

FFTs in Graphics and Vision

Invariance of Shape Descriptors

Outline

- Math Overview
 - Translation and Rotation Invariance
 - The 0th Order Frequency Component
- Shape Descriptors
- Invariance

Invariance

Given a unitary representation (ρ, V) of a group G, we can decompose V into sub-representations:

$$V = \bigoplus_{\lambda \in \Lambda} V^{\lambda}$$

where $\rho_g(V^{\lambda}) \subset V^{\lambda}$ for all $g \in G$ and all $\lambda \in \Lambda$.

Invariance

$$V = \bigoplus_{\lambda \in \Lambda} V^{\lambda}$$

Let π_{λ} : $V \to V^{\lambda}$ be the projection operator. Then for any $v \in V$ we have:

$$v = \sum_{\lambda \in \Lambda} \pi_{\lambda}(v).$$

Mashcke's Theorem:

Since (ρ, V^{λ}) is a sub-representation, we have:

$$\rho_g \circ \pi_{\lambda} = \pi_{\lambda} \circ \rho_g$$

Invariance

$$\pi_{\lambda}: V \to V^{\lambda}$$
 $\rho_g \circ \pi_{\lambda} = \pi_{\lambda} \circ \rho_g$

Consider the map $\Phi: V \to \mathbb{R}^{|\Lambda|}$ with:

$$\Phi(v) = \{|\pi_{\lambda}(v)|\}_{\lambda \in \Lambda}.$$

Then for any $g \in G$ we have:

$$\Phi\left(\rho_{g}(v)\right) = \left\{\left|\pi_{\lambda}\left(\rho_{g}(v)\right)\right|\right\}_{\lambda \in \Lambda}$$

$$= \left\{\left|\rho_{g}\left(\pi_{\lambda}(v)\right)\right|\right\}_{\lambda \in \Lambda}$$

$$= \left\{\left|\pi_{\lambda}(v)\right|\right\}_{\lambda \in \Lambda}$$

$$= \Phi(v)$$

 \Rightarrow The map Φ is G-invariant.

Translation Invariance

Given a function *f* in 2D, we obtain a <u>translation</u> invariant representation of the function by storing the magnitudes of the frequency components:

$$f(x,y) = \sum_{l,m=-\infty}^{\infty} \hat{f}_{lm} \cdot \frac{e^{i(lx+my)}}{2\pi}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\|\hat{f}_{lm}\|\} \quad l,m \in \mathbb{Z}$$

Rotation Invariance (Circle)

Given a function $f(\theta)$ on a circle, we obtain a <u>rotation</u> invariant representation by storing the magnitudes of the frequency components:

$$f(\theta) = \sum_{l=-\infty}^{\infty} \hat{f}_l \cdot \frac{e^{il\theta}}{\sqrt{2\pi}}$$

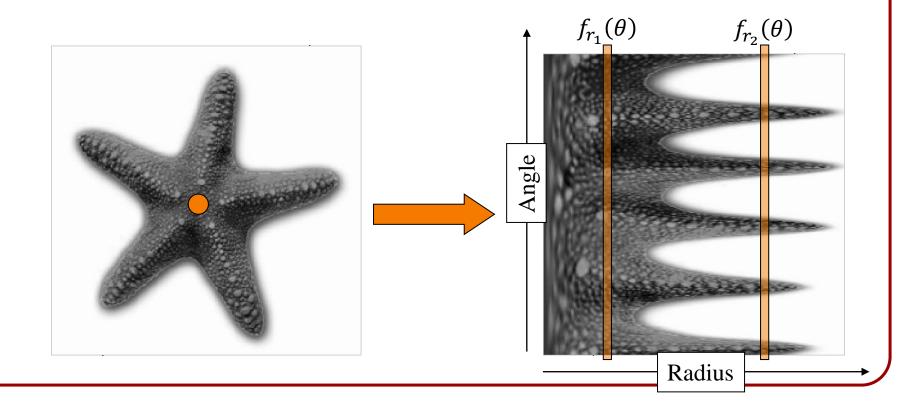
$$\{ \|\hat{f}_l\| \} \quad l \in \mathbb{Z}$$

Rotation Invariance (2D)

Given a function f(x, y) in 2D, we obtain a rotation invariant representation of f by:

Expressing f in polar coordinates:

$$f(f,\theta) = f(r \cdot \cos \theta, r \cdot \sin \theta)$$



Rotation Invariance (2D)

Given a function f(x, y) in 2D, we obtain a rotation invariant representation of f by:

Expressing f in polar coordinates:

$$f(f,\theta) = f(r \cdot \cos \theta, r \cdot \sin \theta)$$

 Expressing each radial restriction in terms of its Fourier decomposition:

$$f(f,\theta) = \sum_{l=-\infty}^{\infty} \hat{f}_l(r) \cdot \frac{e^{il\theta}}{\sqrt{2\pi}}$$

 Storing the magnitude of the frequency components of the different radial restrictions:

$$\{\|\hat{f}_l(r)\| \cdot \sqrt{2\pi r}\} \quad l \in \mathbb{Z}, r \in [0,1]$$

Rotation Invariance (Sphere)

Given a function $f(\theta, \phi)$ on a sphere, we obtain a <u>rotation</u> invariant representation by storing the magnitudes of the frequency components:

