

FFTs in Graphics and Vision

Groups and Representations

Outline

Groups

Representations

Schur's Lemma

Correlation

Groups

A group is a set of elements G with a binary operation (often denoted "·") such that for all $f, g, h \in G$, the following properties are satisfied:

• Closure:

$$g \cdot h \in G$$

Associativity:

$$f \cdot (g \cdot h) = (f \cdot g) \cdot h$$

∘ Identity: \exists 1 ∈ G s.t.:

$$1 \cdot g = g \cdot 1 = g$$

• Inverse: $\forall g \in G \exists g^{-1} \in G \text{ s.t.}$: $g \cdot g^{-1} = g^{-1} \cdot g = 1$

If it is also true that $f \cdot g = g \cdot f$ for all $f, g \in G$, the group is called <u>commutative</u>, or <u>abelian</u>.

Groups

Examples

Under what binary operations are the following groups, what is the identity element, and what is the inverse:

- ∘ Z: integers?
- $\mathbb{R}^{>0}$: positive real-numbers?
- $\mathbb{R}^2/(2\pi\mathbb{Z}^2)$: points in \mathbb{R}^2 modulo addition by integer multiples of 2π in either coordinate?
- V: vectors in a fixed vector space?
- GL(V): invertible linear transformations of a vector space?

Groups

Examples

Are these groups commutative:

- Z under addition?
- $\circ \mathbb{R}^{>0}$ under multiplication?
- $\mathbb{R}^2/(2\pi\mathbb{Z}^2)$ under addition?
- V under addition?
- *GL(V)* under composition?

Representations

Often, we think of a group as a set of elements that act on some space:

E.g.:

- Invertible linear transformations act on vector spaces
- 2D rotations act on 2D arrays
- 3D rotations act on 3D arrays

A representation is a way of formalizing this...

Representations

A <u>representation</u> of a group G <u>on a vector space</u> V, denoted (ρ, V) , is a map ρ that sends every element in G to an invertible linear transformation on V, preserving the group structure:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h) \quad \forall g, h \in G.$$

For simplicity, we will write:

$$\rho(g) = \rho_g$$

Note:

•
$$\rho(1) = 1$$
 since:

$$\rho(g) = \rho(g \cdot 1) = \rho(g) \cdot \rho(1)$$

$$\circ (\rho(g))^{-1} = \rho(g^{-1})$$
 since:

$$\rho(1) = \rho(g \cdot g^{-1}) = \rho(g) \cdot \rho(g^{-1})$$

If the vector space *V* has a Hermitian inner product, and the representation preserves the inner product:

$$\langle v, w \rangle = \langle \rho_g(v), \rho_g(w) \rangle \quad \forall g \in G; v, w \in V$$

the representation is called <u>unitary</u>.

Note:

For nice (e.g. finite, compact) groups we can always massage the Hermitian inner product so that the representation becomes unitary.

Examples

- $V = \mathbb{R}^n$ is the space of n-dimensional arrays with the standard inner-product
- \circ $G = GL_n(\mathbb{C})$ is the group of invertible $n \times n$ matrices
- \circ ρ is the map:

$$\rho_{\mathbf{M}}(\mathbf{v}) = \mathbf{M}\mathbf{v}$$

Representation?

Unitary?

Examples

- $V = \mathbb{R}^n$ is the space of n-dimensional arrays with the standard inner-product
- \circ $G = GL_n(\mathbb{C})$ is the group of invertible $n \times n$ matrices
- $\circ \rho$ is the map:

$$\rho_{\mathbf{M}}(\mathbf{v}) = \mathbf{M}\mathbf{v}$$

Representation? Yes

Unitary? **No**

Examples

- $V = \mathbb{R}^n$ is the space of n-dimensional arrays with the standard inner-product
- \circ $G = GL_n(\mathbb{C})$ is the group of invertible $n \times n$ matrices
- $\circ \rho$ is the map:

$$\rho_{\mathbf{M}}(\mathbf{v}) = \mathbf{v}$$

Representation?

Unitary?

Examples

- $V = \mathbb{R}^n$ is the space of n-dimensional arrays with the standard inner-product
- \circ $G = GL_n(\mathbb{C})$ is the group of invertible $n \times n$ matrices
- \circ ρ is the map:

$$\rho_{\mathbf{M}}(\mathbf{v}) = \mathbf{v}$$

Representation? Yes

Unitary? Yes

This is called the *trivial representation*.

Examples

- V is a complex Hermitian inner product space
- G = SU(V) is the group of (special) unitary transformations on V
- $\circ \rho$ is the map:

$$\rho_U(v) = Uv$$

Representation?

Unitary?

Examples

- V is a complex Hermitian inner product space
- G = SU(V) is the group of (special) unitary transformations on V
- $\circ \rho$ is the map:

$$\rho_U(v) = Uv$$

Representation? Yes

Unitary? Yes

Examples

- $V = L^2(S^2)$ is the space of functions on a sphere with the standard inner-product
- \circ G = SO(3) is the group of 3D rotations
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(Rp) \ \forall R \in G$$

Representation?

Unitary?

