

FFTs in Graphics and Vision

More Math Review

Outline

Inner Product Spaces

- Real Inner Products
- Hermitian Inner Products
- Orthogonal Transforms
- Unitary Transforms
- Function Spaces

Given a real vector space V, a real inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ that takes a pair of vectors and returns a real value.

An inner product is a map $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ that is:

1. Linear in the first term: For all $u, v, w \in V$ and all $\alpha \in \mathbb{R}$:

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

 $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$

2. Symmetric: For all $v, w \in V$: $\langle v, w \rangle = \langle w, v \rangle$

3. Positive Definite: For all $v \in V$:

$$\langle v, v \rangle \ge 0$$

 $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Note:

Combining linearity in the first term with symmetry, gives:

$$\langle u, v + w \rangle = \langle v + w, u \rangle$$

$$= \langle v, u \rangle + \langle w, u \rangle$$

$$= \langle u, v \rangle + \langle u, w \rangle$$

$$\langle u, \alpha v \rangle = \langle \alpha v, u \rangle$$

$$= \alpha \langle v, u \rangle$$

$$= \alpha \langle u, v \rangle$$

⇒ Linearity in the second term

An inner product defines a notion of distance on a vector space by setting:

$$Dist(v, w) = \sqrt{\langle v - w, v - w \rangle} = ||v - w||$$

Examples:

1. For n-dimensional, \mathbb{R} -valued, arrays, the standard inner product is:

$$\langle \mathbf{a}, \mathbf{b} \rangle = a_1 b_1 + \dots + a_n b_n$$

= $\mathbf{a}^{\mathsf{T}} \mathbf{b}$

for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$

2. For continuous, \mathbb{R} -valued functions, defined on a circle, the standard inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} f(\theta) \cdot g(\theta) d\theta$$

Examples:

3. We will think of an \mathbb{R} -valued, n-dimensional array, $\mathbf{a} = (a_1, ..., a_n)^{\top} \in \mathbb{R}^n$, as a sampling of a continuous \mathbb{R} -valued function on the circle, $f: [0,2\pi) \to \mathbb{R}$:

$$a_{j} = f\left(\frac{2\pi j}{n}\right)$$

$$\downarrow \downarrow$$

$$\langle \mathbf{a}, \mathbf{b} \rangle_{[0,2\pi)} = \frac{2\pi}{n} (a_{1}b_{1} + \dots + a_{n}b_{n})$$

$$= \frac{2\pi}{n} \mathbf{a}^{\mathsf{T}} \mathbf{b}$$

Examples:

4. For n-dimensional, \mathbb{R} -valued arrays, suppose we have a matrix:

$$\mathbf{M} = \begin{pmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & \ddots & \vdots \\ M_{n1} & \cdots & M_{nn} \end{pmatrix}$$

Does the map:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

define an inner product?

Examples:

4. Does the map:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$
 define an inner product?

- Is it linear?
- Is it symmetric?
- Is it positive definite?

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Is it linear?

$$\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}} = (\mathbf{a} + \mathbf{b})^{\top} \mathbf{M} \mathbf{c}$$

$$= (\mathbf{a}^{\top} + \mathbf{b}^{\top}) \mathbf{M} \mathbf{c}$$

$$= \mathbf{a}^{\top} \mathbf{M} \mathbf{c} + \mathbf{b}^{\top} \mathbf{M} \mathbf{c}$$

$$= (\mathbf{a}, \mathbf{c})_{\mathbf{M}} + \langle \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}}$$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Is it linear?

$$\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}} = \langle \mathbf{a}, \mathbf{c} \rangle_{\mathbf{M}} + \langle \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}}$$

$$\langle \alpha \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} = (\alpha \mathbf{a})^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

= $\alpha \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$
= $\alpha \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}}$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Is it linear? Yes

$$\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}} = \langle \mathbf{a}, \mathbf{c} \rangle_{\mathbf{M}} + \langle \mathbf{b}, \mathbf{c} \rangle_{\mathbf{M}}$$

$$\langle \alpha \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} = \alpha \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}}$$

