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Abstract

Delaunayrefinements a techniquefor generatingunstructurednesheof trianglesor tetrahedrasuitable
for usein the finite elementmethodor othernumericalmethodgor solving partial differential equations.
Popularizedy theengineeringommunityin themid-1980s Delaunayrefinemenbperatedy maintaining
a Delaunaytriangulationor Delaunaytetrahedralizationyhich is refinedby theinsertionof additionalver
tices. The placementf theseverticesis choserto enforceboundaryconformityandto improve the quality
of themesh.Pioneeringpapersy L. Paul Chev andJim Rupperthave placedDelaunayrefinemenbn firm
theoreticalground. The purposeof this thesisis to further this progressy cementinghe foundationsof
two-dimensionaDelaunayrefinementandby extendingthetechniqueandits analysigo threedimensions.

In two dimensions| unify thealgorithmsof Chev andRuppertin acommontheoreticaframevork. Using

Rupperts analysisechnique) prove thatoneof Chen's algorithmscanproducetriangularmesheshatare

nicely gradedaresize-optimalandhave no anglesmallerthan26.5°. (Chew proveda 30° boundwithout

guarantee®sn gradingor size.) | shaw thatthereare inputswith small anglesthat cannotbe meshedby

ary algorithmwithoutintroducingnewx smallangleshenceall provably goodmeshgeneratioralgorithms,
includingthosenotyetdiscorered,suffer from afundamentalimitation. | introducetechniquegor handling
small input anglesthat minimize the impact of this limitation on two-dimensionaDelaunayrefinement
algorithms.

In threedimensions| introducea Delaunayrefinementalgorithmthatcanproducetetrahedramesheghat
arenicely gradedandwhosetetrahedrdnave circumradius-to-sirtest edgeratiosboundedbelav 1.63. By
sacrificinggoodgradingin theory(but notin practice),onecanimprove theboundto 1.15. Thistheoretical
guaranteeensureghatall poor quality tetrahedraexceptslivers (a particulartype of poortetrahedronpre
removed. Thesliversthatremainareeasilyremovedin practice althoughthereis no theoreticalguarantee.
Theseaesultsassumeéhatall inputanglesarelarge;theremoval of thisrestrictionremainghemostimportant
openproblemin three-dimensiondDelaunayrefinement.NeverthelesspPelaunayrefinemenimethodsfor
tetrahedraimeshgeneratiorhave theraredistinctionthatthey offer strongtheoreticaboundsandfrequently
performwell in practice.

| describemy implementationsf thetriangularandtetrahedraDelaunayefinementlgorithms.Therobust-
nessof thesemeshgeneratoragainstloating-pointroundof erroris strengthenetdy fastcorrectfloating-
pointimplementationsf four geometrigredicatesthetwo-dimensionaandthree-dimensionairientation
andincircle tests. Thesepredicate®we their speedo two features First, they emplo/ new fastalgorithms
for arbitraryprecisionarithmeticon standardloating-pointunits. Secondthey areadaptve; their running
time dependn the deggreeof uncertaintyof theresult,andis usuallysmall. Hence thesepredicatesost
little morethanordinarynonrolust predicatesbut never sacrificecorrectnes$or speed.

Keywords: tetrahedraineshgenerationDelaunaytriangulation arbitraryprecisiorfloating-pointarith-
metic,computationaeometrygeometricobustness
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Chapter 1

Intr oduction

Meshescomposedf trianglesor tetrahedraare usedin applicationssuchas computergraphics,interpo-
lation, suneying, and terrain databases Although the algorithmsdescribedn this documenthave been
usedsuccessfullyto generateneshedor theseandotherpurposesthe centralfocusof this researchs the
generatiorof meshedor usein numericalmethoddor the solutionof partial differentialequations.These
numericalmethodsareanirreplaceablaneansof simulatinga wide variety of physicalphenomenan sci-
entific computing. Furthermorethey placeparticularlydifficult demandsn meshgeneration.If onecan
generatanesheghatarecompletelysatisfyingfor numericatechniquesik e the finite elementmethod the
otherapplicationdall easilyin line.

Delaunayrefinementthe topic of this thesis,is a meshgeneratiortechniquethat hastheoreticalguar
anteedo backup its goodperformancen practice. The centerof this thesisis an extensve explorationof
thetheoryof Delaunayrefinemenin two andthreedimensionsfoundin Chapters3 and4. Implementation
concernareaddresseth Chapters. Delaunayrefinemenis baseduponawell-knovn geometricstructure
calledthe Delaunaytriangulation reviewedin Chapter2.

This introductorychapteris devotedto explaining the problemthat the remainingchaptersundertak
to solve. Unfortunately the problemis not entirely well-defined. In a nutshell,however, one wishesto
createa meshthatconformsto the geometryof the physicalproblemonewishesto model. This meshmust
be composedf trianglesor tetrahedraof appropriatesizes—possiblywarying throughoutthe mesh—and
thesetrianglesor tetrahedranustbe nicely shaped Reconcilingtheseconstraintss not easy Historically,
the automationof meshgeneratiorhas proven to be more challengingthan the entire remainderof the
simulationprocess.

A detailedpreview of the mainresultsof thethesisconcludeghe chapter
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Figurel.1: Two and three-dimensional finite element meshes. At left, each triangle is an element. At right,
each tetrahedron is an element.

1.1 Meshesand Numerical Methods

Many physicalphenomenan scienceand engineeringcan be modeledby partial differential equations
(PDEs). Whentheseequationshave complicatedooundaryconditionsor are posedon irregularly shaped
objectsor domains,they usually do not admit closed-formsolutions. A humericalapproximationof the

solutionis thusnecessary

Numericalmethoddor solvingPDEsincludethefinite elemenmethod FEM), thefinite volumemethod
(FVM, alsoknown asthecontol volumemethod, andtheboundaryelemenmethod BEM). They areused
to modeldisparatgphenomenauchas mechanicableformation heattransfey fluid flow, electromagnetic
wave propagationandquantummechanicsThesemethodsiumericallyapproximataéhesolutionof alinear
or nonlinearPDE by replacingthe continuoussystemwith a finite numberof coupledlinear or nonlinear
algebraicequations. This processof discretizationassociates variablewith eachof a finite numberof
pointsin the problemdomain. For instanceto simulateheatconductionthroughan electricalcomponent,
the temperaturés recordedat a numberof points, callednodes on the surfaceandin the interior of the
component.

It is not enoughto choosea setof pointsto act as nodes;the problemdomain(or in the BEM, the
boundaryof the problemdomain)mustbe partitionedinto smallpiecesof simpleshapeln the FEM, these
piecesarecalledelementsandareusuallytrianglesor quadrilateralgin two dimensions)or tetrahedraor
hexahedrabricks (in threedimensions)The FEM emplg/s a nodeat every elementvertex (andsometimes
at otherlocations);eachnodeis typically sharedamongsereral elements. The collection of nodesand
elementds calleda finite elementmesh Two andthree-dimensiondinite elementmeshesreillustrated
in Figurel.1. Becauseslementhave simpleshapesit is easyto approximatehe behaior of a PDE,such
asthe heatequation,on eachelement.By accumulatingheseeffectsover all the elementspnederivesa
systemof equationsvhosesolutionapproximatea setof physicalquantitiessuchasthetemperaturateach
node.

The FVM andthe BEM also use meshesalbeit with differencesin terminologyand differencesin
the mesheghemseles. Finite volume meshesare composedf contiol volumes which sometimesare
clustersof trianglesor tetrahedraandsometimesrethecellsof ageometricstructureknown asthe \Voronoi
diagram In eithercaseanunderlyingsimplicial meshis typically usedo interpolatehenodalvaluesandto
generatahe controlvolumes.Boundaryelementmeshego not partitionan object;only its boundariesre
partitioned.Hence,a two-dimensionadomainwould have boundarieglivided into straight-lineelements,
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Figurel.2: Structured (left) and unstructured (right) meshes. The structured mesh has the same topology
as a square grid of triangles, although it is deformed enough that one might fail to notice its structure.

and a three-dimensionatiomainwould have boundariegartitionedinto polygonal(typically triangular)
elements.

Meshescan(usually)be cateyorizedasstructuredor unstructured Figure 1.2 illustratesan exampleof
each.Structuredneshegxhibit a uniformtopologicalstructurethatunstructuresneshesack. A functional
definitionis thatin a structuredmesh,the indicesof the neighborsof ary nodecan be calculatedusing
simpleaddition,whereasanunstructureaneshnecessitatethe storageof alist of eachnodes neighbors.

The generatiorof both structuredand unstructuredneshesan be surprisinglydifficult, eachposing
challenge®f theirown. Thisdocumentonsideronly thetaskof generatinginstructuredneshesandfur-
thermoreconsidernly simplicial meshesgcomposeaf trianglesor tetrahedraMesheswith quadrilateral,
hexahedralpr othernon-simplicialelementsarepassedver, althoughthey compriseaninterestingfield of
studyin their own right.

1.2 DesirablePropertiesof Meshesand Mesh Generators

Unfortunately discretizingone’s object of simulationis a more difficult problemthanit appearsat first
glance A usefulmeshsatisfiesonstraintghatsometimeseemalmostcontradictory A meshmustconform
to theobjector domainbeingmodeled andideally shouldmeetconstrainton boththe sizeandshapeof its
elements.

Considerfirst the goal of correctlymodelingthe shapeof a problemdomain. Scientistsandengineers
oftenwishto modelobjectsor domainswith complex shapesandpossiblywith curvedsurfaces.Boundaries
may appeairin the interior of a region aswell ason its exterior surfaces. Exterior boundariesseparate
meshedand unmeshedortionsof space,and are found on the outer surfaceandin internal holesof a
mesh.Interior boundariesappeamwithin meshegortionsof spaceandenforcethe constrainthatelements
may not piercethem. Theseboundariesaretypically usedto separateegionsthat have differentphysical
properties;for example, at the contactplanebetweentwo materialsof differentconductities in a heat
propagatiorproblem. An interior boundaryis representedy a collectionof edgeqin two dimensions)pr
faceq(in threedimensionspf themesh.

In practice,curved boundariesan often be approximatedy pieceavise linear boundariesso theoret-
ical meshgeneratioralgorithmsare often baseduponthe idealizedassumptiorthat the input geometryis



4 JonatharRichardShevchuk

piecaviselinear—composedvithout curnes. This assumptioris maintainedhroughouthis documentand
cuned surfaceswill not be given further consideration.This is not to say that the problemof handling
cunesis soeasilywavedaside;it surelydeseresstudy However, thesimplifiedproblemis difficult enough
to provide amplegristlefor thegrinder

Given an arbitrary straight-linetwo-dimensionakegion, it is not difficult to generatea triangulation
that conformsto the shapeof the region. It is trickier to find a tetrahedralizatiothat conformsto an
arbitrary linear three-dimensionalegion; someof the fundamentadifficulties of doing so are described
in Section2.1.3. Neverthelessthe problemis reasonablywell understoodanda thoroughsuney of the
pertinenttechniquesin bothtwo andthreedimensionsis offeredby BernandEppstein10].

A secondgoal of meshgeneratioris to offer asmuchcontrol aspossibleover the sizesof elementsn
the mesh. Ideally, this controlincludesthe ability to gradefrom smallto large elementver a relatively
shortdistance. The reasonfor this requirements that elementsize hastwo effects on a finite element
simulation. Small, denselypacled elementsoffer more accurag thanlarger, sparselypacled elements;
but the computatiortime requiredto solve a problemis proportionalto the numberof elements.Hence,
choosinganelementsizeentailstradingoff speedandaccurag. Furthermorethe elementsizerequiredto
attainagivenamountf accurag dependsiponthebehaior of the physicalphenomenaeingmodeledand
may vary throughoutthe problemdomain. For instancea fluid flow simulationrequiressmallerelements
amid turbulencethanin areasof relative quiescencein threedimensionsthe idealelementin one part of
themeshmayvary in volumeby afactorof a million or morefrom theidealelementin anothempartof the
mesh.If elementof uniform sizeareusedthroughoutthe mesh,one mustchoosea size small enoughto
guaranteesufiicient accurag in the mostdemandingportion of the problemdomain,andtherebypossibly
incur excessiely large computationadlemands.To avoid this pitfall, a meshgeneratoshouldoffer rapid
gradatiorfrom smallto large sizes.

Given a coarse mesh—onewith relatvely few elements—itis not difficult to refineit to producean-
othermeshhaving a larger numberof smallerelements.The reverseprocesss not so easy Hence,mesh
generatioralgorithmsoftensetthemselesthe goal of beingable,in principle,to generateassmalla mesh
aspossible.(By “small”, | meanonewith asfew elementsaspossible.)They typically offer the optionto
refineportionsof the meshwhoseelementsarenot smallenoughto yield therequiredaccurag.

A third goalof meshgenerationandtherealdifficulty, is thatthe elementshouldberelatively “round”
in shapebecauselementswith large or smallanglescandegradethe quality of the numericalsolution.

Elementswith large anglescancausea large discretizationerror; the solutionyieldedby a numerical
methodsuchasthefinite elemenimethodmaybefarlessaccuratehanthe methodwould normallypromise.
In principle,the computeddiscretesolutionshouldapproachhe exact solutionof the PDE asthe element
sizeapproachesero.However, BabuSkaandAziz [3] shaw thatif meshanglesapproach 80° astheelement
sizedecreasegorvergenceto the exactsolutionmayfail to occur

Another problemcausedby large anglesis large errorsin derivatives of the solution, which ariseas
an artifact of interpolationover the mesh. Figure 1.3 demonstratethe problem. The elementillustrated
hasvaluesassociatedavith its nodesthat represenan approximationof somephysicalquantity If linear
interpolationis usedto estimatethe solutionat non-nodalpoints,the interpolatedvalueat the centerof the
bottomedgeis 51, asillustrated. This interpolatedvalue dependonly on the valuesassociateavith the
bottomtwo nodesandis independendf thevalueassociateavith theuppermode.As theangleattheupper
nodeapproached80°, the interpolatedpoint (with value 51) becomesrbitrarily closeto the uppernode
(with value 48). Hence,the directionaldervative of the estimatedsolutionin the vertical directionmay
becomearbitrarily large,andis clearly speciousgventhoughthe nodalvaluesmaythemselesbe perfectly
accurate.This effect occursbecause linearly interpolatedvalueis necessarilyn errorif thetrue solution
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.A.

22 \ 80
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Figurel.3: The nodal values depicted may represent an accurate estimate of the correct solution. Never-
theless, as the large angle of this element approaches 180°, the vertical directional derivative, estimated via
linear interpolation, becomes arbitrarily large.

<A

Figurel.4: Elements are not permitted to meet in the manner depicted here.

is not linear and ary erroris magnifiedin the derivative computationbecauseof the large angle. This
problemcanafflict ary applicationthatusesmeshedor interpolation,andnot just PDE solvers. However,
theproblemis of particularconcernn simulationsof mechanicatleformationjn which the dervativesof a
solution(the strains)areof interestandnotthesolutionitself (the displacements).

Small anglesare alsofeared,becausehey cancausethe coupledsystemsof algebraicequationghat
numericalmethodsyield to beill-conditioned[16]. If a systemof equationss ill-conditioned, roundof
error degradesthe accurag of the solutionif the systemis solved by direct methods and convergenceis
slow if the systemis solvedby iterative methods.

By placingalowerboundonthesmallestingleof atriangulationoneis alsoboundingthelargestangle;
for instancein two dimensionsif noangleis smallerthané, thennoangleis largerthan180° — 26. Hence,
mary meshgeneratioralgorithmstake the approactof attemptingo boundthe smallesiangle.

Despitethis discussionthe effects of elementshapeon numericalmethodssuchasthe finite element
methodarestill beinginvestigatedOurunderstandingf therelative meritof differentmetricsfor measuring
elemeniuality, or the effectsof smallnumbersf poorquality elementn numericalsolutionss basedas
muchon engineeringexperienceandrumor asit is on mathematicafoundations.Furthermorethe notion
of a nicely shapecklementvariesdependingon the numericalmethod,the type of problembeingsolved,
andthe polynomialdegreeof the piecavise functionsusedto interpolatethe solutionover the mesh. For
physicalphenomenahat have anisotropicbehaior, the ideal elementmay be long andthin, despitethe
claim thatsmallanglesareusuallybad. Hence the designerof algorithmsfor meshgeneratioris shooting
atanill-definedtamet.

The constraintsof elementsize and elementshapeare difficult to reconcilebecauseslementsmust
meetsquarelyalongthe full extent of their sharededgesor faces. Figure 1.4 illustratesillegal meetings
betweenadjacentelements. For instance,at left, the edgeof one triangularelementis a portion of an
edgeof an adjoining element. Thereare variantsof methodslike the finite elementmethodthat permit
suchnonconformingelements However, suchelementsare not preferred,as they may degradeor ruin
the convergenceof the method. Although nonconformingelementsmale it easierto createa meshwith
seeminglynicely shapedtlementsthe problemsof numericalerrormaystill persist.

For an example of how elementquality and meshsize are tradedoff, look aheadto Figure 3.19 on
Page61.
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1.3 Why Unstructured Meshes?

Isit reallyworththetroubleto useunstructuredneshesTheproces®f solvingthelinearor nonlinearsys-
temsof equationgyieldedby thefinite elementmethodandits brethrenis simplerandfasteron structured
meshesbecaus®f the easeof determiningeachnodes neighbors.Becausaunstructuredneshesiecessi-
tatethestorageof pointersto eachnodes neighborstheirdemand®n storagespaceandmemorytraffic are
greater Furthermorethe regularity of structuredmeshesnalesit straightforvard to parallelizecomputa-
tionsuponthem,whereasunstructuredneshe€ngendethe needfor sophisticategbartitioningalgorithms
andparallelunstructuredolvers.

Nonethelesgherearecasesn which unstructuredneshesrepreferableor evenindispensableMany
problemsaredefinedonirregularly shapediomainsandresiststructurediscretization Severalmoresubtle
adwantage®f unstructuredneshesrevisiblein Figuresl.6and1.7, which depictmeshesisedto modela
cross-sectionf the Los AngelesBasin,itself illustratedin Figurel.5.

A numericalmethodis usedto predictthe surfacegroundmotiondueto a strongearthquak. Themesh
of Figure 1.7 is finer in the top layersof the valley, reflectingthe much smallerwavelengthof seismic
wavesin the softeruppersoil, andbecomesoarsewith increasingdepth,asthe soil becomesstiffer and
the correspondingeismicwavelengthincreasedy a factorof twenty Whereasanunstructuredneshcan
be flexibly tailoredto the physicsof this problem,the structuredmeshmustemplg/ a uniform horizontal
distribution of nodes,the densitybeingdictatedby the uppermostayer As aresult,it hasfive timesas
mary nodesasthe unstructurednesh,andthe solutiontime and memoryrequirement®f the simulation
are correspondinglyarger  The disparityis even more pronouncedn three-dimensionalomainsandin
simulationswherethe scalesof the physicalphenomenaary more.

Anotherimportantdifferenceis thatthe meshof Figure 1.7 conformsto theinterior boundarief the
basinin away thatthemeshof Figurel.6 cannotandhencemaybettermodelreflectionsof wavesfrom the
interfaceshbetweenayersof soil with differing densities This differencen accurag only manifeststself if
theunstructure@ndstructuredmeshesindercomparisorarerelatively coarse.

Unstructuredmeshesfar betterthanstructuredneshescanprovide multiscaleresolutionand confor
mity to complex geometries.

1.4 Outline of the Thesis

The centraltopic of this thesisis the studyof atechniquegcalledDelaunayrefinementfor the generatiorof
triangularandtetrahedrameshes Delaunayrefinemenimethodsare basedupona well-knovn geometric
constructiorcalledthe Delaunaytriangulation whichis discussedaxtensvely in Chapter2.

Chapter2 alsobriefly suneys someof the previousresearclon simplicial meshgenerationAlgorithms
baseduponthe Delaunaytriangulationare discussed.So are several fundamentalhydifferentalgorithms,
someof whicharedistinguishedy having provably goodboundsonthequality of themesheshey produce.
There are several typesof boundsan algorithm might have; for instance,quite a few meshgeneration
algorithmsproduceprovably goodelements.In otherwords, somequality measure—usuallthe smallest
or largestangle—ofevery elementis constrainedy someminimum or maximumbound. Someof these
algorithmsalsooffer boundson the sizesof the mesheshey generateFor somei|it is possibleto prove that
themeshesrenicelygradedjn amathematicallyvell-definedsensehatis explainedin Chaptei3. Roughly
speakingthe presencef smallelementsn oneportion of the meshdoesnot have anunduly strongeffect
on the sizesof elementsn anothemearbyportion of the mesh. One shouldbe awarethat the theoretical
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Figurel.5: Los Angeles Basin.

Figurel.6: Structured mesh of Los Angeles Basin.

Figurel.7: Unstructured mesh of Los Angeles Basin.

boundgpromisedoy meshgeneratioralgorithmsarenotin every casestrongenoughto beusefulguarantees
in practice but someof thesealgorithmsdo muchbetterin practicethantheir theoreticaboundssuggest.

Jim RuppertandL. Paul Chav have developedtwo-dimensionaDelaunayrefinementalgorithmsthat
exhibit provableboundson elementguality, meshgrading,andmeshsize;thesealgorithmsareeffective in
practiceaswell. In Chapter3, | review thesealgorithms,unify them, and solve an outstandingproblem
relatedto inputswith smallangles.

To clarify the relationshipbetweenthesealgorithms(including my own modifications),l list herethe
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provableboundson eachof thesealgorithmsprior andsubsequenb the presenresearchChew’s first De-
launayrefinemengalgorithm[19], publishedasatechnicalreportin 1989,wasthefirst Delaunayefinement
algorithmto offer a guaranteeit producesmeshesith no anglesmallerthan30°. The elementof these
meshesareof uniform size, however; gradingof elementsizesis not offered. Rupperts Delaunayrefine-
mentalgorithm[82], first publishedasatechnicalreportin 1992[80], offersdifferentguaranteesilthough
it promiseonly aminimumangleof roughly20.7°, it alsooffersaguarante®f goodgrading,whichin turn
canbe usedto prove thatthe algorithmis size-optimal the numberof elementsn thefinal meshis at most
a constanfactorlargerthanthe numberin the bestpossiblemeshthat meetsthe sameboundon minimum
angle. Chew publisheda secondDelaunayrefinementalgorithm[21] in 1993, which offers the same30°
lower boundashis first algorithm. Chen’'s secondalgorithm producesicely gradedmeshesn practice,
althoughChew providesno theoreticaguarante®f this behaior.

Rupperts algorithmandChew’'s secondalgorithmcantake a minimumangleasa parameterandpro-
ducea meshwith no anglesmallerthanthat minimum. In Rupperts algorithm, this parametemay be
choserbetweer® and20.7°. Theboundson gradingandsize-optimalityarestrongerfor smallerminimum
angles.As theminimumangleincreaseso 20.7°, the otherboundsbecomeprogressiely wealer. In prac-
tice, bothRupperts algorithmandChen’s secondalgorithmexhibit a tradeof betweerelementuality and
meshsize,but allow betterangleboundghanthetheorypredicts.(Again, seeFigure3.19for anexampleof
thetradeof in Rupperts algorithm.)

My new resultsin two-dimensionameshgenerationalsodetailedin Chapter3, areasfollows. | shav
that Rupperts analysistechniquecan be appliedto Chew’s secondalgorithm, and | therebyprove that
Chew’s secondalgorithm producesnicely gradedmeshesor minimum anglesof up to roughly 26.5°.
Hence,if a userspecifiesa minimum angleno greaterthan26.5°, good gradingand size-optimalityare
guaranteedObsenre thatthisimprovesuponthe 20.7° boundof Rupperts algorithm.)If aminimumangle
betweer26.5° and30° is specifiedferminationis still guaranteedoy Chew’s own result),but goodgrading
andsize-optimalityare not theoreticallyguaranteedalthoughthey areexhibitedin practice).l alsointro-
ducethe notion of range-restrictedsegmentsplitting, which extendsanideaof Chew. Rupperts algorithm,
modifiedto userange-restrictedggmentsplitting, is guaranteedtb terminatefor minimumanglesupto 30°,
like Chewn's algorithm.

Rupperts andChen’s algorithmsarenot entirely satisfyingbecauseheir theoreticalguaranteedo not
applywhentheproblemdomainhassmallangles.n this circumstancetheir behaior is poorin practiceas
well; they mayevenfail to terminate.This problemreflectsnot merelya deficieng of thealgorithms but a
fundamentadifficulty in triangularmeshgeneration Althoughsmallanglesnherentin theinputgeometry
cannotberemored,onewould like to find away to triangulatea problemdomainwithout creatingarny new
smallangles.| prove thatthis problemis not alwayssoluble.For instance] canexhibit aninputthatbears
anangleof half adegree ,andcannotbetriangulatedvithoutaddinganewv anglesmallerthan30°. Similarly,
for ary angled, however small,| canexhibit aninput that cannotbe triangulatedwithout creatinga new
anglesmallerthand. (Theinput! exhibit hasa smallanglewhichitself is muchsmallerthand.)

This negative resultimplies that Rupperts algorithmwill never terminateon suchan input; it will
ceaselesslyry to rid itself of removablesmallanglespnly to find the culpritsreplacedy others.l propose
amodificationto the algorithmthat preventsthis cycle of endlesgefinementterminationis guaranteedA
few badanglesmustnecessarilyemainin the mesh,but theseappearonly nearsmall input angles. The
modificationdoesnot affectthe behaiior of thealgorithmon inputswith no smallangles.

Basedon thesefoundations] designa three-dimensiondDelaunayrefinementalgorithmin Chapter4.
Thischapteiis theclimaxof thethesis althoughits resultsarethesimplesto outline. | firstextendRupperts
algorithmto threedimensions,and shav that the extensiongeneratesiicely gradedtetrahedraimeshes



Outlineof the Thesis 9

whosecircumradius-to-shtgd edgeratiosarenearlyboundedbelon two. By adoptingtwo modifications
to the algorithm, equatorial lensesand range-restricted sggmentsplitting, the boundon eachelements

circumradius-to-shagst edgeratio canbe improved to 1.63 with a guaranteef goodgrading,or to 1.15

without. (Meshesgeneratedvith a boundof 1.15 exhibit good gradingin practice,evenif thereis no

theoreticaguarantee.)

A boundon the circumradius-to-sirtest edgeratio of a tetrahedrons helpful, but doesnotimply ary
boundonthe minimumor maximumdihedralangle.However, somenumericaimethodsincludingthefinite
elementmethod,requiresuchboundsto ensurenumericalaccurag. The Delaunayrefinementalgorithm
is easilymodifiedto generatemeshesvhereinall tetrahedraneetsomeboundon their minimum angle.
Terminationcanno longerbe guaranteeih theory but is obtainedn practicefor reasonablanglebounds.