Examples

- $V = L^2(S^2)$ is the space of functions on a sphere with the standard inner-product
- \circ G = SO(3) is the group of 3D rotations
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(Rp) \ \forall R \in G$$

Representation? No

$$[\rho_R(\rho_S(f))](p) = [\rho_S(f)](Rp)$$

$$= f(SRp)$$

$$= [\rho_{SR}(f)](p)$$

$$\neq [\rho_{RS}(f)](p)$$

Examples

- $V = L^2(S^2)$ is the space of functions on a sphere with the standard inner-product
- \circ G = SO(3) is the group of 3D rotations
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(R^{-1}p) \quad \forall R \in G$$

Representation?

Unitary?

Examples

- $V = L^2(S^2)$ is the space of functions on a sphere with the standard inner-product
- \circ G = SO(3) is the group of 3D rotations
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(R^{-1}p) \quad \forall R \in G$$

Representation? Yes

$$[\rho_{R}(\rho_{S}(f))](p) = [\rho_{S}(f)](R^{-1}p)$$

$$= f(S^{-1}R^{-1}p)$$

$$= f((RS)^{-1}p)$$

$$= [\rho_{RS}(f)](p)$$

Unitary? Yes

Examples

- $V = L^2(\mathbb{R}^2/(2\pi\mathbb{Z}^2))$ is the space of periodic functions in the plane
- $G = \mathbb{R}^2/(2\pi\mathbb{Z}^2)$ is the group \mathbb{R}^2 modulo addition by integer multiples of 2π in either coordinate
- \circ ρ is the map:

$$[\rho_{a,b}(f)](x,y) = f(x-a,y-b)$$

Representation?

Unitary?

Examples

- $V = L^2(\mathbb{R}^2/(2\pi\mathbb{Z}^2))$ is the space of periodic functions in the plane
- $G = \mathbb{R}^2/(2\pi\mathbb{Z}^2)$ is the group \mathbb{R}^2 modulo addition by integer multiples of 2π in either coordinate
- \circ ρ is the map:

$$[\rho_{a,b}(f)](x,y) = f(x-a,y-b)$$

Representation? Yes

Unitary? Yes

Big Picture

Our goal is to try to better understand how a group acts on a vector space:

- How translational shifts act on periodic functions,
- How rotations act on functions on a sphere/circle
- Etc.

To do this we would like to simplify the "action" of the group into bite-size chunks.

We will always be assuming that our representations are unitary

Given a representation (ρ, V) of a group G, if there exists a subspace $W \subset V$ such that the representation fixes W:

 $\rho_g(w) \in W \quad \forall g \in G \text{ and } w \in W$ then we say that W is a <u>sub-representation</u> of V.

Maschke's Theorem:

If W is a sub-representation of V, then the perpendicular space W^{\perp} will also be a sub-representation of V.

Formally:

 W^{\perp} is defined by the property that every vector in W^{\perp} is perpendicular to every vector in W: $\langle w, w' \rangle = 0 \quad \forall w \in W \text{ and } w' \in W^{\perp}$

<u>Claim</u>: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself...

<u>Claim</u>: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself... Assume not.

There exist
$$w' \in W^{\perp}$$
, $w \in W$, and $g \in G$ s.t.: $\langle w, \rho_g(w') \rangle \neq 0$

Since ρ is unitary, this implies that:

Claim: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself... Assume not.

There exist $w' \in W^{\perp}$, $w \in W$, and $g \in G$ s.t.:

But this would contradict the Since ρ assumption that the representation ρ maps W back into itself!

$$\updownarrow \\ \langle \rho_{g^{-1}}(w), w' \rangle \neq 0$$

Example:

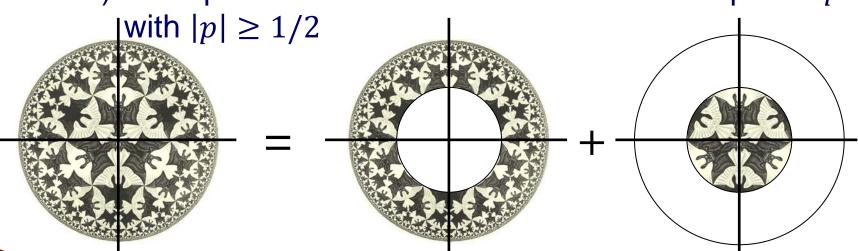
1. Consider the group G = SO(2) of 2D rotations, acting on vectors in \mathbb{R}^3 by rotating around the y-axis.

What are the two sub-representations?

- a) The *y*-axis: The group acts on this sub-space trivially, mapping every vector to itself
- b) The *xz*-plane: The group acts as a 2D rotation on this 2D space.

Example:

- 2. Consider the group G = SO(2) of 2D rotations, acting on functions on the unit disk $L^2(D^2)$. What are two sub-representations?
 - a) The space of functions that are zero for all points p with |p| < 1/2
 - b) The space of functions that are zero for all points p



Irreducible Representations

Given a representation (ρ, V) of a group G, the representation is said to be <u>irreducible</u> if the only subspaces of V that are sub-representations are:

$$W = V$$
 and $W = \{0\}$

We had talked about linear transformations as maps between vector spaces, that preserve the underlying vector space structure:

$$L(\alpha v + \beta w) = \alpha L(v) + \beta L(w)$$

We had talked about a representation as a map from a group into the group of invertible linear transforms that preserves the group structure:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h)$$

Given a representation (ρ, V) a group G, what does it mean for a map $\Phi: V \to V$ to preserve the representation structure?

- Since Φ is a map between vector spaces, it should preserve the vector space structure:
 - $\Rightarrow \Phi$ is a linear transformation.
- Φ should also preserve the group action structure: $\Phi(\rho_g(v)) = \rho_g(\Phi(v))$

Such a map is called *G*-linear.