Examples:

$$\langle a,b\rangle_M\equiv a^\top Mb$$

Is it symmetric?

$$\langle \mathbf{b}, \mathbf{a} \rangle_{\mathbf{M}} = \mathbf{b}^{\mathsf{T}} \mathbf{M} \mathbf{a}$$

$$= (\mathbf{b}^{\mathsf{T}} \mathbf{M} \mathbf{a})^{\mathsf{T}}$$

$$= \mathbf{a}^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} \mathbf{b}$$

$$= \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}^{\mathsf{T}}}$$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Is it symmetric? Only if M is
$$(M = M^{T})$$

 $\langle \mathbf{b}, \mathbf{a} \rangle_{\mathbf{M}} = \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}^{T}}$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Assuming M is symmetric, is the map $\langle a, b \rangle_{M}$ positive definite?

If **M** is symmetric, there exists an orthogonal basis $\{v^1, ..., v^n\} \subset \mathbb{R}^n$ with respect to which **M** is diagonal:

$$\mathbf{M} = \mathbf{B}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{B} = \mathbf{B}^{\mathsf{T}} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & \lambda_n \end{pmatrix} \mathbf{B}$$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Assuming M is symmetric, is the map $(a, b)_M$ positive definite?

Setting
$$\mathbf{M} = \mathbf{B}^{T} \boldsymbol{\Lambda} \mathbf{B}$$
, we have:
 $\langle \mathbf{a}, \mathbf{a} \rangle_{\mathbf{M}} = \mathbf{a}^{T} \mathbf{M} \mathbf{a}$
 $= \mathbf{a}^{T} \mathbf{B}^{T} \boldsymbol{\Lambda} \mathbf{B} \mathbf{a}$
 $= \langle \mathbf{B} \mathbf{a}, \mathbf{B} \mathbf{a} \rangle_{\boldsymbol{\Lambda}}$

Writing
$$\mathbf{b} = \mathbf{B}\mathbf{a}$$
, we get:
 $\langle \mathbf{a}, \mathbf{a} \rangle_{\mathbf{M}} = \langle \mathbf{B}\mathbf{a}, \mathbf{B}\mathbf{a} \rangle_{\Lambda} = \langle \mathbf{b}, \mathbf{b} \rangle_{\Lambda}$
 $= \lambda_1 b_1^2 + \dots + \lambda_n b_n^2$

Examples:

$$\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^{\mathsf{T}} \mathbf{M} \mathbf{b}$$

Assuming **M** is symmetric, is the map $\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}}$ positive definite? Only if $\lambda_i > 0$ for all i.

Writing
$$\mathbf{b} = \mathbf{B}\mathbf{a}$$
, we get: $\langle \mathbf{a}, \mathbf{a} \rangle_{\mathbf{M}} = \lambda_1 b_1^2 + \dots + \lambda_n b_n^2$

Examples:

5. For continuous, \mathbb{R} -valued functions, defined on a circle, given $\omega: [0,2\pi) \to \mathbb{R}$, does the map:

$$\langle f, g \rangle_{\omega} = \int_{0}^{2\pi} f(\theta) \cdot g(\theta) \cdot \omega(\theta) d\theta$$

define an inner product?

Examples:

5. For continuous, \mathbb{R} -valued functions, defined on a circle, given $\omega: [0,2\pi) \to \mathbb{R}$, does the map:

$$\langle f, g \rangle_{\omega} = \int_{0}^{2\pi} f(\theta) \cdot g(\theta) \cdot \omega(\theta) d\theta$$

define an inner product? No

Examples:

5. For continuous, \mathbb{R} -valued functions, defined on a circle, given $\omega: [0,2\pi) \to \mathbb{R}$, does the map:

$$\langle f, g \rangle_{\omega} = \int_{0}^{2\pi} f(\theta) \cdot g(\theta) \cdot \omega(\theta) d\theta$$

define an inner product? No What if $\omega(\theta) > 0$?