Themainshortcomingf my three-dimensiondelaunayrefinemenalgorithmis thatsevererestrictions
aremadethatoutlav smallanglesn theinputgeometry Onewouldlik e to have methodgor handlingsmall
input anglessimilar to thosel have developedfor the two-dimensionakase. | am optimistic that such
methodswill befound,but | do notdiscusghe problemin ary depthherein.

| have implementedoth the two-dimensionabndthree-dimensiondDelaunayrefinementalgorithms.
A greatdealof careis necessarjo turnthesealgorithmsinto practicalmeshgeneratorsMy thoughtsonthe
choiceof datastructurestriangulationalgorithms,andotherimplementatiordetailsarefoundin Chapters.

Althoughnearlyall numericalalgorithmsareaffectedby floating-pointroundof error, therearefunda-
mentalreasonsvhy geometricalgorithmsare particularly susceptible.In ordinary numericalalgorithms,
the mostcommonproblemdueto roundof erroris inaccurateesultswhereasn computationajeometry
a commonresultis outrightfailure to produceary resultsat all. In mary numericalalgorithms,problems
dueto roundof error canbe eliminatedby carefulnumericalanalysisand algorithm design. Geometric
algorithmsyield to suchan approachwith greaterdifficulty, andthe only easyway to ensuregeometric
robustnesss throughthe useof exactarithmetic.

Unfortunatelyexactarithmeticis expensve, andcanslon geometrialgorithmsconsiderablyChapte6
detailsmy contritutions to the solution of this problem. My approachis basedfirstly upona new fast
techniquefor performingexact floating-pointarithmeticusing standardloating-pointunits, and secondly
upona methodfor performingthesecomputationsadaptiely, spendingonly asmuchtime asis necessary
to ensureheintegrity of theresult. Usingthesetwo techniquesl, have written severalgeometrigpredicates

thatgreatlyimprove the robustnesof my meshgeneratorsandare usefulin othergeometricapplications
aswell.






Chapter 2

The Delaunay Triangulation and Mesh
Generation

The Delaunaytriangulationis a geometricstructurethat hasenjoyed greatpopularityin meshgeneration
sincemeshgeneratiorwasin its infang. In two dimensionsit is nothardto understanavhy: the Delaunay
triangulationof a vertex setmaximizeshe minimumangleamongall possibletriangulationsof thatvertex
set. If oneis concernedvith elementguality, it seemsalmostsilly to considerusinga triangulationthatis
not Delaunay

This chaptersuneys Delaunaytriangulationstheir propertiesandseveral algorithmsfor constructing
them. I focusonly ondetailsrelevantto meshgenerationfor moregenerakuneys, Aurenhammefl], Bern
andEppstein[10], andFortune[33] arerecommendedl alsodiscussgwo generalizationsf the Delaunay
triangulation:the constrainedelaunaytriangulation which ensureshatinput segmentsare presenin the
mesh,andthe Delaunaytetrahedralizationwhich generalizeghe Delaunaytriangulationto threedimen-
sions. The Delaunaytetrahedralizatiofis not quite so effective asthe Delaunaytriangulationat producing
elementf goodquality, but it hasneverthelesenjoyed nearlyasmuchpopularityin the meshgeneration
literatureasits two-dimensionatousin.

Also foundin this chapteiis a brief suney of researchin meshgenerationwith specialattentiongiven
to methoddasedn Delaunaytriangulationsandtetrahedralizationgndmethodgshatgeneratenesheshat
areguaranteedb have favorablequalities. Thesealgorithmsarepart of the historythatled to the discovery
of the provably goodDelaunayrefinementlgorithmsstudiedin Chapters3 and4.

11
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Figure2.1: A Delaunay triangulation.
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Figure2.2: Each edge on the convex hull is Delaunay, because it is always possible to find an empty circle
that passes through its endpoints.

2.1 DelaunayTriangulations and Tetrahedralizations

2.1.1 The DelaunayTriangulation

In two dimensionsa triangulationof a setV of verticesis a setT" of triangleswhoseverticescollectvely
form V, whoseinteriorsdo notintersecteachother andwhoseunioncompletelyfills the corvex hull of V.

The Delaunaytriangulation D of V, introducedby Delaunay[27] in 1934, is the graphdefinedas
follows. Any circlein the planeis saidto be emptyif it containsno vertex of V' in its interior. (Verticesare
permittedon the circle.) Let » andv be ary two verticesof V. Theedgeuw is in D if andonly if there

existsanemptycircle thatpasseshroughu andv. An edgesatisfyingthis propertyis saidto be Delaunay
Figure2.1illustratesa Delaunaytriangulation.

TheDelaunaytriangulationof avertex setis clearlyunique becauseghedefinitiongivenabove specifies
anunambiguousestfor the presencer absencef anedgein the triangulation.Every edgeof the corvex
hull of a vertex setis Delaunay Figure 2.2 illustratesthe reasonwhy. For ary corvex hull edgee, it is

alwayspossibleto find an emptycircle thatcontainse by startingwith the smallestcontainingcircle of e
and“growing” it away from thetriangulation.
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Figure2.3: Every triangle of a Delaunay triangulation has an empty circumcircle.

e

w

Figure2.4: If the triangle ¢ is not Delaunay, then at least one of its edges (in this case, ¢) is not Delaunay.

Every edgeconnectinga verte to its nearesneighboris Delaunay If w is the vertex nearesw, the
smallestircle passinghroughv andw doesnotcontainary vertices.

It's not at all obviousthatthe setof Delaunayedgesof a vertex setcollectively forms a triangulation.
For thedefinition| have givenabove, the Delaunaytriangulationis guaranteedo be a triangulationonly if
the verticesof V' arein geneal position heremeaningthatno four verticesof V' lie on a commoncircle.
As afirst stepto proving this guaranteel describethe notionof a Delaunaytriangle. The circumcircle of
atriangleis the uniquecircle that passeshroughall threeof its vertices.A triangleis saidto be Delaunay
if andonly if its circumcircleis empty This defining characteristiof Delaunaytriangles,illustratedin
Figure2.3,is calledthe emptycircumcircle property

Lemmal LetT be a triangulation. If all the trianglesof T' are Delaunay thenall the edges of T' are
Delaunayandviceversa.

Proof: If all thetrianglesof T' areDelaunaythenthecircumcircleof every triangleis empty Becausevery
edgeof T' belonggto atriangleof T', every edgeis containedn anemptycircle, andis thusDelaunay

If all theedgesof T" areDelaunaysupposdor the sale of contradictiorthatsometrianglet of 7' is not
Delaunay Becausel” is a triangulation,t cannotcontainary vertices(exceptits corners),so somevertex
v of T' liesinsidethe circumcircleof ¢, but outsidet itself. Let e bethe edgeof ¢ thatseparates from the
interiorof ¢, andletw bethevertex of £ oppositee, asillustratedin Figure2.4. Onecannotdrav acontaining
circle of e thatcontainsneitherv norw, soe is not Delaunay Theresultfollows by contradiction. [ |
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Figure2.5: Two triangulations of a vertex set. At left, e is locally Delaunay; at right, e is not.

Figure2.6: In this concave quadrilateral, e cannot be flipped.

Themethodby which| prove thatthe Delaunaytriangulationis atriangulationis somevhatnonintuitive.
I will describeawell-known algorithmcalledtheflip algorithm andshav thatall the edgesf the triangu-
lation produceddy theflip algorithmareDelaunay Thenl will shav thatno otheredgesareDelaunay

Theflip algorithmbeginswith anarbitrarytriangulationandsearchefor anedgethatis notlocally De-
launay All edgesontheboundary(convex hull) of thetriangulationareconsideredo belocally Delaunay
For ary edgee notontheboundarythe conditionof beinglocally Delaunayis similarto theconditionof be-
ing Delaunaybut only thetwo trianglesthatcontaine areconsideredFor instancefFigure2.5demonstrates
two differentwaysto triangulatea subsef four vertices.In the triangulationat left, the edgee is locally
Delaunaybecaus¢hedepictedcontainingeircle of e doesnotcontaineitherof theverticesoppositee in the
two trianglesthatcontaine. In thetriangulationatright, e is notlocally Delaunaybecaus¢hetwo vertices
oppositee precludethe possibilitythate hasanemptycontainingcircle. Obsere thatif thetrianglesatleft
arepartof alargertriangulation e mightnotbe Delaunaybecaus&erticesmaylie in the containingcircle,
althoughthey lie in neithertriangle. However, suchverticeshave no bearingon whetheror note is locally
Delaunay

Wheneertheflip algorithmidentifiesanedgethatis notlocally Delaunaytheedgeis flipped Toflip an
edgeis to deleteit, therebycombiningthe two containingtrianglesinto a single containingquadrilateal,
andthento insertthe crossingedgeof the quadrilateral Hence anedgeflip could convert thetriangulation
atleft in Figure2.5into thetriangulationatright, or vice versa.(Theflip algorithmwould performonly the
latterflip.) Notall triangulationredgesareflippable,asFigure2.6shavs, becaus¢hecontainingquadrilateral
of anedgemight not be convex.
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W

(@) (b)

Figure2.7: (a) Case where e is locally Delaunay. (b) Case where e is not locally Delaunay. The edge
created if e is flipped is locally Delaunay.

Lemma?2 Lete bean edg of a triangulationof V. Either e is locally Delaunay or e is flippableandthe
edee createdby flipping e is locally Delaunay

Proof: Letv andw betheverticesoppositee, whichtogethemwith e definethe containingquadrilaterabf e,
illustratedin Figure2.7. Let C bethecircle thatpasseshroughv andtheendpointf e. Eitherw is strictly
insideC, or w liesonor outsideC.

If w is on or outsideC, asin Figure 2.7(a),thenthe empty circle C demonstrateshat e is locally
Delaunay

If w is inside C, thenw is containedn the sectionof C' definedby e and oppositev; this sectionis
shadedn Figure2.7(b). The containinggquadrilaterabf e is thusconstrainedo be strictly convex, andthe
edgee is flippable. Furthermorethe circle that passeshroughv andw, andis tangento C' atv, doesnot
containthe endpointf e, asFigure2.7(b)demonstratediencethe edgevw is locally Delaunay [ ]

Thesucces®f theflip algorithmreliesonthefact, provenbelaw, thatif ary edgeof thetriangulationis
not Delaunaythenthereis anedgethatis notlocally Delaunayandcanthusbeflipped.

Lemma 3 LetT beatriangulationwhosezdgesareall locally Delaunay Theneveryedge of T is (globally)
Delaunay

Proof: Supposdor the sale of contradictiornthatall edgesof 7" arelocally Delaunaybut someedgeof T’
is not Delaunay By Lemmal, the latterassertiorimpliesthatsometrianglet of T' is not Delaunay Let v
be avertex insidethe circumcircleof ¢, andlet e; betheedgeof ¢ thatseparates from theinterior of ¢, as
illustratedin Figure2.8(a).Withoutlossof generality assumehate; is orientedhorizontally with ¢ belov
€1.

Draw a line sggmentfrom the midpointof e; to v (seethe dashedine in Figure2.8(a)). Let eq, ea,
es, -- -, ey, bethe sequencef triangulationedges(from bottomto top) whoseinteriorsthis line segment
intersects.(If the line sggmentintersectssomevertex otherthanw, replacev with the first suchvertex.)
Let w; bethevertex abore e; thatformsatrianglet; in conjunctionwith e;. Becausel’ is a triangulation,
Wy, = V.
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(@) (b)

Figure2.8: (a) If v lies inside the circumcircle of ¢, there must be an edge between v and ¢ that is not locally
Delaunay. (b) Because v lies above e; and inside the circumcircle of ¢, and because w; lies outside the
circumcircle of ¢, v must lie inside the circumcircle of ¢;.

By assumptiong; islocally Delaunaysow, liesoutsidethecircumcircleof t. As Figure2.8(b)shaws, it
follows thatthe circumcircleof ¢; containsevery pointabore e; in thecircumcircleof ¢, andhencecontains
v. Repeatinghis agumentinductively, onefindsthatthe circumcircleof ¢,, containsv in its interior. But
w,, = v is averte of ¢,,,, which contradictgheclaimthatwv is in theinterior of thecircumcircleof ¢,,,. B

An immediateconsequencef Lemmag3 is thatif atriangulationcontainsanedgethatis not Delaunay
thenit containsanedgethatis notlocally Delaunayandthustheflip algorithmmayproceed.Thefollowing
lemmashaws thattheflip algorithmcannotbecomerappedn anendlesdoop.

Lemma4 Givenatriangulationof n verticestheflip algorithmterminatesafter O(n?) edee flips, yielding
atriangulationwhoseedgesare all Delaunay

Proof: Let ®(T") beafunctiondefinedover all triangulationsequalto the numberof vertex-triangle pairs
(v,t) suchthatv is avertex of T, ¢ is atriangleof 7', andw liesinsidethe circumcircleof ¢t. Becausd’ has
n verticesandO(n) triangles,®(T) € O(n?).

Supposean edgee of T is flipped, forming a new triangulation7”. Let ¢; andt, be the triangles
containinge, andlet v; andv, betheapicesof ¢; andt,. Because: is notlocally Delaunayw, is contained
in the circumcircleof 5, andwv, is containedn the circumcircleof ¢;. Let ¢j andt,, bethetrianglesthat
replacet; andt, afterthe edgeflip. Let Cy, Cs, C}, and C!, be the circumcirclesof ¢, ta, ¢, andt,
respectiely, asillustratedin Figure2.9(a).

It is notdifficult to shaw thatC; UCy, D Cf UCY (Figure2.9(b))andC; NCy D Cf N CY (Figure2.9(c)).
Thereforejf avertex v liesinsiden,, circumcirclesof trianglesof 7', andhencecontritutesn,, to thecount
®(T), thenw liesinsideno morethann,, circumcirclesof trianglesof 7", andcontritutesat mostn,, to the
count®(7”). If, aftertheedgeflip, a vertex is countedbecausét liesin C; or C¥, thenit musthave lain in
C; or Cy beforetheedgeflip; andif it liesin bothC] andCj, thenit musthave lain in bothC; andCs.

However, theverticesy; andv, eachlie in onelesscircumcirclethanbeforethe edgeflip. For instance,
v1 lay in Cy, butliesin neitherC] nor C. Hence ®(T") < ®(T') — 2.
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Figure2.9: (a) Circumcircles before and after an edge flip. (b) The union of the circumcircles afterward
(shaded) is contained in the union of the prior circumcircles. (c) The intersection of the circumcircles after-
ward (shaded) is contained in the intersection of the prior circumcircles.
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Figure2.10:1f no four vertices are cocircular, two crossing edges cannot both be Delaunay.

Theflip algorithmterminatesafter O (n?) edgeflips becaus& € O(n?), every edgeflip reducesp by
at leasttwo, and ® cannotfall belon zero. Theflip algorithmterminateonly whenevery edgeis locally
Delaunaythus,by Lemma3, every edgeis Delaunay |

Theorem5 Let V' be a setof three or more verticesin the plane that are not all collinear If no four
verticesof V' are cocircular, the Delaunaytriangulationof V' is a triangulation,andis producedby theflip
algorithm.

Proof. Becausehe verticesof V' arenotall collinear thereexistsa triangulationof V. By Lemma4, the
applicationof theflip algorithmto ary triangulationof V' producesa triangulationD whoseedgesareall
Delaunay

| shallshaw thatno otheredgeis Delaunay Considerary edgevive &€ D, with v1,v, € V. BecauseD
is atriangulation,y; v9 mustcrosssomeedgew;ws € D. Becauseuv;w, isin D, it is Delaunayandthere
is acircle C passinghroughw; andwy whoseinterior containsneitherv, norwvs. Becausano four vertices
arecocircular atleastoneof v; andw, lies strictly outsideC'. It follows thatno emptycircle passeshrough
v1 andwy, hencev,v, is not Delaunay(seeFigure2.10).

Therefore,D is the Delaunaytriangulationof V. ]
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(a) (b) (c)
Figure2.11: Three ways to define the Delaunay diagram in the presence of cocircular vertices. (a) Include

all Delaunay edges, even if they cross. (b) Exclude all crossing Delaunay edges. (c) Choose a subset of
Delaunay edges that forms a triangulation.

Whatif V' containscocircularvertices? In this circumstancethe Delaunaytriangulationmay have
crossingedgesasillustratedin Figure2.11(a).Becauseanarbitrarily smallperturbatiorof theinputvertices
canchangehetopologyof thetriangulation,V andits Delaunaytriangulationaresaidto be degeneate

The definition of “Delaunaytriangulation”is usuallymodifiedto preventedgesfrom crossing.Occa-
sionally oneseesdn the literaturea definition whereinall suchcrossingedgesare omitted; polygonswith
morethanthreesidesmayappeain the DelaunaydiagramasFigure2.11(b)shavs. (Theusefulnessf this
definitionfollows in partbecausehe graphthusdefinedis the geometricdual of the well-knowvn Voronoi
diagram.)For mostapplicationshowever, it is desirableto have a true triangulation,andsomeof the De-
launayedgeqandthus,someof the Delaunaytriangles)areomittedto achieve this, asin Figure2.11(c).In
this case the Delaunaytriangulationis no longerunique. Theflip algorithmwill find oneof the Delaunay
triangulationsthe choiceof omitted Delaunayedgesdependsiponthe startingtriangulation.Becauseau-
mericalmethoddik e the finite elementmethodgenerallyrequirea true triangulation,l will usethis latter
definitionof “Delaunaytriangulation”throughoutherestof thisdocument.

Delaunaytriangulationsarevaluablein partbecaus¢hey have thefollowing optimality properties.

Theorem 6 Amongall triangulationsof a vertex set,the Delaunaytriangulation maximizeghe minimum
anglein the triangulation, minimizegshe largest circumcircle, and minimizeghe largestmin-containment
circle, whee the min-containmentircle of a triangle is the smallestircle that containsit.

Proof: It canbe shavn thateachof thesepropertiess locally improved whenan edgethatis not locally
Delaunayis flipped. The optimaltriangulationcannotbeimproved,andthushasnolocally Delaunayedges.
By Theorenb, atriangulationwith nolocally Delaunayedgesds the Delaunaytriangulation. [ ]

The propertyof max-minangleoptimality was first notedby Lawson[59], and helpsto accountfor
the popularityof Delaunaytriangulationan meshgeneration.Unfortunately neitherthis propertynor the
min-maxcircumcirclepropertygeneralizeso Delaunaytriangulationsn dimensiongiigherthantwo. The
propertyof minimizing the largestmin-containmentircle wasfirst notedby D’AzevedoandSimpson25],
andhasbeenshavn to hold for higherdimensionaDelaunaytriangulationdy Rajan[78].
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Figure2.12: The Delaunay triangulation of a set of vertices does not usually solve the mesh generation
problem, because it may contain poor quality triangles and omit some domain boundaries.

Figure2.13: By inserting additional vertices into the triangulation, boundaries can be recovered and poor
quality elements can be eliminated.

2.1.2 Planar Straight Line Graphs and Constrained Delaunay Triangulations

GiventhattheDelaunaytriangulationof asetof verticesnaximizegheminimumangle(in two dimensions),
why isn't the problemof meshgeneratiorsolved? Therearetwo reasonsbothillustratedin Figure2.12,

which depictsaninput objectanda Delaunaytriangulationof the objects vertices. Thefirst reasonis that

Delaunaytriangulationsareobliviousto the boundarieshat definean objector problemdomain,andthese
boundariesnay or may not appeaitn atriangulation. The secondreasoris that maximizingthe minimum

angleusuallyisn't goodenoughjor instancethe bottommostriangleof the triangulationof Figure2.12is

quite poor.

Both of theseproblemscanbe solvedby insertingadditionalverticesinto thetriangulation asillustrated
in Figure2.13. Chapters3 and4 will discussthis solutionin detail. Here,however, | review a different
solutionto thefirst problemthatrequiresno additionalvertices.Unfortunatelyit is only applicablein two
dimensions.

The usualinput for two-dimensionameshgeneratioris not merelya setof vertices. Most theoretical
treatmentof meshingtake astheir input a planar straight line graph (PSLG).A PSLGis a setof vertices
and sggmentsthat satisfiestwo constraints.First, for eachsegmentcontainedn a PSLG,the PSLG must
alsocontainthe two verticesthat sene asendpointsfor that segment. Second segmentsare permittedto
interseconly attheirendpoints(A setof sggmentghatdoesnotsatisfythis conditioncanbe convertedinto
a setof sgmentsthatdoes. Runa segmentintersectiomalgorithm[24, 85, thendivide eachsegmentinto
smallersegmentsat the pointswhereit intersectothersggments.)

The constained Delaunaytriangulation (CDT) of a PSLG X is similar to the Delaunaytriangulation,
but everyinputsegmentappearsisanedgeof thetriangulation.An edgeor triangleis saidto beconstained
Delaunayif it satisfiesthe following two conditions. First, its verticesare visible to eachother Here,
visibility is deemedo be obstructedf a sggmentof X lies betweentwo vertices. Secondthereexists a
circlethatpasseshroughtheverticesof the edgeor trianglein questionandthe circle containano vertices
of X thatarevisible from theinterior of the edgeor triangle.

Segmentsof X arealsoconsideredo be constrainedelaunay

Figure2.14demonstrateexamplesof aconstrainedelaunayedgee anda constrainedelaunaytrian-



20 JonatharRichardShevchuk

Figure2.14:The edge e and triangle ¢ are each constrained Delaunay. Bold lines represent segments.

@) (b) ()

Figure2.15: (a) A planar straight line graph. (b) Delaunay triangulation of the vertices of the PSLG. (c)
Constrained Delaunay triangulation of the PSLG.

glet. Inputsggmentsappearasbold lines. Althoughthereis no emptycircle thatcontainse, the depicted
containingeircle of e containgo verticesthatarevisible from theinterior of e. Therearetwo verticesinside

thecircle, but both are hiddenbehindsegments.Hence e is constrainedelaunay Similarly, the circum-

circle of ¢ containstwo vertices but botharehiddenfrom theinterior of ¢ by segmentssot is constrained
Delaunay

Is this notionof visibility ambiguous¥or instancewhatif atrianglet hasavertex v in its circumcircle,
anda sements only partly obstructgheview, sothatw is visible from somepointsin ¢ but not others?In
this case pneof theendpointf s alsolies in the circumcircleof ¢, sot is unambiguouslyot constrained
Delaunay (This agumentdoesnot extendto threedimensionsunfortunatelywhich largely explainswhy
no consistentefinitionof constrainedelaunaytetrahedralizatiohasbeenputforth.)

Figure 2.15 llustratesa PSLG, a Delaunaytriangulationof its vertices,and a constrainedelaunay
triangulationof the PSLG.Someof theedgeof the CDT areconstrainedelaunaybut not Delaunay Take
note: constrainedelaunaytriangulationsarenot necessarilypelaunaytriangulations.

Like Delaunaytriangulationsgconstrainedelaunaytriangulationscanbe constructedy theflip algo-
rithm. However, theflip algorithmshouldbegin with a triangulationwhoseedgesncludeall the segments
of theinput PSLG.To shav thatsucha triangulationalwaysexists (assumingheinput verticesarenot all
collinear),begin with an arbitrarytriangulationof the verticesof the PSLG.Examineeachinput segment
in turn to seeif it is missingfrom the triangulation. Eachmissingsegmentis forcedinto the triangulation
by deletingall the edgest crossesinsertingthe nev segment,andretriangulatinghe two resultingpoly-
gons(oneon eachsideof the sggment),asillustratedin Figure2.16. (For a proofthatary polygoncanbe
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Figure2.16:Inserting a segment into a triangulation.

triangulatedseeBernandEppstein10].)

Onceatriangulationcontainingall theinput sgmentss found,theflip algorithmmaybe applied,with
the provision that sggmentscannotbe flipped. The following resultsmay be proven analogousiyto the
proofsin Section2.1.1. The only changeghat needbe madein the proofsis to ignorethe presenceof
verticesthatarehiddenbehindinput segments.

Lemma7 LetT beatriangulation.If all thetrianglesof T' are constainedDelaunaythenall theedgesof
T are constainedDelaunayandviceversa. [ ]

Lemma8 LetT beatriangulationwhoseunconstainededges(thosethatdonotrepresentinputsggments)
are all locally Delaunay Theneveryedge of T is (globally) constainedDelaunay ]

Lemma9 Givena triangulation of n verticesin which all input segmentsare representedas edgs, the
flip algorithmterminatesafter O(n?) ede flips, yieldinga triangulationwhoseedgesare all constained
Delaunay [ ]

Theorem 10 LetX bea PSLGcontainingthreeor moreverticeghatare notall collinear If nofour vertices
of X are cocircular, the constainedDelaunaytriangulationof X is a triangulation,andis producedby the
flip algorithm. [ ]

Theorem 11 Amongall constained triangulationsof a PSLG,the constained Delaunaytriangulation
maximizeghe minimumangle minimizeshe largestcircumcicle, and minimizeshe largestmin-contain-
mentcircle. [ ]

In thecasewhereaninputPSLGhasno segmentstheconstrainedelaunaytriangulatiorreducedo the
Delaunaytriangulation.Hence by proving theseresultsfor the CDT, they arealsoprovenfor the Delaunay
triangulation.However, | insteadoresentedhe simplerproofsfor the Delaunaytriangulationto aid clarity.

2.1.3 The DelaunayTetrahedralization

TheDelaunaytetrahedralizationf a vertex setV is a straightforvard generalizatiorof the Delaunaytrian-
gulationto threedimensions An edge triangularface,or tetrahedrorwhoseverticesaremembersof V' is
saidto be Delaunayif thereexists an emptyspherethatpasseshroughall its vertices. If no five vertices
arecosphericalthe Delaunaytetrahedralizations atetrahedralizatioandis unique.If cosphericalertices
arepresentijt is customaryto definethe Delaunaytetrahedralizatioio beatruetetrahedralizationAs with
degenerateDelaunaytriangulations a subsef the Delaunayedgesfaces,andtetrahedranay have to be
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Figure2.17: This hexahedron can be tetrahedralized in two ways. The Delaunay tetrahedralization (left)
includes an arbitrarily thin tetrahedron known as a sliver, which could compromise the accuracy of a fi-
nite element simulation. The non-Delaunay tetrahedralization on the right consists of two nicely shaped
elements.

omittedto achieve this, thussacrificinguniquenessThedefinitionof Delaunaytriangulationgeneralizeso
dimensiongigherthanthreeaswell.

| have mentionedhatthemax-minangleoptimality of thetwo-dimensionaDelaunaytriangulation first
shavn by Lawson[59], doesnot generalizeto higherdimensions.Figure2.17 illustratesthis unfortunate
fact with a three-dimensionatountergample. A hexahedronis illustratedat top. Its Delaunaytetrahe-
dralization,which appearsat lower left, includesa thin tetrahedrorknown asa sliver or kite, which may
have dihedralanglesarbitrarily closeto 0° and180°. A betterquality tetrahedralizationf the hexahedron
appearstlowerright.