Note:

If $\Phi, \Psi: V \to V$ are *G*-linear, then so is their linear combination:

$$\begin{split} (\alpha \cdot \Phi + \beta \cdot \Psi) \left(\rho_g(v) \right) &= \alpha \cdot \Phi \left(\rho_g(v) \right) + \beta \cdot \Psi \left(\rho_g(v) \right) \\ &= \alpha \cdot \rho_g \left(\Phi(v) \right) + \beta \cdot \rho_g \left(\Psi(v) \right) \\ &= \rho_g \left(\alpha \cdot \Phi(v) \right) + \rho_g \left(\beta \cdot \Psi(v) \right) \\ &= \rho_g \left(\alpha \cdot \Phi(v) + \beta \cdot \Psi(v) \right) \\ &= \rho_g \left((\alpha \cdot \Phi + \beta \cdot \Psi)(v) \right) \end{split}$$

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Proof:

If $v \in \text{Kernel}(\Phi)$ then, for $g \in G$ we have: $0 = \Phi(v) = \rho_g(\Phi(v))$ $= \Phi\left(\rho_g(v)\right)$ \updownarrow $\rho_g(v) \in \text{Kernel}(\Phi)$

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Proof:

If
$$w = \Phi(v) \in \text{Image}(\Phi)$$
 then, for $g \in G$ we have:

$$\rho_g(w) = \rho_g(\Phi(v))$$

$$= \Phi\left(\rho_g(v)\right)$$

$$\in \text{Image}(\Phi)$$

Schur's Lemma

Given an irreducible representation (ρ, V) of a group G, if Φ is G-linear then Φ is scalar multiplication:

$$\Phi = \lambda \cdot \mathrm{Id}$$
.

Schur's Lemma

Proof:

- Since Φ is a linear transformation, it has a (complex) eigenvalue λ.
- 2. Since Φ and Id. are G-linear, so is $(\Phi \lambda \cdot Id.)$.

Schur's Lemma

Proof:

- 3. Since λ is an eigenvalue of Φ , $(\Phi \lambda \cdot Id.)$ must have a non-trivial kernel $W \subset V$.
- 4. This implies that the kernel of $(\Phi \lambda \cdot Id.)$ must be a sub-representation of V.
- 5. Since (ρ, V) is irreducible and the kernel of $(\Phi \lambda \cdot Id.)$ is not empty, W = V.
- 6. Since the kernel is the entire vector space: $(\Phi \lambda \cdot Id.) = 0 \iff \Phi = \lambda \cdot Id.$

Corollary:

All irreducible representations of commutative groups must be one-dimensional.

Proof:

1. Fix some element $h \in G$.

Proof:

- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear:

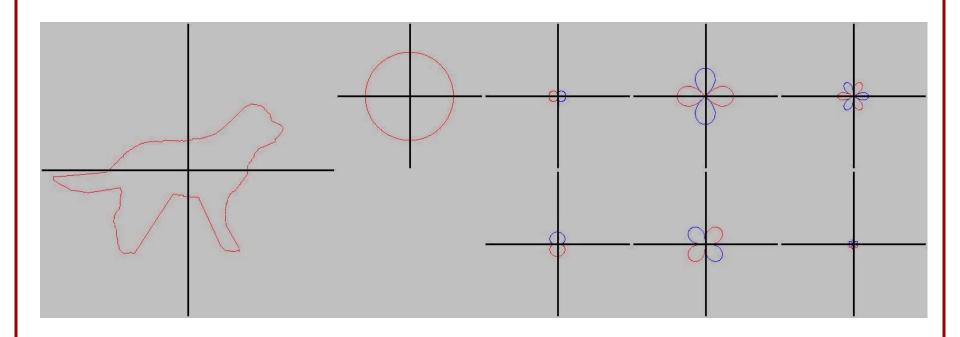
$$\rho_g(\rho_h(v)) = \rho_{g \cdot h}(v)$$