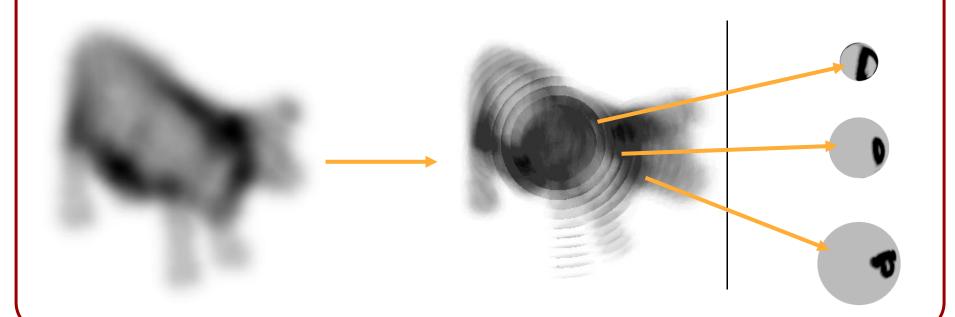
$$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{f}_{lm} \cdot \mathbf{Y}_{l}^{m}(\theta, \phi)$$

$$\left\{ \sqrt{\sum_{m=-l}^{l} \left\| \hat{f}_{lm} \right\|^2} \right\} \quad l \in \mathbb{Z}^{\geq 0}$$

Rotation Invariance (3D)

Given a function f(x, y, z) in 3D, we obtain a rotation invariant representation of f by:

• Expressing f in spherical coordinates: $f(r, \theta, \phi) = f(r \cdot \cos \theta \cdot \sin \phi, r \cdot \cos \phi, r \cdot \sin \theta \cdot \sin \phi)$



Rotation Invariance (3D)

Given a function f(x, y, z) in 3D, we obtain a rotation invariant representation of f by:

- Expressing f in spherical coordinates: $f(r, \theta, \phi) = f(r \cdot \cos \theta \cdot \sin \phi, r \cdot \cos \phi, r \cdot \sin \theta \cdot \sin \phi)$
- Expressing each radial restriction in terms of its spherical harmonic decomposition:

$$f(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{f}_{lm}(r) \cdot \mathbf{Y}_{l}^{m}(\theta,\phi)$$

 Storing the size of the frequency components coefficients of the different radial restrictions:

$$\left\{ \sqrt{\sum_{m=-l}^{l} \|\hat{f}_{lm}(r)\|^{2}} \cdot \sqrt{4\pi r^{2}} \right\} \quad l \in \mathbb{Z}^{\geq 0}, r \in [0,1]$$

Given a function on the circle $f(\theta)$, we can express the function in terms of its Fourier decomposition:

$$f(\theta) = \sum_{l=-\infty}^{\infty} \hat{f}_l \cdot \frac{e^{il\theta}}{\sqrt{2\pi}}$$

What is the meaning of the 0th order frequency component?

The l^{th} frequency is the dot product of the function with the l^{th} (normalized) complex exponential:

$$\hat{f}_l = \left\langle f(\theta), \frac{e^{il\theta}}{\sqrt{2\pi}} \right\rangle = \int_0^{2\pi} f(\theta) \cdot \frac{e^{-il\theta}}{\sqrt{2\pi}} d\theta$$

So the 0th frequency component is:

$$\hat{f}_0 = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(\theta) \ d\theta$$

Up to a normalization term, the 0th frequency component of a function $f(\theta)$ is the integral of the function over the circle:

$$\hat{f}_0 = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(\theta) \ d\theta$$

Given a function on the sphere $f(\theta, \phi)$, we can express the function in terms of its spherical harmonic decomposition:

$$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{f}_{lm} \cdot \mathbf{Y}_{l}^{m}(\theta, \phi)$$

What is the meaning of the 0th order frequency component?

The $(l, m)^{th}$ spherical harmonic coefficient is computed by taking the dot product of the function with the $(l, m)^{th}$ spherical harmonic:

$$\hat{f}_{lm} = \langle f(\theta, \phi), \mathbf{Y}_l^m(\theta, \phi) \rangle$$

So the 0th frequency component is:

$$\hat{f}_{00} = \frac{1}{\sqrt{4\pi}} \int_{|p|=1} f(p) \, dp$$

Up to a normalization term, the 0th frequency component of a function $f(\theta, \phi)$ is the integral of the function over the sphere:

$$\hat{f}_{00} = \frac{1}{\sqrt{4\pi}} \int_{|p|=1} f(p) dp$$

Note:

When the function f is real, the 0^{th} frequency coefficient will be real.

If, additionally, the function f is positive the 0th frequency coefficient will also be positive:

$$\|\hat{f}_0\| = \hat{f}_0$$
$$\|\hat{f}_{00}\| = \hat{f}_{00}$$

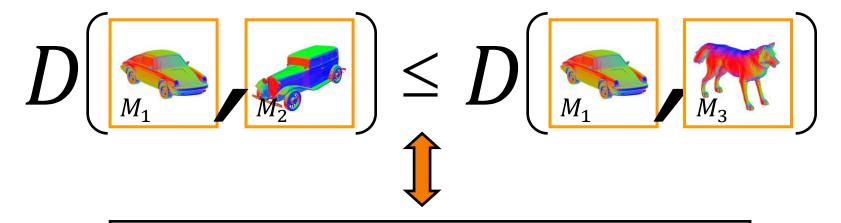
Outline

- Math Overview
- Shape Descriptors
 - Shape Histograms (Ankerst et al.)
 - Shape Distributions (Osada et al.)
 - Extended Gaussian Images (Horn)
- Invariance

Shape Matching

General Approach

Define a function that takes in two models and returns a measure of their proximity.