Edgeflips, discussedhn Section2.1.1,have athree-dimensionanaloguewhich togglesbetweerthese
two tetrahedralizationsTherearetwo typesof flips in threedimensionsbothillustratedin Figure2.18. A
2-3 flip transformsthe two-tetrahedrorconfigurationinto the three-tetrahedrononfiguration eliminating
thefaceAcde andinsertingtheedgeab andthreetriangularfacesconnectingib to ¢, d, ande. A 3-2flip is
thereversetransformationwhich deleteghe edgeab andinsertsthefaceAcde.

Recallfrom Figure2.6thatatwo-dimensionaédgeflip is notpossibleif the containingquadrilaterabf
anedgeis notstrictly corvex. Similarly, athree-dimensiondlip is notpossibldf thecontaininghexahedron
of theedgeor facebeingconsideredor eliminationis notstrictly corvex. A 2-3flip is preventedif theline
ab doesnotpasshroughtheinterior of thefaceAcde. A 3-2flip is preventedif Acde doesnotpasshrough
theinterior of theedgeab (Figure2.18,bottom).

Althoughtheideaof aflip generalizeso threeor moredimensionsthe flip algorithmin its simplest
form doesnot. Joe[52] givesan examplethatdemonstratethatif theflip algorithmstartsfrom an arbi-
trary tetrahedralizationif maybecomestuckin a local optimum, producinga tetrahedralizatiothatis not
Delaunay Thetetrahedralizatiomay containa locally non-Delaunayacethat cannotbe flipped because
its containinghexahedroris not convex, or alocally non-Delaunagdgethatcannotbeflippedbecausé is
containedn morethanthreetetrahedra.

It is notknown whetheranarbitrarytetrahedralizatiooanalwaysbetransformednto anotherarbitrary
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Figure2.18:Flips in three dimensions. The two-tetrahedron configuration (left) can be transformed into the
three-tetrahedron configuration (right) only if the line ab passes through the interior of the triangular face
Acde. The three-tetrahedron configuration can be transformed into the two-tetrahedron configuration only
if the plane containing Acde passes through the interior of the edge ab.

tetrahedralizatioof the samevertex setthrougha sequencef flips. NeverthelessDelaunaytetrahedraliza-
tionscanbeconstructedy anincrementalnsertionalgorithmbasednflips, discussedn Section2.1.4.

Any algorithmbasedon flips in dimensiongreaterthantwo mustgive someconsideratiorio the pos-
sibility of coplanarvertices.For instanceathree-dimensiondlip-basedncrementaDelaunaytetrahedral-
izationalgorithmmustbe ableto explicitly or implicitly performthe 4-4 flip demonstrateéh Figure2.19.
This transformatioris handywhentheverticese, d, e, and f arecoplanar Thisflip is directly analogougo
the two-dimensionakdgeflip, whereinthe edgedf is replacedoy the edgece. 4-4 flips areusedoftenin
casewherec, d, e, andf lie onaninteriorboundaryfacetof anobjectbeingmeshedOneshouldbe aware
of thespecialcasewherec, d, e, andf lie onanexteriorboundaryandthetop two tetrahedraaswell asthe
vertex a, aremissing.Onemightreferto this caseasa 2-2flip.

A programmerdoesnot needto implementthe 4-4 flip directly, becauséts effect can be duplicated
by performinga 2-3flip (for instancepn tetrahedraicdf andadef) followed by a 3-2flip. However, this
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Figure2.19: A 4-4 flip. The vertices ¢, d, e, and f are coplanar. This transformation is analogous to the
two-dimensional edge flip (bottom).
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sequencé&ransientlycreatesasliver tetrahedrorede f (createddy thefirstflip andeliminatedoy thesecond)
with zerovolume, which may be consideredindesirable.lt is up to the individual programmeto decide
how bestto addresshisissue.

Although Delaunaytetrahedralizationareinvaluablefor three-dimensionaheshgenerationthey are
in mary waysmorelimited thantheir two-dimensionabrethren.Thefirst difficulty is that, whereasevery
polygoncanbetriangulateqwithoutcreatingadditionalvertices) therearepolyhedrahatcannotbetetrahe-
dralized.Schonhardtfurnishesan exampledepictedn Figure2.20(right). The easiestvay to ervision this
polyhedrornis to begin with atriangularprism. Imaginegraspingthe prismsothatoneof its two triangular
facescannotmove, while the oppositeriangularfaceis rotatedslightly aboutits centerwithout moving out
of its plane. As aresult,eachof the threesquarefacesis broken alonga diagonalreflex edge (an edgeat
whichthe polyhedronis locally concae) into two triangularfaces.After this transformationthe upperleft
cornerandlower right cornerof each(former) squaregaceareseparatetby a reflex edgeandareno longer
visible to eachotherthroughtheinterior of thepolyhedron Hence no vertex of thetopfacecanseeall three
verticesof the bottomface. It is not possibleto choosefour verticesof the polyhedronthatdo notinclude
two separatethy areflex edge;thus,ary tetrahedronwhoseverticesareverticesof the polyhedrorwill not
lie entirelywithin the polyhedron.Sctbnhardts polyhedrorcannotbetetrahedralizewvithoutinsertingnen
vertices.

Neverthelessary corvex polyhedroncan be tetrahedralized.However, it is not always possibleto
tetrahedralize corvex polyhedronin amannerthatconformsto interior boundarieshbecausé¢hoseinterior
boundariesould be the facetsof Schinhardts polyhedron.Hence,constrainedetrahedralizationdo not
alwaysexist. Whatif we forbid constrainedacetsbut permitconstrainedegments#Figure2.2lillustrates
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Figure2.20: Schonhardt's untetrahedralizable polyhedron (right) is formed by rotating one end of a triangu-
lar prism (left), thereby creating three diagonal reflex edges.
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Figure2.21: A set of vertices and segments for which there is no constrained tetrahedralization.

a setof verticesandseggmentsfor which a constrainedetrahedralizatiowloesnot exist. (Thecorvex hull, a
cube,is illustratedfor clarity, but no constrainedacetsarepresentn theinput.) Threeorthogonakegments
passby eachothernearthe centerof the cube,but do notintersect.If any oneof thesesegmentss omitted,
atetrahedralizatiois possible Hence unlike the two-dimensionatasejt is notalwayspossibleto inserta
new segmentinto atetrahedralization.

Evenin casesvherea constrainedetrahedralizatiomloesexist, nobodyhasyet put forth a corvincing
definitionof constainedDelaunaytetrahedalization It seemainlikely thatthereexistsadefinitionthathas
the desiredqualitiesof uniqguenesssymmetry androtationalinvariance(in nondgenerateases)This dif-
ficulty arisesbecausewhereasa sgmentcleanlypartitionsa circumcirclein two dimensionsexceptwhen
anendpointof thesggmentliesin thecircle, sgmentsandfacetsdo not necessarilyartitioncircumspheres
in threedimensions.

Anothernail in the coffin of constrainedetrahedralizationsomesfrom Ruppertand Seidel[83], who
shaw thattheproblemof determiningvhetheror notapolyhedrorcanbetetrahedralizeavithoutadditional
verticesis NP-completeHence the prospectgor developingconstrainedetrahedralizatiomlgorithmsthat
consistentlyrecorer boundariegrepessimistic.

The meshgeneratioralgorithmdiscussedn Chapterd recorers boundariedy stratgically inserting
additionalvertices.Unfortunately RuppertandSeidelalsoshawv thatthe problemof determiningvhethera
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Figure2.22: The Bowyer/Watson algorithm in two dimensions. When a new vertex is inserted into a trian-
gulation (left), all triangles whose circumcircles contain the new vertex are deleted (center; deleted triangles
are shaded). Edges are created connecting the new vertex to the vertices of the insertion polyhedron (right).

polyhedroncanbetetrahedralizeavith only k£ additionalverticesis NP-complete On the bright side,Bern
andEppstein[10] shav thatary polyhedroncanbe tetrahedralizeavith the insertionof O(n?) additional
vertices sothedemand®f tetrahedralizatioarenot limitless.

2.1.4 Algorithms for Constructing Delaunay Triangulations

Threetypesof algorithmsarein commonusefor constructingDelaunaytriangulations. The simplestare
incrementalnsertionalgorithms which have the advantageof generalizingo arbitrarydimensionalityand
will bediscussed somedepthhere.In two dimensionstherearefasteralgorithmsbasedipondivide-and-
conquerandsweeplingechniqueswhichwill bediscussedhereonly briefly. Referto SuandDrysdale[91,

9(Q] for aninformative overviewn of theseandothertwo-dimensionaDelaunaytriangulationalgorithms.The
discussiorbelow is centeredon abstractfeaturesof the algorithms;seeSection5.1 for further detailson

implementation.

Incrementalnsertionalgorithmsoperateby maintaininga Delaunaytriangulation,into which vertices
areinsertedoneatatime. Theearliestsuchalgorithm,introducedby Lawson[59], is baseduponedgeflips.
An incrementaklgorithmthat doesnot useedgeflips, and hasthe advantageof generalizingto arbitrary
dimensionalitywasintroducedsimultaneousipy Bowyer[12] andWatson[93]. Thesetwo articlesappear
side-by-sidén a singleissueof the ComputerJournal. | will examinethe Bowyer/\Watsonalgorithmfirst,
andthenreturnto thealgorithmof Lawson.

In the Bowyer/Watsonalgorithm,whena new vertex is inserted gachtrianglewhosecircumcirclecon-
tainsthenew vertex is nolongerDelaunayandis thusdeleted All othertrianglesremainDelaunayandare
left undisturbed The setof deletedrianglescollectively form aninsertionpolyhedon, whichis left vacant
by thedeletionof thesetriangles asillustratedin Figure2.22. The Bowyer/\Watsonalgorithmconnectgach
vertex of theinsertionpolyhedrorto the new vertex with anew edge.Thesenew edgesareDelaunaydueto
thefollowing simplelemma.

Lemmal2 Letv beanewly insertedverte, andletw bea vertex of atriangle ¢ thatis deletedbecauséts
circumcicle containsy. Thenvw is Delaunay

Proof: SeeFigure2.23. The circumcircleof ¢ containsno vertex but v. Let C' be the circle that passes
throughv andw, andis tangento the circumcircleof ¢ atw. C is empty sovw is Delaunay [ ]

! Thetwo algorithmsaresimilarin all essentiatietails,but Bowyer reportsa betterasymptoticunningtime thanWatsonwhich
on closeinspectionturns out to be nothing more than an artifact of his more optimistic assumptionsboutthe speedof point
location.
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Figure2.23: If v is a newly inserted vertex, and w is a vertex of a triangle ¢+ whose circumcircle contains
only v, then vw is Delaunay.
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Figure2.24: The Bowyer/Watson algorithm in three dimensions. At left, a new vertex falls inside the cir-
cumspheres of the two tetrahedra illustrated. (These tetrahedra may be surrounded by other tetrahedra,
which for clarity are not shown.) These tetrahedra are deleted, along with the face (shaded) between them.
At center, the five new Delaunay edges (bold dashed lines). At right, the nine new Delaunay faces (one for
each edge of the insertion polyhedron) are drawn translucent. Six new tetrahedra are formed.

All new edgescreatedby theinsertionof a vertex v have v asan endpoint. This mustbe true of ary
correctincrementalnsertionalgorithm,becauséf anedge(not having v asanendpoint)is not Delaunay
beforew is insertedjt will notbe Delaunayafterwv is inserted.

The Bowyer/Watsonalgorithmextendsin a straightforvard way to three(or more)dimensionsWhen
anew vertex is inserted gvery tetrahedrowhosecircumsphereontainghe new verte is deleted asillus-
tratedin Figure2.24. The new vertex thenfloatsinsidea hollow insertionpolyhedon, which is the union
of thedeletedetrahedraEachvertex of theinsertionpolyhedronis connectedo the new vertex with anew
edge.Eachedgeof theinsertionpolyhedronis connectedo the new vertex with anew triangularface.

In its simplestform, the Bowyer/Watsonalgorithmis not robust againstfloating-pointroundof errot
Figure2.25illustratesa degeneratexamplein which two triangleshave the samecircumcircle,but dueto
roundof erroronly oneof themis deletedandthetrianglethatremainsstandsetweerthe new vertex and
the othertriangle. The insertionpolyhedronis not simple,andthe triangulationthat resultsafter the new
trianglesareaddeds nonsensical.

In two dimensionsthis problemmay be avoided by returningto Lawsons algorithm[59], which is
baseduponedgeflips. Lawsons algorithmis illustratedin Figure2.26.

Whena vertex is inserted,the triangle that containsit is found, andthreenewn edgesare insertedto
attachthe new vertex to the verticesof the containingtriangle. (If the new vertex falls uponanedgeof the
triangulation thatedgeis deleted,andfour new edgesareinsertedto attachthe new vertex to the vertices
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Figure2.25: The Bowyer/Watson algorithm may behave nonsensically under the influence of floating-point

roundoff error.

»

Figure2.26: Lawson’s incremental insertion algorithm uses edge flipping to achieve the same result as the
Bowyer/Watson algorithm.

of the containingquadrilateral.) Next, a recursve proceduraestswhetherthe new vertex lies within the
circumcirclesof ary neighboringriangles;eachaffirmative testtriggersanedgeflip thatremovesalocally
non-Delaunayedge. Eachedgeflip revealstwo additionaledgesthat mustbe tested. Whenthereareno
longerary locally non-Delaunaydgeppositethe new vertex, thetriangulationis globally Delaunay

Disregardingroundof error, Lawsonsalgorithmachievesexactly thesameresultasthe Bowyer/Watson
algorithm. In the presenceof roundof error Lawson’s algorithm avoids the catastrophiccircumstance
illustratedin Figure2.25. Lawsons algorithmis not absolutelyrobust againstroundof error, but failures
arerarecomparedo the mostnave form of the Bowyer/Watsonalgorithm. However, the Bowyer/Watson
algorithmcanbeimplementedo behae equallyrobustly; for instancetheinsertionpolygonmay befound
by depth-firstsearchfrom theinitial triangle.

A betterreasorfor notingLawsonsalgorithmis thatit is slightly easieto implementjn partbecaus¢he
topologicalstructuremaintainedyy thealgorithmremainsatriangulationatall times. GuibasandStolfi[47]
provide a particularlyelegantimplementation.

Joe[53, 54] andRajan[78] have generalized awsons flip-basedalgorithmto arbitrarydimensionality
Of coursethesealgorithmshave thesameeffectasthe Bowyer/Watsonalgorithm,but maypresenthesame
adwantagedgor implementatiorthatLawson’s algorithmoffersin two dimensions.

I do not review the mathematicsinderpinninghree-dimensionahcrementainsertionbasedon flips,
but | shalltry to corvey someof theintuition behindit. Returningfirst to the two-dimensionahlgorithm,
imagineyourselfasan obserer standingat the newly insertedvertex. From your vantagepoint, suppose
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Figure2.27:Left: The shaded triangles are considered to be visible from the new vertex, and are considered
for removal (by edge flip). Right: Triangles under consideration for removal fall into two categories. The
upper right triangle has an apex (open circle) visible through its base edge e from the new vertex. Only one
of this triangle’s sides faces the new vertex. The lower right triangle has an apex (the same open circle)
that is not visible through its base edge €', and thus the base edge cannot be flipped. Two of this triangle’s
sides face the new vertex.

thatary triangle (not adjoiningthe new verte) is visible to you if it might be eligible for removal by the
next edgeflip. Thesetrianglesareshadedn Figure2.27.

For eachsuchtriangle,therearetwo casesTheape« of thetriangle(thevertex hiddenfrom your view)
may or may not fall within the sectorof your vision subtendedby the baseedgeof thetriangle. If the ape
falls within this sectoy thenonly the baseedgeof the trianglefacestoward you; the othertwo sidesface
away (seethe upperright triangleof Figure2.27). If the ape falls outsidethis sectoy thentwo sidesof the
trianglefacetowardyou (seethelowerright triangleof Figure2.27).1n thelattercasethebasesdgecannot
beflipped,becausds containingquadrilaterals not strictly convex.

Returningto the three-dimensionatase jmagineyourselfasa vertex thathasjust beeninsertedinside
a tetrahedronsplitting it into four tetrahedra.As you look around,you seethe four facesof the original
tetrahedronandthe neighbortetrahedrdehindthesefaces(which areanalogougo the shadedrianglesin
Figure2.27).

For eachneighbottetrahedrontherearethreepossibilities.Thetetrahedromighthave onefacedirected
toward you andthreeaway (Figure 2.28, left), in which casea 2-3 flip is possible.If performed this flip
deleteghevisibleface revealingthethreebackfacesandcreatesnen edgeextendingfrom thenew vertex
(your viewpoint) to the newly revealedvertex in the back. Theflip alsocreategshreenew facesextending
from the new vertex to thethreenewly revealededges.

If thetetrahedromastwo facedirectedtowardyou (Figure2.28,center) andneitherfaceis obscuredy
aninterposingetrahedrona 3-2 flip is possible.If performedthisflip deletesdhothvisible facesrevealing
thetwo backfaces. A new faceis createdextendingfrom the new vertex to thenewly revealededge.

If thetetrahedrorhasthreefacesdirectedtowardyou (Figure2.28,right), noflip is possible.

I have omittedthe degeneratecasein which you find yourselfpreciselycoplanarwith onefaceof the
tetrahedronyith oneotherfacedirectedowardyouandtwo directedaway. Thiscircumstancevouldappear
similarto the upperleft imageof Figure2.28,but with d directly behindtheedgeabd. If the new vertex falls
within the circumcircleof thefaceAabd, thenabcd is nolongerDelaunayandthe aforementioned-4flip
may be used thuseliminatingbothtetrahedradjoiningAabd.

Eachflip uncoverstwo to four new facespossiblyleadingto additionalflips.

This discussiorof incrementalinsertionalgorithmsin two andthreedimensionshasassumedhat all
new verticesfall within the existing triangulation. What if a vertex falls outsidethe corvex hull of the
previousvertices?0nesolutionis to handlethis circumstancesa specialcase New trianglesor tetrahedra
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Figure2.28: Three orientations of a tetrahedron as viewed from a newly inserted vertex p. Left: One face
of tetrahedron abcd is directed toward p. If abed is no longer Delaunay, a 2-3 flip deletes the face Aabc,
replacing the tetrahedra abed and abep with abdp, bedp, and cadp. Center: Two faces of tetrahedron efgh
are directed toward p. If neither face is obscured by another tetrahedron, and efgh is no longer Delaunay,
a 3-2 flip deletes the edge eg and faces Aegf, Aegh, and Aegp, replacing the tetrahedra efgh, efgp, and
ghep with fghp and hefp. Right: Three faces of a tetrahedron are directed toward p. No flip is possible.

arecreatedo connectthe new vertex to all the edgesor facesof the corvex hull visible from that vertex.
Then, flipping may proceedasusual. An alternatve solutionthat simplifies programmings to bootstrap
incrementalinsertionwith a very large triangularor tetrahedraboundingbox that containsall the input
vertices. After all verticeshave beeninserted the boundingbox is removed asa postprocessingtep. The
problemwith this approachs thatone mustbe carefulto choosethe verticesof the boundingbox so that
they do notcausdrianglesor tetrahedrdo be missingfrom thefinal Delaunaytriangulation.

Assumingthat one hasfound the triangle or tetrahedrorin which a new vertex is to be inserted,the
amountof work requiredto insertthe vertex is proportionatto the numberof flips, whichis typically small.
Pathologicalcasescanoccurin which a single vertex insertioncauses0(n) flips in two dimensionsor
O(n?) in three;but suchcasesariserarelyin meshgenerationandit is commonto obsere thatthe average
numberof flips perinsertionis a smallconstant.

In two dimensionsthis obserationis given somesupportby a simpletheoreticakesult. Supposeone
wishesto constructusingLawsons algorithm,the Delaunaytriangulationof a setof verticesthatis entirely
known attheoutset.If theinputverticesareinsertedn arandomorder choseruniformly from all possible
permutationsthenthe expectednumberof edgeflips pervertes insertionis boundedelow three.

This elegantresultseemso originatewith Chew [20], albeitin theslightly simplercontet of Delaunay
triangulation®f corvex polygons.Thisresultwasprovenmoregenerallyoy Guibas Knuth,andSharir[46],
albeitwith amuchmorecomplicatedoroofthanChen’s. Theresultis basedn the obserationthatwhena
vertex is inserted eachedgeflip increasedy onethe degreeof the new vertex. Hence,|if theinsertionof a
vertex causedour edgeflips, therewill besevenedgesdncidentto thatvertex. (Thefirst threeedgesonnect
the new vertex to the verticesof the trianglein which it falls, andthe latter four are createdhroughedge

flips.)
Here, the techniqueof badkward analysisis applied. The main principle of backward analysisis that
after an algorithmterminatespneimaginesreversingtime and examining the algorithms behaior asit

runsbackwardto its startingstate.In the caseof Lawsons algorithm,onebeginswith acompleteDelaunay
triangulationof all theinputvertices,andremovesonevertex atatime.



DelaunayTriangulationsandTetrahedralizations 31

AVANRY ANVANPANVA
/2R K

Figure2.29: The algorithm of Guibas, Knuth, and Sharir maintains a mapping between uninserted vertices
(open circles) and triangles. The bounding box vertices and the edges incident to them are not shown.

The power of backward analysisstemsfrom the factthata uniformly choserrandompermutatiorread
backwardis still a uniformly choserrandompermutation.Hence,onemayimaginethattriangulationver
ticesare beingrandomlyselectedpne at a time from a uniform distribution, for removal from the trian-
gulation. With time runningbackward, the amountof time spentremoring a vertex from the triangulation
is proportionalto the degree of the vertex. Becausehe averagedegree of verticesin a planargraphis
boundedbelow six, the expectechumberof edgeflips obseredwhenarandomlychosenvertex is removed
is boundedelaw three.

Hence whenLawsons algorithmis runningforwardin time, the expectechumberof edgeflips required
toinsertavertex is atmostthree.Unfortunatelythis resultis not strictly applicableo mostDelaunay-based
meshgeneratioralgorithms becausé¢he entiresetof verticesis not known in adwance ,andthusthe vertex
insertionordercannotbe randomized Neverthelessthe resultgivesusefulintuition for why constant-time
vertex insertionis socommonlyobseredin meshgeneration.

Unfortunatelywhenfinding the Delaunaytriangulationof anarbitrarysetof vertices edgeflips arenot
the only cost. In mary circumstanceshe dominantcostis the time requiredfor pointlocation finding
the triangle or tetrahedrorin which a vertex lies, so that the vertex may be inserted. Fortunately most
Delaunay-basetheshgeneratioralgorithmsinsertmostof their verticesin placesthathave alreadybeen
identifiedasneedingrefinementandthusthelocationof eachnew vertex is alreadyknown. However, in a
general-purposBelaunaytriangulatoy pointlocationis expensve.

In two dimensionspoint location canbe performedin expectedamortizedO(logn) time per vertex,
wheren is the numberof verticesin the mesh.ClarksonandShor[24] werethefirst to achieve this bound,
againby insertingthe verticesin randomorder Clarksonand Shorperformpointlocationby maintaining
aconflictgraph whichis a bipartitegraphthatassociateedgesof thetriangulationwith verticesthathave
not yet beeninserted. Specifically the conflict graphassociategachuninsertedvertex with the edgesof
thatvertex's insertionpolygon(including triangulationedgesdn the interior of theinsertionpolygon). The
conflictgraphis updatedvith eachvertex insertion.

Ratherthanexplainthe ClarksonandShoralgorithmin detail,| present simplervariantdueto Guibas,
Knuth,andSharir[46]. For simplicity, assumé¢hatalargeboundingboxis usedo containtheinputvertices.
Oneversionof the algorithmof Guibaset al. maintainsa simplerconflict graphin which eachuninserted
vertex is associatedvith the trianglethat containsit (Figure2.29,left). If a vertex lies on an edge,either
containingtriangleis choserarbitrarily.

Whena triangleis divided into threetriangles(Figure 2.29,center)or an edgeis flipped (Figure2.29,
right), the verticesin the deletedtriangle(s)areredistriuted amongthe new trianglesasdictatedby their
positions. Whena vertex is chosenfor insertion,its containingtriangleis identifiedby usingthe conflict
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graph. The dominantcostof the algorithmis the costof redistrituting uninsertedverticesto their new
containingtriangleseachtime a vertex is inserted.

Although Clarksonand Shor[24] andGuibaset al. [46] both provide waysto analyzethis algorithm,
the simplestanalysisoriginateswith KennethClarksonandis publishedin a reportby Seidel[85]. Herel
give a roughsketch of the proof, which relieson backward analysis. Supposéhe Delaunaytriangulation
of n verticesis beingconstructed.Considerthe stepwhereina (p — 1)-vertex triangulationis corverted
into a p-vertex triangulationby insertingarandomlychosenvertex; but considerunningthestepin reverse.
In the backward step,a randomvertex v of the p-vertex triangulationis choserfor deletion. Whatis the
expectednumberof verticesthat are redistriluted? Eachtriangle of the triangulationhasthreevertices,
so the probability that ary given triangleis deletedwhenw is deletedis %. (The probability is actually

slightly smaller becausesometriangleshave verticesof the boundingbox, but % is anupperbound.) If
atriangleis deleted,all verticesassignedo thattriangle areredistrituted. Eachof the n — p uninserted
verticesis assignedo exactly onetriangle;so by linearity of expectationthe expectednumberof vertices
redistriutedwhenv is deleted(or, if time is runningforward,inserted)s @. Hence therunningtime

of thealgorithmis 7_, 2™) € O(nlogn).
Thesameanalysigechniguecanbeused albeitwith complicationsto shav thatincrementaDelaunay
triangulationin higherdimensionsanrunin randomized?(n!4/2!) time. ConsultSeidel[85] for details.

Thefirst O(n log n) algorithmfor two-dimensionaDelaunaytriangulationwasnotanincrementahlgo-
rithm, but a divide-and-conquealgorithm.ShamosndHoey [86] developedanalgorithmfor theconstruc-
tion of aVoronoidiagramwhichmaybe easilydualizedto form a Delaunaytriangulation.In programming
practice this is an unnecessarilgifficult procedurepecausdorming a Delaunaytriangulationdirectly is
mucheasierandis in factthe easiestvay to constructa Voronoidiagram.LeeandSchachtef60] werethe
first to publisha divide-and-conquealgorithmthat follows this easierpath. The algorithmis nonetheless
intricate, and Guibasand Stolfi [47] provide animportantaid to programmerdy filling out mary tricky
implementatiordetails. Dwyer [30] offersaninterestingmodificationto divide-and-conqueDelaunaytri-
angulationthat achieres betterasymptoticperformanceon somevertex sets,and offers improved speed
in practiceaswell. Thereis alsoan O(n logn) algorithmfor constrainedelaunaytriangulationsdueto
Chew [18]. Divide-and-conquebDelaunaytriangulationis discussedurtherin Section5.1.

Anotherwell-knovn O(n log n) two-dimensionaDelaunaytriangulationalgorithmis Fortunes sweep-
line algorithm[31].