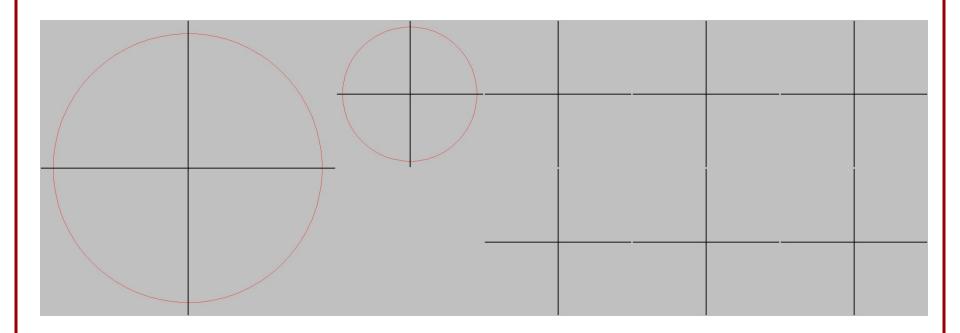
$$= \rho_{h \cdot g}(v)$$

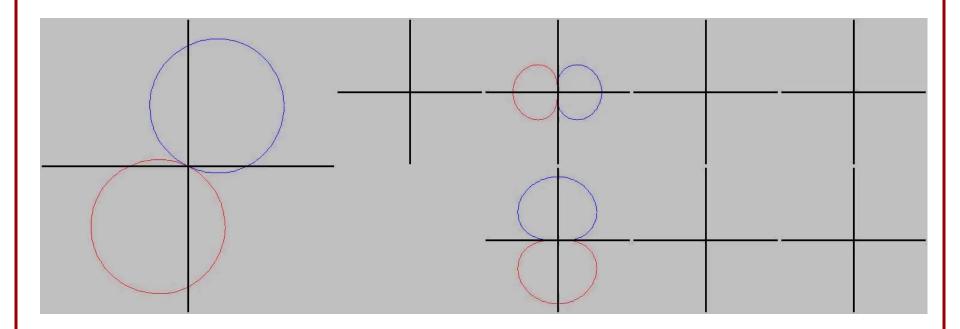
$$= \rho_h(\rho_g(v))$$

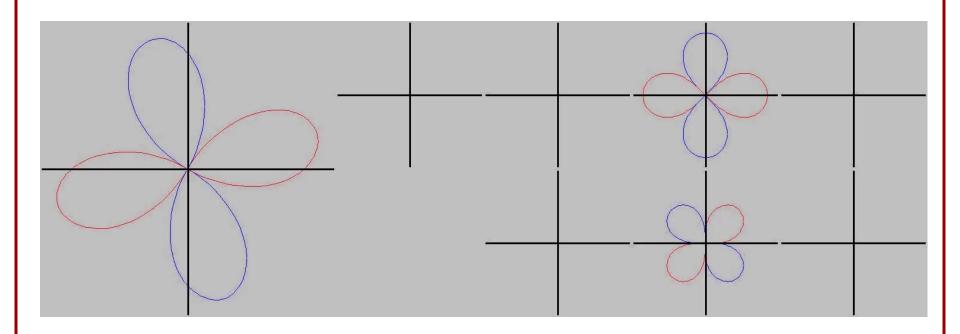
Proof:

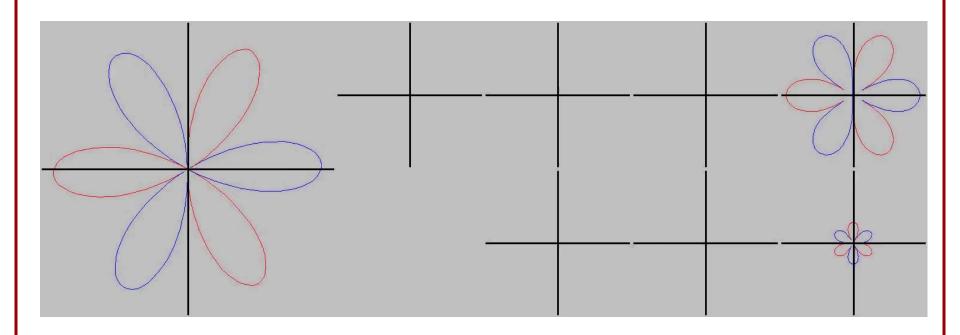
- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear.
- 3. Since (ρ, V) is irreducible, $\rho_h = \lambda \cdot \text{Id}$.
- 4. Since this is true for any $h \in G$, any subspace $W \subset V$ is a sub-representation.
- 5. Since *V* is irreducible, *V* is one-dimensional.