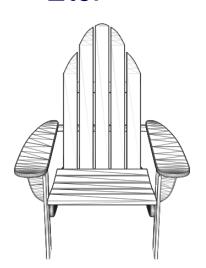
 M_1 is closer to M_2 than it is to M_3

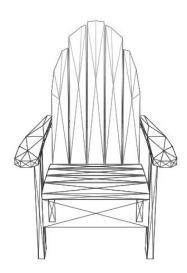
Shape Descriptors

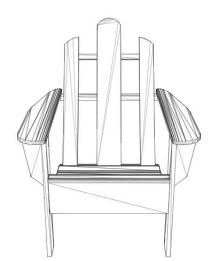
<u>Challenge</u>

It is difficult to match shapes directly:

- Similar shapes can have different triangulations
- Similar shapes can have different genera
- Similar shapes may be in different poses
- Etc.



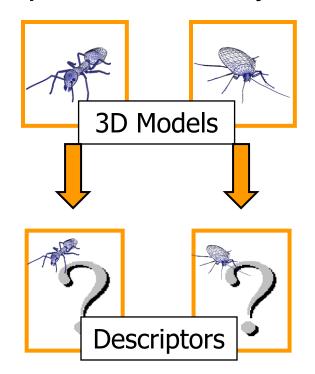


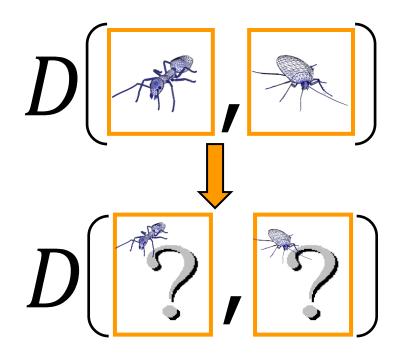


Shape Descriptors

Solution

Represent shapes by a structured abstraction that represents every shape in the same domain.





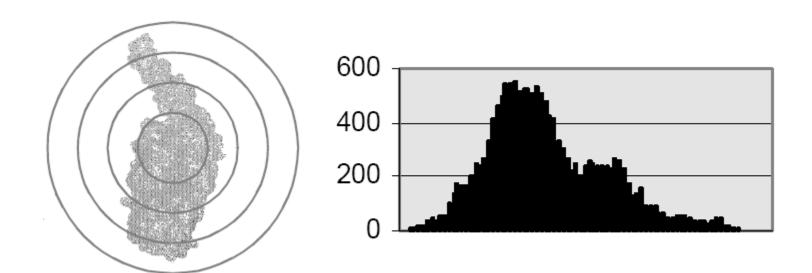
Outline

- Math Overview
- Shape Descriptors
 - Shape Histograms (Ankerst et al.)
 - Shape Distributions (Osada et al.)
 - Extended Gaussian Images (Horn)
- Invariance

Shape Histograms

Approach

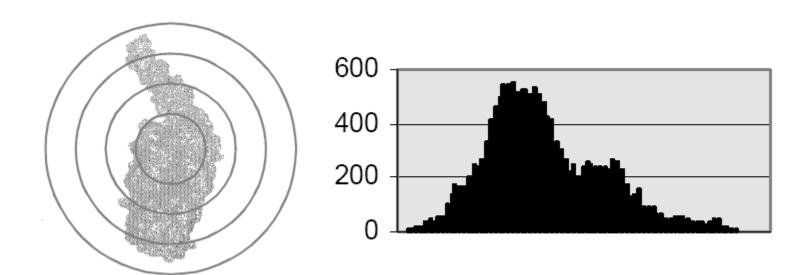
- Decompose space into concentric shells
- Store how much of the shape falls within each shell



Shape Histograms

Properties

- The shape is represented by 1D array of values.
- The representation is invariant to rotation (about the center)

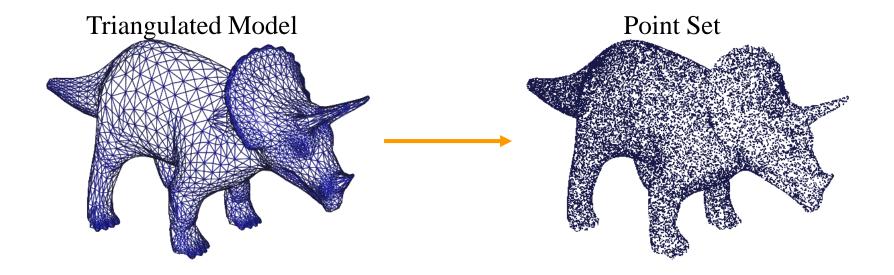


Outline

- Math Overview
- Shape Descriptors
 - Shape Histograms (Ankerst et al.)
 - Shape Distributions (Osada et al.)
 - Extended Gaussian Images (Horn)
- Invariance

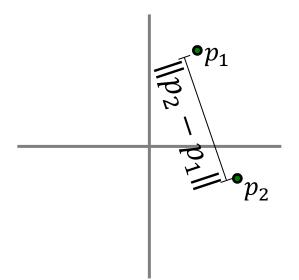
Approach

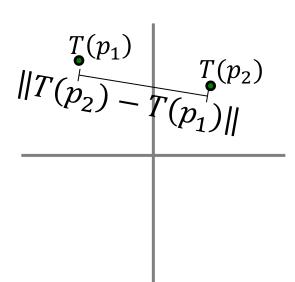
Avoid the whole problem of tesselation, genus, etc. by building the shape descriptor from random samples from the surface of the model:



Key Idea

Use the fact that the distance between pairs of points on the model does not change if the model is translated and/or rotated.

