymbol{\phi}^i$$

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i} = (\frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}}) \cdot \boldsymbol{\phi}^{i}$$

Sharpening ($\alpha = 1, \gamma = 1, \delta = \beta \sigma$):

Consider the solution to the linear system:

$$\mathbf{g} = ((\mathbf{M} + \beta \mathbf{L})^{-1} \circ (\mathbf{M} + \beta \sigma \mathbf{L})) \cdot \mathbf{f}$$

$$\Rightarrow F(\lambda) = \frac{1 + \sigma \beta \lambda}{1 + \beta \lambda}$$

This filter satisfies:

- $-\lim_{\lambda \to 0} F(\lambda) = 1$: Low-frequencies preserved
- $-\lim_{\lambda\to\infty}F(\lambda)=\sigma$: High frequencies scaled by σ .

$$((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \boldsymbol{\phi}^{i} = (\frac{\gamma + \delta \lambda_{i}}{\alpha + \beta \lambda_{i}}) \cdot \boldsymbol{\phi}^{i}$$

Sharpening ($\alpha = 1, \gamma = 1, \delta = \beta \sigma$):

Consider the solution to the linear system:

$$\mathbf{g} = ((\mathbf{M} + \beta \mathbf{L})^{-1} \circ (\mathbf{M} + \beta \sigma \mathbf{L})) \cdot \mathbf{f}$$

$$\Rightarrow F(\lambda) = \frac{1 + \sigma \beta \lambda}{1 + \beta \lambda}$$

Signal smoothing is a special instance, with $\sigma = 0$.

- $-\lim_{\lambda \to 0} \overline{F(\lambda)} = 1$: Low-frequencies preserved
- $-\lim_{\lambda\to\infty}F(\lambda)=\sigma$: High frequencies scaled by σ .

```
Process (S \subset \mathbb{R}^3, \mathbf{f} \in \mathbb{R}^n, \sigma \in \mathbb{R}, \beta \in \mathbb{R})
```

- 1. $(M, L) \leftarrow MassAndStiffness(S)$
- 2. $\mathbf{g} \leftarrow (\mathbf{M} + \beta \sigma \mathbf{L}) \cdot \mathbf{f}$
- 3. $\mathbf{A} \leftarrow (\mathbf{M} + \beta \mathbf{L})$
- 4. return Solve(A,g)

By approximating, we replace the computational complexity of storing/computing the spectral decomposition with the complexity of solving a sparse linear system.

$$\frac{\partial h}{\partial t} = \Delta h$$
 s.t. $h(p,0) = h^0(p)$

Discretization (Temporal):

Letting $h^t: S \to \mathbb{R}$ be the solution at time t, we can (temporally) discretize the PDE in two ways:

$$\frac{h^{t+\varepsilon} - h^t}{\varepsilon} \approx \Delta h^{t}$$

$$\downarrow h^{t+\varepsilon} = h^t + \varepsilon \cdot \Delta h^t$$

Implicit

$$\frac{h^{t+\varepsilon} - h^t}{\varepsilon} \approx \Delta h^{t+\varepsilon}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(1 - \varepsilon \cdot \Delta)h^{t+\varepsilon} = h^t$$

$$h^{t+\varepsilon} = h^t + \varepsilon \cdot \Delta h^t$$

Implicit

$$(1 - \varepsilon \cdot \Delta)h^{t+\varepsilon} = h^t$$

<u>Discretization (Spatial)</u>:

Projecting onto the discrete function basis gives:

$$\mathbf{M} \cdot \mathbf{h}^{t+\varepsilon} = \mathbf{M} \cdot \mathbf{h}^{t} - \varepsilon \cdot \mathbf{S} \cdot \mathbf{h}^{t}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Explicit

$$\mathbf{h}^{t+\varepsilon} = \left(\mathbf{M}^{-1} \circ \left(\mathbf{M} - \varepsilon \mathbf{S}\right)\right) \cdot \mathbf{h}^{t}$$

$$\alpha = 1, \beta = 0, \gamma = 1, \delta = -\varepsilon$$

$$\downarrow \downarrow$$

$$\hat{h}_{i}^{t+\varepsilon} = \left(1 - \varepsilon \lambda_{i}\right) \cdot \hat{h}_{i}^{t}$$