2.2 Reseachin Mesh Generation

Thediscussiorin this chaptethasheretofordbeenconcernedvith triangulationof completevertex sets.Of
coursea meshgeneratorarely knows all the verticesof the final meshprior to triangulation,andthereal
problemof meshings decidingwhereto placeverticesto ensurghatthemeshhaselement®of goodquality
andpropersizes.

| attempthereonly the briefestof suneys of meshgeneratioralgorithms.Detailedsuneys of themesh
generatiorliteraturehave beensuppliedby ThompsonandWeatherill[92] andBernand Eppstein10]. |
focusmy attentionon algorithmsthatmake useof Delaunaytriangulationsandon algorithmsthatachieve
provablebounds.| postpondhreealgorithms,dueto L. Paul Chev andJim Ruppertthatshareboththese
characteristicsThey aredescribedn detailin Chapter3.

Only simplicial meshgeneratioralgorithmsarediscussedhere;algorithmsfor generatingjuadrilateral,
hexahedral,or other non-simplicialmeshesare omitted. The mostpopularapproacheso triangularand



Researcln MeshGeneration 33

tetrahedrameshgeneratiorcanbe dividedinto threeclassesDelaunaytriangulationmethodsadwancing
front methodsandmethodsasen grids, quadtreesor octrees.

2.2.1 DelaunayMesh Generation

It is difficult to tracewhofirst usedDelaunaytriangulationdor finite elemenimeshing andequallydifficult

to tell wherethe suggestioraroseto usethe triangulationto guidevertex creation. Theseideashave been
intensiely studiedin theengineeringommunitysincethe mid-1980sandbeganto attractinterestfrom the
computationaeometrycommunityin theearly 1990s.

I will nameonly afew scatteredeference$rom the voluminousliterature.Many of the earliestpapers
suggesperformingvertex placementsa separatetep,typically usingstructuredyrid techniquesprior to
Delaunaytriangulation.For instanceCavendish Field,andFrey [17] generateyridsof verticesfrom cross-
sectionsof a three-dimensionabbject,thenform their DelaunaytetrahedralizationThe ideaof usingthe
triangulationitself asa guidefor vertex placemenfollowed quickly; for instance Frey [41] removespoor
quality elementdrom a triangulationby insertingnew verticesat their circumcentes—the centersof their
circumcircles—whilemaintainingthe Delaunaypropertyof the triangulation. This ideawenton to bear
vital theoreticalfruit, asChapters3 and4 will demonstrate.

I have mentionedhatthe Delaunaytriangulationof a vertex setmay be unsatisactoryfor two reasons:
elementf poor quality may appearandinput boundariesnay fail to appear Both theseproblemshave
beentreatedin the literature. The former problemis typically treatedby insertingnew verticesat the
circumcenter§4 1] or centroid494] of poorquality elementslt is sometimeslsotreatedvith anadwancing
front approachdiscussedbriefly in Section2.2.2.

The problemof the recorery of missingboundariesnay be treatedin severalways. Theseapproaches
have in commonthat boundariesmay have to be broken up into smallerpieces. For instance gachinput
segmentis divided into a sequencef triangulationedgeswhich | call subsgmentswith a vertex inserted
at eachdivision point. In threedimensionsgachfacetof anobjectto be mesheds dividedinto triangular
faceswhich| call subfacetsVerticesof thetetrahedralizatiotie atthe cornersof thesesubfcets.

In the earliestpublications,boundaryintegrity was assuredsimply by spacingverticessuficiently
closelytogetheron the boundaryprior to forming a triangulation[41]—surely an errorproneapproach.
A betterway to ensurethe presenceof input segmentsis to first form the triangulation,and then check
whetherary input sgmentsaremissing.

Missing sggmentscanberecoreredby oneof severalmethodswhich work in two or threedimensions.
Onemethodinsertsa new vertex (while maintainingthe Delaunaypropertyof the mesh)at the midpoint
of ary missingsegment,splitting it into two subsgments[94]. Sometimesthe two subsgmentsappear
asedgesof the resultingtriangulation. If not, the subsgmentsarerecursvely split in turn. This method,
sometimegalledstitching, is describedn moredetailin Section3.3.1. Althoughit is not obvioushow this
methodmight generalizeo three-dimensiondiacetrecosery, | will demonstratén Section4.2.1thatthis
generalizatiornis possibleandhassomeadwantagesverthe next methodl describe.

Anothermethod usuallyonly usedn threedimensions¢canbeappliedto recover bothmissingsegments
andmissingfacets.This methodinsertsa new vertex wherever a faceor edgeof thetriangulationintersects
amissingsegmentor facet[95, 48,96, 79]. Themethodis oftencoupledwith flips [43, 95], which areused
to reducethe numberof verticesthat mustbe inserted. The pessimistiaesultson constrainedetrahedral-
izationsin Section2.1.3imply that,in threedimensionsflips cannotalwaysachieze boundaryrecovery on
theirown; in somecasesnew verticesmustinevitably beinsertedo fully recozer aboundary

Boundaryrecorery methodswill bediscussedurtherin Sections3.3.1,4.2.1,and5.3.1.
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Figure2.30: Several stages in the progression of an advancing front algorithm.

2.2.2 Advancing Front Methods

Advancingfront methodg62, 6, 51, 64] begin by dividing the boundarief the meshinto edges(in two
dimensionspr triangularfaces(in three). Thesediscretizedboundariedorm theinitial front Trianglesor
tetrahedraregenerateadne-by-onestartingfrom the boundaryedgesor faces andwork towardthe center
of theregion beingmeshedasillustratedin Figure2.30. Theinner surfaceof theseelementsollectvely
form anadvancingront

Advancingfront methodgequirea gooddealof second-guessingjrst to ensurehattheinitial division
of the boundarieds prudent,and secondto ensurethat whenthe adwancingwalls of elementscollide at
the centerof the mesh,they aremeigedtogetherin a mannerthatdoesnot compromisethe quality of the
elements.In both casesa poor choiceof elementsizesmay resultin disasteraswhena front of small
elementsollideswith a front of large elementsmakingit impossibleto fill the spacebetweernwith nicely
shapedelements. Theseproblemsare suficiently difficult that thereare, to my knowledge, no provably
goodadwancingfront algorithms.Advancingfront methodgypically createastonishinglygoodtrianglesor
tetrahedranearthe boundarie®f the mesh but aremuchlesseffective wherefrontscollide.

In threedimensionsgeneratinghe surfacemeshmay be a difficult problemitself. Ironically, themesh
generatordescribedoy Marcum and Weatherill [63] usesa Delaunay-basetheshgeneratorto createa
completetetrahedralizationthenthrowvs away the tetrahedralizatiomxceptfor the surfacemesh,whichis
usedto seedheiradvancingfront algorithm.

Mavriplis [64] combinesthe Delaunaytriangulationand advancingfront methods. The combination
makesa gooddealof sensebecausea Delaunaytriangulationin the interior of the meshis a usefulsearch
structurefor determininghow closedifferentfronts areto eachother (Someresearcherssebackground
grids for this task.) Corversely the advancingfront methodmay be usedas a vertex placemenmethod
for Delaunaymeshing.A sensiblestratgy might be to abandorthe adwancingfront shortly beforefronts
collide,anduseadifferentvertex placemenstratgy (suchasinsertingverticesatcircumcentersr centroids
of poorquality elements)n the centerof the meshwheresuchstratgiestendto be mosteffective.

Figure2.31depictsone of the world’s mostfamousmeshesgeneratedy an adwncingfront method
of Barth and Jespersoifi9]. The meshis the Delaunaytriangulationof verticesplacedby a procedure
maving outward from this airfoil. Of course the problemsassociatedvith colliding fronts arereducedn
circumstanceBk e this, whereoneis meshingtheexterior, ratherthantheinterior, of anobject.

2.2.3 Grid, Quadtree,and OctreeMethods

Thelastdecadéhasseenthe emegenceof meshgeneratioralgorithmswith provably goodbounds.

Baker, Grosseand Rafferty [5] gave the first algorithmto triangulatePSLGswith guaranteedipper
andlower boundson elementangle.By placingafine uniform grid over a PSLG,warpingthe edgesof the
grid to fit the input segmentsand vertices,andtriangulatingthe warpedgrid, they areableto constructa
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Figure2.31: Mesh produced by an advancing front, moving outward from an airfoil.

(@) (b)

Figure2.32: (a) A quadtree. (b) A quadtree-based triangulation of a vertex set, with no angle smaller than
20° (courtesy Marshall Bern).

triangularmeshwhoseanglesareboundedoetweent 3° and90° (exceptwheretheinput PSLGhasangles
smallerthan13°; thesecannotbeimproved). The elementof the meshareof uniform size.

To producegradedmeshessomeresearcherbave turnedto quadtees A quadtreds arecursve data
structureusedto efficiently manipulatenultiscalegeometricobjectsin theplane.Quadtreesecursvely par
tition aregion into axis-alignedsquaresA top-level squarecalledtheroot encloseshe entireinput PSLG.
Eachquadtreesquarecanbe dividedinto four child squareswhich canbe dividedin turn, asillustratedin
Figure2.32(a).Octreesarethe generalizatiorof quadtreeso threedimensionspachcubein anoctreecan
be subdvidedinto eightcubes.SeeSame{84] for a suney of quadtreadatastructures.

Meshingalgorithmsbasedn quadtreesindoctreeshave beenusedextensvely in theengineeringom-
munity for over a decad€g98, 99, 87]. Theirfirst role in meshgeneratiorwith provableboundsappearsn
apaperby Bern, EppsteinandGilbert[11]. TheBernetal. algorithmtriangulatesa polygonwith guaran-
teedboundson both elementquality andthe numberof elementgproduced All angles(exceptsmallinput
angles)aregreaterthanroughly 18.4°, andthe meshis size-optimalasdefinedin Sectionl.4). Theangle
boundappliesto triangulationf polygonswith polygonalholes,but cannotbeextendedo generaPSLGs,
asSection3.6will shaw. Figure2.32(b)depictsameshgeneratedby onevariantof theBernetal. algorithm.
For thisillustration, a setof input verticeswasspecified(with no constrainingsggments),anda meshwas
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Figure2.33: Two meshes generated by Stephen Vavasis’ QMG package, an octree-based mesh generator
with provable bounds. (Meshes courtesy Stephen Vavasis.)

generatedaddinga greatmary additionalvertices)thataccommodatetheinput verticesandhasno angle
smallerthan20°. Figure3.7 (top) on Page47 depictsa meshof a polygonwith holes.

Thealgorithmof Bernetal. worksby constructinga quadtreghatis denseenoughto isolateeachinput
feature(vertex or sggment)from otherfeatures Next, the quadtreas warpedto coincidewith input vertices
andsegments. (Warping changeghe shapeof the quadtreeput not its topology) Finally, the squaresre
triangulated.

NeugebaueandDiekmann[73] have improvedtheresultsof Bernetal., replacingthe squarequadtree
with a rhomboidquadtreeso that the trianglesof the final meshtendto be nearly equilateral. Assuming
thereareno smallinputanglespolygonaldomainswith polygonalholesandisolatedinterior pointscanbe
triangulatedwith all anglesbetweer80° and90°.

Remarkably provably good quadtreemeshinghas beenextendedto polyhedraof arbitrary dimen-
sionality Mitchell andVavasis[69, 70] have developedan algorithmbasedon octrees(andtheir higher
dimensionabrethren)that triangulategolyhedra producingsize-optimalmesheswith guaranteedounds
onelementspectatios. Thegeneralizatioio morethantwo dimensionss quiteintricate,andthetheoreti-
calboundson elemenguality arenotstrongenoughto beentirelysatisfyingin practice.Figure2.33depicts
two meshegeneratedy Vavasis’ QMG meshgeneratarThe meshat left is quite good,whereaghe mesh
atright containssometetrahedraf maiginal quality, with mary smallanglesvisible onthesurface.

In practice the theoreticallygoodmeshgeneratioralgorithmsof Bern, EppsteinandGilbert[11] and
Mitchell andVavasis[69] oftencreatean undesirablylarge numberof elements Althoughbothalgorithms
aresize-optimal the constantiddenin the definition of size-optimalityis large, andalthoughboth algo-
rithmsrarely createasmary elementsastheir theoreticalworst-casédoundssuggestthey typically create
too mary nonethelessln contrastthe Finite Octreemeshgeneratoiof Shepharcand Geoges[87] gener
atesfewer tetrahedrapput offers no guarantee.Shepharcand Geogeseliminate poor elementswherever
possiblethroughmeshsmoothingdescribedelow.
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Figure2.34: A selection of topological local transformations. Each node is labeled with its degree. These
labels represent ideal cases, and are not the only cases in which these transformations would occur.

2.2.4 Smoothingand Topological Transformations

All the algorithmsdiscussedhusfar have the propertythat oncethey have decidedto inserta vertex, the
vertex is rootedpermanentlyin place. In this section,l discusstechniqueghat violate this permanence.
Theseare not meshgeneratiormethods;rather they are meshimprovementprocedureswhich may be
appliedto ameshgeneratedby ary of the methoddiscussedheretofore.

Smoothings a techniguewhereinmeshverticesare moved to improve the quality of the adjoining
elementsNo changesremadeto thetopologyof the mesh.Of courseyerticesthatlie in meshboundaries
may be constrainedothatthey canonly move within a segmentor facet,or they maybe unableto move at
all.

The mostfamoussmoothingtechniqueis Laplaciansmoothingin which a vertex is movedto the cen-
troid of the verticesto which it is connected49], if sucha move doesnot createcollapsedor inverted
elements.Typically, a smoothingalgorithmwill run throughthe entire setof meshverticesseveraltimes,
smoothingeachvertex in turn. Laplaciansmoothings reasonableffective in two dimensionsbut performs
poorlyin three.

WereLaplaciansmoothingnot so easyto implementandsofastto execute,it would be completelyob-
solete.Much bettersmoothingalgorithmsareavailable,basen constraineaptimizationtechnique$75].
The currentstateof the artis probablythe nonsmoottoptimizationalgorithmdiscussedy Freitag,Jones,
andPlassmari38] andFreitagandOllivie-Gooch[39, 40]. The latterauthorsreportconsiderablesuccess
with a procedureghat maximizesthe minimum sine of the dihedralanglesof the tetrahedraadjoiningthe
vertex beingsmoothed.

Anotherapproacho meshimprovementis to usethe topolaical transformationutlinedby Canann
[14], which aresimilar to ideasproposedby Frey andField [42]. Examplesof sometransformationsre
illustratedin Figure2.34. The familiar edgeflip is included,but the othertransformation$ave the effect
of insertingor deletinga vertex. An unusualspecof Cananrs approachs thathe appliestransformations
basedn thetopology ratherthanthe geometryof a mesh.In two dimensionstheideal degreeof a vertex
is presumedo be six (to echothe structureof a lattice of equilateraltriangles),andtransformationsare
appliedin anattemptto bring the verticesof the meshascloseto thisidealaspossible.Cananrclaimsthat
his methodis fastbecausé avoidsgeometriccalculationsandmalkesdecisiondasedn simpletopological
measuresThe methodreliesuponsmoothingto iron out ary geometridrregularitiesafterthe transforma-
tionsarecomplete Theresearchs notablebecausef theunusuallylarge numberof transformationsinder
consideration.
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Figure2.35: Tire incinerator mesh before and after mesh improvement. Shaded tetrahedra have dihedral
angles smaller than 18° or greater than 162°. (Courtesy Lori Freitag and Carl Ollivier-Gooch.)

Otherresearcherbave considerednixing smoothingwith topologicaltransformationsput typically
consideronly a limited setof transformationspften restrictedto 2-3 and 3-2 flips. For instance,Golias
and Tsiboukis[45] reportobtaininggoodresultsin tetrahedrameshimprovementby alternatingbetween
Laplaciansmoothingandflipping.

A moresophisticatedpproachs taken by FreitagandOllivier-Gooch[39, 40], who combineoptimi-
zation-base@moothingwith severaltransformationsincluding 2-3 and3-2 flips, aswell asanothersetof
transformationshey referto as“edgeswapping”. Figure 2.35demonstratethe resultsobtainedby these
techniqueslin thesebefore-and-aftemagestetrahedravith poordihedralanglesareshadedBeforemesh
improvement,the dihedralanglesrangefrom 0.66° to 178.88°. Afterward, they rangefrom 13.67° to
159.82°.

As Delaunaytetrahedralizationkck the optimality propertiesof their two-dimensionatounterpartsit
is naturalto askwhetheroneshouldforgo the Delaunaycriterion,andinsteaduseflips to directly maximize
theminimumsolid angle.Joe[52] studieghis questionexperimentallyandconcludeghata procedurehat
performslocal flips to locally optimizethe minimum solid angleis notablyinferior to the Delaunaytetra-
hedralization.However, if onefirst constructghe Delaunaytetrahedralizatignandthenappliesadditional
flips to locally improve theminimumsolid angle onedoesbetterthanthe Delaunaytetrahedralizatioalone.
Joes resultsindicatethat a tetrahedralizatiothatis locally optimalwith respecto solid anglemay befar
from globally optimal. Although the Delaunaytetrahedralizatiomoesnot maximizethe minimum solid
angle,it certainlyseemsgo optimize somethingusefulfor meshgeneration.MarcumandWeatherill[63]
suggesthat alternatingbetweenthe Delaunaycriterion anda min-maxcriterion (minimize the maximum
dihedralangle)worksevenbetter

Laterresearclby Joe[55] indicateghatlocalimprovementanoftenbemadeby consideringheeffect
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of two consecutie flips (eventhoughthefirst of the two flips may worsenelementquality). Joeidentifies
several dual transformationghat are frequently effective in practice,and several that rarely prove to be
useful.

All of thesemeshimprovementtechniquesare applicableto meshegyeneratedy the algorithmsde-
scribedin Chapters3 and4. However, | will not explorethemfurtherin thisdocument.






Chapter 3

Two-DimensionalDelaunayRefinement
Algorithms for Quality Mesh Generation

Delaunayrefinemenalgorithmsfor meshgeneratioroperateby maintaininga Delaunayor constrainede-
launaytriangulation whichis refinedby insertingcarefully placedverticesuntil the meshmeetsconstraints
on elemenfguality andsize.

Thesealgorithmsare successfubecauséhey exploit several favorablecharacteristicef Delaunaytri-
angulations.One suchcharacteristicalreadymentionedn Chapter2, is Lawsons resultthata Delaunay
triangulationmaximizesthe minimum angleamongall possibletriangulationsof a point set. Anotherfea-
tureis thatinsertinga vertex is a local operation,andhenceis inexpensie exceptin unusualcases.The
actof insertinga vertex to improve poorquality elementsn onepartof a meshwill notunnecessarilper
turb a distantpart of the meshthat hasno bad elements.Furthermore Delaunaytriangulationshave been
extensvely studied andgoodalgorithmsareavailable.

Thegreatesadwantageof Delaunaytriangulationss lessobvious. Thecentralquestiorof ary Delaunay
refinementalgorithmis “where shouldthe next vertex be inserted?” As this chapterwill demonstratea
reasonablanswelis “as far from otherverticesaspossibl€. If anew verte is insertedoo closeto another
vertex, theresultingsmalledgewill engendethin triangles.

Becausea Delaunaytriangle hasno verticesin its circumcircle,a Delaunaytriangulationis an ideal
searclstructurefor finding pointsthatarefar from othervertices.(It's no coincidencehatthecircumcenter
of eachtriangleof a Delaunaytriangulationis a vertex of the corresponding/oronoidiagram.)

This chaptemegins with a review of Delaunayrefinementalgorithmsintroducedby L. Paul Chev and
Jim Ruppert.Ruppert[81] provesthathis algorithmproducesiicely graded size-optimaimeshesvith no
anglessmallerthanabout20.7°. | shaw thatRupperts analysisechniquecanbe usedto prove thatChew’s
secondpublishedDelaunayrefinementlgorithm[21] canproducenicely gradedsize-optimameshesvith
no anglessmallerthanabout26.5°. Chew provesthat his algorithm can producemesheswith no angles
smallerthan30°, albeitwithout ary guaranteesf gradingor size-optimality | generalizeChen’s ideaso
thatit canbe appliedto Rupperts algorithm (andlater to three-dimensiondDelaunayrefinement).l also
discusgheoreticabndpracticalissuesn triangulatingregionswith smallangles.Thefoundationguuilt here
undegird thethree-dimensiondbelaunayrefinementlgorithmsexaminedin the next chapter

41
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(b)

Figure3.1: (a) Diagram for proof that d = 2r sin «. (b) Diagram for proof that Zicj = 2/ikj.

3.1 A Quality Measure for Simplices

In thefinite elementcommunity therearea wide variety of measure# usefor the quality of anelement,
the mostobvious beingthe smallestandlargestanglesof eachsimple<. Miller, Talmor, Teng,andWalk-

ington[66] have pointedout thatthe mostnaturalandelegantmeasurdor analyzingDelaunayrefinement
algorithmsis the circummadius-to-shortst edg ratio of a simplex: the radiusof the circumspheref the

simplex divided by the lengthof the shortestedgeof the simplex. For brevity, | will occasionallyreferto

thisratio asthequality of asimplex. Onewould like this ratio to be assmallaspossible.

In two dimensionsatriangles circumradius-to-shagstedgeratiois afunctionof its smalleseingle.Let
Aijk have circumcenter andcircumradiug-, asillustratedin Figure3.1(a). Supposéhelengthof edgeij
is d, andtheangleoppositethis edgeis a = Zikj.

It is a well-knovn geometricfactthat Zic; = 2«. SeeFigure3.1(b)for aderiation. Let 8 = Zjke.
Because\kci andAkcj areisosceles/kci = 180° — 2(« + ) andZkecj = 180° — 2. Subtractinghe
formerfrom thelatter Zicj = 2a. (Thisdervationholdsevenif 3 is negatve.)

Returningto Figure3.1(a),it is apparenthatsina = d/(2r). It follows thatif the triangles shortest
edgehaslengthd, thena is its smallestangle. Hence,if B is an upperboundon the circumradius-to-
shorteskdgeratio of all trianglesin a mesh thenthereis no anglesmallerthanarcsin % (andvice versa).
A triangularmeshgeneratois wiseto malke B assmallaspossible.

Unfortunatelya boundon circumradius-to-shaestedgeratio doesnotimply anangleboundin dimen-
sionshigherthantwo. Neverthelesstheratiois a usefulmeasurdor understandingelaunayrefinementn
higherdimensions.

With thesefactsin mind, | shalldescribewo-dimensionaDelaunayrefinementlgorithmsdueto Paul
Chew andJim Rupperthatactto boundthemaximumcircumradius-to-shted edgeratio,andhencebound
theminimumangleof atriangularmesh.
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Figure 3.2: Any triangle whose circumradius-to-shortest edge ratio is larger than some bound B is split
by inserting a vertex at its circumcenter. The Delaunay property is maintained, and the triangle is thus
eliminated. Every new edge has length at least B times that of shortest edge of the poor triangle.

3.2 Chew’'sFirst DelaunayRefinementAlgorithm

Paul Chew haspublishedatleasttwo Delaunayrefinementlgorithmsof greatinterest. Thefirst, described
here producegriangulationsf uniform density[19]. The secondwhich canproducegradedmesheg21],
will bediscussedh Section3.4.

3.2.1 TheKeyldeasBehind DelaunayRefinement

Thecentraloperatiorof Chen’s, Rupperts, andmy own Delaunayrefinementlgorithmsis theinsertionof

avertex atthecircumcenteof atriangleof poorquality TheDelaunaypropertyis maintainedpreferablyby

Lawsons algorithmor the Bowyer/Watsonalgorithmfor theincrementalipdateof Delaunaytriangulations.
Thepoortrianglecannotsurvive, becauséts circumcircleis nolongerempty For brevity, | referto theact
of insertinga vertex at a triangles circumcentelassplitting a triangle. Theideadatesbackat leastto the
engineerinditeratureof the mid-1980941].

The maininsight of all the Delaunayrefinementalgorithmsis that Delaunayrefinemenis guaranteed
to terminatef thenotionof “poor quality” includesonly trianglesthathave a circumradius-to-shorséedge
ratiolargerthansomeappropriatdooundB. Recallthattheonly newv edgesreatedy theDelaunayinsertion
of avertex v areedgesonnectedo v (seeFigure3.2). Because is the circumcenteof sometrianglet, and
therewereno verticesinsidethe circumcircleof ¢ beforev wasinserted,no new edgecanbe shorterthan
thecircumradiusf ¢t. Because hasacircumradius-to-shagstedgeratio largerthan B, every nev edgehas
lengthatleastB timesthatof theshortesedgeof ¢.

Hencefortha trianglewhosecircumradius-to-shtes edgeratio is greaterthan B is saidto be skinny
Figure3.3providesanintuitiveillustrationof why all skinry trianglesareeventuallyeliminatedoy Delaunay
refinementThe new verticesthatareinsertednto atriangulation(grey dots)arespacedoughlyaccording
to the lengthof the shortesnearbyedge. Becauseskinry triangleshave relatively large circumradii,their
circumcirclesare inevitably popped. Whenenoughverticesare introducedthat the spacingof verticesis
someavhatuniform,largeemptycircumcirclescannotadjoinsmalledgesandno skinry trianglescanremain
in the Delaunaytriangulation. Fortunately the spacingof verticesdoesnot needto be so uniform thatthe
meshis poorly gradedthis factis formalizedin Section3.3.4.
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Needles Caps

Figure3.3: Skinny triangles have circumcircles larger than their smallest edges. Each skinny triangle may
be classified as a needle, whose longest edge is much longer than its shortest edge, or a cap, which has
an angle close to 180°. (The classifications are not mutually exclusive.)

Chew’s algorithmsboth emplg a boundof B = 1 (though,aswe shall see,the early algorithmis
stricter).With thisbound,every new edgecreateds atleastaslong assomeotheredgealreadyin themesh.
This factis sufiicient to prove that Delaunayrefinementerminates.Supposehat Delaunayrefinements
appliedto improve theanglesof atriangulationZ” whoseshortesedgehaslengthhnm,i,. Delaunayrefinement
never introducesa shorteredge,soary two verticesareseparatedby a distanceof atleasthn,i,. Hence,if
eachvertex is the centerof a disk whoseradiusis hp,in/2, all suchdiskshave disjointinteriors. Let B(7)
beaboundingbox of T" thatis everywherea distanceof atleasthmi, /2 from T'; all the discsdefinedabore
areinside B(T). Hencethe numberof verticestimesnh?2, /4 cannotexceedthe total areaof B(7), and
terminationis inevitable.

The implication is that the augmentedriangulationwill eventuallyrun out of placesto put vertices,
becausererticesmay only be placedat leasta distanceof h,,;, away from all othervertices. At this time
(if not sooner),all triangleshave a quality of one or smaller and Delaunayrefinementerminates.Upon
termination pecaus@otrianglehasa circumradius-to-shors¢edgeratiolargerthanone themeshcontains
no anglesmallerthan30°.