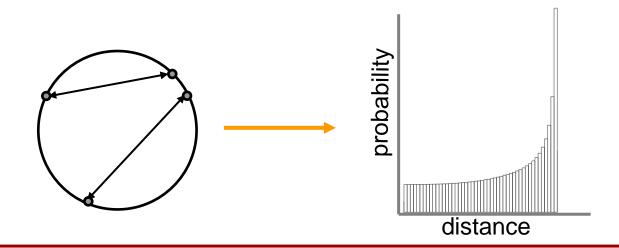




Descriptor

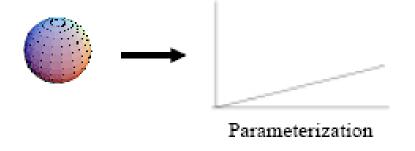
Represent shapes by the histogram of distances between pairs of points on the model:

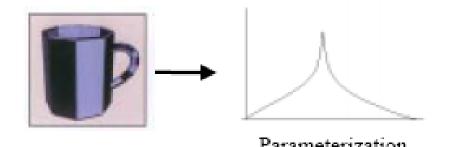
$$D2_P(d) = \frac{|\{p, q \in P | ||p - q|| = d\}|}{|P|^2}$$



Properties

- The shape is represented by a 1D array of values.
- The representation is invariant to translations and rotations



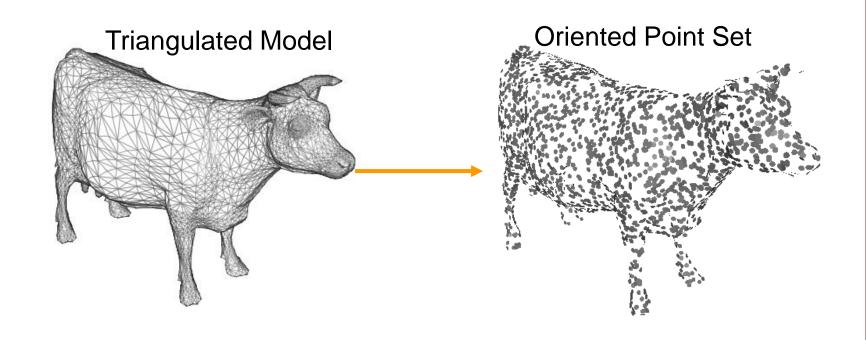


Outline

- Math Overview
- Shape Descriptors
 - Shape Histograms (Ankerst et al.)
 - Shape Distributions (Osada et al.)
 - Extended Gaussian Images (Horn)
- Invariance

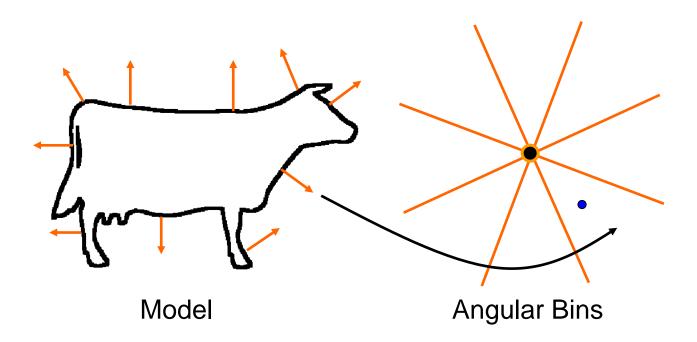
Approach

Use the fact that every point on the surface has a position and a <u>normal</u>.