Examples:

5. For continuous, \mathbb{R} -valued functions, defined on a circle, given $\omega: [0,2\pi) \to \mathbb{R}$, does the map:

$$\langle f, g \rangle_{\omega} = \int_{0}^{2\pi} f(\theta) \cdot g(\theta) \cdot \omega(\theta) d\theta$$

define an inner product? No What if $\omega(\theta) > 0$? Yes

Given a complex vector space V, a Hermitian inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$ that takes a pair of vectors and returns a complex value.

A Hermitian inner product is a map $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$ that is:

1. Linear in the first term: For all $u, v, w \in V$ and any $\alpha \in \mathbb{C}$:

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

 $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$

- 2. Conjugate Symmetric: For all $u, v \in V$: $\langle v, w \rangle = \overline{\langle w, v \rangle}$
- 3. Positive Definite: For all $v \in V$:

$$\langle v, v \rangle \ge 0$$

 $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Note:

Combining linearity in the first term with conjugate symmetry, gives:

$$\langle u, v + w \rangle = \overline{\langle v + w, u \rangle}$$

$$= \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle}$$

$$= \langle u, v \rangle + \langle u, w \rangle$$

$$\langle u, \alpha v \rangle = \overline{\langle \alpha v, u \rangle}$$

$$= \overline{\alpha} \overline{\langle v, u \rangle}$$

$$= \overline{\alpha} \langle u, v \rangle$$

⇒ Conjugate linearity in the second term

As in the real case, a Hermitian inner product defines a notion of distance on a complex vector space by setting:

$$Dist(v, w) = \sqrt{\langle v - w, v - w \rangle} = ||v - w||$$

Examples:

1. For n-dimensional, \mathbb{C} -valued arrays, the standard Hermitian inner product is:

$$\langle \mathbf{a}, \mathbf{b} \rangle = a_1 \overline{b}_1 + \dots + a_n \overline{b}_n$$

= $\mathbf{a}^{\mathsf{T}} \overline{\mathbf{b}}$

for all $\mathbf{a}, \mathbf{b} \in \mathbb{C}^n$

2. For continuous, C-valued functions, defined on a circle, the standard Hermitian inner product is:

$$\langle f, g \rangle = \int_{0}^{2\pi} f(\theta) \cdot \overline{g(\theta)} \, d\theta$$

Examples:

3. We will think of a \mathbb{C} -valued n-dimensional arrays $\mathbf{a} = (\mathbf{a}_1, ..., \mathbf{a}_n)^\top \in \mathbb{C}^n$ as a sampling of a continuous, \mathbb{C} -valued functions on the circle, $f: [0,2\pi) \to \mathbb{C}$:

$$a_{j} = f\left(\frac{2\pi j}{n}\right)$$

$$\langle \mathbf{a}, \bar{\mathbf{b}} \rangle_{[0,2\pi)} = \frac{2\pi}{n} \left(a_{1}\bar{b}_{1} + \dots + a_{n}\bar{b}_{n}\right)$$

$$= \frac{2\pi}{n} \mathbf{a}^{\mathsf{T}}\bar{\mathbf{b}}$$

Recall:

Given vector spaces V and W, a linear map L is a function $L:V \to W$ that preserves the linear structure:

$$L(\alpha v + \beta w) = \alpha L(v) + \beta L(w)$$

for all $v, w \in V$ and all scalars α and β .

Orthogonal Transformations:

Given real vector spaces V and W, with innerproducts $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, we would also like to consider those functions from V to W that preserve the underlying structure.

If *R* is such a function, then:

- R must be a linear operator, in order to preserve the underlying vector space structure.
- R must also preserve the underlying inner product.