Chew’s first algorithmsplits ary trianglewhosecircumradiudgs greatethanh,;,, andhencecreatesa
uniform mesh.Chen’s secondelaunayrefinementlgorithmrelaxesthis stricture,splitting only triangles
whosecircumradius-to-shrtest edgeratios are greaterthan one, and henceproducesgradedmeshesn
practice,althoughChev suppliesno theoreticalguaranteef goodgrading. In Section3.4.2,1 will shav
thatby slightly relaxingthe quality bound,a guarante®f goodgradingcanbe obtained.

Whenthe earlyalgorithmterminatesall edgelengthsareboundedetween,,;, and2h,in. Theupper
boundfollows becauséf the lengthof a Delaunayedgeis greaterthan2hn,i,, thenatleastoneof the two
Delaunaytrianglesthatcontainit hasa circumradiudargerthanh,;, andis eligible for splitting.

My descriptionof Delaunayrefinementthus far hasa gapinghole: meshboundarieshase not been
accountedor. Theflaw in theprocedurd have presentedbore is thatthe circumcenteof askinry triangle
mightnotlie in thetriangulationat all. Figure3.4illustratesanexamplein whichthereis a skinry triangle,
but no vertex canbeplacedinsideits circumcirclewithout creatinganedgesmallerthanh,;,, whichwould
compromisdéheterminationguarantee.

Theremainderof this chapterandthe entiretyof the next chapteraredevotedto the problemof mod-
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Figure3.4: The bold triangle could be eliminated by inserting a vertex in its circumcircle. However, a vertex
cannot be placed outside the triangulation, and it is forbidden to place a vertex within a distance of hp,;, from
any other vertex. The forbidden region includes the shaded disks, which entirely cover the bold triangle.

ifying Delaunayrefinemenisothatit respectsneshboundaries Beforecommencinghatquest,l wantto

emphasizehat the centralideaof Delaunayrefinemenigeneralizesvithout changeto higherdimensions.
(For instanceDey, Bajaj, andSugihargd28] describea straightforvard generalizatiorof Chew’s first algo-

rithm to threedimensions.)imaginea triangulationthat hasno boundaries—perhapshasinfinite extent,

or perhapst is mappedonto a manifold thatis topologicallyequivalentto a torus(or higherdimensional
generalizationthereof). Regardlesof the dimensionality Delaunayrefinementaneliminateall simplices
having a circumradius-to-shtgd edgeratio greaterthanone, without creatingary edgesmallerthanthe
smallestedgealreadypresent.Unfortunately boundariesomplicatemeshgeneratioimmenselyandthe
difficulty of copingwith boundariesncrease higherdimensions.

3.2.2 MeshBoundariesin Chew’s First Algorithm

Theinputto Chew’s algorithmis a PSLGthatis presumedo be sggment-boundedneaningthattheregion
to betriangulateds entirelyenclosedvithin segments(Any PSLGmaybecorvertedto asegment-bounded
PSLGby ary two-dimensionatornvex hull algorithm,if a corvex triangulationis desired.)Untriangulated
holesin thePSLGarepermitted but thesemustalsobeboundedy segments A segmentmustlie arywhere
atriangulatedegion of the planemeetsanuntriangulatedegion.

For someparameteh choserby theuser all segmentsaredividedinto subsgmentswhoselengthsare
in therangelh, v/3h]. New verticesareplacedatthedivision points. The parametef, mustbe chosersmall
enoughthat somesuchpartitionis possible. Furthermore may be no larger thanthe smallestdistance
betweerary two verticesof theresultingpartition. (If a vertex is closeto a segment,this latter restriction
may necessitata smallervalueof h thanwould beindicatedby theinputverticesalone.)

Theconstrainedelaunaytriangulationof this modifiedPSLGis computed Next, Delaunayrefinement
is applied.Circumcentersf triangleswhosecircumradiiarelargerthanh areinsertedpneatatime. When
no suchtriangleremainsthealgorithmterminates.

Becausao subsgmenthaslengthgreatetthan/3h, andspecificallybecaus@o boundarysubsgment
hassuchlength,the circumcenteof ary trianglewhosecircumradiusexceedsh falls within the mesh,ata
distanceof atleasth/2 from ary subsgment. Why? If a circumcenteis a distancdessthanh /2 from a
subsgmentwhoselengthis no greaterthan+/3h, thenthe circumcenteis a distancdessthanh from one
of the subsgments endpoints.
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Figure3.5: A mesh generated by Chew'’s first Delaunay refinement algorithm. (Courtesy Paul Chew).

Figure3.6: A demonstration of the ability of the Delaunay refinement algorithm to achieve large gradations
in triangle size while constraining angles. No angles are smaller than 24°.

Chen's early algorithm handlesboundariedn a simple and elegant manney at the costthat it only
producesaneshesof uniform density asillustratedin Figure 3.5. The remainderof this thesisexamines
Delaunayrefinementlgorithmsthatgeneratgradedmeshes.

3.3 Ruppert’s DelaunayRefinementAlgorithm

Jim Rupperts algorithmfor two-dimensionafjuality meshgeneratiori82] is perhapghefirst theoretically
guaranteedneshingalgorithmto be truly satishctoryin practice. It extendsChew’s early algorithm by
allowing the density of trianglesto vary quickly over shortdistancesasillustratedin Figure 3.6. The
numberof trianglesproduceds typically smallerthanthe numberproduceceitherby Chew’s algorithmor
the Bern-Eppstein-Gilberjuadtreealgorithm[11] (discussedn Section2.2.3),asFigure3.7 shavs.
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Figure3.8: Segments are split recursively (while maintaining the Delaunay property) until no subsegments
are encroached.

| have alreadymentionedhat Chew independentlgevelopeda similar algorithm[21]. It maybeworth
notingthatRupperts earliestpublicationsof hisresultg80, 81] slightly predateChen’s. | presenRupperts
algorithmfirst becauseét is accompaniedby a theoreticalframevork with which he provesits ability to
producemesheshatarebothnicely gradedandsize-optimal Size optimality meanghat, for agivenbound
on minimum angle, the numberof elementscomposingary meshproducedby the algorithmis at most
a constantfactorlarger thanthe numberin the smallestpossiblemeshthat meetsthe sameanglebound.
(The constandepend®nly uponthe minimumallowableangle,andis too large to be usefulasa practical

bound.)In Section3.4.2,1 will discusshow to apply Rupperts framevork to Chen’s algorithm,for which
betterboundscanbederved.

3.3.1 Description of the Algorithm

Like Chew’s algorithms,Rupperts algorithmtakesa segment-bounde®SLGasits input. Unlike Chew's
algorithms Rupperts algorithmmaystartwith eitheraconstraine@r unconstraine®elaunaytriangulation.
Rupperts presentatiomf the algorithmis basedn unconstrainedriangulationsandit is interestingto see
how thealgorithmrespond$o missingsegments soassumehatwe startwith the Delaunaytriangulationof

theinputvertices,ignoringthe input sggments.Input segmentsthatare missingfrom the triangulationwill
beinsertedasa naturalconsequencef thealgorithm.

Again like Chaw's algorithms,Rupperts refinesthe meshby insertingadditionalvertices(using Law-

sons algorithmto maintainthe Delaunayproperty)until all trianglessatisfythe quality constraint.Vertex
insertionis governedby two rules.

e Thediametal circle of a subsgmentis the (unique)smallestcircle that containsthe subsgment.
A subsgmentis saidto be encoathedif a vertex lies strictly insideits diametralcircle, or if the
subsgmentdoesnot appealin the triangulation. (Recallthat the latter casegenerallyimplies the
former, the only exceptionsbeing degenerateexampleswhereseveral verticeslie preciselyon the
diametrakircle.) Any encroachedubsgmentthatarisess immediatelybisectedy insertinga vertex
atits midpoint, asillustratedin Figure3.8. The two subsgmentsthat resulthave smallerdiametral
circles,andmayor maynotbeencroachethemseles.

¢ As with Chew’s algorithm,eachskinry triangle (having a circumradius-to-shcestedgeratio larger
thansomeboundB) is normallysplit by insertinga vertex atits circumcenterThe Delaunayproperty
guaranteeshat the triangleis eliminated,asillustratedin Figure3.9. However, if the new vertex

would encroachuponary subsgment,thenit is not inserted;instead all the subsgmentsit would
encroachuponaresplit.



Rupperts DelaunayRefinemen#lgorithm 49

AN &

Figure3.9: Each skinny triangle is split by inserting a vertex at its circumcenter and maintaining the Delau-

ST

Figure3.10: Missing segments are forced into the mesh by the same recursive splitting procedure used for
encroached subsegments that are in the mesh. In this sequence of illustrations, the thin line represents a
segment missing from the triangulation.

A A A

Figure 3.11: In this example, two segments (thin lines) must be forced into a triangulation. The first is
successfully forced in with a single vertex insertion, but the attempt to force in the second eliminates a
subsegment of the first.

Encroachedubsgmentsaregiven priority over skinry triangles.

An implementationmay give encroachegubsgmentsthat are not presentin the meshpriority over
encroachedubsgmentshatarepresen{thoughit isn't necessary)lf this optionis chosenthealgorithms
firstactis to forceall missingsegmentdnto themesh.Eachmissingsegmentis bisectedy insertinga vertex
into themeshatthemidpointof thesegment(moreaccuratelyatthemidpointof theplacewheretheseggment
shouldbe). After the meshis adjustedto maintainthe Delaunayproperty the two resultingsubsgments
may appeatin the mesh. If not, the procedures repeatedecursiely for eachmissingsubsgmentuntil
the original segmentis representedy a linear sequencef edgesof the mesh,asillustratedin Figure3.10.
We are assureddf eventualsuccesdbecauseahe Delaunaytriangulationalways connectsa vertex to its
nearesheighbor;oncethe spacingof verticesalonga segmentis suficiently small,its entirelengthwill be
representedn theengineerinditerature this processs sometimegalledstitching.

Unfortunatelytheinsertionof avertex to forcea segmentinto thetriangulationmayeliminatea subse-
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A second encroached
subsegment is split.
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Although the vertex
was rejected, the
segment it encroached
upon is still marked for
bisection.

N
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The encroached
segment will be split.

Delaunay triangulation
of the input vertices.
Note that an input
segment is missing.

The last encroached
subsegment is split.
Find a skinny triangle.

The encroached
segment is split, and
the skinny triangle that
led to its bisection is
eliminated.

The skinny triangle
was not eliminated.
Attempt to insert its
circumcenter again.

N
N

A vertex insertion
restores the missing
segment, but there are
encroached
subsegments.

The skinny triangle’s
circumcenter is
inserted. Find another
skinny triangle.

A circumcenter is
successfully inserted,
creating another
skinny triangle.

This time, its
circumcenter is
inserted successfully.
There’s only one
skinny triangle left.

One encroached
subsegment is
bisected.

This circumcenter
encroaches upon a
segment, and is
rejected for insertion.

The triangle’s
circumcenter is
rejected for insertion.

The final mesh.

Figure3.12: A complete run of Ruppert’s algorithm with the quality bound B = /2. The first two images are
the input PSLG and the (unconstrained) Delaunay triangulation of its vertices. In each image, highlighted
subsegments or triangles are about to be split, and highlighted vertices are rejected for insertion because
they encroach upon a subsegment.
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mentof someothersegment(Figure3.11). The subsgmentthuseliminatedis henceencroachecandmust
be split further To avoid eliminatingsubsgments,onecouldlock subsgmentsof the meshby markingthe
edgeghatrepresenthemto indicatethatthey areconstrainedFlipping of suchconstraineddgess forbid-
den.However, subsgmentswhosediametralkirclesarenonemptyarestill consideregncroachedandwill
still be split eventually; hence it makeslittle materialdifferenceto the algorithmwhetherone choosedo
lock subsgments.Neverthelesslocked subsgmentsyield fasterimplementationsindwill benecessarjor
Chen's secondalgorithm. Thereademaywish to assumehatall subsgmentsbecomepermanenassoon
asthey appearalthoughit wasnot partof Rupperts original specification.

If a subsgmentis missingfrom a Delaunaytriangulation,thenthe subsgmentis not Delaunay and
theremustbe a verte is its diametralcircle. (Thereis a degeneratexceptionto this rule, whereinsereral
verticesfall on the diametralcircle, but this exceptionis not theoreticallyproblematic.) This obseration
is importantbecausdt unifiesthe theoreticaltreatmeniof missingsubsgmentsandsubsgmentsthatare
presenin themeshbut encroached.

After all encroachedubsgmentshave beenrecursvely bisectedandno subsgmentsareencroached,
all edgeqincluding subsgments)of the triangulationare Delaunay A meshproducedoy Rupperts algo-
rithm is truly Delaunayandnot merelyconstrainedelaunay

Figure 3.12illustratesthe generatiorof a meshby Rupperts algorithmfrom startto finish. Several
characteristicef the algorithmareworth noting. First, if the circumcenteof a skinry triangleis rejected
for insertion,it maystill be successfullynsertedater, afterthe subsgmentsit encroachesponhave been
split. Ontheotherhand theactof splitting thosesubsgmentsis sometimegnoughto eliminatethe skinry
triangle. Secondthesmallerfeaturesattheleft endof themesheadto theinsertionof someverticestoward
theright, but thesizeof theelementdo theright remaindargerthanthe sizeof theelementgo theleft. The
smallestanglein thefinal meshis 21.8°.

Thereis alooseendto tie up. Onemightaskwhatshouldhapperif thecircumcentepf askinry triangle
falls outsidethe triangulation.Fortunately the following lemmashaws thatthe questionis moot.

Lemma 13 LetT beasament-boundeBelaunaytriangulation(henceanyedge of T' thatbelongso only
onetriangle is a subsgment). Supposéehat 7’ hasno encoadedsubsgments.Let v bethe circumcenter
of sometrianglet of T'. Thenw liesin T.

Proof: Supposdor the sale of contradictionthatv lies outsideT'. Let ¢ bethe centroidof ¢; ¢ clearlylies
insideT". Becausehe triangulationis sgment-boundedheline sggmentcv mustcrosssomesubsgment
s, asFigure 3.13illustrates. Becauserv is entirely containedn the interior of the circumcircleof ¢, the
circumcirclemustcontaina portionof s; but the Delaunaypropertyrequiresthatthe circumcirclebeempty
sothecircumcirclecannotcontainthe endpointof s.

Saythatapointis insides if it is onthesamesideof s asc, andoutsides if it is onthesamesideof s as
v. Becausehe centerv of thecircumcircleof ¢ is outsides, the portionof the circumcirclethatlies strictly
inside s (thebold arcin theillustration)is entirely enclosedy the diametralcircle of s. Theverticesof ¢
lie upont’s circumcircleandare(not strictly) insides. Up to two of the verticesof ¢ maybetheendpoints
of s, but atleastonevertex of t mustlie strictly insidethediametralcircle of s. But by assumptiorf” hasno
encroachedubsgmentstheresultfollows by contradiction. [ ]

Lemmal3 offersanothereasorwhy encroachedubsgmentsaregiven priority over skinry triangles.
Because circumcenters insertedonly whenthereareno encroachedubsgmentsoneis assuredhatthe
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inside | outside

Figure3.13: If the circumcenter v of a triangle ¢ lies outside the triangulation, then some subsegment s is
encroached.

circumcentewill bewithin thetriangulation.Corversely the actof splitting encroachedubsgmentsrids
the meshof triangleswhosecircumcircleslie outsideit. The lemmaalso explainswhy the triangulation
shouldbe completelyboundedby segmentsbeforeapplyingthe refinementalgorithm.

In additionto beingrequiredto satisfy a quality criterion, trianglescan also be requiredto satisfya
maximumsizecriterion. If afinite elementsimulationrequiresthat elementde smallenoughto modela
phenomenomvithin someerrorbound,onemayspecifyanupperboundon allowabletriangleareasor edge
lengthsasa functionof locationin the mesh.Trianglesthatexceedthe local upperboundaresplit, whether
they areskinry or not. Solong asthefunctionboundingthe sizesof trianglesis itself boundedeverywhere
above somepositive constantthereis no threatto the algorithms terminationguarantee.

3.3.2 Local Feature Size

The claim that Rupperts algorithmproducesicely gradedmeshess basedon the factthatthe spacingof
verticesatary locationin the meshis within a constanfactorof thesparsespossiblespacing.To formalize
theideaof “sparsespossiblespacing, Ruppertintroducesa functioncalledthelocal featue size whichis
definedover the domainof theinput PSLG.

GivenaPSLGX, thelocalfeaturesizelfs(p) atary pointp is theradiusof thesmallestdisk centeredat
p thatintersectawo nonincidentverticesor sggmentsof X. Figure3.14givesexamplesof suchdisksfor a
varietyof points.

Thelocalfeaturesizeof a pointis proportionalto the sparsespossiblespacingof verticesin the neigh-
borhoodof thatpoint. Thefunctionlfs(-) is continuousandhasthe propertythatits directionalderivatives
areboundedn therange[—1, 1]. Thelatter property provenby thefollowing lemma,setsa boundon the
fastespossiblegradingof elementizesin amesh.

Lemma 14 (Ruppert [82]) For anyPSLGX, andanytwo pointsu andv in theplang

Ifs(v) < Ifs(u) + |uv].

Proof: Thediskhaving radiuslfs(u) centeredhtu intersectdwo nonincidenfeatureof X. Thediskhaving
radiuslfs(u) + |uv| centeredatv containgthe prior disk, andthusalsointersectthe sametwo nonincident
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Figure3.14:The radius of each disk illustrated is the local feature size of the point at its center.

featuresof X. Hence thelargestdisk centerecht v thatcontainswo nonincidenfeaturesof X hasradius
nolargerthanlfs(u) + |uw|. [

This lemmageneralizesvithout changeto higherdimensionssolong asthe question‘Which pairsof
pointsaresaidto lie on nonincidentfeatures?"hasa consistenfnswerthatis independentf » andv. In
essencethe proof reliesonly on the triangleinequality: if « is within a distanceof Ifs(u) of eachof two
nonincidenfeaturesthenv is within a distanceof Ifs(u) + |uv| of eachof thosesametwo features.

3.3.3 Proof of Termination

In this sectionandthe next, | presenttwo proofsof the terminationof Rupperts algorithm. The first is
similar to the proof that Chew’s early algorithmterminatesandis includedfor its intuitive value. The
seconds taken from Ruppert,but is rewritten in a somavhat differentform to bring out featureshatwill
figureprominentlyin my own extensions.The secondproof shaws thatthe algorithmproducesnesheghat
arenicely gradedandsize-optimal.

Both proofsrequirethat B > /2, andary two incidentseggments(segmentsthat sharean endpoint)in
theinput PSLGmustbe separatethy anangleof 60° or greater (Ruppertasksfor anglesof atleast90°, but
animprovementto theoriginal proofis madehere.)For the secondproof, theseinequalitieamustbe strict.

With eachvertex v, associataninsertionradiusr,, equalto thelengthof theshortesedgeconnectedo
v immediatelyafterv is introducednto thetriangulation.Considemwhatthis meandn threedifferentcases.

e If v isaninputvertex, thenr, is the Euclideandistancebetweery andtheinputvertex nearesv; see
Figure3.15(a).

e If v is avertex insertedatthe midpointof anencroachedubsgment,thenr, is thedistancebetween
v andthenearesencroachingneshverte; seeFigure3.15(b).If thereis noencroachingertex in the
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@) (b)

Figure3.15: The insertion radius of a vertex v is the distance to the nearest vertex when v first appears
in the mesh. (a) If v is an input vertex, r,, is the distance to the nearest other input vertex. (b) If v is the
midpoint of a subsegment encroached upon by a vertex of the mesh, r, is the distance to that vertex. (c)
If v is the midpoint of a subsegment encroached upon only by a vertex that was rejected for insertion, r,
is the radius of the subsegment’s diametral circle. (d) If v is the circumcenter of a skinny triangle, r, is the
radius of the circumcircle.

(d)

mesh(sometriangles circumcentewasconsideredor insertionbut rejectedasencroaching)thenr,
is theradiusof thediametrakircle of theencroachedubsgment,andhencethelengthof eachof the
two subsgmentsthusproducedseeFigure3.15(c).

e If v is avertex insertedat the circumcenteiof a skinry triangle,thenr, is the circumradiusof the
triangle;seeFigure3.15(d).

Eachvertex v, includingary vertex thatis consideredor insertionbut not actuallyinsertedbecauset
encroachesipona subsgment,hasa parent vertex p(v), unlessv is aninput vertex. Intuitively, for ary
non-inputvertex v, p(v) is theverte thatis “responsible’for theinsertionof v. The parentp(v) is defined
asfollows.

e If v isaninputverte, it hasno parent.

e If v is a vertex insertedat the midpoint of an encroachegubsgment,thenp(v) is the vertex that
encroachesponthatsubsgment.(Notethatp(v) mightnotbeinsertednto the meshasaresult.)If
therearesereral suchvertices,chooseheonenearest.

e If v is avertex inserted(or rejectedfor insertion)at the circumcenteiof a skinry triangle,thenp(v)
is the mostrecentlyinsertedendpointof the shortestedgeof thattriangle. If both endpointsof the
shortestedgeareinputverticeschooseonearbitrarily.

Eachinput vertex is theroot of a tree of vertices. However, we are not interestedn thesetreesasa
whole; only in the ancestor®f ary given vertex, which form a sortof history of the eventsleadingto the
insertionof thatvertex. Figure3.16illustratesthe parentsof all verticesinsertedor consideredor insertion
duringthe sampleexecutionof Rupperts algorithmin Figure3.12.

Working with thesedefinitions,onecanshav why Rupperts algorithmterminates.The key insightis
thatno descendantf a meshvertex hasaninsertionradiussmallerthanthe vertex's own insertionradius.
Certainly noedgewill everappeathatis shorterthanthesmallesfeaturein theinputPSLG.To prove these
facts,considettherelationshipbetweeravertex's insertionradiusandthe insertionradiusof its parent.
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Figure 3.16: Trees of vertices for the example of Figure 3.12. Arrows are directed from parents to their
children. Children include all inserted vertices and one rejected vertex.

Lemma 15 Letv bea vertex of themesh,andlet p = p(v) beits parent, if oneexists. Theneitherr, >
Ifs(v), or r, > Crp, Wwhee

C = B if v isthecircumcenteof a skinnytriangle,

C = % if v is the midpointof an encoaded subsgmentand p is the circumcenterof a skinny

triangle,
e C = 2C§sa if v andp lie onincidentsggmentssepaatedby an angleof « (with p encoacding upon

the subsgmentwhosemidpointis v), whee 45° < a < 90°, and

C =sin« if v andp lie onincidentsggmentssepantedby anangleof a < 45°.

Proof: If v is aninput vertex, thereis anotherinput vertex a distanceof r,, from v, solfs(v) < r,, andthe
theoremholds.

If v is insertedat the circumcenteof a skinry triangle,thenits parentp = p(v) is the mostrecently
insertedendpointof the shortesedgeof thetriangle;seeFigure3.17(a). Hence thelengthof the shortest
edgeof thetriangleis atleastr,. Becausehetriangleis skinry, its circumradius-to-shoed edgeratiois at
leastB, soits circumradiuss r, > Bryp.

If v is insertedat the midpoint of an encroachegubsgments, therearefour casedo consider The
first two areall thatis neededo prove terminationof Rupperts algorithmif no anglessmallerthan90° are
presenin theinput. Thelasttwo casesonsidetthe effectsof acuteangles.



56 JonatharRichardShevchuk

21, —

(a) (b) (©) (d)
Figure 3.17: The relationship between the insertion radii of a child and its parent. (a) When a skinny
triangle is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When
a subsegment is encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius
may be (arbitrarily close to) a factor of /2 smaller than the parent’s, as this worst-case example shows.

(c, d) When a subsegment is encroached upon by the midpoint of an incident subsegment, the relationship
depends upon the angle a separating the two segments.

o If theparentp is aninputvertex, or wasinsertedon a sggmentnotincidentto the segmentcontaining
s, thenlfs(v) < 7.

¢ If pisacircumcentethatwasconsideredor insertionbut rejectecbecausé encroachespons, then
p lies strictly inside the diametralcircle of s. By the Delaunayproperty the circumcirclecentered
at p containsno vertices,soits radiusis limited by the nearesendpointof s. Hence,r, > %; see
Figure3.17(b)for anexamplewheretherelationis nearlyequality

e If v andp lie on incidentseggmentsseparatedy an anglea where45° < a < 90°, thevert o
(for “apex”) wherethe two segmentsmeetobviously cannotlie insidethe diametralcircle of s; see
Figure3.17(c).Because is encroachedponby p, p liesinsideits diametrakircle. (If s is notpresent
in thetriangulation,p might lie on its diametralcircle in a degeneratecase.) To find the worst-case
valueof 7=, imaginethatr, anda arefixed;thenr, = |vp| is minimizedby makingthe subsgment
s asshortas possible,subjectto the constraintthat p cannotfall outsideits diametralcircle. The
minimum is achiered when|s| = 2r,; if s wereshorter its diametralcircle would not containp.
Basictrigonometryshaws that|s| = 2r, > —2

cosa’

e If v andp lie onincidentsegmentsseparatetby ananglea wherea < 45°, then: is minimizednot
whenp lies onthediametralcircle, but whenw is the orthogonalprojectionof p ont03 asillustrated
in Figure3.17(d).Hencer, > rpsina. [ ]

Thelemmajustprovenplacedimits onhow quickly theinsertionradiuscandecreasasonewalksdown
atreefrom aninputvertex to adescendantf theinsertionradiuscannotdecreasat all, Rupperts method
is easilyguaranteedo terminate. Figure 3.18 expresseghis notion asa dataflav graph: labeledarravs
indicatehow a vertex canleadto theinsertionof a new vertex whoseinsertionradiusis somefactortimes
thatof its parent.If this graphcontainsno cycle whoseproductis lessthanone,terminationis guaranteed.
If somecycle hasa productsmallerthanone,thenasequencef ever-smalleredgesnightbeproduced.The
graphmalesclearwhy the quality boundB mustbeatleasty/2, andwhy theminimumanglebetweerinput
sggmentsmustbeatleast60°. Thefollowing theoremformalizesthisidea.
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Figure3.18: Dataflow diagram illustrating the worst-case relation between a vertex's insertion radius and
the insertion radii of the children it begets. If no cycles have a product smaller than one, Ruppert’'s Delau-
nay refinement algorithm will terminate. Input vertices are omitted from the diagram because they cannot
contribute to cycles.

Theorem 16 Letlfs,,;, betheshortestdistancebetweertwo nonincidententities(verticesor sggments)of
theinputPSLG.

Suppos¢hatanytwoincidentsggmentsare sepaatedby an angleof at least60°, anda triangleis con-
sideedto be skinnyif its circummadius-to-shokstedge ratio is larger than B > /2. Rupperts algorithm
will terminate with notriangulationedge shorterthanIfs;y.

Proof: Supposdor the sale of contradictionthatthe algorithmintroducesan edgeshorterthanlifs,,;, into
themesh.Let e bethefirst suchedgeintroduced.Clearly theendpointsof e cannotboth beinput vertices,
nor canthey lie onnonincidensegments.Let v bethe mostrecentlyinsertedendpointof e.