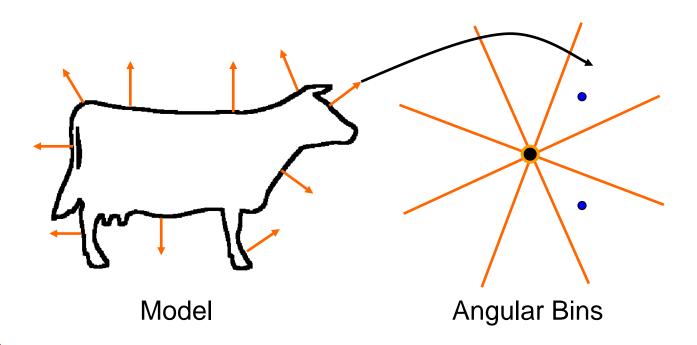
Descriptor

Represent a model by binning points based on the associated surface normal



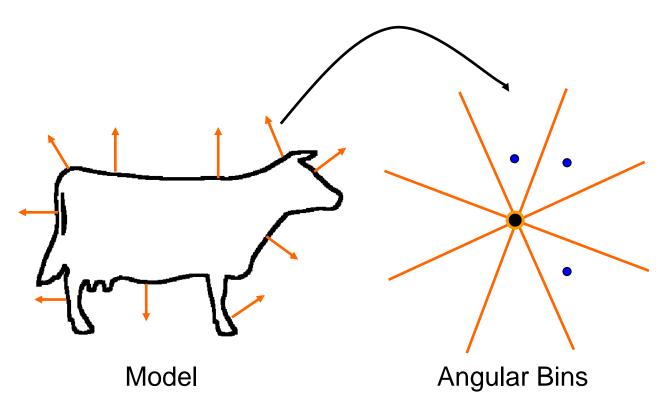
Descriptor

Represent a model by binning points based on the associated surface normal



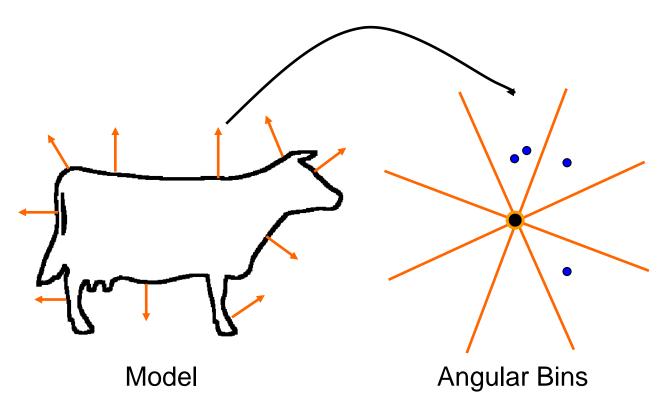
Descriptor

Represent a model by binning points based on the associated surface normal



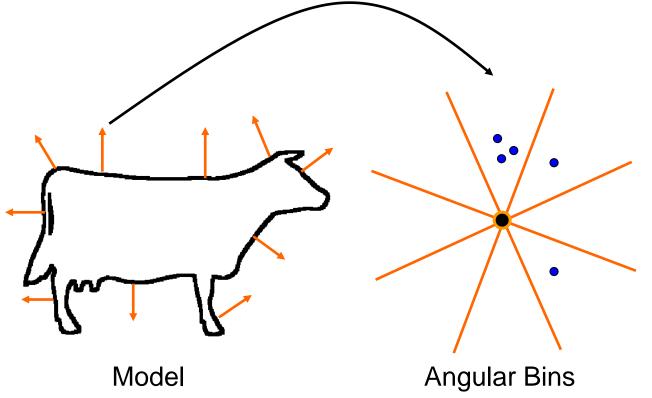
Descriptor

Represent a model by binning points based on the associated surface normal



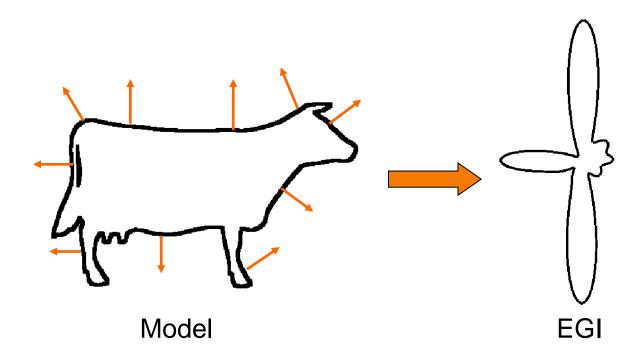
Descriptor

Represent a model by binning points based on the associated surface normal



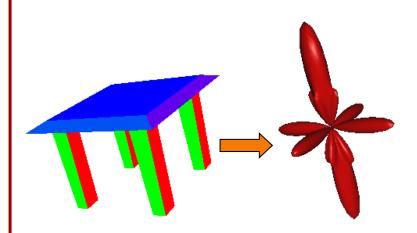
Descriptor

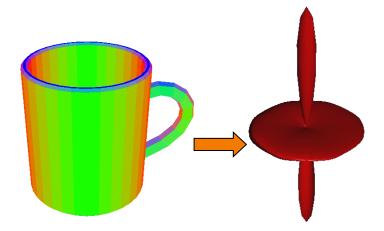
Represent a model by binning points based on the associated surface normal



Properties

- A 2D curve / 3D surface is represented by a histogram over a circle / sphere.
- The representation is invariant to translations.





Outline

- Math Overview
- Shape Descriptors
- Invariance

Normalization vs. Invariance

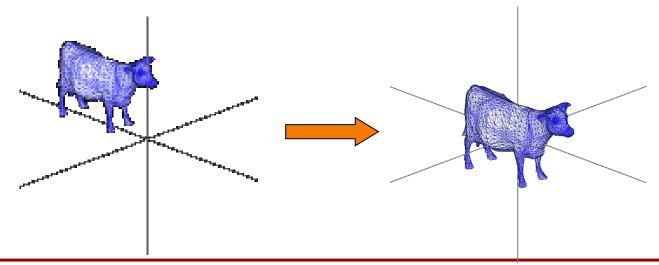
We say that a shape representation is <u>normalized</u> with respect to translation / rotation if the shape is placed into a canonical pose.

Normalization vs. Invariance

We say that a shape representation is <u>normalized</u> with respect to translation / rotation if the shape is placed into a canonical pose.

Example:

We can normalize for translation by moving the surface so that the center of mass is at the origin.



Normalization vs. Invariance

We say that a shape representation is <u>invariant</u> with respect to translation / rotation if the representation discards (all) information that depends on translation / rotation.

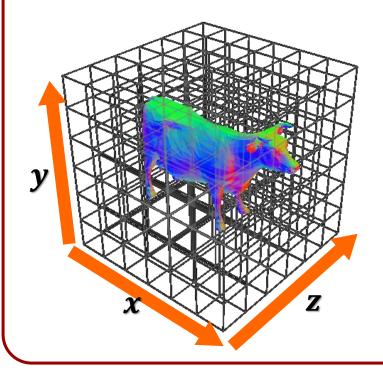
Invariance

We have seen a general method for making functions invariant to translation and rotation.

Invariance

Translation:

Compute the Fourier decomposition and store just the magnitudes of the Fourier coefficients.