Orthogonal Transformations:

Given real inner-product spaces $\{V, \langle \cdot, \cdot \rangle_V\}$ and $\{W, \langle \cdot, \cdot \rangle_W\}$, a linear operator $L: V \to W$ is called <u>orthogonal</u> if it preserves the inner product:

$$\langle L(v), L(w) \rangle_W = \langle v, w \rangle_V$$

for all $v, w \in V$.

Orthogonal Transformations:

In particular, if $L: V \to W$ is an orthogonal transformation, we have $||L(v)||_W = ||V||_V$ so the kernel of R is the zero vector.

⇒ If the vector spaces V and W are equal (and finite-dimensional), the map is invertible.

Example:

On n-dimensional, \mathbb{R} -valued, arrays the matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ is orthogonal if for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$:

$$\langle La, Lb \rangle = \langle a, b \rangle$$

$$\updownarrow$$

$$(La)^{\top}(Lb) = a^{\top}b$$

$$\updownarrow$$

$$a^{\top}L^{\top}Lb = a^{\top}b$$

$$\updownarrow$$

$$L^{\top} = L^{-1}$$

Example:

On the space of \mathbb{R} -valued, n-dimensional arrays, a matrix is orthogonal if and only if:

$$\mathbf{L}^{\mathsf{T}} = \mathbf{L}^{-1}$$

Note:

The determinant of an orthogonal matrix always has absolute value 1:

$$det(\mathbf{L})^{2} = det(\mathbf{L}) \cdot det(\mathbf{L}^{T})$$

$$= det(\mathbf{L}) \cdot det(\mathbf{L}^{-1})$$

$$= det(\mathbf{L}\mathbf{L}^{-1})$$

$$= 1$$

Example:

On the space of \mathbb{R} -valued, n-dimensional arrays, a matrix is orthogonal if and only if:

$$\mathbf{L}^{\mathsf{T}} = \mathbf{L}^{-1}$$

Note: The determinant of an orthogonal matrix always has absolute value 1.

If the determinant of an orthogonal matrix is equal to 1, the matrix is called a <u>rotation</u>.

Orthogonal Matrices and Eigenvalues

If $L: V \to V$ is an orthogonal transformation and L has an eigenvalue λ , then $|\lambda| = 1$.

To see this, let v be an eigenvector of L corresponding to the eigenvalue λ .

Since *L* is orthogonal, we have:

$$\langle v, v \rangle = \langle Lv, Lv \rangle$$

$$= \langle \lambda v, \lambda v \rangle$$

$$= \lambda^2 \langle v, v \rangle$$

$$\Rightarrow |\lambda| = 1.$$

Structure Preservation

Unitary Transformations:

For a complex vector space V and W with Hermitian inner-products, a linear operator L is called <u>unitary</u> if it preserves the Hermitian inner product:

$$\langle Lv, Lw \rangle_W = \langle v, w \rangle_V$$

for all $v, w \in V$.

Structure Preservation

Example:

On n-dimensional, \mathbb{C} -valued, arrays the matrix $\mathbf{L} \in \mathbb{C}^{n \times n}$ is unitary if for all $\mathbf{a}, \mathbf{b} \in \mathbb{C}^n$:

Structure Preservation

Example:

On n-dimensional, \mathbb{C} -valued, arrays the matrix $\mathbf{L} \in \mathbb{C}^{n \times n}$ is unitary if:

$$\bar{\mathbf{L}}^{\mathsf{T}} = \mathbf{L}^{-1}$$

Note:

The determinant of a unitary matrix has norm 1:

$$|\det(\mathbf{L})|^{2} = \det(\mathbf{L}) \cdot \overline{\det(\mathbf{L})}$$

$$= \det(\mathbf{L}) \cdot \det(\overline{\mathbf{L}}^{T})$$

$$= \det(\mathbf{L}) \cdot \det(\mathbf{L}^{-1})$$

$$= \det(\mathbf{L}\mathbf{L}^{-1})$$

$$= 1$$

Unitary Matrices and Eigenvalues

If $L: V \to V$ is a unitary transformation and L has an eigenvalue λ , then $|\lambda| = 1$.

