FFTs in Graphics and Vision

Rotational and Reflective Symmetry Detection
Outline

Representation Theory

Symmetry Detection
 • Rotational Symmetry
 • Reflective Symmetry
Representation Theory

Recall:

A group is a set of elements G with a binary operation (often denoted “\cdot”) such that for all $f, g, h \in G$, the following are satisfied:

- **Closure:**
 \[g \cdot h \in G \]

- **Associativity:**
 \[f \cdot (g \cdot h) = (f \cdot g) \cdot h \]

- **Identity:** There exists an identity element $1 \in G$ s.t.:
 \[1 \cdot g = g \cdot 1 = g \]

- **Inverse:** Every element g has an inverse g^{-1} s.t.:
 \[g \cdot g^{-1} = g^{-1} \cdot g = 1 \]
Representation Theory

Observation 1:

Given a group \(G = \{g_1, \ldots, g_n\} \), for any \(g \in G \), the (set-theoretic) map that multiplies the elements of \(G \) on the left by \(g \) is invertible.

(The inverse is the map multiplying the elements of \(G \) on the left by \(g^{-1} \).)
Observation 1:

In particular, the set \(\{ g \cdot g_1, \ldots, g \cdot g_n \} \) is a re-ordering of the set \(\{ g_1, \ldots, g_n \} \).

Or more simply, \(g \cdot G = G \).

Similarly, the set \(\{ g_1^{-1}, \ldots, g_n^{-1} \} \) is a re-ordering of the set \(\{ g_1, \ldots, g_n \} \).

Or more simply, \(G^{-1} = G \).
Representation Theory

Recall:

A Hermitian inner product is a map from $V \times V$ into the complex numbers that is:

1. **Linear**: For all $u, v, w \in V$ and any scalar $\lambda \in \mathbb{C}$
 \[
 \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \\
 \langle \lambda v, w \rangle = \lambda \langle v, w \rangle
 \]

2. **Conjugate Symmetric**: For all $v, w \in V$
 \[
 \langle v, w \rangle = \overline{\langle w, v \rangle}
 \]

3. **Positive Definite**: For all $v \in V$
 \[
 \langle v, v \rangle \geq 0 \\
 \langle v, v \rangle = 0 \iff v = 0
 \]
Observation 2:

Given a Hermitian inner-product space V, and vectors $\{v_1, \ldots, v_n\} \subset V$, the vector minimizing the sum of squared distances is the average:

$$\frac{1}{n} \sum_{k=1}^{n} v_k = \arg \min_{v \in V} \left(\sum_{k=1}^{n} \|v - v_k\|^2 \right)$$
Recall:

A **unitary representation** of a group G on a Hermitian inner-product space V is a map ρ that sends every element in G to an orthogonal transformation on V, satisfying:

$$\rho_{g \cdot h} = \rho_g \cdot \rho_h$$

for all $g, h \in G$.
Definition:

A vector \(v \in V \) is invariant under the action of \(G \) if:

\[
\rho_g(v) = v
\]

for all \(g \in G \).

We denote by \(V_G \) the set of vectors in \(V \) that are invariant under the action of \(G \):

\[
V_G = \{ v \in V | \rho_g(v) = v, \forall g \in G \}
\]
Observation 3:
The set V_G is a vector sub-space of V.

If $v, w \in V_G$, then for any $g \in G$, we have:

$$\rho_g(v) = v \quad \text{and} \quad \rho_g(w) = w$$

And for all scalars α and β we have:

$$\rho_g(\alpha \cdot v + \beta \cdot w) = \alpha \cdot \rho_g(v) + \beta \cdot \rho_g(w)$$

$$= \alpha \cdot v + \beta \cdot w$$

So $\alpha \cdot v + \beta \cdot w \in V_G$ as well.
Observation 4:

Given a finite group G and given a vector $v \in V$, the average of v over G:

$$\text{Average}(v, G) = \frac{1}{|G|} \sum_{g \in G} \rho_g(v)$$

is invariant under the action of G.
Representation Theory

Observation 4:

Let h be any element in G.