Cartesian Coordinates
$$f(x, y, z) = \sum_{l,m,n} \hat{f}_{lmn} \cdot \frac{e^{i(lx+my+zn)}}{(2\pi)^{1.5}}$$

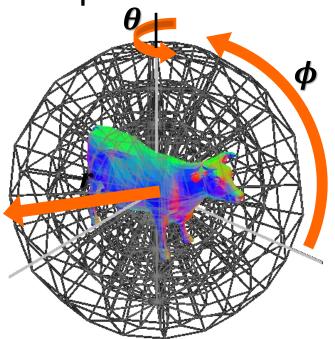
 $\overline{\left\{\left\|\hat{f}_{lmn}\right\|\right\}_{l,m,n}}$

Translation Invariant Representation

Invariance

Rotation:

Compute the spherical harmonic decomposition and store just the sizes of the different frequency components of the different radial restrictions.



Spherical Coordinates
$$f(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{\infty} \hat{f}_{lm}(r) \cdot \mathbf{Y}_{l}^{m}(\theta, \phi)$$

$$\left\{ \sqrt{\sum_{m=-l}^{l} \|\hat{f}_{lm}(r)\|^2} \cdot \sqrt{4\pi r^2} \right\}_{l=0}^{\infty}$$

Rotation Invariant Representation

Overblown Claim

All methods that represent 3D shapes in either a translation-invariant or rotation-invariant method implicitly use these invariance approaches.

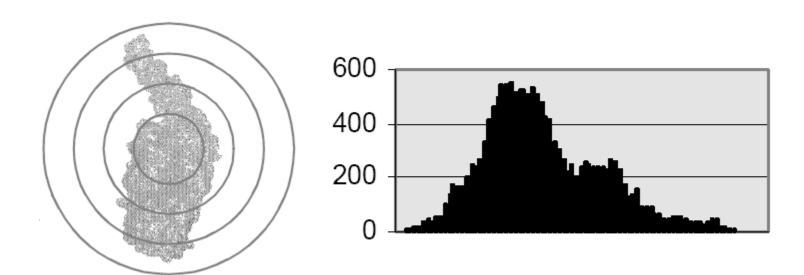
Goal

Given the three shape descriptors:

- Shape Histograms
- Shape Distributions
- Extended Gaussian Images
- How does the descriptor obtain its invariance?
- How can the descriptiveness of the descriptor be improved while maintaining invariance?

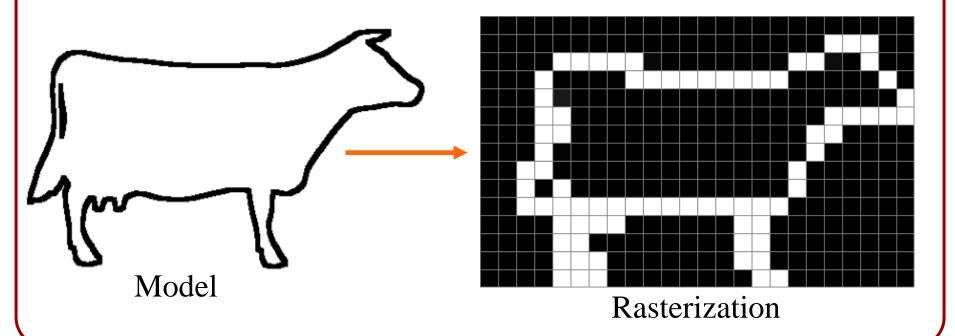
The shape descriptor represents a 3D shape by binning points by their distance from the center.

It is rotation invariant.



The shape histogram starts by representing the surface by a 3D function, obtained by rasterizing the boundary into a voxel grid:

- A voxel has value 1 if intersects the boundary
- A voxel has value 0 otherwise.



The shape histogram can be obtained by setting the value for the bin corresponding to radius r to the "size" of the rasterization restricted to the sphere of radius r:

ShapeHistogram
$$(r) = \int_{|p|=r} \text{Raster}(p) dp$$

We can express the rasterization in spherical coordinates:

$$R(r, \theta, \phi) = \operatorname{Raster}(r \cdot \cos \theta \cdot \sin \phi, r \cdot \cos \phi, r \cdot \sin \theta \cdot \sin \phi)$$

Then, fixing the radius, we can express the function in terms of spherical harmonics:

$$R(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{R}_{lm}(r) \cdot \mathbf{Y}_{l}^{m}(\theta,\phi)$$

In this formulation, the value of the shape histogram at a radius of r is the value of the 0th spherical harmonic coefficient:*

ShapeHistogram
$$(r) = \hat{R}_{00}(r) \cdot \sqrt{4\pi} \cdot r^2$$

*The scale factor of $\sqrt{4\pi} \cdot r^2$ accounts for the fact that the area of the sphere scales quadratically with radius.