To see this, let v be an eigenvector of L corresponding to the eigenvalue λ .

Since *L* is unitary, we have:

$$\langle v, v \rangle = \langle Lv, Lv \rangle$$

$$= \langle \lambda v, \lambda v \rangle$$

$$= \lambda \overline{\lambda} \langle v, v \rangle$$

$$= |\lambda|^2 \langle v, v \rangle$$

$$\Rightarrow |\lambda| = 1.$$

In this course, the vector spaces we will be looking at most often are the infinite-dimensional vector spaces of continuous (complex-valued) functions defined over some domain:

- \circ S^1 : The unit circle
- \circ D^2 : The unit disk
- \circ T^2 : The (flat) torus
- \circ S^2 : The unit sphere
- \circ B^3 : The unit ball

Function Spaces: Unit Circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$$
:

If we have functions $f, g: S^1 \to \mathbb{C}$ then:

$$\langle f, g \rangle = \int_{p \in S^1} f(p) \cdot \overline{g(p)} \, dp$$

We can represent points on the circle in terms of angle $\theta \in [0,2\pi)$:

$$\theta \to (\cos \theta, \sin \theta)$$

For $f, g: [0,2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} f(\theta) \cdot \overline{g(\theta)} \, d\theta$$

Function Spaces: Unit Circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$$
:

The space of functions on $[0,2\pi)$ is equivalent to the space of periodic functions on the line:

$${f: \mathbb{R} \to \mathbb{C} | f(x) = f(x+2\pi)}$$

We can represent points on the circle in terms of angle $\theta \in [0,2\pi)$:

$$\theta \to (\cos \theta, \sin \theta)$$

For $f, g: [0,2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} f(\theta) \cdot \overline{g(\theta)} \, d\theta$$

Function Spaces: Unit Disk

$$\underline{D^2} = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}:$$

If we have functions $f, g: D^2 \to \mathbb{C}$ then:

$$\langle f, g \rangle = \int_{p \in D^2} f(p) \cdot \overline{g(p)} dp$$

We can represent points on the disk in terms of radius $r \in [0,1]$ and angle $\theta \in [0,2\pi)$:

$$(r,\theta) \to (r \cdot \cos \theta, r \cdot \sin \theta)$$

For $f, g: [0,1] \times [0,2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} \int_0^1 f(r, \theta) \cdot \overline{g(r, \theta)} \cdot r \, dr \, d\theta$$

Function Spaces: (Flat) Torus

$$\underline{T^2 = S^1 \times S^1}$$
:

If we have functions $f, g: T^2 \to \mathbb{C}$ then:

$$\langle f, g \rangle = \int_{p \in T^2} f(p) \cdot \overline{g(p)} \, dp$$

We can represent points on the torus in terms of angles $(\theta, \phi) \in [0,2\pi) \times [0,2\pi)$:

$$(\theta, \phi) \rightarrow (\cos \theta, \sin \theta, \cos \phi, \sin \phi)$$

For $f, g: [0,2\pi) \times [0,2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} \int_0^{2\pi} f(\theta, \phi) \cdot \overline{g(\theta, \phi)} \, d\theta \, d\phi$$

Function Spaces: (Flat) Torus

$$T^2 = S^1 \times S^1$$
:

The space of functions on $[0,2\pi) \times [0,2\pi)$ is equivalent to the space of periodic functions in the plane:

$$\{f: \mathbb{R}^2 \to \mathbb{C} \middle| f(x,y) = f(x+2\pi,y) = f(x,y+2\pi) \}$$

We can represent points on the torus in terms of angles $(\theta, \phi) \in [0,2\pi) \times [0,2\pi)$: $(\theta, \phi) \to (\cos \theta, \sin \theta, \cos \phi, \sin \phi)$