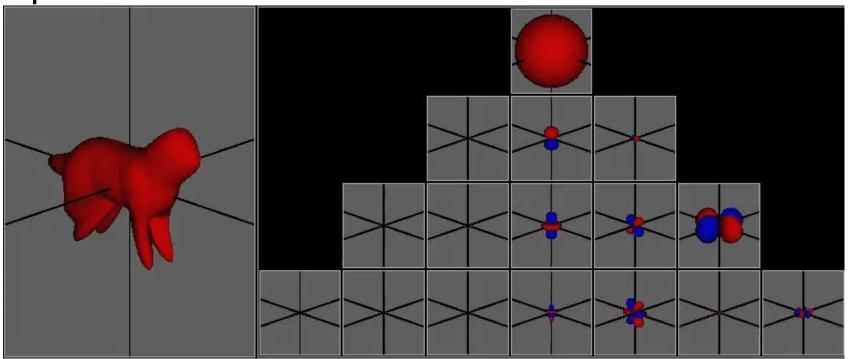


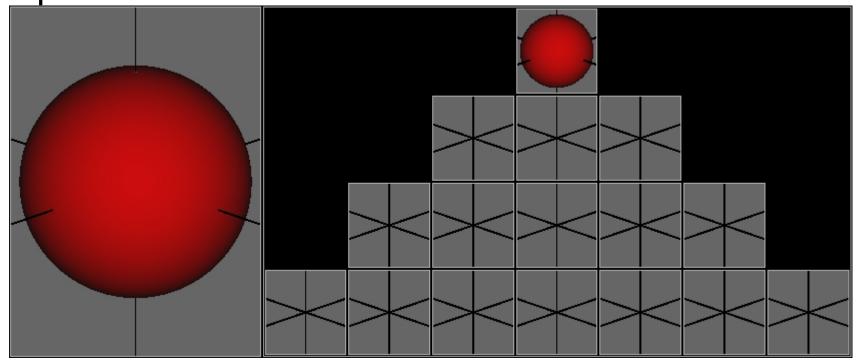


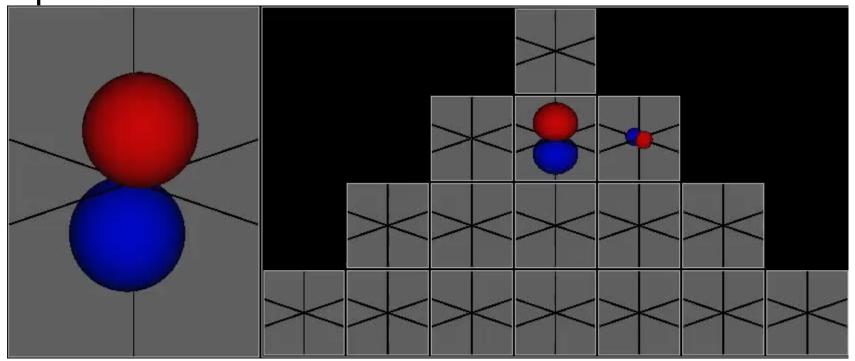


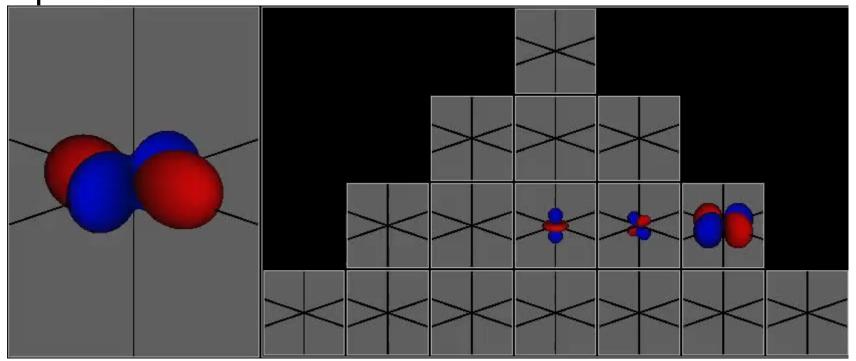


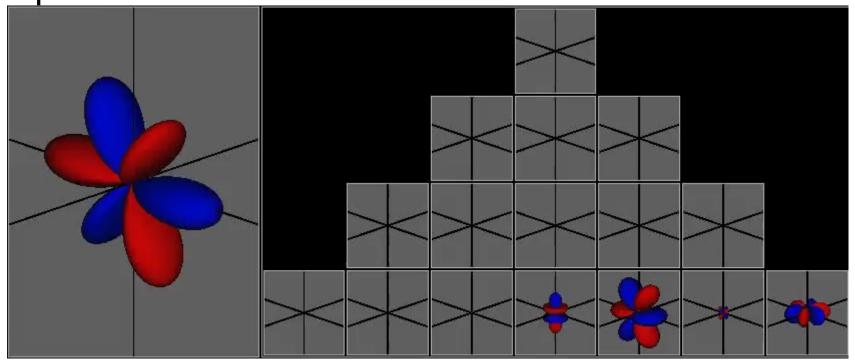




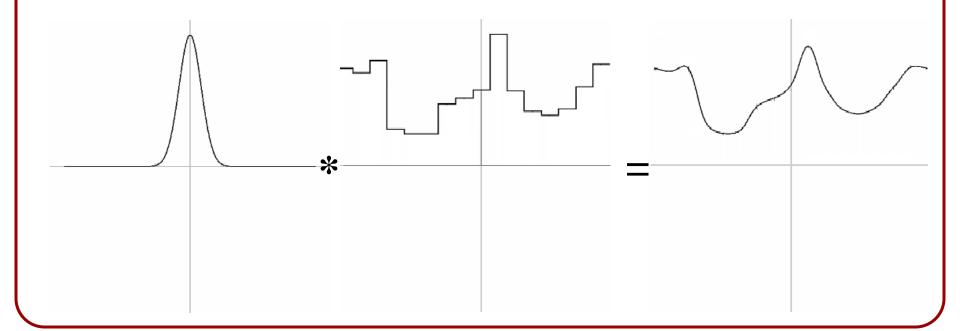




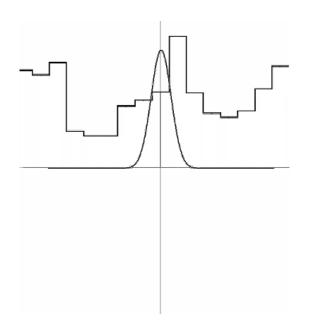


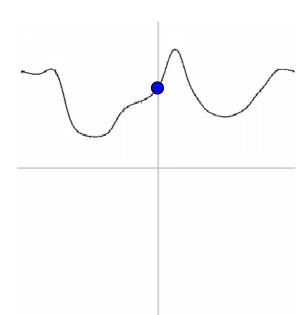


In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

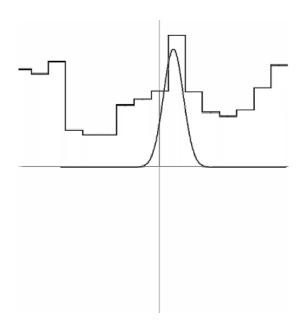


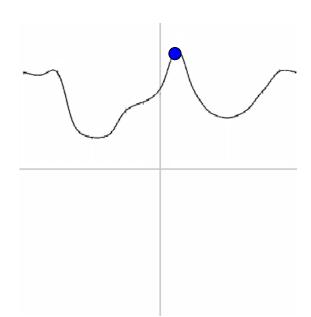
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