So the shape histogram obtains its rotation invariance by storing the (size of the) 0th order frequency component:

ShapeHistogram
$$(r) = \hat{R}_{00}(r) \cdot \sqrt{4\pi} \cdot r^2$$

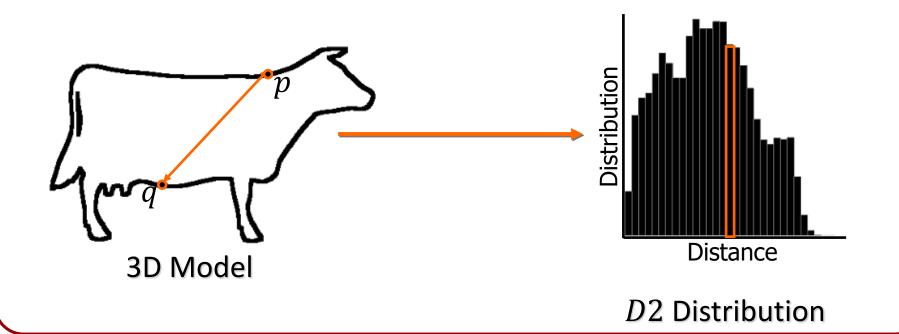
Extension:

We can obtain a more descriptive representation, without giving up rotation invariance, by storing the size of <u>every</u> frequency component:

EShapeHistogram
$$(r, l) = \sqrt{\sum_{m=-l}^{l} ||\hat{R}_{lm}(r)||^2 \cdot \sqrt{4\pi} \cdot r^2}$$

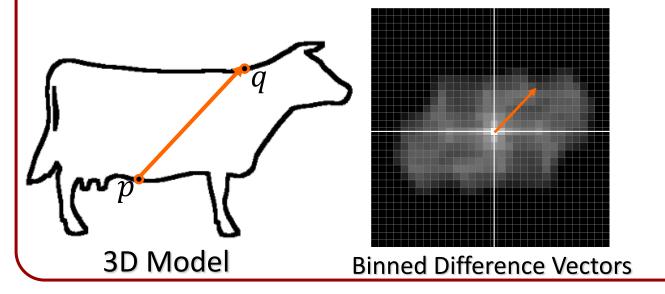
The shape descriptor represents a 3D shape by binning point-pairs by their distance.

It is both <u>translation</u> and <u>rotation</u> invariant.



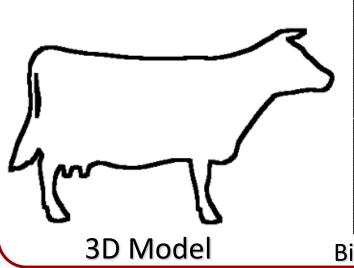
Let's consider rotation invariance first.

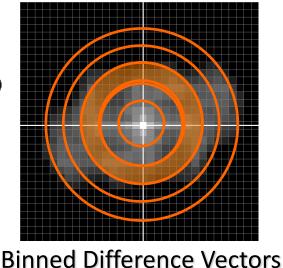
One way to think of the D2 shape descriptor is by binning the difference vector between pairs of points on the surface.



One way to think of the D2 shape descriptor is by binning the difference vector between pairs of points on the surface.

Then the shape distribution can be obtained by computing the Shape Histogram of the binning:





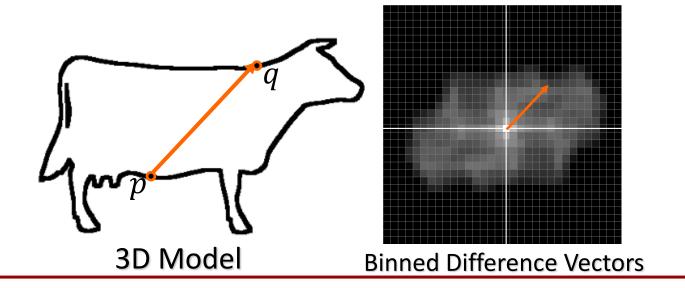
As with the Shape Histogram, the *D*2 Shape Distribution can be realized by storing 0th order frequency components of the spherical harmonic decomposition.

Extension:

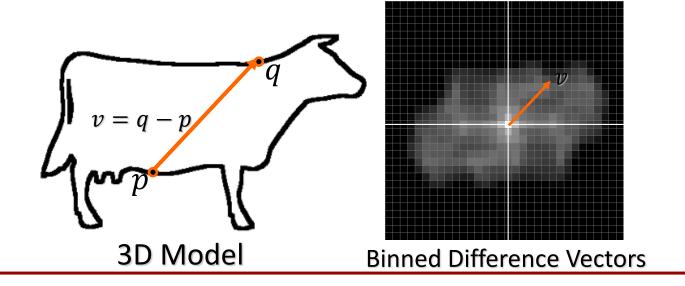
As with the Shape Histogram the representation can be made more descriptive, without sacrificing rotation invariance, by storing the size of <u>every</u> frequency component.

What about the translation invariance?

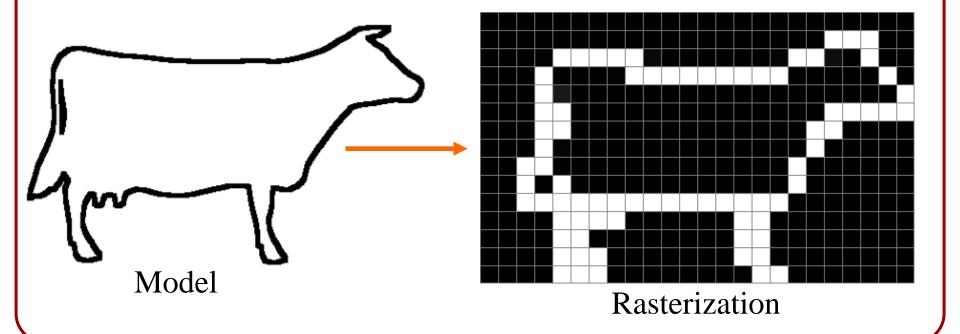
The Shape Distribution is computed from the binning of point-pair differences. How is this function computed?



A point q on the surface will contribute to bin v if the point q - v is also on the surface.