For $f, g: [0,2\pi) \times [0,2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} \int_0^{2\pi} f(\theta, \phi) \cdot \overline{g(\theta, \phi)} \, d\theta \, d\phi$$

Function Spaces: Unit Sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

If we have functions $f, g: S^2 \to \mathbb{C}$ then:

$$\langle f, g \rangle \int_{p \in S^2} f(p) \cdot \overline{g(p)} \, dp$$

We can represent points on the sphere in terms of spherical angles $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi)$:

$$(\theta, \phi) \rightarrow (\sin \theta \cdot \cos \phi, \cos \theta, \sin \theta \cdot \sin \phi)$$

For $f, g: [0, \pi] \times [0, 2\pi) \to \mathbb{C}$ the inner product is:

$$\langle f, g \rangle = \int_0^{2\pi} \int_0^{\pi} f(\theta, \phi) \cdot \overline{g(\theta, \phi)} \cdot \sin(\theta) \ d\theta \ d\phi$$

Function Spaces: Unit Ball

$$B^3 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1\}$$

If we have functions $f, g: B^3 \to \mathbb{C}$ then:

$$\langle f, g \rangle \int_{p \in B^3} f(p) \cdot \overline{g(p)} \, dp$$

We can represent points in the ball in terms of radius $r \in [0,1]$ and spherical angles $\theta \in [0,\pi]$, $\phi \in [0,2\pi)$: $(r,\theta,\phi) \to (r \cdot \sin\theta \cdot \cos\phi, r \cdot \cos\theta, r \cdot \sin\theta \cdot \sin\phi)$

For $f, g: [0,1] \times [0,1] \times [0,2\pi) \to \mathbb{C}$ the inner product is: $\langle f,g \rangle = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} f(r,\theta,\phi) \cdot \overline{g(r,\theta,\phi)} \cdot r^{2} \cdot \sin(\theta) \ dr \ d\theta \ d\phi$

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

Is the map:

$$f(p) \rightarrow f(p) + 1$$

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

Is the map:

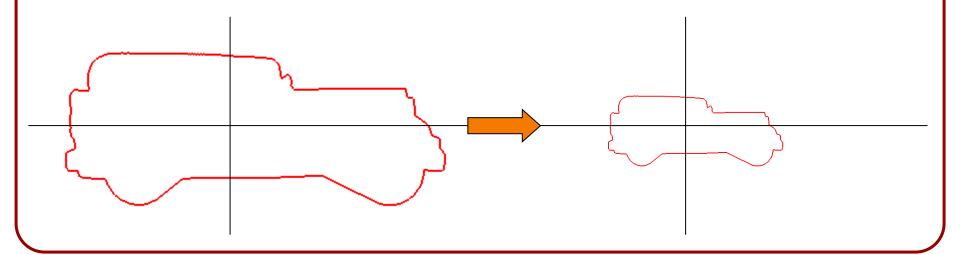
$$f(p) \rightarrow f(p) + 1$$

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$

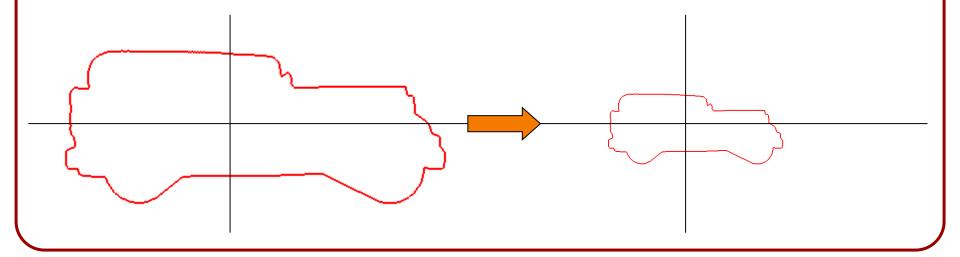


Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$



Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$

a linear transformation? Yes

Is it unitary?