By assumptionno edgeshorterthanlfs,,;, existedbeforev wasinserted.Hence for ary ancestor of
v, 7q > IfSmin. Letp = p(v) bethe parentof v, andlet g = p(p) bethe grandparentf v (if oneexists).
Considetthefollowing cases.

e If visthecircumcenteof askinry triangle,thenby Lemmal5s,r, > Br, > \/ﬁrp.

e If v isthemidpointof anencroachedubsgmentandp is the circumcenteof a skinry triangle,then
by Lemmal5s,r, > %rp > %rg > r4. (Recallthatp is notinsertednto themesh.)

e If v andp lie onincidentseggmentsthenby Lemmals,r, > —2—. Becausex > 60°, r, > Tp-

2cosa

'Equivalently IfSmin = min, Ifs(u), wherew is chosenfrom amongthe input vertices. The proof that both definitionsare
equialentis omitted,but it relieson therecognitionthatif two pointslying on nonincidensegmentsareseparatetby a distancet,
thenat leastoneof the endpointsof oneof thetwo segmentsis separatedrom the othersggmentby a distanceof d or less. Note
thatlfsmin is notalowerboundfor Ifs(-) over theentiredomain;for instancea sggmentmay have lengthlfsmin, in which casethe
local featuresizeat its midpointis IfSyin /2.
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In all threecasesr, > r, for someancestow of p in the mesh.It follows thatr, > Ifsn,, contradicting
the assumptiorthat e haslengthlessthanlfs,,;,. It alsofollows thatno edgeshorterthanlfs,,;, is ever
introduced andthe algorithmmustterminate. [ ]

Rupperts algorithmterminatenly whenall trianglesin the meshhave acircumradius-to-shted edge
ratio of B or better; hence,at termination,thereare no anglessmallerthan arcsin%. If B = v/2, the
smallestvalue for which terminationis guaranteedno angleis smallerthan20.7°. Later, | will describe
severalmodificationgo thealgorithmthatimprove this bound.

3.3.4 Proof of Good Grading and Size-Optimality

Theoreml6 guaranteethatnoedgeof thefinal meshis smallerthanlfs,;,. Thisguaranteenaybesatisfying
for auserwho desiresa uniformmesh but is not satisfyingfor a userwho requiresa spatiallygradedmesh.
Whatfollows is a proofthateachedgeof the outputmeshhaslengthproportionalto thelocal featuresizes
of its endpoints.Hence,a smalllocal featuresizein onepartof a meshdoesnot unreasonablyeducethe
edgelengthsat other distantpartsof the mesh.Trianglesizesvary quickly over shortdistancesvheresuch
variationis desirableo helpreducethenumberof trianglesin themesh.

Lemmal5 was concernedvith the relationshipbetweenthe insertionradii of a child andits parent;
the next lemmais concernedwith the relatlonshlpbetweenIfs(”) and Ifs(”). For ary vertex v, define

D, = Ifs() . Think of D,, asthe one-dimensionalensityof verticesnearv whenw is insertedweightedby
thelocal featuresize. Ideally, onewould like this ratio to beassmallaspossible Notethat D,, < 1 for ary
inputverte, but D, tendsto belargerfor avertex insertedatet

Lemma 17 Letv bea vertex with parentp = p(v). Supposehatr, > Cr, (following Lemmal5). Then
D, <1+

Proof: By Lemmald4,lfs(v) < Ifs(p) + |vp|. Theinsertionradiusr, is usually|vp| by definition,exceptin
the casewherep is rejectedfor insertion,in which caser, > |vp|. Hencewe have
Ifs(v) < Ifs(p) + 7y

= Dyrp+ry

Dy
< 67‘@ + Ty

Theresultfollows by dividing bothsidesby r,,. ]

Lemmal7 generalizeso ary dimension(assuminghat somevaluefor C canbe proven), becauset
reliesonly uponLemmal4. Rupperts first mainresultfollows.

Lemma 18 (Ruppert [82]) Suppose¢he quality boundB is strictly larger than+/2, andthe smallestangle

betweertwo incidentsggmentsin the input PSLGis strictly greaterthan 60°. Thele exist fixed constants
Dr > 1andDg > 1 sud that, for anyvertex v inserted(or consideed for insertionand rejected)at the

circumcenteof a skinnytriangle, D,, < Dr, andfor anyvertex v insertedat themidpointof anencoaded

subsgment,D, < Dg. Hence theinsertionradiusof everyverte is proportionalto its local featue size
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Proof: Considerary non-inputvertex v with parentp = p(v). If p isaninputverte, thenD,, = _ lisw) <1
Otherwise,assumefor the sale of induction that the lemmais true for p, sothat D, < Dr ﬁg pisa
circumcentgrandD,, < Dy if p is amidpoint. Hence,D,, < max{Dr, Dg}.

First, supposev is insertedor consideredor insertionat the circumcenterf a skinry triangle. By
Lemmal5,r, > Br,. Thus,by Lemmal7, D, < 1+ 22{Dr.Ds} jt follows that one canprove that
D, < Dy if D ischosersothat
max{Dr,Dg}

Dr>1+ B

(3.1)

Secondsuppose is insertedat the midpointof asubsgments. If its parentp is aninputvertex or lies
onasegmentnotincidentto s, thenlfs(v) < r,, andthetheoremholds.If p is the circumcenteof a skinry
triangle (rejectedfor insertionbecauset encroachesipons), r, > % by Lemmal5, soby Lemmal7,

Dv <1+ \/EDT-
Alternat'vely if p, like v, is a subsgmentmidpoint,andp andw lie on incidentsggmentsthenr, >

QC(M by Lemmal5, andthusby Lemmal7, D, < 1 + 2Dg cosa. It follows that one can prove that
D, < Dg if Dg is chosersothat

1+V2Dy, and (3.2)
14 2Dg cos a. (3.3)

Dg >
Ds >

If the quality boundB is strictly largerthan+/2, conditions3.1 and3.2 aresimultaneouslpatisfiedby
choosing

B+1 (1+v2)B
Dp=—""_, Dg=-+—"""
B—2 B—+/2
If thesmallesinputangleay,, is strictly greatetthan60°, conditions3.3and3.1 aresatisfiedoy choosing
1 Dg
Dg=—~— Dr =1+ =,
s 1 — 2cos min T + B

One of thesechoiceswill dominate,dependingon the valuesof B and a,i,. However, if B > V2 and
amin > 60°, therearevaluesof Dr and Dg thatsatisfythelemma. [ |

Note thatas B approaches/2 or a approache$0°, Dr and Dg approachinfinity. In practice,the
algorithmis betterbehaed thanthe theoreticalboundsuggeststhe vertex spacingapproachegeroonly
after B dropsbelow one.

Theorem 19 (Ruppert [82]) For anyvertex v of the outputmeshthedistanceto its neaestneighborw is
fs(w)
Dg+1°

Ifs( ) < Dg for ary vertex v. If v

lfs(”) , andthetheoremholds.

Proof: Inequality3.2indicateshat Dg > D, soLemmal8shaws that

wasaddedafterw, thenthedistancebetweerthetwo verticesis atleastr, >
If w wasaddedafterv, applythelemmato w, yielding

Ifs(w)
Ds

low| > 1y >
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By Lemmal4, Ifs(w) + |vw| > Ifs(v), so

Ifs(v) — |'uw\'

[ow] > =5

It follows that |vw| > gi(ﬂ |

To give aspecificexample considetriangulatinga PSLG(having noacuteinputanglessothatnoangle
of the outputmeshis smallerthan15°; henceB = 1.93. For this choiceof B, Dy = 5.66 andDg = 9.01.
Hence,the spacingof verticesis at worst aboutten timessmallerthanthe local featuresize. Away from
boundariesthe spacingof verticesis atworst6.66 [58] timessmallerthanthelocal featuresize.

Figure 3.19 shaws the algorithms performancefor a variety of anglebounds. Rupperts algorithm
typically terminatesfor angleboundsmuch higher than the theoreticallyguarantee®0.7, and typically
exhibits muchbettervertex spacinghanthe provableworst-casdooundsimply.

Ruppert[82] usesTheorem19 to prove the size-optimalityof the meshedis algorithmgeneratesand
his resulthasbeenimproved by ScottMitchell. Mitchell's theoremis statedbelow, but the proof, whichis
ratherinvolved,is omitted. The cardinality of atriangulationis the numberof trianglesin thetriangulation.

Theorem 20 (Mitchell [68]) Let Ifsp(p) be the local featue sizeat p with respectto a triangulation T’
(treatingT’ asa PSLG),wheeaslfs(p) remainsthelocal featue sizeat p with respecto theinput PSLG.
Suppose triangulationT with smallestangled hasthe propertythatthere is someconstantt; > 1 sud
that for everypointp, ki1 lfsr(p) > Ifs(p). Thenthecardinality of T' is lessthan k. timesthe cardinality of
anyothertriangulationof theinput PSLGwith smallestangled, whee k, = O(k%/6). [

Theoreml19 canbe usedto shav thatthe preconditionof Theorem?20 is satisfiedby meshegenerated
by Rupperts algorithm. Hence a meshgeneratedyy Rupperts algorithmhascardinalitywithin a constant
factorof the bestpossiblemeshsatisfyingtheanglebound.

3.4 Chew’s SecondDelaunayRefinementAlgorithm and Diametral Lenses

This sectionpresentdwo algorithmsthat offer an improved guaranteef good gradingandthat perform
slightly betterin practice: Chen's secondDelaunayrefinementalgorithm[21], anda variantof Rupperts
algorithmthat replacesdiametralcircles with narraver entitiescalled diametrallenses. | will shav that
thetwo algorithmsareequivalent,andexhibit goodgradingandsize-optimalityfor anglesboundsof up to
26.5°. Chew shaws thathis algorithmterminatedor anangleboundof up to 30°, albeitwith no guarantee
of goodgrading.The meansy which heobtainsthis boundis discussedh Section3.5.2.NotethatChen's
paperalsodiscussesriangularmeshingof curvedsurfacesn threedimensionsbut | considetthealgorithm
only in its planarcontext.

3.4.1 Description of the Algorithm

Chen's algorithm begins with the constrainedelaunaytriangulationof a segment-boundedPSLG, and
usesDelaunayrefinementwith locked subsgmentsanda quality boundof B = 1, but thereis no ideaof
encroachediametralcircles.However, it mayarisethata skinry trianglet cannotbe split because andits
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Figure3.19: Meshes generated with Ruppert’s algorithm for several different quality bounds. The algorithm
does not terminate for angle bounds of 34.3° or higher on this PSLG.

circumcentee lie on oppositesidesof a subsgments (possiblywith ¢ outsidethetriangulation).Because
s is locked, insertinga vertex at ¢ will not remove t from the mesh. Instead,c is rejectedfor insertion,

andall free vertices(but not input verticesor verticesthatlie on sggments)that lie in the interior of the

diametralcircle of s andarevisible from the midpointof s aredeleted. Then,a new vertex is insertedat

themidpointof s. The Delaunaypropertyis maintainedhroughoutll deletionsandinsertionsexceptthat

locked subsgmentsarenotflipped. Figure3.20illustratesa subsgmentsplit in Chew’s algorithm.

If severalsubsgmentdie betweert andc, only the subsgmentvisible from theinterior of ¢ is split.

| claim thatChew's algorithmis roughly equivalent (enoughfor the purposef analysis}o a variant
of Rupperts algorithmin which diametralcircles are replacedwith diametal lenses illustratedin Fig-
ure3.21(a).Thediametrallensof a subsgments is theintersectiorof two diskswhosecenterdie oneach
others boundariesandwhoseboundariesntersectat the endpointsof s. It follows thatthe definingdisks
haveradius2|s|/+/3, andtheircenterdie onthebisectorof s atadistanceof |s|/+/3 from s. Thesubsgment
s is splitif thereis averte, or anattempto insertavertex, in or ontheboundaryof its diametralens,unless
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AN \/ A‘v‘

Figure3.20: At left, a skinny triangle and its circumcenter lie on opposite sides of a subsegment. At right,
all vertices in the subsegment’s diametral circle have been deleted, and a new vertex has been inserted at
the subsegment’s midpoint.

@) (b)

Figure3.21:(a) A hybrid Chew/Ruppert algorithm uses diametral lenses. Only vertices in the shaded region
encroach upon this subsegment. Note the equilateral triangles; a circumcenter at the lowest point of the
lens arises from any triangle whose vertices all lie on the upper lens’s boundary. (b, ) If a skinny triangle
and its circumcenter lie on opposite sides of a subsegment, then either the circumcenter or a vertex of the
triangle lies within the subsegment’s diametral lens.

anothersubsgmentobstructstheline of sightbetweenthe encroachingrertex andthe midpointof s. As
in Chen’s algorithm,subsgmentsarelocked, andall visible free verticesaredeletedfrom a subsgments
diametralkcircle beforethe subsgmentis bisected.

Why are thesealgorithmsequialent? Let ¢ be a skinry triangle whosecircumcentere lies on the
oppositeside of a subsgments. Lemmal3 shawvs that somevertex u of the skinry trianglelies inside
the diametralcircle of s, on the circumcircleof . Therearetwo possibilities: eitherc encroachespons
(Figure3.21(b)),or u encroachesapons (Figure3.21(c)).Hence the modifiedRuppertalgorithmwill split
ary subsgmentChen’s algorithmwould split.

Corversely if avertex liesin or ontheboundaryof the diametrallensof s, thenthe trianglecontaining
s (on the sameside of s asthe encroachingvertex) is skinry, andits circumcenteris on the otherside
of s. Hence,Cheawv's algorithmwill split ary subsgmentthe modified Ruppertalgorithm would split.
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(a) (b)

Figure3.22: (a) Example where a subsegment is encroached upon by a vertex in its diametral lens. In the
worst case, r, = r.cosf. (b) Example where a subsegment is encroached because a skinny triangle and
its circumcenter lie on opposite sides of the subsegment.

(Technically thisis not quitetrue; Chew’s algorithmmight declineto split a subsgmentfor which a vertex

lies preciselyattheintersectiorof the subsgments bisectorandthe boundaryof its diametrallens,thereby
forming a triangle with two anglesof precisely30°. This differencedoesnot affect the analysisof the
algorithms.)

The modified Ruppertalgorithmhasa small speedadwantagebecauseét avoids insertingmary of the
verticesthatwould be deletedaterin Chen’s algorithm.

Comparedo diametralcircles,diametralenseshave the disadwantagehatthefinal meshis notguaran-
teedto be Delaunaybut they have two adwantages.First, mary subsgmentsplits are avoidedthatwould
otherwisehave occurred. Hence,the final meshmay have fewer triangles. Second whena subsgment
split doesoccur the parentvertex p = p(v) cannotbetoo neara pole of the diametralcircle, andtheratio
betweenr, andr, is betterbounded.Wheread emmal5 could only guaranteehatr, > % diametral
lensesmale a betterboundpossible.

3.4.2 Proof of Good Grading and Size-Optimality

| generalizeensesto allow the angleé that definesthe shapeof a lens, illustratedin Figure 3.22(a),to
assumevaluesotherthan30°. Thelensangle# is independenof the angleboundarcsin %; for instance,
Rupperts unmodifiedalgorithmhas@ = 45°. Thereis little sensethough,in making# smallerthanthe
anglebound,becauseeducingd belov arcsin % will only allow theinsertionof moreverticesthatwill be
deleted.If 8 < 30°, thereis the problemthat a skinry triangleandits circumcirclemight lie on opposite
sidesof asubsgmentwithoutary vertex falling in its lens,asillustratedin Figure3.22(b).In thiscasepone
mustuseChen’s formulationof the algorithm,so that the subsgmentis properlyconsideredncroached,;
but diametrallensesnaybe emplg/edaswell, becauséhey save timein the casesvherea vertex doesfall

inside.

It is this mixed formulation| ervision for the proof that follows. | shav that Chewn’s algorithmwith
0 = arcsin % exhibitsguaranteedradingfor B > @ = 1.12, giving anangleboundof upto arcsin % =
26.56°. (Althoughl shallnotgive details,if # = 30°, onemayprove guaranteedradingonly for B > % =
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Figure3.23: (a) Figure for the case where exactly one vertex is in the semicircle. (b) Figure for the case
where more than one vertex is in the semicircle.

1.15, giving anangleboundof up to arcsin @ = 25.65°.)

The proof requiresan adjustmenof the definition of “insertionradius”to accommodat¢he necessary
useof constrainedDelaunaytriangulations Theinsertionradiusr. of thecircumcenter: of askinry triangle
t is now definedto betheradiusof ¢’s circumcircle,whetheror not the circumcirclecontainsary vertices.
Recallthat by the previous definition, . wasthe lengthof the longestedgethatwould adjoinc if ¢ were
inserted.The only circumstancen which thesedefinitionsdiffer is whent andc lie on oppositesidesof a
subsgment,andotherverticeslie in t's circumcircle. Theseverticesdo no harmbecause is not actually
inserted;c only actsasa placeholderelatingtheinsertionradii of its parentp andits child. Thechangdn
definitionis necessarpecausetherwisetheinequalityr, > Br,, provenin Lemmals, is invalidated.

Lemma 21 Letf betheanglethatdefinesheshapeof ead diametal lens,asillustratedin Figure 3.22(a),
wheke 0 satisfiesarcsin % < 0 < 45°. Lets bea subsgmentencoaheduponby the circumcenter of a
skinnytriangle t. Supposehatall verticesin the diametal circle of s are deleted(exceptthosenot visible
fromthemidpointof s), anda vertex v is insertedat the midpointof s. Thenthere is somevertex p, rejected
for insertionin or deletedromthediametal circle of s, sud thatr, > 7, cos 6.

Proof: Becauseall verticesvisible from v aredeletedfrom insidethe diametralcircle of s, r, is equalto
theradiusof thatdiametralcircle. (Verticesnotvisible from v cannotaffectv’s insertionradius,becausan
edgecannotconnecthemto v.)

If thecircumcenter liesin (or ontheboundaryof) thediametrallensof s, thenthe maximumpossible
valueof r. occurswith ¢ simultaneouslynthe boundaryof thelensandonthebisectorof s, asillustratedin
Figure3.22(a).The circumcirclecenteredat ¢ cancontainno verticeson or abore s, soits radiusis limited
by thenearesendpointof s. Hencer, > r. cos 8; definethe parentof v to bec.

Thecasegjust describeds suficientto prove thelemmaif 8 > 30°. However, if 8 < 30°, thenc might
notfall in thelens;rather s might beencroachetbecause andc lie on oppositesidesof s, asillustratedin
Figure3.22(b). Assumewithoutlossof generalitythatz lies above s, with ¢ belov. By Lemmal3, atleast
onevertex of ¢ lies strictly insidetheupperhalf of thediametralcircle of s. Therearetwo casesgdepending
onthenumberof verticesin theinterior of this semicircle.

If theuppersemicirclecontainsonly onevertex u, thent is definedby u ands. Becausé is skinry and

1

6 > arcsin 57, u mustlie in the shadedegion of Figure3.23(a),andthereforer, > r, cos §. Definethe

parentof v to bew.

If the uppersemicirclecontainsmorethanone vertex, considerFigure 3.23(b),in which the shaded
region representpointswithin a distanceof r, from a subsgmentendpoint. If somevertex « lies in the
shadedegion,thenr, < r,; definethe parentof v to bew. If novertex liesin theshadedegion, thenthere
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areat leasttwo verticesin the white region of the uppersemicircle.Let u be the mostrecentlyinsertedof
thesevertices. The vertex « is no furtherthanr, from ary othervertex in the white region, sor, < ry;
definethe parentof v to be . [ ]

Lemma21extendsthedefinitionof parento accommodatanew typeof encroachmentf asubsgment
is encroachedbecause triangleandits circumcentetie on oppositesidesof the subsgment,althoughno
vertex encroachesiponthe subsgments diametrallens,thenthe parentof the newly insertedmidpointis
definedto be a vertex in the upperhalf of the subsgments diametralcircle. It is importantthatthe parent
is insidethe diametralcircle of s, because.emmal?, which boundsthe densityof verticesneara verte,
reliesontheassumptiorthat|pv| < r,.

Whatif thediametralcircle of s containsavertex u thatis visible from v but notdeletedEitheru is an
inputvertex, or u lies onasgment.Theanalysisof Lemma21 doesnotapply because,, is (atmost)|uv|,
which is smallerthanthe diametralradiusof s. In this caseu andwv lie on nonincidentnput featuresso
ry > Ifs(v); this casds alreadycoveredby the analysisof Lemmal5. Choosetheinputvertex or sggment
vertex closesto v to betheparentof v.

Do the differenceshetweenCheav’s algorithmand Rupperts original algorithminvalidateary of the
assumptionaisedin Section3.3 to prove termination? None of the boundsprovenin Theorem16 and
Lemmals8 is invalidated. Whena vertex is deletedfrom a Delaunaytriangulation,no vertex finds itself
adjoininga shorteredgethanthe shortestedgeit adjoinedbeforethe deletion. (This factfollows because
a constrainedDelaunaytriangulationconnectsevery vertex to its neareswisible neighbor) Hence,each
verted's insertionradiusstill senesasa lower boundon the lengthsof all edgeghat connecthe vertex to
verticesolderthanitself, andthereforeTheoreml6 andLemmal8 arestill true.

Theonly partof theterminationproofthatdoesnotapplyto Chen's secondalgorithmis theassumption
thatevery operationinsertsa new vertex. If verticescanbe deleted,arewe surethatthe algorithmtermi-
nates?Obsere thatvertex deletionsonly occurwhena subsgmentis split, andverticesare never deleted
from subsgments.Theoreml6 setsa lower boundon thelengthof eachsubsgment,soonly a finite num-
ber of subsgmentsplits canoccur After the last subsgmentsplit, no more vertex deletionsoccur and
terminationmaybe provenin theusualmanner

Theconsequencef theboundprovenby Lemma21 is illustratedin the dataflav graphof Figure3.24.
Recallthat terminationis guaranteedf no cycle hasa productlessthanone. Hence,a conditionof ter
minationis that Bcos# > 1. The bestboundthat satisfiesthis criterion, aswell asthe requirementhat

6 > arcsin 5, is B = @ = 1.12, which correspond$o anangleboundof arcsin % = 26.5°.

Theorem 22 Supposehe quality boundB is strictly larger than é andthe smallestanglebetweertwo

incidentsgmentsn the input PSLGis strictly greaterthan 60°. Theee exist fixedconstantsDy > 1 and

Dg > 1 sud that, for anyvertex v inserted(or consideed for insertionandrejected)at the circumcenter
of a skinnytriangle D, < Dr, andfor anyverte v insertedat the midpointof an encioachedsubsgment,
D, < Dg.

Proof: Essentiallythe sameasthe proof of Lemmal8, exceptthatLemma21 makesit possibleto replace
Condition3.2 with

Dy
D¢ >
5 = cos @
> 1_,_% (3.4)

4B? —1
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Figure3.24: Dataflow diagram for Chew’s algorithm (with a variable angle condition).

If the quality boundB is strictly largerthan @ Conditions3.1and 3.4 aresimultaneouslyatisfiedoy
choosing

. _(1+%)\/4BQ—1 . YAB' 1428

T Vi —1-2 ST VABE—1-2
Dy and Dg mustalsosatisfythe conditionsspecifiedin Lemmal8 relatedto the anglesbetweenseg-
ments.If B > @ andamin, > 60°, therearevaluesof D and Dg thatsatisfythetheorem. [ |

Theoreml9,whichboundgheedgeengthsof themesh generalizeslirectlyto cover Chen’salgorithm,
sowe may comparehis analysiswith thatof Rupperts algorithm.As in Section3.3, considettriangulating
a PSLG (having no acuteinput angles)so that no angle of the outputmeshis smallerthan 15°; hence
B = 1.93. Forthischoiceof B, Dy = 3.27 andDg = 4.39, comparedo the correspondingaluesof 5.66
and9.01 for Rupperts algorithm.Hence the spacingof verticesis at worsta little morethanfive timesthe
localfeaturesize,andalittle morethanfour timesthelocal featuresizeaway from boundariesBecausghe
worst-caseumberof trianglesis proportionako thesquareof Dg, Chewn’s algorithmis size-optimalwith a
constanpf optimality almostfour timesbetterthanRupperts algorithm. Of course worst-casédehaior is
never seeris practice andthe obsereddifferencebetweerthetwo algorithmsis lessdramatic.

3.5 Improvements

Here,| describeseveralmodificationgo the Delaunayrefinemenalgorithmsthatimprove the quality of the
elementf a mesh.Thefirst modificationimprovesthe quality of trianglesaway from the boundaryof the
mesh;the secondwhich generalizesnideaof Chew, improvesthe quality of triangleseverywhere.
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3.5.1 Improving the Quality Bound in the Interior of the Mesh

The first improvementariseseasily from the discussionin Section3.3.3. So long asno cycle having a
productlessthanone appearsn the insertionradiusdataflav graph(Figure 3.18 or 3.24), terminationis

assuredThebarrierto reducingthequality boundB belov @ is thefactthat,whenanencroachedegment

is split, the child’s insertionradiusmay be a factor of @ smallerthanits parents. However, not every
segmentbisectionis aworst-casexample,andit is easyto explicitly measureaheinsertionradii of a parent
andits potentialprogely beforedecidingto take action. Onecantake adwantageof thesefactswith ary one
of thefollowing stratgies.

e Useaqualityboundof B = 1 for trianglesthatarenotin contactwith segmentinteriors,andaquality

boundof B = /2 (for diametralcircles)or B = @ (for diametrallensesYor ary trianglehaving a
vertex thatliesin theinterior of asggment.

e Attemptto insertthecircumcenteof ary trianglewhosecircumradius-to-shagstedgeratiois larger
thanone. If ary subsgmentswould be encroachedthe circumcenteiis rejectedas usual, but the
encroachedubsgmentsaresplit only if thetriangles circumradius-to-shagstedgeratio is greater
than+/2 (for diametralcircles)or @ (for diametrallenses).

e Attemptto insertthecircumcenteof ary trianglewhosecircumradius-to-shagstedgeratiois larger
thanone. If ary subsgmentswould be encroachedthe circumcentelis rejectedasusual,andeach
encroachedubsgmentis checled to determinethe insertionradiusof the new vertex that might be
insertedat its midpoint. The only midpointsinsertedarethosewhoseinsertionradii are at leastas
large asthelengthof the shortesedgeof the skinry triangle.

Thefirst stratgy is easilyunderstoodrom Figure 3.25. Becausesegmentverticesmay have smaller
insertionradii thanfree vertices,segmentverticesare only allowed to fatherfree verticeswhoseinsertion
radii arelarger thantheir own by a factorof /2 or @ asappropriate.Hence,no diminishingcyclesare
possible.

The othertwo stratgieswork for an even more straightforvard reason:all vertices(exceptrejected
vertices)are expresslyforbiddenfrom creatingdescendantbaving insertionradii smallerthantheir own.
Thethird stratgy is moreaggressie thanthe secondasit alwayschoosedo inserta vertex if the second
stratgy would do so.