Implicit

$$\mathbf{h}^{t+\varepsilon} = \left((\mathbf{M} + \varepsilon \mathbf{S})^{-1} \circ \mathbf{M} \right) \cdot \mathbf{h}^{t}$$

$$\alpha = 1, \beta = \varepsilon, \gamma = 1, \delta = 0$$

$$\downarrow \downarrow$$

$$\hat{h}_{i}^{t+\varepsilon} = \frac{1}{1 + \varepsilon \lambda_{i}} \cdot \hat{h}_{i}^{t}$$

Discretization:

Both give an inaccurate answer when a large time-step, ε , is used. But...

$$\mathbf{g} = ((\alpha \mathbf{M} + \beta \mathbf{S})^{-1} \circ (\gamma \mathbf{M} + \delta \mathbf{S})) \cdot \mathbf{f}$$

$$\Rightarrow F(\lambda) = \frac{\gamma + \delta \lambda}{\alpha + \beta \lambda}$$

Explicit

$$\mathbf{h}^{t+\varepsilon} = \left(\mathbf{M}^{-1} \circ (\mathbf{M} - \varepsilon \mathbf{S})\right) \cdot \mathbf{h}^{t}$$

$$\downarrow \downarrow$$

$$\hat{h}_{i}^{t+\varepsilon} = (1 - \varepsilon \lambda_{i}) \cdot \hat{h}_{i}^{t}$$

Implicit

$$\mathbf{h}^{t+\varepsilon} = \left((\mathbf{M} + \varepsilon \mathbf{S})^{-1} \circ \mathbf{M} \right) \cdot \mathbf{h}^{t}$$

$$\downarrow \downarrow$$

$$\hat{h}_{i}^{t+\varepsilon} = \frac{1}{1 + \varepsilon \lambda_{i}} \cdot \hat{h}_{i}^{t}$$

Discretization:

Both filters preserve low frequencies:

$$\lim_{\lambda \to 0} (1 - \varepsilon \lambda) = 1$$

$$\lim_{\lambda \to 0} \left(\frac{1}{1 + \varepsilon \lambda} \right) = 1$$

But at high frequencies (and large time-steps):

$$\lim_{\lambda \to \infty} (1 - \varepsilon \lambda) = -\infty$$

$$\lim_{\lambda \to 0} \left(\frac{1}{1 + \varepsilon \lambda} \right) = 0$$

Explicit

$$\mathbf{h}^{t+\varepsilon} = (\mathbf{M}^{-1} \circ (\mathbf{M} - \varepsilon \mathbf{S})) \cdot \mathbf{h}^{t}$$

Implicit

$$\mathbf{h}^{t+\varepsilon} = ((\mathbf{M} + \varepsilon \mathbf{S})^{-1} \circ \mathbf{M}) \cdot \mathbf{h}^{t}$$

Though neither approximation gives an accurate answer at large times-steps, implicit integration is (unconditionally) stable.

A similar approach can be used to approximate the solution to the wave equation without a harmonic decomposition.

$$\lim_{\lambda \to 0} (1 - \varepsilon \lambda) = 1$$

$$\lim_{\lambda \to 0} \left(\frac{1}{1 + \varepsilon \lambda} \right) = 1$$

But at high frequencies (and large time-steps):

$$\lim_{\lambda \to \infty} (1 - \varepsilon \lambda) = -\infty$$

$$\lim_{\lambda \to 0} \left(\frac{1}{1 + \varepsilon \lambda} \right) = 0$$

Outline

- Motivation
- Laplacian Spectrum
- Applications
- Conclusion

Conclusion

Though there is no Fourier Transform for general surfaces, we can use the spectrum of the Laplacian to get a frequency decomposition.

This enables:

- Filtering of signals
- Solving PDEs

by modulating the frequency coefficients.

Conclusion

Though computing a full spectral decomposition is not space/time efficient, we can often:

- Use the lower frequencies.
- Design linear operators whose solution has the desired frequency modulation.

Using the theory of spectral decomposition:

 We can design stable simulations, without explicitly computing the decomposition.