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$

a linear transformation? Yes

Is it unitary? No

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$

- Is it unitary? No
- How about if $|\lambda| = 1$?

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any scalar value λ , is:

$$f(p) \to \lambda \cdot f(p)$$

- Is it unitary? No
- How about if $|\lambda| = 1$? **Yes**

Examples

If we consider the space of continuous, C-valued functions on the periodic line:*

Is the integration operator:

$$f(x) \to \int_0^x f(t) dt - \frac{1}{2\pi} \int_0^{2\pi} \int_0^x f(t) dt ds$$

Examples

If we consider the space of continuous, C-valued functions on the periodic line:*

Is the integration operator:

$$f(x) \to \int_0^x f(t) dt - \frac{1}{2\pi} \int_0^{2\pi} \int_0^x f(t) dt ds$$

Examples

If we consider the space of continuous, C-valued functions on the periodic line:*

Is the integration operator:

$$f(x) \to \int_0^x f(t) dt - \frac{1}{2\pi} \int_0^{2\pi} \int_0^x f(t) dt ds$$
a linear transformation? **Yes**

Is it unitary?

Examples

If we consider the space of continuous, C-valued functions on the periodic line:*

Is the integration operator:

$$f(x) \to \int_0^x f(t) dt - \frac{1}{2\pi} \int_0^{2\pi} \int_0^x f(t) dt ds$$
a linear transformation? **Yes**

Is it unitary? No

Note:

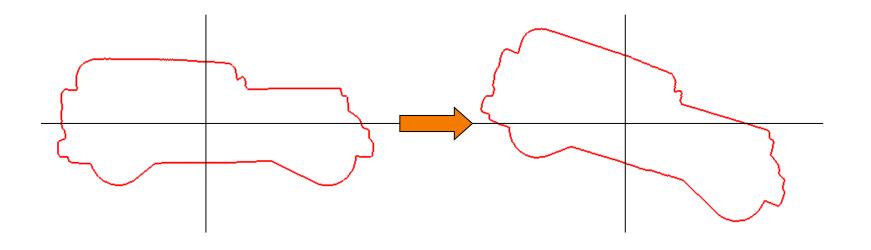
The image evaluates to zero at x = 0 so the map isn't invertible.

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any 2D rotation *R* is the transformation:

$$f(p) \to f(R^{-1}p)$$

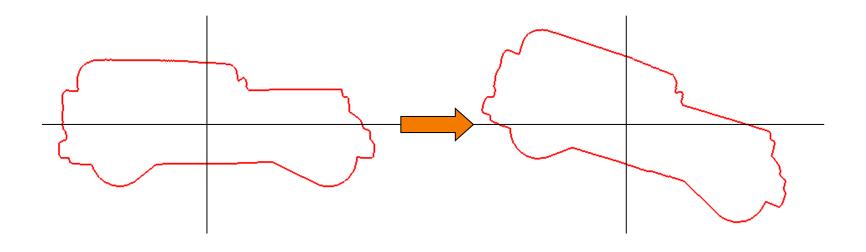


Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any 2D rotation *R* is the transformation:

$$f(p) \to f(R^{-1}p)$$



Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any 2D rotation *R* is the transformation:

$$f(p) \to f(R^{-1}p)$$

a linear transformation? Yes

Is it unitary?

Examples

If we consider the space of continuous, C-valued functions on the unit circle:

• For any 2D rotation *R* is the transformation:

$$f(p) \to f(R^{-1}p)$$

a linear transformation? Yes

Is it unitary? Yes

Examples

If we consider the space of continuous, periodic, C-valued functions on the plane:

• For any 2D point (x_0, y_0) , is the transformation:

$$f(x,y) \to f(x-x_0,y-y_0)$$

Examples

If we consider the space of continuous, periodic, C-valued functions on the plane:

• For any 2D point (x_0, y_0) , is the transformation:

$$f(x,y) \to f(x-x_0,y-y_0)$$

Examples

If we consider the space of continuous, periodic, C-valued functions on the plane:

- For any 2D point (x_0, y_0) , is the transformation: $f(x,y) \rightarrow f(x-x_0, y-y_0)$ a linear transformation? **Yes**
- Is it unitary?