Thefirst stratgy differsfrom the othertwo in its tendeng to spacesegmentverticesmorecloselythan
free vertices. The othertwo stratgiestendto spacesegmentverticesandfree verticesequally at the cost
of spacingthe latter moredenselythannecessaryThe first strat@y interruptsthe propagatiorof reduced
insertionradii from seggmentverticesto the free vertices,whereaghe othertwo interruptthe processby
which free verticescreatesggmentverticeswith smallerinsertionradii. The effect of the first stratgy is
easilystated:upontermination all anglesarebetterthan20.7° or 26.5°, andall triangleswhoseverticesdo
notlie in sggmentinteriorshave anglesof 30° or better For theothertwo stratgies,thedelineatiorbetween
26.5° trianglesand30° trianglesis notsoclear althoughtheformeronly occurnearboundaries.

None of thesestratglies compromisegjood gradingor size-optimality althoughthe boundsmay be
wealer. Assumethata quality boundB is appliedto all triangles,anda strongerquality boundB; > 1
appliesin theinterior of themesh.ThenEquation3.1is accompaniedby the equation

Dy
Dy >1+ —/—
T = +BI,
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Figure3.25: This dataflow diagram demonstrates how a simple modification to Ruppert’s or Chew’s algo-
rithm can improve the quality of elements away from mesh boundaries.

which holdstruewhen

Br
Dr > .
T_B[—l

If this boundis stricterthanthe boundsalreadygivenin the proof of Lemmal8 (for diametralcircles)
or 22 (for diametrallenses)then Ds mustalsobe recalculatedusing Equation3.2. Furthermorejf the
secondor third stratgy is usedthen Dt increasesncreasedo matchDg (Condition3.2nolongerholds.)
However, if B > /2 (for Rupperts algorithm)or B > @ (for Chen’s), By > 1, andamin > 60°, there
arevaluesof Dy and Dg thatsatisfythelemma.

3.5.2 Range-RestrictedSegmentSplitting

In this section,| suggesanotheralgorithmicchangehatgeneralizesinideaof Chew [21]. Both Rupperts
andChew’salgorithmsmaybemodifiedto make it possiblego applyaqualityboundof B = 1 to all triangles
of the mesh,althoughthereis no accompaying guaranteeof good grading. | shall considerRupperts
algorithmfirst, thenChew’s.

Obsene thatthe only mechanisnioy whichavertex canhave a child with asmallerinsertionradiusthan
its own is by encroachingipona subsgment. Furthermorean encroachingcircumcentew cannothave
a child whoseinsertionradiusis smallerthanr, /+/2, andhenceit cannotcausethe splitting of a sgment
whoselengthis lessthan+/2r,. Ontheotherhand,if v causeshe bisectionof a sgmentwhoselengthis
2r, or greaterthechild thatresultswill have aninsertionradiusof atleastr,. | concludethatavertex v can
only producea child whoseinsertionradiusis lessthanr, if a sggmentis preseniwhoselengthis between
V2r, and2r,. If nosuchsegmentexists, the cycle of diminishingedgelengthsis broken.

Thusthe motivation for range-restrictedseggmentsplitting Wheneer possible the lengthof eachsub-
segmentis restrictecto the rangec2®, wherec € (1,+/2] andz is aninteger This restrictionis illustrated
in Figure 3.26,whereindarkenedboxeson the numberline representegal subsgmentlengths. The posi-
tive integersare partitionedinto contiguoussets,eachhaving a geometricwidth of /2, andalternatesets
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Figure3.26: Legal subsegment lengths are of the form ¢2%, where ¢ € (1,+/2] and z is an integer.

are madeillegal. With this choiceof partition, the bisectionof ary legal subsgmentwill producelegal
subsgments.

Of course,input sgmentsmight not have legal lengths. However, whenan encroachegegmentof
illegal lengthis split, ratherthanplacea new vertex at its midpoint, one may placethe vertex so thatthe
resultingsubsgmentsfall within thelegal range.

How doesthis restrictionhelp? A vertex whoseinsertionradiusis greaterthan2® for someinteger
cannothave a descendanwhoseinsertionradiusis 2% or smallerunlessa subsgmenthaving illegal length
is split. However, eachillegal subsgmentcanbe split only once,yielding subsgmentsof legal length;
hencethefuel for diminishingedgelengthsis in limited supply

An illegal sgmentof theform ¢2%, wherec € (v/2,2] andz is aninteger, is split into subsgmentsof
lengthsc; 2% andcy2® asfollows.

e If c€ (V2,3], thenc; = % andcy, = ¢ — ¢1.

o Ifce (%, 2+2‘/§], thenc; = 1+ e andcy = ¢ — ¢;1. (Here,e is aninfinitesimalvalueusedbecausé is

technicallynotin thelegal range.In practice ¢ = 0 is recommended.)

e lfce (%,2],thenc1 = @ andcy = ¢ —c;.

Themostunbalanceaplit occursif ¢ = 2. Then,theratio betweere; andc is % = 0.2357.

I shall shav formally that Delaunayrefinementwith range-restrictedegmentsplitting terminatesor
ary quality boundB > 1. Definetheinsertionradiusfloor r}, of avertex v to be the largestpower of two
thatis strictly lessthanthevertex’'s insertionradiusr,.

Lemma 23 LetIfs,,;, be the shortestdistancebetweerntwo nonincidententities(verticesor sgments)of
theinput PSLG.Suppos¢hat a triangle is consideedto be skinnyif its circumiadius-to-shortst edge ratio
is larger than B > 1. Supposelsothattheinput PSLGhasno anglessmallerthan60°. Letv bea verte
ofthemeshandletp = p(v) beits parent,if oneexists. Theneitherr! > Ifsp;, /6, or 7, > r;).

Proof: If v is aninputverte, thenlfs,;, < Ifs(v) < r, < 2r}, andthetheoremholds.

If v is insertedat the circumcenteof a skinry triangle,thenby Lemmal5s,r, > Br,. BecauseB > 1,
it follows thatr;, > r,,.

If v isinsertedatthe midpointof anencroachedubsgments, therearethreecasego consider

¢ If theparentp is aninputvertex, or wasinsertedon a sggmentnotincidentto the segmentcontaining
s, thenlfspyi, < Ifs(v) <r, < 2r).
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o Ifw andp lie onincidentsegmentsseparateby ananglea where60° < a < 90°, thenby Lemmals,

Ty > 2cosa > Tp. Thereforey] > r

e If p is a circumcentertthat was consideredor insertionbut rejectedbecauset encroachesipon s,
therearetwo subcase® consider

o If s haslegal Iengthc25C wherec € (1,+/2] andz is aninteger, thens is preciselybisected By
Lemmal5s,r, > f However, r, = c2*~! isin alegalrangesor! > rp- If 7, weresmaller

thanr,, thenr, wouldlie mthelllegalrange(f, Tp)-

o If s hasillegallengthc2®, wherec € (v/2, 2] andz is aninteger, thenthe mostunbalancedplit
possibleoccursif ¢ = % in which casec; = 4 Becauses hasillegal length,it mustbe an
inputseggment,andits endpointsareinputvertices solfsy,;, is nogreatethanc2®. Theinsertion
radiusr, is equalto ¢;2*. Because:; 2% isin alegalrange, > \Tf Hence,

Ifsmin < \/5 Ifsmin

rho T Ty
c2%
< 2
< V2 o
< 6
andthetheoremholds. [ |

Theorem 24 Supposéhat any two incidentsggmentsare sepaated by an angle of at least60°, and a
triangleis consideedto beskinnyif its circumiadius-to-shortdsedge ratio is larger than B > 1. Rupperts
algorithm with range-restrictedsegmentsplitting will terminate with no triangulation edge shorterthan
|mein/6.

Proof: By Lemma23,theinsertionradiusfloor r,, of everyvertex v is eithergreatethanor equalto Ifs iy /6,
or greaterthanor equalto theinsertionradiusfloor of somepreeisting vertex. Becausea vertex’'s insertion
radiusfloor is a lower boundon its insertionradius,no edgesmallerthanlfsy,;, /6 is ever introducedinto
themesh andthealgorithmmustterminate. [ |

The boundcanbe improved to IfSpin/4. The boundof Ifsmin /6 resultsbecause segmentof length
Ifsmin May undego a worst-casainbalancedegmentsplit. To preventthis, definethe legal rangesto be
of theform ¢2% wherec € [IfSmin, v2lfSmin], insteadof ¢ € (1,+/2]. With this choiceof legal range,only
sggmentslongerthan+/2Ifs,,;, undego anunbalancedplit, andonly sggmentsof lengthat Ieast%h‘smin
undego a worst-casainbalancedplit. To implementthis modification,the initial triangulationmustbe
scannedo determingthevalueof IfSy;n.

| recommendwo changeso range-restrictedegmentsplitting for practicalimplementationFirst,legal
lengthsmaybedefinedby theclosedrange[1, /2] ratherthan(1, v/2]. Theoreticallythis canbejustifiedby
thefactthata vertex insertedat the midpointof a sgmentbecausef anencroachingircumcentehasan
insertionradiusstrictly greaterthan% timesits parents. In practice floating-pointroundof errorrenders
suchquibblesmeaninglessyut thechoiceof thislegalranges justifiedbecauséhereis alwayssome'slack”
in the mesh;not every insertedvertex hasthe smallestpossibleinsertionradiusrelative to its parent. If a
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Figure3.27: An example demonstrating a modification to the method of splitting certain illegal segments.
The original method (left) splits an illegal segment of length 1.499 into legal subsegments of lengths @
and 1.499 — ‘/TE The modified method (right) splits it into an illegal subsegment of length 0.999 and a legal

subsegment of length 0.5. If the illegal subsegment is split in turn, both of its subsegments are legal, and
neither is shorter than the smaller subsegment of the original method.

closedlegal rangeis used,redefinethe insertionradiusfloor 7}, to be the largestpower of two thatis less
thanor equalto r,, ratherthanstrictly lessthanr,,.

The secondchangemodifiesthe rule for valuesof ¢ in the range(\/ﬁ, %]. In this case,choosec; = %
andcy = ¢ — ¢;. Forthischoice,c; is notalegallength,butif theillegal subsgmentof lengthc,2” is itself
split, two legal subsgmentsresult,andthe smalleronehaslength %2‘”. This subsgmentis no worsethan
thesmallersubsgmentof theoriginal schemeasFigure3.27illustrates.If by goodfortunethesubsgment

having lengthc, 2% is notsplit, thecreationof anunnecessarilgmallfeatureis avoided.

Theorem24 holdsevenif thetwo practicalchangesliscusse@bove areused with smallmodifications
to theproof.

I turnnow to Chew’s algorithm.Anotheradwantageof diametralensesverdiametrakirclesis thatthey
male it possibleto usenarraver illegal ranges.An encroachingircumcentes cannothave a child whose
insertionradiusis smallerthanr, cos 8, sothewidth of eachillegal rangeneedonly be ﬁ For instance,
if # = 30°, onemay useillegal rangeshaving a geometricwidth of 13 = 1.15 insteadof v/2 = 1.41. In

this casejllegal sgmentlengthsareof theform ¢2*, wherec € (\/§, 2), andz is aninteger.

Becauseahelegal rangecanbe madewider, andtheillegal rangenarraver, thanwhendiametralcircles
areused,splitting anillegal segmentto yield legal sgmentsis easier Chav handlesillegal sgmentsby
trisectingthem;onecando betterby splitting theminto two piecesjustunesenly enougho ensurghatboth
subsgmentlengthsarelegal. Thefollowing recipeis suggested.

o lfce (V3,14 @],thencl =landcy; =c—cy.
e lfce(1+ @,2), thenc; = @ andcs = ¢ —cy.

Themostunbalancedplit occursif ¢ isinfinitesimallylargerthan+/3. In this casetheratio betweer, and
c is approximatelyl — % = 0.4226, whichisn’t muchworsethanbisection.

For comparison| shalldescribehow Chew [21] guaranteethathis algorithmterminatedor anangle
boundof 30°. Chenv emplg/srange-restrictedeggmentsplitting, but useonly onerangensteadf aninfinite
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Figure3.28:(a) A PSLG with a tiny segment at the bottom tip. (b) With a minimum angle of 32° (B = 0.944),
Ruppert’s algorithm creates a well-graded mesh, despite the lack of theoretical guarantees. (c) With a
minimum angle of 33.5° (B = 0.906), grading is poor.

()

sequencef rangesFor anappropriatealueh (seeChew for details but onecoulduseh = Ifsy;, /2), Chew
declaresherange(ﬁh, 2h) invalid; subsgmentswith Iengthsbetweerfz\/?_)h and4h aretrisectedrather
thanbisectedHence no edgesmallerthanh ever appears.

Therearetwo disadwantage®f usingasingleillegalrange ratherthananinfinite seriesof illegal ranges.
Thefirstis theincorvenienceof computingh in advance.The secondandmorefundamentaproblemis that
if smallanglesarepresenin theinput PSLG,edgessmallerthank mayarisearyway; seeSection3.7 for a
discussiorof the problemandits cures.

It doesnotappearo bepossibleto prove that Delaunayrefinementvith range-restrictedeggmentsplit-
ting producegradedor size-optimalmeshesvith circumradius-to-shastedgeratiosthatarevery closeto
one. Thedifficulty is thatif ameshcontainsalong segmentwith a smallfeaturesizeat oneend,the small
featuresizemight be expectedto propagatelongthe whole lengthof the segment. A smallsubsgmentat
oneendof the sggmentmight indirectly causdts neighboringsubsgmentto be split until the neighboris
the samesize. The neighboringsubsgmentmight thencauseits neighborto be split, andsoon dowvn the
lengthof the segment.

As Figure3.28demonstrate$ionvever, evenif diametrakirclesareusedachainreactionsevereenough
to compromisahegradingof themeshonly seemdo occurin practiceif thequality boundis lessthanabout
0.92 (correspondingo anangleof about33°)!

Themeshesn thisfigureweregeneratedavithoutrange-restrictedegmentsplitting, whichis usefulasa
theoreticatonstrucbut unnecessarin practice.As | have mentionedefore thereis agooddealof slackin
theinequalitieghatunderlythe proofof termination becaus@ewly insertedverticesrarelyhave worst-case
insertionradii. As a resultof this slack,ary Delaunayrefinementalgorithmthat handlesboundariesn a
reasonablevay seemdo achieve angleboundshigherthan30°. An examinationof range-restrictedeggment
splitting revealswhy we shouldexpectthis to be true: an everdiminishing sequencef edgess possible
only throughanendlesshainreactionof alternatingsplits of sgmentsof legal andillegal length,andonly
if the sequencef vertex insertionsencounterdittle slackon its infinite journgy. Suchan occurrences
improbable.

The improvementsdescribedhus far areimprovementsto the circumradius-to-shitest edgeratio of
the trianglesof a mesh; however, they have not reducedthe minimum permissibleangle betweeninput
sggments.Thenext two sectionsconsiderthe problemof dealingwith anglessmallerthan60°. Thefirst of
thesetwo sectionssetslimits on whatis possible andshawvs thatwe cannotbe overly ambitious.
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[ b > ate

Figure3.29:1n any triangulation with no angles smaller than 30°, the ratio b/a cannot exceed 27.

3.6 A Negatve Resulton Quality Triangulations of PSLGsThat Have Small
Angles

For ary angleboundé > 0, thereexists a PSLGP suchthatit is not possibleto triangulate? without
creatinga new corner(not presentin P) whoseangleis smallerthanf. This statemen@ppliesto ary
triangulationalgorithm,andnot just thosediscussedh thisthesis.Here,| discusswhy thisis true.

Theresultholdsfor certainPSLGsthathave ananglemuchsmallerthanéd. Of course pnemustrespect
the PSLG;smallinput anglescannotbe remaved. However, onewould like to believe thatit is possibleto
triangulatea PSLGwithout creatingary smallangleghatarent alreadypresenin theinput. Unfortunately
no algorithmcanmake this guarantedor all PSLGs.

Thereasonindgehindtheresultis asfollows. Suppos@&segmentin aconformingtriangulationrhasbeen
split into two subsgmentsof lengthsa andb, asillustratedin Figure3.29. Mitchell [68] provesthatif the
triangulationhasno anglessmallerthané, thenthe ratio b/a hasan upperboundof (2 cos §)'8%°/, (This
boundis tight if 180°/6 is aninteger; Figure 3.29 offers an examplewherethe boundis obtained.)Hence
ary boundonthe smallestangleof atriangulationimposesalimit onthegradationof trianglesizesalonga
segment(or arywherein themesh).

A problemcanariseif asmallangle$ occursattheintersectiorvertex o of two sggmentsof aPSLG,and
oneof thesesggmentsis separatedy a muchlargeranglefrom athird segmentincidentat o. Figure3.30
(top) illustratesthis circumstance.Assumethat the middle segmentof the threeis split by a vertex p,
which may be presenin theinput or maybe insertedto help achieze the angleconstraintelsavherein the
triangulation.Theinsertionof p forcesthe narrav region betweerthefirst two segmentsto betriangulated
(Figure 3.30, center),which may necessitat¢he insertionof a new vertex ¢ on the segmentcontainingp.
Leta = |pg| andb = |op| asillustrated. If the angleboundis respectedthe lengtha cannotbe large; the
ratioa/b is boundedbelov

Zi(g (cos(@ +¢) +

sin(@ + (b))
tan @ '

If theregion above the narraw region is partof theinterior of the PSLG,thefan effect demonstrateth
Figure 3.29 may necessitatéhe insertionof anothervertex » betweerno andp (Figure 3.30, bottom); this
circumstancés unavoidableif the productof theboundsonb/a anda /b givenabore is lessthanone.For an
angleconstrainof § = 30°, this conditionoccurswhene is aboutsix tenthsof adegree.Unfortunatelythe
new vertex r createshesameconditionsasthevertex p, butis closerto o; theproceswill cascadegternally
necessitatingmallerandsmallertrianglesto satisfytheangleconstraintNo algorithmcanproducea finite
triangulationof sucha PSLGwithout violating the angleconstraint.

This boundis probablynot strict. It would not be surprisingif a 30° angleboundis not obtainableby
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Figure3.30: Top: A difficult PSLG with a small interior angle ¢. Center: The vertex p and the angle constraint
necessitate the insertion of the vertex ¢q. Bottom: The vertex ¢ and the angle constraint necessitate the
insertion of the vertex r. The process repeats eternally.

ary algorithmfor ¢ = 1°, andDelaunayrefinemenbftenfails in practiceto achiere a 30° angleboundfor
¢ =5°.

Oddly; it appearso be straightforvardto triangulatethis PSLGusinganinfinite numberof well-shaped
triangles. A vertex at the apex of a smallanglecanbe shieldedwith a thin strip of well-shapedriangles,
asFigure3.3lillustrates.(This ideais relatedto Rupperts techniqueof usingshieldedges[82]. However,
Ruppertmistalenly claimsthatthe region concealedehindshield edgesalwayshasa finite good-quality
triangulation.) The strip is narrav enoughto admita quality triangulationat the smallestinput angle. Its
shapds chosensothatthe anglesit formswith the sgmentsoutsidethe shieldare obtuse andthe region
outsidetheshieldcanbetriangulatedy DelaunayrefinementTheregioninsidetheshieldis triangulatedy
aninfinite sequencef similar strips,with eachsuccessi strip smallerthanthe previousstrip by a constant
factorcloseto one.
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Figure 3.31: How to create a quality triangulation of infinite cardinality around the apex of a very small
angle. The method employs a thin strip of well-shaped triangles about the vertex (left). Ever-smaller copies
of the strip fill the gap between the vertex and the outer strip (right).

Figure3.32: A problem caused by a small input angle. Vertex v encroaches upon au, which is split at w.
Vertex w encroaches upon av, which is split at z. Vertex 2 encroaches upon aw, and so on.

3.7 Practical Handling of Small Input Angles

A practicalmeshgeneratoshouldnotrespondo smallinputanglesby failing to terminate gvenif theonly
alternatie is to leave badanglesbehind. Theresultof the previous sectionquashesll hopeof finding a
magicpill thatwill male it possibleto triangulateary PSLGwithout introducingadditionalsmallangles.
The Delaunayrefinementalgorithmsdiscussedhusfar will fail to terminateon PSLGslike that of Fig-
ure 3.30. Of course Delaunayrefinementlgorithmsshouldbe modifiedsothatthey do nottry to split ary
skinry trianglethatbearsa smallinputangle.However, eventhis changedoesnot helpwith thebadPSLGs
describedn the previous section,becausesuchPSLGsalways have a small anglethatis removable, but
anothersmallangleinvariablytakesits place.How canonedetectthis circumstanceandensurdermination
of thealgorithmwithout unnecessariljeaving mary badanglesbehind?

Figure3.32demonstratesneof the difficulties causedy smallinput angles.If two incidentsegments
have unmatchedengths,a endlesscycle of mutualencroachmentnay produceeversmallersubsgments
incidentto theapex of thesmallangle.For diametralspheresthis phenomenois only obseredwith angles
smallerthan45°; for diametralensespnly with anglessmallerthanroughly22.24°.

To solwe this problem, Ruppert[82] suggestsmodified segmentsplitting using concentriccircular
shells”. Imaginethat eachinput vertex is encircledby concentriccircleswhoseradii are all the powvers
of two, asillustratedin Figure3.33.Whenanencroachedubsgmenthasanendpointhatis aninputvertex
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Figure3.33: If an encroached subsegment has a shared input vertex for an endpoint, the subsegment is
split at its intersection with a circular shell whose radius is a power of two.

long subsegment

short edge leads to another subsegment split

Figure 3.34: The short edge opposite a small angle can cause other short edges to be created as the
algorithm attempts to remove skinny triangles. If the small insertion radii propagate around an endpoint and
cause the supporting subsegments to be split, a shorter edge is created, and the cycle may repeat.

sharedvith anothersegment the subsgmentis split not atits midpoint,but at oneof thecircularshells,so
thatoneof resultingsubsgmentshasa power-of-two length. The shellthatgivesthe bestbalancedsplit is
chosenjn theworstcasethesmallerresultingsubsgmentis one-thirdthelengthof thesplit subsgment.If

bothendpointsaresharednputvertices,chooseoneendpoints shellsarbitrarily Range-restrictedegment
splitting may optionally be usedon all subsgmentsnot subjectto concentricshell splitting. Eachinput
segmentmay undego up to threeunbalancedplits: two thatcreatepower-of-two subsgmentsatthe ends

of thesggment,andoneto split anillegal subsgmentlying betweerthesetwo. All othersubsgmentsplits
arebisections.

Concentricshellsegmentsplitting preventstherunavay cycle of ever-smallersubsgmentsportrayedn
Figure 3.32, becausencidentsubsgmentsof equallengthdo not encroachuponeachother Again, it is

importantto modify the algorithmso thatit doesnot attemptto split a skinry triangle that bearsa small
inputangle,andcannotbeimproved.

Modified segmentsplitting usingconcentriccircular shellsis generallyeffective in practicefor PSLGs
thathave smallanglegyreatethan10°, andoftenfor smallerangles .t is alwayseffective for polygonswith
holes(for reasongo bediscussedhortly). As the previous sectionhints, difficultiesareonly likely to occur
whena smallangleis adjacento a muchlarger angle. The negative resultof the previous sectionarises
not becausesubsgmentmidpointscan causeincidentsubsgmentsto be split, but becausehe free edge
oppositea smallangleis shorterthanthe subsgmentswhoseendpointdefineit, asFigure3.34illustrates.

The two subsgmentsof Figure 3.34 are coupled,in the sensethat if oneis bisectedthensois the
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Figure 3.35: Concentric shell segment splitting ensures that polygons (with holes) can be triangulated,
because it causes small angles to be clipped off. This sequence of illustrations demonstrate that if a clipped
triangle’s interior edge is flipped, a smaller clipped triangle will result.

other becauseahe midpoint of one encroachesiponthe other This holdstrue for ary two segmentsof

equallengthseparatedby lessthan60°, if diametralcirclesareused,or arctan % —30° = 34.34°, if

diametrallensesareused.Eachtime sucha dualbisectionoccurs a nen edgeis createdhatis smallerthan
the subsgmentsproducedoy the bisection;the free edgecanbe arbitrarily smallif the angleis arbitrarily
small. One of the endpointsof the free edgehasa small insertionradius,thoughthat endpoints parent
(typically the other endpoint)might have a large insertionradius. Hence,a small anglefunctionsasan
“insertion radiusreducer”. The new small edgewill likely engendeiother small edgesasthe algorithm
attemptdo remove skinry triangles.If smallinsertionradii propagat@roundanendpointof thesmalledge,

theincidentsubsgmentanaybesplit again,commencingninfinite sequencef smallerandsmalleredges.

If thePSLGis apolygon(possiblywith polygonalholes),smallinsertionradii cannotpropagatearound
the small edge,becausahe small edgepartitionsthe polygoninto a skinry triangle (which the algorithm
doesnot attemptto split) andeverythingelse. The smalledgeis itself flipped or penetrateanly if thereis
anevensmallerfeatureelsavherein themesh.If thesmalledgeis thusremoved,thealgorithmwill attempt
to fix thetwo skinry trianglesthatresult,therebycausingthe subsgmentsto be split again,thuscreatinga
new smalleredge(Figure3.35).

For generalPSLGs,how may onediagnoseand cure diminishingcyclesof edges?A sure-fireway to
guarante¢erminationwashintedatin Section3.5.1: never inserta vertex whoseinsertionradiusis smaller
thanthe insertionradius of its mostrecentlyinsertedancestor(its parentif the parentwasinserted;its
grandparenif the parentwasrejected)unlessheparentis aninputvertex or lies onanonincidenseggment.

Thisrestrictionis undesirablyconserative for two reasonsFirst, if a Delaunaytriangulationis desired,
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Figure3.36: The simplest method of ensuring termination when small input angles are present has unde-
sirable properties, including the production of large angles and many small angles.

O
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Figure3.37: (a) Example of a subsegment cluster. If all the subsegments of a cluster have power-of-two
lengths, then they all have the same length and are effectively split as a unit because of mutual encroach-
ment. (b) Several independent subsegment clusters may share the same apex.

therestrictionmight prevent us from obtainingone,becauseegmentsmay be left encroachedA second,
more penasie problemis demonstrateih Figure3.36. Two subsgmentsare separatedby a smallinput

angle,andoneof the two is bisected. The othersubsgmentis encroachedbut is not bisectedbecausea

smalledgewould be created.Oneunfortunateresultis thatthe trianglebearingthe smallinput anglealso
bearsa large angleof almost180°. Recallthatlarge anglescanbe worsethansmallangles becausehey

jeopardizecorvergenceandinterpolationaccurag in a way thatsmallanglesdo not. Anotherunfortunate
resultis that mary skinry trianglesmay form. The trianglesin the figure cannotbe improved without

splitting the uppersubsgment.

As analternatve, | suggesthefollowing scheme.
The Quitter: A Delaunayrefinementalgorithmthatknows whento give up. Guaranteedb terminate.