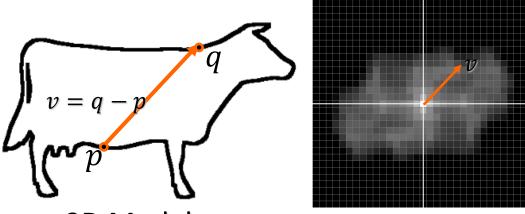


Consider the rasterization of the surface into a regular voxel grid.



A point q on the surface will contribute to bin v if the point q - v is also on the surface.

$$DBin(v) = \int_{q \in Surface} Raster(q - v) dq$$



3D Model

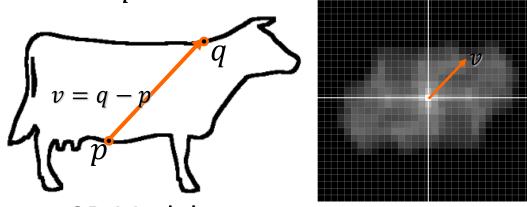
Binned Difference Vectors

For a point $q \in \mathbb{R}^3$, the point will only contribute to bin v if q and q - v are both on the surface.

That, is q contribute to bin v if and only if:

Raster
$$(q) \cdot \text{Raster}(q - v) = 1$$

$$DBin(v) = \int_{q \in \mathbb{R}^3} Raster(q) \cdot Raster(q - v) dq$$



Binned Difference Vectors

Thus, the binning function is the correlation of the rasterization with itself:

$$DBin(v) = \int_{q \in \mathbb{R}^3} Raster(q) \cdot Raster(q - v) dq$$
$$= (Raster * Raster)(v)$$

Recall:

To compute the correlation of f with g we multiply the Fourier coefficients of f by the conjugates of the Fourier coefficients of g:

$$(f \star g)(\theta) = \sum_{l=-\infty}^{\infty} \sqrt{2\pi} \cdot (\hat{f}_l \cdot \bar{\hat{g}}_l) \cdot e^{il\theta}$$

When f = g, this gives:

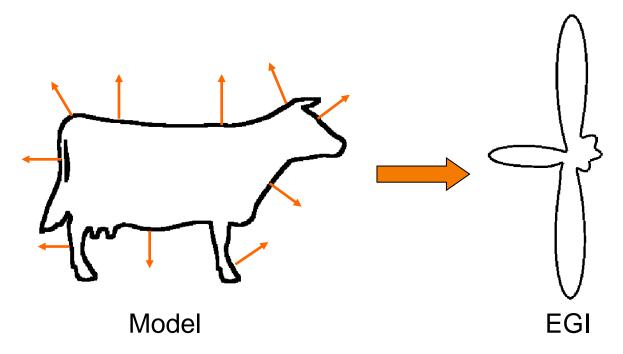
$$(f \star f)(\theta) = \sum_{l=-\infty} \sqrt{2\pi} \cdot \|\hat{f}_l\|^2 \cdot e^{il\theta}$$

⇒ The binning function implicitly converts the rasterization function into a function whose Fourier coefficients are the square norms of the Fourier coefficients of the rasterization.

Which is what we do to make a function translation invariant.

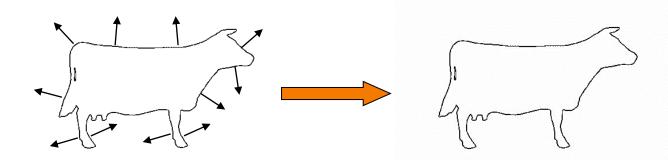
This spherical shape descriptor represents a 3D shape by a histogram on the sphere.

It is obtained by binning points by their normal direction, and is <u>translation</u> invariant.



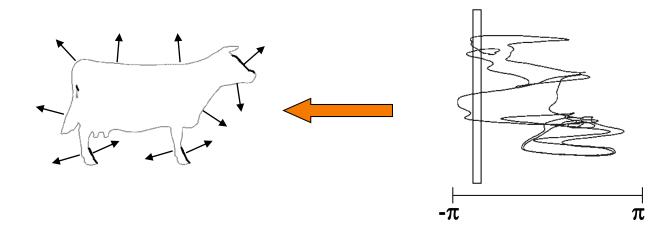
To obtain the EGI representation, we can think of points on the model as living in a 5D space:

- The first 3 dimensions are indexed by the position.
- The last 2 are indexed by the normal direction.



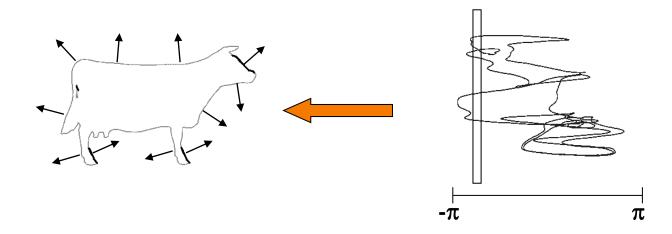
To obtain the EGI representation, we can think of points on the model as living in a 5D space.

If we fix the normal angle, we get a 3D slice of the 5D space, corresponding to all the points on the surface with the same normal:



For each normal n, the EGI stores the "size" of the points in the normal slice corresponding to n.

This is the 0^{th} order frequency component of the rasterization of the points on the model with normal n.



For each normal n, the EGI stores the "size" of the points in the normal slice corresponding to n.

This is the 0^{th} order frequency component of the rasterization of the points on the model with normal n.

Extension:

We can get a more discriminating descriptor, without giving up translation invariance, by storing the size of <u>every</u> frequency component.