Examples

If we consider the space of continuous, periodic, C-valued functions on the plane:

- For any 2D point (x_0, y_0) , is the transformation: $f(x,y) \rightarrow f(x-x_0, y-y_0)$ a linear transformation? **Yes**
- Is it unitary? Yes

Examples

If we consider the space of continuous, infinitely-differentiable, periodic, C-valued functions:

 \circ Is differentiation with respect to x:

$$f(x,y) \to \frac{\partial}{\partial x} f(x,y)$$

Examples

If we consider the space of continuous, infinitely-differentiable, periodic, C-valued functions:

 \circ Is differentiation with respect to x:

$$f(x,y) \to \frac{\partial}{\partial x} f(x,y)$$

Examples

If we consider the space of continuous, infinitely-differentiable, periodic, C-valued functions:

 \circ Is differentiation with respect to x:

$$f(x,y) \to \frac{\partial}{\partial x} f(x,y)$$

a linear transformation? Yes

Is it unitary?

Examples

If we consider the space of continuous, infinitely-differentiable, periodic, C-valued functions:

• Is differentiation with respect to x:

$$f(x,y) \to \frac{\partial}{\partial x} f(x,y)$$

a linear transformation? Yes

Is it unitary? No

Note:

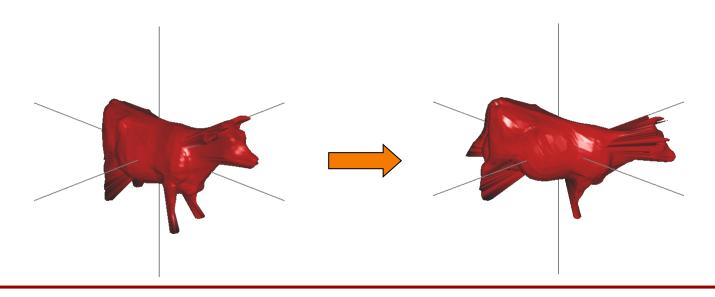
The map takes functions that are constant in x to zero, so it's not invertible.

Examples

If we consider the space of continuous, C-valued functions on the sphere:

 \circ For any rotation R, is the transformation:

$$f(p) \to f(R^{-1}p)$$

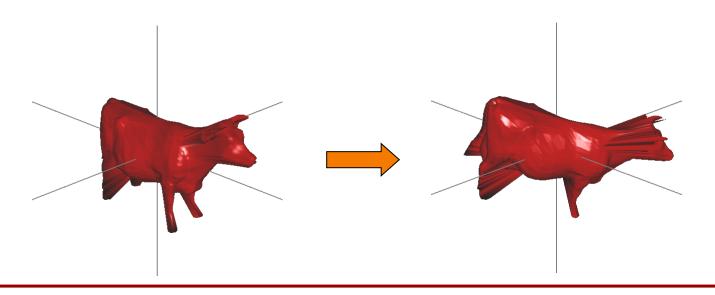


Examples

If we consider the space of continuous, C-valued functions on the sphere:

For any rotation R, is the transformation:

$$f(p) \to f(R^{-1}p)$$



Examples

If we consider the space of continuous, C-valued functions on the sphere:

 \circ For any rotation R, is the transformation:

$$f(p) \to f(R^{-1}p)$$

a linear transformation? Yes

Is it unitary?

Examples

If we consider the space of continuous, C-valued functions on the sphere:

• For any rotation *R*, is the transformation:

$$f(p) \to f(R^{-1}p)$$

a linear transformation? Yes

Is it unitary? Yes