We show that h maps the average back to itself:

$$\text{Average}(v, G) = \rho_h(\text{Average}(v, G))$$
Observation 4:

\[\text{Average}(v, G) = \rho_h(\text{Average}(v, G)) \]

\[= \rho_h \left(\frac{1}{|G|} \sum_{g \in G} \rho_g(v) \right) \]

\[= \frac{1}{|G|} \sum_{g \in G} \rho_h \cdot \rho_g(v) \]

\[= \frac{1}{|G|} \sum_{g \in G} \rho_{h \cdot g}(v) \]

\[= \frac{1}{|G|} \sum_{g \in h \cdot G} \rho_g(v) \]

\[= \frac{1}{|G|} \sum_{g \in G} \rho_g(v) \]

\[= \text{Average}(v, G) \]
Representation Theory

Observation 5:

Given a finite group G and given a vector $v \in V$, the average of v over G is the closest G-invariant vector to v:

$$\text{Average}(v, G) = \arg \min_{v_0 \in V_G} (\|v_0 - v\|^2)$$
Observation 5:

\[\|v_0 - v\|^2 = \frac{1}{|G|} \sum_{g \in G} \|\rho_g(v_0) - v\|^2 \]

\[= \frac{1}{|G|} \sum_{g \in G} \|v_0 - \rho_g^{-1}(v)\|^2 \]

\[= \frac{1}{|G|} \sum_{g \in G} \|v_0 - \rho_g^{-1}(v)\|^2 \]

\[= \frac{1}{|G|} \sum_{g \in G^{-1}} \|v_0 - \rho_g(v)\|^2 \]

\[= \frac{1}{|G|} \sum_{g \in G} \|v_0 - \rho_g(v)\|^2 \]
Observation 5:

\[\|v_0 - v\|^2 = \frac{1}{|G|} \sum_{g \in G} \|v_0 - \rho_g(v)\|^2 \]

Thus, \(v_0\) is the \(G\)-invariant vector minimizing the squared distance to \(v\) if and only if it minimizes the sum of squared distances to the vectors:

\[\{\rho_{g_1}(v), \ldots, \rho_{g_n}(v)\} \]

So \(v_0\) must be the average of these vectors:

\[v_0 = \frac{1}{|G|} \sum_{g \in G} \rho_g(v) = \text{Average}(v, G) \]
Since the average map:

$$\text{Average}(v, G) = \frac{1}{|G|} \sum_{g \in G} \rho_g(v)$$

is a linear map returning the closest G-invariant vector to v, it is the projection map from V to V_G.

Note:
Outline

Representation Theory

Symmetry Detection

- Rotational Symmetry
- Reflective Symmetry
Symmetry Detection

For functions on a circle, we defined measures of:

- **Reflective Symmetry**: for every axis of reflective symmetry.
- **Rotational Symmetry**: for every order of rotational symmetry.

![Reflective Symmetry](image1)

![3-Fold Rotational Symmetry](image2)

![8-Fold Rotational Symmetry](image3)
Symmetry Detection

For functions on a sphere, we would like to define a measure of:

- **Reflective Symmetry**: for every plane of reflective symmetry.
- **Rotational Symmetry**: for every axis through the origin and every order of rotational symmetry.
Symmetry Detection

Goal:

Reflective Symmetry:
- Compute the spherical function giving the measure of reflective symmetry of every plane passing through the origin.

Rotational Symmetry:
- For every order of rotational symmetry k:
 - Compute the spherical function giving the measure of k-fold symmetry about every axis through the origin.
Symmetry Detection

Goal:

Model

Reflective Symmetries

2-Fold Rotational Symmetries

3-Fold Rotational Symmetries

4-Fold Rotational Symmetries
Symmetry Detection

Approach:
As in the 1D case, we will compute the symmetries of a shape by representing the shape by a spherical function.
Symmetry Detection

Recall:

To measure a function’s symmetry we:

- Associated a group G of transformations to each type of symmetry
- Defined the measure of symmetry as the size of the closest G-invariant function:
 \[\text{Sym}^2(f, G) = \| \pi_G(f) \|^2 \]

Since the nearest symmetric function is the average under the action of the group, we got:

\[\text{Sym}^2(f, G) = \left\| \frac{1}{|G|} \sum_{g \in G} \rho_g(f) \right\|^2 \]
Outline

Representation Theory

Symmetry Detection
 ◦ Rotational Symmetry
 ◦ Reflective Symmetry
Rotational Symmetry

Given a function on the sphere, and given a fixed order of rotational symmetry k, define a function whose value at a point is the measure of k-fold rotational symmetry about the associated axis.
Rotational Symmetry

To do this, we need to associate a group to every axis passing through the origin.