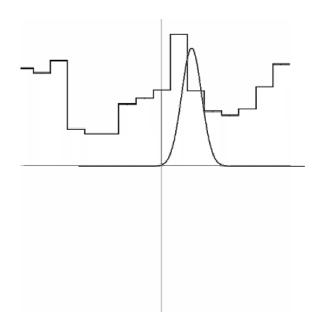


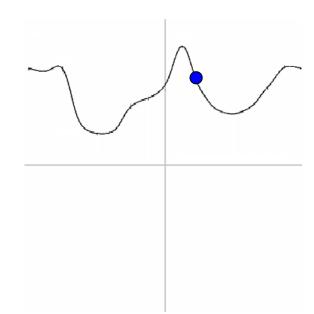
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



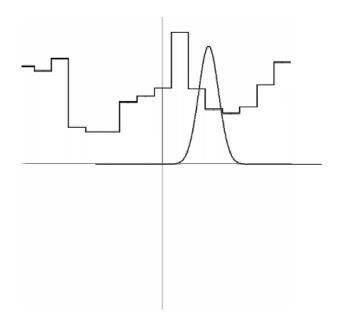


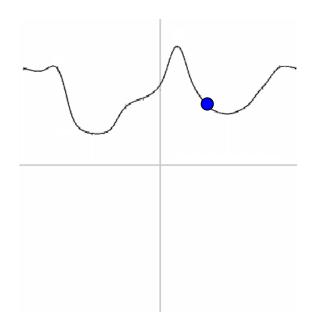
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



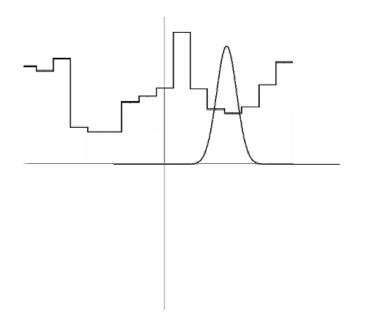


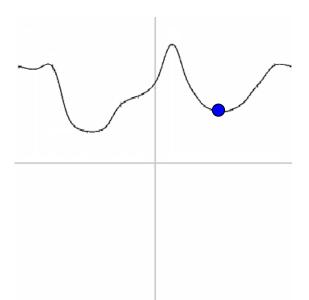
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



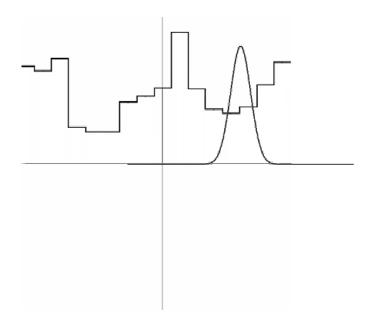


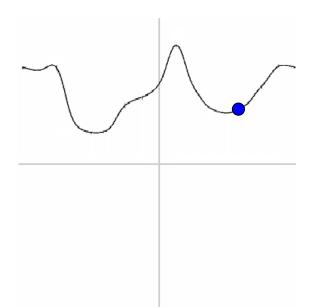
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



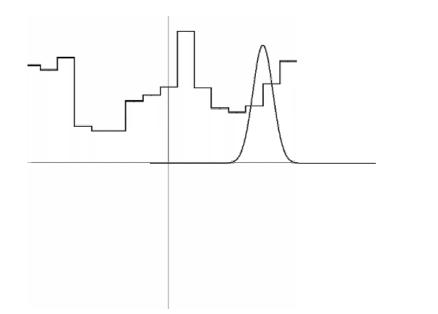


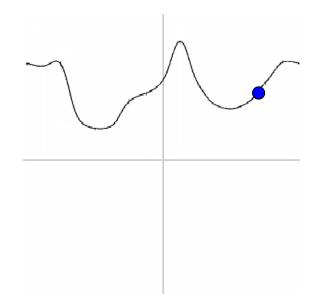
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

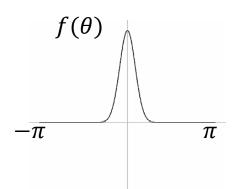


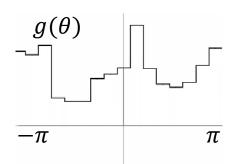


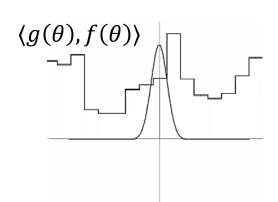
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