We denote by $G_{p,k}$ the group of k-fold rotations about the axis through p.

The elements of the group are the rotations:

$$g_j = R \left(p, \frac{2j\pi}{k} \right)$$

corresponding to rotations about p by the angle $2j\pi/k$.
Rotational Symmetry

\[
\text{Sym}^2(f, G_{p,k}) = \left\| \frac{1}{k} \sum_{j=0}^{k-1} \rho g_j(f) \right\|^2 \\
= \frac{1}{k^2} \left(\sum_{i=0}^{k-1} \rho g_i(f), \sum_{j=0}^{k-1} \rho g_j(f) \right) \\
= \frac{1}{k^2} \sum_{i,j=0}^{k-1} \langle \rho g_i(f), \rho g_j(f) \rangle \\
= \frac{1}{k^2} \sum_{i,j=0}^{k-1} \langle \rho g_{i-j}(f), f \rangle \\
= \frac{1}{k} \sum_{j=0}^{k-1} \langle \rho g_j(f), f \rangle
\]
Rotational Symmetry

\[\text{Sym}^2(f, G_{p,k}) = \frac{1}{k} \sum_{j=0}^{k-1} \langle \rho_{g_j}(f), f \rangle \]

The measure of \(k \)-fold rotational symmetry about the axis \(p \) can be computed by taking the average of the dot-products of the function \(f \) with its \(k \) rotations about the axis \(p \).
Rotational Symmetry

\[\text{Sym}^2(f, G_{p,k}) = \frac{1}{k} \sum_{j=0}^{k-1} \langle \rho_{g_j}(f), f \rangle \]

Computing the measures of rotational symmetry reduces to computing the correlation of \(f \) with itself:

\[D_{f,f}(R) = \langle f, \rho_R(f) \rangle \]

This is something that we can do using the Wigner \(D \)-transform from last lecture.
Rotational Symmetry

\[
\text{Sym}^2(f, G_{p,k}) = \frac{1}{k} \sum_{j=0}^{k-1} \langle \rho_{g_{j}}(f), f \rangle
\]

Algorithm:

Given a function \(f \):

- Compute the correlation of \(f \) with itself (a.k.a. auto-correlation).
- For each order of symmetry \(k \):
 - Compute the spherical function whose value at \(p \) is the average of the correlation values at rotations \(R \left(p, \frac{2\pi j}{k} \right) \), with \(0 \leq j < k \).
Rotational Symmetry

\[\text{Sym}^2(f, G_{p,k}) = \frac{1}{k} \sum_{j=0}^{k-1} \langle \rho_{g_j}(f), f \rangle \]

Complexity:

- Compute the auto-correlation: \(O(n^3 \log^2 n) \)
- For each order of symmetry \(k \):
 - Compute the spherical function: \(O(n^2 k) \)

Giving a complexity of \(O(n^2 K^2 + n^3 \log^2 n) \) to compute rotational symmetries through order \(K \).
Outline

Representation Theory

Symmetry Detection
 - Rotational Symmetry
 - Reflective Symmetry
Reflective Symmetry

Given a spherical function f, we would like to compute a function whose value at a point p is the measure of reflective symmetry with respect to the plane perpendicular to p.
Reflective Symmetry

Reflections through the plane perpendicular to p correspond to a group with two elements:

$$G_p = \{ \text{Id}, \text{Ref}_p \}$$
Reflective Symmetry

Reflections through the plane perpendicular to \(p \) correspond to a group with two elements:

\[
G_p = \{ \text{Id}, \text{Ref}_p \}
\]

So the measure of reflective symmetry becomes:

\[
\text{Sym}^2(f, G_p) = \frac{1}{2} \left(\langle f, f \rangle + \langle \rho_{\text{Ref}_p}(f), f \rangle \right)
\]

\[
= \frac{1}{2} \left(\|f\|^2 + \langle \rho_{\text{Ref}_p}(f), f \rangle \right)
\]
Reflective Symmetry

How do we compute the dot-product of the function \(f \) with the reflection of \(f \) through the plane perpendicular to \(p \)?

Since reflections are not rotations we cannot use the auto-correlation (directly).
Reflective Symmetry

General Approach:

If we have two orthogonal transformations S and T, both with determinant -1, we can set R to be the transformation:

$$R = T \cdot S$$

Since S and T are both orthogonal, the product R must also be orthogonal.