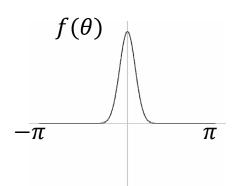


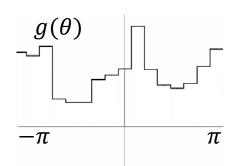


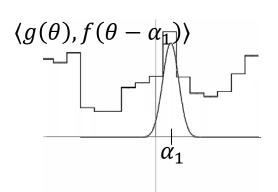


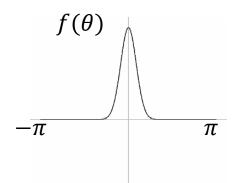


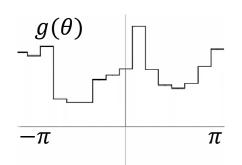


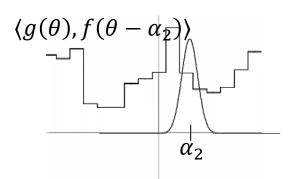


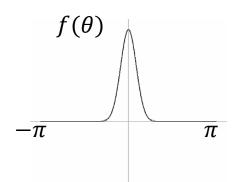


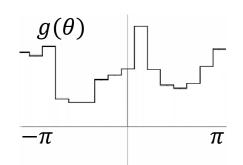


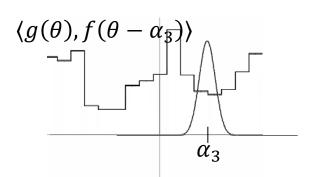








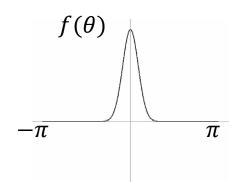


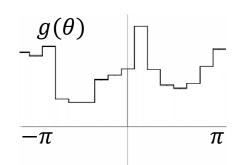


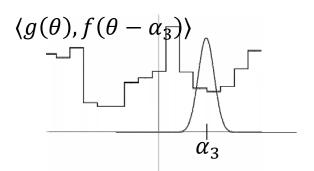
We can write out the operation of smoothing a signal g by a filter f as:

$$(g \star f)(\alpha) = \langle g, \rho_{\alpha}(f) \rangle$$

where ρ_{α} is the linear transformation that translates a periodic function by α .







We can think of this as a representation:

- $V = L^2(\mathbb{R}/2\pi\mathbb{Z})$ is the space of periodic functions on the line
- $G = \mathbb{R}/2\pi\mathbb{Z}$ is the group \mathbb{R} modulo addition by integer multiples of 2π
- \circ ρ_{α} is the representation translating a function by α .

This is a representation of a commutative group...

Warning:

The domain of functions in V and the space G are both parametrized by points in the range $[0,2\pi)$.

• Though the parameters domains are the same, we should think of them as distinct. (The former is the circle S^1 , the latter is the rotation group SO(2).)

$$\zeta^j \in V, \chi^j : G \to \mathbb{C}$$

⇒ There exist orthogonal one-dimensional (complex) subspaces $V_1, \dots, V_n \subset V$ that are the irreducible representations of V.*

Setting $\zeta^j \in V_j$ to be a unit-vector, we know that the group acts on ζ^j by scalar multiplication.

That is, there exist $\chi^j : G \to \mathbb{C}$ s.t.: $\rho_{\alpha}(\zeta^j) = \chi^j(\alpha) \cdot \zeta^j$

Since the ζ^j are unit vectors:

$$\chi^{j}(\alpha) = \langle \rho_{\alpha}(\zeta^{j}), \zeta^{j} \rangle$$

*In reality, there are infinitely many such subspaces.

$$\zeta^j \in V, \chi^j : G \to \mathbb{C}$$

⇒ There exist orthogonal one-dimensional (complex) subspaces $V_1, \dots, V_n \subset V$ that are the irreducible representations of V.*

Setting $\zeta^j \in V_j$ to be a unit-vector, we know that the group acts on ζ^j by scalar multiplication.

That is, there exist $\chi^j: G \to \mathbb{C}$ s.t.:

Note:

Since

Since the V_i are orthogonal, the function basis $\{\zeta^1, \dots, \zeta^n\}$ is orthonormal.

$$\chi'(\alpha) = \langle \rho_{\alpha}(\varsigma'), \varsigma' \rangle$$

^{*}In reality, there are infinitely many such subspaces.

$\zeta^j \in V, \chi^j : G \to \mathbb{C}$

Setting $\zeta^j \in V_j$ to be a unit-vector, we know that the group acts on ζ^j by scalar multiplication:

$$\rho_{\alpha}(\zeta^{j}) = \chi^{j}(\alpha) \cdot \zeta^{j}$$

We can write out vectors $f, g \in V$ in the basis $\{\zeta^1, ..., \zeta^n\}$ as:

$$f = \hat{f}_1 \cdot \boldsymbol{\zeta}^1 + \dots + \hat{f}_n \cdot \boldsymbol{\zeta}^n$$

$$g = \hat{g}_1 \cdot \boldsymbol{\zeta}^1 + \dots + \hat{g}_n \cdot \boldsymbol{\zeta}^n$$

with $\hat{\mathbf{f}}$, $\hat{\mathbf{g}} \in \mathbb{C}^n$.

 $\zeta^j \in V, \chi^j : G \to \mathbb{C}$

Then the correlation can be written as:

$$(g \star f)(\alpha) = \langle g, \rho_{\alpha}(f) \rangle$$

Expanding in the function basis $\{\zeta^1, ..., \zeta^n\}$:

$$(g \star f)(\alpha) = \left| \sum_{j} \hat{g}_{j} \cdot \zeta^{j}, \rho_{\alpha} \left(\sum_{k} \hat{f}_{k} \cdot \zeta^{k} \right) \right|$$

Key Idea:

Since the subspaces V_i are orthogonal sub-representations, we shouldn't have to consider the inner-product between vectors from different subspaces.

$$\zeta^j \in V, \chi^j : G \to \mathbb{C}$$

$$(g \star f)(\alpha) = \left\langle \sum_{j} \hat{g}_{j} \cdot \zeta^{j}, \rho_{\alpha} \left(\sum_{k} \hat{f}_{k} \cdot \zeta^{k} \right) \right\rangle$$

Using the linearity of ρ_{α} and the (conjugate)-symmetry of the inner-product:

$$= \left\langle \sum_{j} \hat{g}_{j} \cdot \zeta^{j}, \sum_{k} \hat{f}_{k} \cdot \rho_{\alpha}(\zeta^{k}) \right\rangle$$

$$= \left\langle \sum_{j} \hat{g}_{j} \left\langle \zeta^{j}, \sum_{k} \hat{f}_{k} \cdot \rho_{\alpha}(\zeta^{k}) \right\rangle$$

$$= \left\langle \sum_{j} \hat{g}_{j} \left\langle \zeta^{j}, \sum_{k} \hat{f}_{k} \cdot \rho_{\alpha}(\zeta^{k}) \right\rangle$$

$$= \left\langle \sum_{j} \hat{g}_{j} \cdot \bar{f}_{k} \left\langle \zeta^{j}, \rho_{\alpha}(\zeta^{k}) \right\rangle$$

$$\zeta^j \in V, \chi^j : G \to \mathbb{C}$$

$$(g \star f)(\alpha) = \sum_{j,k} \hat{g}_j \cdot \bar{f}_k \langle \zeta^j, \rho_\alpha(\zeta^k) \rangle$$

Because ρ_{α} is scalar multiplication in V_i :

$$(g \star f)(\alpha) = \sum_{j,k} \hat{g}_j \cdot \bar{f}_k \langle \zeta^j, \chi^k(\alpha) \cdot \zeta^k \rangle$$
$$= \sum_{j,k} \hat{g}_j \cdot \bar{f}_k \cdot \bar{\chi}^k(\alpha) \langle \zeta^j, \zeta^k \rangle$$

And finally, by the orthonormality of $\{\zeta^1, ..., \zeta^n\}$:

$$=\sum_{i}\hat{g}_{j}\cdot\bar{f}_{j}\cdot\bar{\chi}^{j}(\alpha)$$

$$\zeta^j \in V, \chi^j : G \to \mathbb{C}$$

$$(g \star f)(\alpha) = \sum_{j} \hat{g}_{j} \cdot \bar{f}_{j} \cdot \bar{\chi}^{j}(\alpha)$$

This implies that we can compute the correlation by multiplying the coefficients of f and g.

Correlation in the spatial domain is multiplication in the frequency domain!

 $\zeta^j \in V, \chi^j : G \to \mathbb{C}$

What is $\chi^{j}(\alpha)$?

Since the representation is unitary, $|\chi^j(\alpha)| = 1$.

$$\bigvee$$

$$\exists \tilde{\chi}^j : G \to \mathbb{R}$$
 s.t. $\chi^j(\alpha) = e^{-i\tilde{\chi}^j(\alpha)}$

 $\zeta^j \in V, \chi^j : G \to \mathbb{C}$

What is $\chi^{j}(\alpha)$?

$$\chi^{j}(\alpha) = e^{-i\widetilde{\chi}^{j}(\alpha)}$$
 for some $\widetilde{\chi}^{j}: G \to \mathbb{R}$.

Since it's a representation:

$$\chi^{j}(\alpha + \beta) = \chi^{j}(\alpha) \cdot \chi^{j}(\beta) \quad \forall \alpha, \beta \in G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{\chi}^{j}(\alpha + \beta) = \tilde{\chi}^{j}(\alpha) + \tilde{\chi}^{j}(\beta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\exists \kappa_{i} \in \mathbb{R} \quad \text{s. t.} \quad \tilde{\chi}^{j}(\alpha) = \kappa_{i} \cdot \alpha$$

 $\zeta^j \in V, \chi^j : G \to \mathbb{C}$

What is $\chi^{j}(\alpha)$?

$$\chi^{j}(\alpha) = e^{-i\kappa_{j}\alpha}$$
 for some $\kappa_{j} \in \mathbb{R}$.

Since it's a representation:

$$1 = \chi^{j}(2\pi) = e^{-i\kappa_{j}2\pi}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\kappa_{j} \in \mathbb{Z}$$

 $\zeta^j \in V, \chi^j : G \to \mathbb{C}$

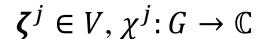
What is $\chi^{j}(\alpha)$?

$$(g \star f)(\alpha) = \sum_{j} \hat{g}_{j} \cdot \bar{f}_{j} \cdot \bar{\chi}^{j}(\alpha)$$

Thus, the correlation of the signals $f, g: S^1 \to \mathbb{C}$ can be expressed as:

$$(g \star f)(\alpha) = \sum_{j} \hat{g}_{j} \cdot \bar{f}_{j} \cdot e^{i\kappa_{j}\alpha}$$

where $\kappa_i \in \mathbb{Z}$.



What is *ζ^j*?

By definition of χ^j , we have:

$$\rho_{\alpha}(\boldsymbol{\zeta}^{j}) = \chi^{j}(\alpha) \cdot \boldsymbol{\zeta}^{j} = e^{-ik_{j}\alpha} \cdot \boldsymbol{\zeta}^{j}$$

for some $k_i \in \mathbb{Z}$.

On the other hand, we have:

$$[\rho_{\alpha}(\zeta^{j})](\theta) = \zeta^{j}(\theta - \alpha)$$

$$= \zeta^{j}(\theta) \cdot e^{-ik_{j}\alpha}$$

$$\Downarrow$$

$$\zeta^{j}(\theta) = c_{j} \cdot e^{ik_{j}\theta}$$