Since both S and T have determinant -1, R must have determinant 1.
Reflective Symmetry

General Approach:

If we have two orthogonal transformations \(S \) and \(T \), both with determinant \(-1\), we can set \(R \) to be the transformation:

\[
R = T \cdot S
\]

Thus, \(R \) must be a rotation and we have:

\[
T = R \cdot S^{-1}
\]

\[\Rightarrow \text{Any orthogonal transformation } T \text{ with det. } -1 \text{ can be expressed as the product of some rotation } R \text{ with (the inverse of) a fixed orthogonal transformation } S \text{ with det. } -1.\]
Reflective Symmetry

General Approach:

Compute the correlation of f with an orthogonal transformation with determinant -1, $\rho_S(f)$:

$$D_{\rho_S(f), f}(R) = \langle \rho_R(\rho_S(f)), f \rangle$$

Then we can get the dot-product of f with its reflection through the plane perpendicular to p:

$$\langle \rho_{\text{Ref}_p}(f), f \rangle = \langle \rho_{\text{Ref}_p \cdot S^{-1}}(\rho_S(f)), f \rangle$$

$$= D_{\rho_S(f), f}(\text{Ref}_p \cdot S^{-1})$$
Reflective Symmetry

\[\text{Sym}^2(f, G_p) = \frac{1}{2} \left(\|f\|^2 + D_{\rho_S(f),f}(\text{Ref}_p \cdot S^{-1}) \right) \]

Algorithm:

Given a function \(f \):

- Compute the correlation of \(f \) with \(\rho_S(f) \)
- Compute the spherical function whose value at \(p \) is the average of the size of \(f \) and the dot-product of \(f \) with the rotation of \(\rho_S(f) \) by \(\text{Ref}_p \cdot S^{-1} \).
Reflective Symmetry

\[\text{Sym}^2(f, G_p) = \frac{1}{2} \left(\|f\|^2 + D_{\rho_S(f),f} (\text{Ref}_p \cdot S^{-1}) \right) \]

Complexity:

- Compute the correlation: \(O(n^3 \log^2 n) \)
- Compute the spherical function: \(O(n^2) \)

Giving a complexity of \(O(n^3 \log^2 n) \) to compute all reflective symmetries.
Reflective Symmetry

There are many different choices for the reflection S we use to compute:

$$D_{\rho_S(f),f}(R)$$

A simple orthogonal transformation with determinant -1 is the antipodal map:

$$S = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}$$

Note that $S = S^{-1}$.
Reflective Symmetry

The advantage of using the antipodal map is that it makes it easy to express $\text{Ref}_p \cdot S$.

Fixing a point p, the antipodal map S is the composition of two maps:

- A reflection through the plane perpendicular to p, and
- A rotation by 180° about the axis through p.
Reflective Symmetry

So a reflection through the plane perpendicular to \(p \) is the product of the antipodal map and a rotation by 180° around the axis through \(p \):

\[
\text{Ref}_p = R(p, \pi) \cdot S
\]
Reflective Symmetry

Setting S to be the antipodal map, we get:

$$\text{Sym}^2(f, G_p) = \frac{1}{2} (\|f\|^2 + \langle \rho_{R(p,\pi)}(\rho_S(f)), f \rangle)$$

Note that evaluating reflective symmetry only requires knowing the correlation values for 180° rotations.

For computing reflective symmetries, the computation of the correlation is overkill as we don’t use most of the correlation values.
Reflective Symmetry

Since the spherical harmonics of degree l are homogenous polynomials of degree l, we get a simple expression for $\rho_s(f)$:

$$\rho_s(f) = \sum_l (-1)^l \sum_{m=-l}^l \hat{f}_{lm} \cdot Y_l^m$$
Reflective Symmetry
Reflective Symmetry

In particular, if f is antipodally symmetric:

$$\rho_S(f) = f$$

we have:

$$\text{Sym}^2(f, G_p) = \frac{1}{2} (\|f\|^2 + \langle \rho_{R(p,\pi)}(\rho_S(f)), f \rangle)$$

$$= \frac{1}{2} \left(\|f\|^2 + \langle \rho_{R(p,\pi)}(f), f \rangle \right)$$

$$= \text{Sym}^2(f, G_{p,2})$$
Reflective Symmetry

That is, if f is antipodally symmetric, the 2-fold rotational symmetries of f and the reflective symmetries of f are the same.