The Quitteris basedon Delaunayrefinementwith concentriccircular shells;range-restrictedeggment
splitting is optional. Whena subsgments is encroachediponby the circumcenteof a skinry triangle,a
decisionis madewhetherto split it with avertex v, orto leave it whole. (In eithercasethecircumcenteis
rejectedfor insertion.)Thedecisionprocesss someavhatelaborate.

If neitherendpointof s bearsa small input angle (lessthan60°), or if both endpointsdo, thens is
split. Otherwise Jet a be the apex of the smallangle. Definethe subsgmentclusterof s to be the setof
subsgmentsincidentto a thatareseparatedrom s, or from someothermemberof the subsgmentcluster
of s, by lessthan60°. If diametralcirclesareused,onceall the subsgmentsof a clusterhave beensplit
to power-of-two lengths,they mustall be the samelengthto avoid encroachingiponeachother If oneis
bisectedthe othersfollow suit, asillustratedin Figure3.37(a).If v is insertedit is calledatrigger verte,
becausé maytriggerthesplitting of all the subsgmentsin a cluster

If diametrallensesare used,it is no longertrue that all the subsgmentsin a clustersplit asa unit.
However, clustersarestill definedby a 60° angle,becauseliametrallensesdo notdiminishthe problemof



PracticalHandlingof Smalllnput Angles 79

smalledgesappearingppositea clusterape.

Thedefinitionof subsgmentclusterdoesnotimply thatall subsgmentsincidentto aninputvertex are
partof the samecluster For instance Figure3.37(b)shavs two independensubsgmentclusterssharing
oneape, separatedrom eachotherby anglesof atleast60°.

To decidewhethers shouldbe split, the Quitter determineghe insertionradiusr, of v's grandparent
g (which is the parentof the encroachingircumcenter)andthe minimum insertionradiusr;, of all the
midpointvertices(includingv) thatwill beintroducednto thesubsgmentclusterof s if all thesubsgments
in theclusterhaving length|s| or greateraresplit. If all thesubsgmentsn theclusterhave thesamdength,
thenrn,i, dependsiponthe smallesianglein thesubsgmentcluster

Thevertex v is inserted splitting s, only if oneor moreof thefollowing threeconditionshold.

o If rmin > 7g, thenu is inserted.

¢ If oneof thesggmentsn the subsgmentclusterof s hasalengththatis notapower of two, thenwv is
inserted.

¢ If noancestoof v alsoliesin theinterior of the segmentcontainings, thenw is inserted.(Endpoints
of thesegmentareexempt.)

End of description of the Quitter.

If thereareno input anglessmallerthan60°, the Quitter actsno differently from Rupperts or Chew'’s
algorithmby the following reasoning Any encroachedubsgments is the only subsgmentin its cluster
andrmin = 7. If s is preciselybisected,Theoreml6 statesthat the first condition (rmin > r4) always
holds. If thelengthof s is nota power of two, s may be split unevenly, andhencethe conditionry;, > 74
may not betrue, but the secondcconditionabore ensureghatsuchsplitsarenot prevented.

Ontheotherhand,if smallanglesarepresentandthefirst conditionfails for someencroachedegment,
thethird conditionidentifiessituationsn whichthemeshcanbeimprovedwithoutthreateningheguarantee
of termination. This rule attemptgo distinguishbetweernthe casewherea sggmentis encroachedecause
of smallinput featuresandthe casewherea segmentis encroachethecausét bearsasmallangle.

Theorem 25 TheQuitter alwaysterminates.

Proof sketch: Supposdor the sale of contradictionthatthe Quitterfails to terminate.Thentheremustbe
aninfinite sequencef verticesV with thepropertythateachvertex of V' (exceptthefirst) is thechild of its
predecesspandfor ary positve realvalued, somevertex in V' hasinsertionradiussmallerthand. (If there
is no suchsequencef descendantshenthereis alower boundon thelengthof anedge andthealgorithm
mustterminate.)

Saythatavertex v hasthe diminishingpropertyif its insertionradiusfloor ), is lessthanthatof all its
ancestorsThesequencd” containsaninfinite numberof verticesthathave the diminishingproperty

Thanksto Lemma23,if avertex v hasaninsertionradiusfloor smallerthanthatof all its ancestorsthen
v musthave beeninsertedn a subsgments underoneof thefollowing conditions:

e s bearsasmallinputangle,andthelengthof s is nota power of two.

e sisofillegallength.
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e sisencroachediponby aninputvertex or avertex lying onasementnotincidentto s.

e sisencroachediponby avertex p thatlies onansegmentincidentto s atananglelessthan60°.

Only afinite numberof verticescanbeinsertedunderthefirst threeconditions.Thefirst conditioncan
occurtwice for eachinput segment(oncefor eachend),andthe secondconditioncanoccuroncefor each
inputsegment.Any subsgmentshorterthanlfs,,;, cannotbe encroachediponby a nonincidentfeature so
only afinite numberof vertex insertionsof the third type arepossibleaswell. Hence,V mustcontainan
infinite numberof verticesinsertedunderthefourth condition.

However, V cannothave arbitrarily long runsof suchvertices becausgower-of-two segmentsplitting
preventsa clusterof incidentsegmentsfrom engagingn a chainreactionof ever-diminishing mutualen-
croachmentSpecifically let 2% bethelargestpower of two lessthanor equalto the lengthof the shortest
subsgmentin the cluster No subsgmentof the clustercanbe split to a lengthshorterthan2*—! through
themechanisnof encroachmerdlone.Theedgesppositeaheape of the clustermaybemuchshorterthan
27-1 but someothermechanisnis neededo explain how the sequencd” cancontaininsertionradii even
shorterthantheseedgesTheonly suchmechanisnthatcanbe emplg/ed aninfinite numberof timesis the
attemptedsplitting of a skinry triangle.Hence,VV mustcontainaninfinite numberof triggervertices.

Oneof therulesis thatatriggervertex may only be insertedif it hasno ancestoin theinterior of the
samesggment. Hence,V' may only containonetrigger vertex for eachinput sgment. It follows thatthe
numberof triggerverticesin V' is finite, acontradiction. ]

The Quitter eliminatesall encroachedubsgments,soif diametralcirclesareused thereis no danger
thatasegmentwill fail to appeain thefinal mesh(if subsgmentsarenotlocked),or thatthefinal meshwill
notbe Delaunay(if subsgmentsarelocked). Becausesubsgmentsarenotencroachedananglenear180°
cannotappeaimmediatelyoppositea subsgment(asin Figure3.36),althoughlarge anglescanappeanear
subsgmentclusters.The Quitter offers no guaranteesn quality whensmallinput anglesare presentput
skinry trianglesin thefinal meshoccuronly nearinputangledessthan60°.

The Quitter hasthe unfortunatecharacteristichatit demandsnore memorythanwould otherwisebe
necessanpecauseachvertex of themeshmuststoreits insertionradiusanda pointerto its parent(or, if its
parentwasrejectedjts grandparent)Hence,| suggespossiblemodificationgo avoid theserequirements.

The Quitterneedgo know theinsertionradiusof a vertex only whenatriggerverte v is beingconsid-
eredfor insertion. It is straightforvard to computethe insertionradii of v andthe otherverticesthat will
be insertedinto the cluster However, theinsertionradiusof the grandparenof the trigger vertex is used
for comparisonandmay not be directly computablérom the mesh becaus®therverticesmay have been
insertednearg sinceg wasinserted.Neverthelessit is reasonabléo approximate-, by usingthelengthd
of the shortesedgeof the skinry trianglewhosecircumcenteis v’s parent,llustratedin Figure3.38. The
lengthd is anupperboundonr,, soits usewill notjeopardizehe Quitter's terminationguaranteethe mod-
ified algorithmis strictly moreconserative in its decisionof whetherto insertv. With this modification,
thereis no needto storetheinsertionradii of verticesfor lateruse.

The only apparentvay to avoid storinga pointerfrom eachvertex to its nearestnsertedancestois to
eliminatethe conditionthatatriggervertex maybeinsertedf noneof its ancestorgiesin thesameseggment.
The possibledisadwantageis that a small nearbyinput featuremight fail to causethe segmentto be split
eventhoughit oughtto have the privilege,andthusskinry triangleswill unnecessarilyemainin themesh.
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Figure3.38: The length d of the shortest edge of a skinny triangle is an upper bound on the insertion radius
ry of the most recently inserted endpoint of that edge.

3.8 Conclusions

Theintuition governingDelaunayrefinementomesfrom anunderstandingf therelationshipbetweerthe
insertionradii of parentsaandtheir children.Hence usedataflav graphssuchasFigure3.18to demonstrate
theserelationships.This mannerof thinking bringsclarity to ideasthat otherwisemight be hiddenwithin
proofs. For instanceFigure3.18providesanimmediateexplanationfor why Rupperts algorithmachieves
an angleboundof up to 20.7° (which correspondso a circumradius-to-shagst edgeratio of 1/2). The
sameideascanbe foundin Rupperts original papey but are somavhat obscuredoy the mathematics By
bringing the intuition to the forefront, and by explicitly graphingthe relationshipshetweenthe insertion
radii of relatedvertices,| have found a variety of improvementsto Delaunayrefinementandits analysis,
which have beendiscussedn detailin this chapterandarelistedagainhere.

e The minimumangleseparatingwo input sggmentscanbe relaxed from the 90° boundspecifiedby
Ruppertto a60° bound.This obserationcomesfrom the dataflav graphof Figure3.18.

e My new analysisof Chew’s algorithmarosefrom my attemptgo understandherelationshipbetween
sggmentmidpointsandtheir parentswhichis reflectedn the dataflav graphof Figure3.24.

e Thedataflav graphsfor Rupperts and Chew'’s algorithmssparled my recognitionof the factthata
betterquality boundcanbeappliedin theinterior of the mesh asillustratedin Figure3.25.

e Theideaof range-restrictedegmentsplitting arosefrom my attemptsto find waysto wealen the
spiralof diminishinginsertionradii. (Only laterdid | realizethatChe~ haddevelopeda very similar
idea.)

o My methodfor handlingsmallinput anglesworks by preventingverticesfrom having childrenthat
might contritute to a sequencef verticeswith endlesslydiminishinginsertionradii.

Hence,this mannerof approachingdelaunayrefinementhasshavn greatfecundity Simpleasthese
dataflav graphsare,they have providedthecluesthathelpedio unearttmostof thenew resultsin thisthesis,
andin Chapte#l they will provethemselesinvaluablein studyingtetrahedraDelaunayefinementin which



82 JonatharRichardShevchuk

therelationshipsetweerthe insertionradii of differenttypesof verticesbecomeeven morecomplicated.
Most of theimprovementsn thelist above will repeathemselesin thethree-dimensionadetting.

At this writing, | have not yet implementeddiametrallenses.| expectthemto outperformdiametral
circlesin circumstance which long sgmentsare presentpecausaliametrallensesarelessproneto be
split. Onthe otherhand,diametralcirclesanddiametrallenseswill exhibit little or no differencefor mary
inputswhoseboundariegarecomposeaf mary tiny sgmentssuchasFigure3.7 (bottom).

My negatie resulton quality triangulationcomesasa surprise asresearchers meshgeneratiorhave
beenlaboringfor sometime underfalseassumptionsboutwhatis possiblein triangularmeshgeneration.
A few have mistalenly claimedthatthey couldprovide triangulationof arbitraryPSLGswith no new small
angles. Fortunately a recognitionof the fundamentadifficulty of triangulatingPSLGswith tiny angles
malesit easietto formulatea stratgy for handlingthem.Onceonerealizeghatthe bestonecanhopefor is
to minimizetheunavoidabledamageahatsmallinputanglescancauseijt becomeselatively easyto develop
amethodthat preventsverticeshaving smallerandsmallerinsertionradii from beinginserted.The method
| have suggesteds somavhatmoreelaboratehanwhatis necessaryo guaranteg¢ermination but is likely
to rewardtheextra effort with bettertriangulations.



Chapter 4

Three-DimensionaDelaunayRefinement
Algorithms

Herein, | build uponthe framewvork of Ruppertand Chev to designa Delaunayrefinementalgorithmfor
tetrahedrameshes.The generalizatiorto threedimensionss relatively straightforvard, albeit not with-
out complications. The basicoperationis still the Delaunayinsertionof verticesat the circumcenter®of
simplicesandtheresultis still ameshwhoseelementdave boundectircumradius-to-shors¢edgeratios.

Unfortunately unlike the two-dimensionatase sucha meshis not necessarilyadequatdor the needs
of finite elementmethods.Thereasonis the existenceof a type of tetrahedrorcalleda sliver or kite. The
canonicakliver is formedby arrangingfour vertices,equallyspacedaroundthe equatorof a spherethen
perturbingone of the verticesslightly off the equator asillustratedin Figure4.1. As is apparenin the
figure,asliver canhave anadmirablecircumradius-to-shors¢edgeratio (aslow asl?!) yetbeconsidered
awful by mostothermeasureshecauséts volumeandits shortestltitude canbe arbitrarily closeto zero.
Slivershave no two-dimensionalnalogueary trianglewith a smallcircumradius-to-shors¢ edgeratio is
consideredwell-shaped’by theusualstandardsf finite elementmethods.

Sliversoftensurvive Delaunay-basetétrahedrameshgeneratiormethodsbecausé¢heir smallcircum-
radii minimizethelikelihoodof verticesbeinginsertedn their circumsphereéFigure4.2). A perfectlyflat
sliver whoseedgelengthsarelfs,i, aboutthe equatorand/2lfspi, acrossthe diagonalsis guaranteedo
survive ary Delaunayrefinemenimethodthatdoesnot introduceedgessmallerthanlifs,,;,, becausevery

Figure4.1: A sliver tetrahedron.
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Figure4.2: In three dimensions, skinny tetrahedra known as needles and caps have circumspheres signifi-
cantly larger than their shortest edge, and are thus eliminated when additional vertices are inserted, spaced
to match the shortest edge. A sliver can have a circumradius smaller than its shortest edge, and can easily
survive in a Delaunay tetrahedralization of uniformly spaced vertices.

pointin theinterior of its circumspherés a distancdessthanlfs,,;, from oneof its vertices;no vertex can
beinsertednsidethesphere.

Despitethisproblem Delaunayrefinementnethodsrevaluablefor generatinghree-dimensionahesh-
es.Theworstsliverscanoftenberemovedby Delaunayrefinementgvenif thereis notheoreticauarantee.
Mesheswith boundson the circumradius-to-shites edgeratiosof their tetrahedrareanexcellentstarting
point for meshsmoothingand optimizationmethodsdesignedo remove slivers andimprove the quality
of anexisting mesh(seeSection2.2.4). Evenif sliversarenot removed, Delaunayrefinementetrahedral-
izationsare sometimesadequatdor suchnumericaltechniquessthe control volume method[66], which
operatesiponthe Voronoidiagramratherthanthe DelaunaytetrahedralizationThe Voronoidualof atetra-
hedralizatiorwith boundectircumradius-to-shtgg edgeratioshasnicely roundedcells,evenif sliversare
presenin thetetrahedralizatioitself.

In this chapter| presentthree-dimensionajeneralizatiorof Rupperts algorithmthatgeneratesetra-
hedralizationavhosetetrahedrahave circumradius-to-shtes edgeratiosno greaterthanthe boundB =
V2 = 1.41. If B is relaxedto be greaterthantwo, thengoodgradingcanalsobe proven. | enhancehe
algorithmwith a structuresimilar to diametrallenses andtherebyachis/e a tetrahedromuality boundof
B = % = 1.15, or awell-gradedmeshfor ary tetrahedromguality boundthatsatisfiesB > % = 1.63.
Size-optimality however, cannotbe proven.
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Figure4.3: (a) Any facet of a PLC may contain holes, slits, and vertices; these may support intersections
with other polytopes or allow a user of the finite element method to apply boundary conditions. (b) When
a PLC is tetrahedralized, each facet of the PLC is partitioned into triangular subfacets, which respect the
holes, slits, and vertices.

4.1 Preliminaries

4.1.1 Piecewiselinear Complexesand Local Feature Size

Beforedefiningathree-dimensionddelaunayrefinementlgorithmiit is necessaryo definetheinputupon
which the algorithmwill operate.l usea generalizatiorof a planarstraightline graphcalleda piecavise
linear complex (PLC); seeMiller, Talmor, Teng, Walkington,andWang[67] for a similar definition that
generalizeso ary numberof dimensions.

In threedimensionsa PLC is a setof vertices sggmentsandfacets.Verticesandsegmentsareno dif-
ferentthanin thetwo-dimensionatase exceptthatthey areembeddedn three-dimensionapace Facets,
however, canbequitecomplicatedn shape A facetis a planarboundarysuchastherectangulaandnearly-
rectangulafacetshatdefinethe objectdepictedn Figure4.3(a).As thefigureillustrates a facetmayhave
ary numberof sides,maybe noncowex, andmay have holes,slits, or verticesin its interior However, an
immutablerequirements thata facetmustbe planar

A pieceviselinearcomplex X is requiredto have thefollowing properties.

e Forary facetin X, everyedgeandvertex of thefacetmustappeaasasegmentor vertex of X. Hence,
all facetsaresggment-bounded.

e X containsbothendpointsof eachsegmentof X.

e X is closedunderintersectionHence|f two facetsof X intersectataline sggmentthatline sgment
mustberepresentetly asegmentof X . If aseggmentor facetof X intersect@anotheiseggmentor facet
of X atasinglepoint, thatpointmustberepresentetly avertex in X.

e If asgmentof X intersectsa facetof X at morethana finite numberof points,thenthe segment
mustbe entirely containedn thefacet. This rule ensureghatfacets‘line up” with their boundaries.
A facetcannotbe boundediy a segmentthatextendsbeyondthe boundaryof thefacet.

Theprocesf tetrahedraimeshgeneratiomecessarilgivideseachfacetinto triangularfaces asillus-
tratedin Figure4.3(b).Justastheedgeghatcompose sggmentarecalledsubsgmentsthetriangularfaces
thatcomposea facetarecalledsubfacets All of thetriangularfacesvisible in Figure4.3(b)aresubfcets,
but mostof thefacedn theinterior of thetetrahedralizatiomrenot.
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Figure4.4: Two incident facets separated by a dihedral angle of nearly 180°. What is the local feature size
at p?

Recallthatary vertex insertedinto a sgmentremainstherepermanently Whenexaminingthe algo-
rithmsdiscussedn this chapter keepin mind thatverticesinsertedinto facetsarealsopermanentbut the
edgedhatpartitionafacetinto subficetsarenotpermanentarenottreatedik e subsgmentsandarealways
subjectto flipping accordingo the Delaunaycriterion.

Many approacheto tetrahedrameshgeneratiorpermanentiftriangulatethe input facetsasa separate
stepprior to tetrahedralizinghe interior of a solid. The problemwith this approachis thattheseindepen-
dentfacettriangulationsmay not be ideal for forming a good tetrahedralizationvhen other surfacesare
taken into account. For instance a featurethat lies neara facet(but not necessarilyin the planeof the
facet)may necessitatéhe useof smallersubfcetsnearthat feature. The algorithmsof this chapteruse
analternatve approachwhereinfacettriangulationsarerefinedin conjunctionwith the tetrahedralization.
Eachfacets triangulationcanchangein responsedo attemptsto improve the tetrahedraof the mesh. The
tetrahedralizatioprocesss not beholderto poordecisionsnadeearlier

Becausehe shapeof afacetis versatile the definition of local featuresizedoesnot generalizestraight-
forwardly. Figure4.4demonstratethedifficulty. Two facetsF’ andG areincidentatasegmentS, separated
by a dihedralangleof almost180°. Thefacetsarenot corvex, andthey may passarbitrarily closeto each
otherin aregionfar from S. Whatis the local featuresizeat the point p? BecauseF’ andG areincident,
a ball large enoughto intersecttwo nonincidentfeaturesmusthave diameteraslarge asthe width of the
prongs. However, the size of tetrahedranearp is determinedy the distanceseparating?” and G, which
couldbearbitrarily small. The straightforvard generalizatiorof local featuresizedoesnot accountfor this
peccadilloof nonconex facets.

To develop a more appropriatemetric, | definea facetregion to be ary region of a facetvisible from
a singlepoint onits boundary (Visibility is definedsolely by andwithin the facetin question.)Two facet
regionson two differentfacetsare saidto be incidentif they are definedby the samepoint. Figure4.5
illustratestwo incidentfacetregions,andthe point thatdefinesthem. Two points,onelying in F andone
lying in G, aresaidto lie in incidentfacetregionsif thereis ary pointonthe sharedooundaryof F' andG
thatis visible from bothpoints. They aresaidto lie in nonincidenfacetregionsif no suchpointexists. (For
higherdimensionameshgenerationthis definitionextendsunchangedo polytopesof higherdimension.)

Similarly, if asegmentS is incidentto afacetF' atasingleverte a, thenS' is saidto beincidentto the
facetregion of F' visible from a. If avertex v is incidentto afacetF’, thenwv is saidto beincidentto the
facetregion of F' visible fromv.

Givenapiecaviselinearcomplex X, | definethelocal featuresizelfs(p) atapointp to betheradiusof
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Figure4.5: Shaded areas are two incident facet regions. Both regions are visible from the indicated point.

A N\

Figure4.6: Two incident facets separated by a dihedral angle of nearly 180°. The definition of local feature
size should not approach zero near v, but it is nonetheless difficult to mesh the region between F and G
near v.

the smallestball centeredht p thatintersectdwo pointsthatlie on nonincidentvertices,segments.or facet
regionsof X. (To berigorous,Ifs(p) is sometimeghe radiusof the largestball thatdoesnt intersecttwo
suchpoints.)

Unfortunately carefulspecificationof which portionsof facetsareincidentdoesnt solwe all the prob-
lemsattributableto noncowex facets.Figure4.6 demonstrateanothedifficulty. Again, two facetsF’ and
G areincidentatasegmentS, separatethy adihedralangleslightly lessthan180°. Oneendpoint of S'isa
reflex vertex of F. Theincidentfacetregionsdefinedby thevertex v have the sameproblemwe encountered
in Figure4.4: thelocal featuresizeat pointp maybemuchlargerthanthedistancebetweerfacetsF’ andG
atpointp.

In this case,however, the problemis unavoidable. Supposeone chooses definition of local feature
sizethatreflectsthe distancebetweenF” andG atp. As p movestowardw, its local featuresizeapproaches
zero,suggestinghatinfinitesimally smalltetrahedraare neededo meshthe region nearw. Intuitively and
practically a usefuldefinitionof local featuresizemusthave a positive lower bound.

Themismatchbetweerthe definitionof local featuresizeproposecereandthe smalldistancebetween
F and@G at p reflectsa fundamentatifficulty in meshingthe facetsof Figure4.6—adifficulty thatis not
presentin Figure4.4. In Figure4.6, it is not possibleto meshthe region betweenF andG at v without
resortingto poorly shapedetrahedra.The facetsof Figure 4.4 canbe meshedentirely with well-shaped
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Figure4.7: In a sufficiently small neighborhood around any vertex, a PLC looks like a set of rays emitted
from that vertex.

tetrahedraMy three-dimensionddelaunayrefinementlgorithmoutlavs inputslike Figure4.6, atleastfor
the purpose®f analysis.

Therearetwo reasonsvhy it makessensdo usevisibility to defineincidentfeatures.First, if a point
p is not visible from a boundarypoint v of the samefacet,theremustbe an edge,notincidentto v, that
separates from p. Secondjf onestudiesa suficiently smallneighborhoodarounda vertex, ary facetor
segmentincidentto the vertex appeargo be a union of raysemanatingrom that vertex, asillustratedin
Figure4.7. Hence thelocal featuresizedoesnot approactzeroarywhere.Incidentally examinationof an
arbitrarily smallneighborhoodroundeachvertex is sufficientto diagnoseroblemdik e thatin Figure4.6,
becausehe only input featuresthatthreaterthe terminationof Delaunayrefinementarethosethat persist
no matterhow smallthetetrahedrdbecome.

Lemmal4,whichstateghatlfs(v) < Ifs(u)-+|uw| for ary two pointsu andv, appliesto thisdefinitionof
localfeaturesizejustasit appliesin two dimensionsTheonly prerequisitdor thecorrectnessf Lemmal4,
besideghetriangleinequality is thattherebe a consistentlefinition of which pairsof pointslie in incident
regions,andwhich do not.

4.1.2 Orthogonal Projections

Frequenthyin this chapterl will usethenotionof the orthogonal projectionof ageometrientity ontoaline
or plane. Givena facetor subficetF' anda point p, the orthogonalprojectionproj (p) of p onto F' is the
point thatis coplanamwith F' andsatisfieshe requirementhattheline p[proj.(p)] is orthogonatto F, as
illustratedin Figure4.8. The projectionexistswhetheror notit fallsin F.

Similarly, the orthogonalprojectionprojq(p) of p ontoa segmentor subsgments is the point thatis
collinearwith S andsatisfiegherequirementhatthe directionof projectionis orthogonato S.

Setsof points,aswell as points, may be projected. If F' andG arefacets,thenproj(G) is the set
{projp(p) : p € G}.
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Figure4.8: The orthogonal projections of points and sets of points onto facets and segments.

4.2 Generalization of Ruppert’'s Algorithm to ThreeDimensions

In this section,| describea three-dimensiondDelaunayrefinementalgorithmthat produceswell-graded
tetrahedraimeshedor ary circumradius-to-shted edgeratio boundgreateithantwo. Improvementdo the
algorithmaremadein later sections.Miller, Talmor, Teng, Walkington,andWang[67] have developeda
relatedalgorithm,whichwill bediscussedh somedetailin Sectior4.5.

4.2.1 Description of the Algorithm

Three-dimensiondDelaunayrefinementakesa facet-boundedL C asits input. Tetrahedralizeéndunte-
trahedralizedegionsof spacanustbe separatedy facetssothat,in thefinal mesh.ary triangularfacenot
sharedby two tetrahedras a subfcet. The algorithmbegins with an unconstrainedelaunaytetrahedral-
ization of the input vertices,momentarilyignoring the input segmentsandfacets. As in two dimensions,
the tetrahedralizations thenrefinedby insertingadditionalverticesinto the mesh,usingan incremental
Delaunaytetrahedralizatiomethodsuchasthe Bowyer/Watsonmethod[12, 93] or an edge/aceflipping
method[52, 78], until all sgmentsandfacetsarepresentindall constraintontetrahedromuality aremet.
Vertex insertionis governedby threerules.

e Thediametal sphee of a subsgmentis the (unique)smallestspherethat containsthe subsgment.
As in the two-dimensionahlgorithm, a subsgmentis encroachedf a vertex lies strictly insideits
diametralsphere,or if the subsgmentdoesnot appearin the tetrahedralization.Any encroached
subsgmentthatariseds immediatelysplit by insertinga vertex atits midpoint. SeeFigure4.9(a).

e Theequatorialsphee of atriangularsubfcetis the (unique)smallestspherehatpasseshroughthe
threeverticesof the subficet. (The equatorof an equatorialspherds the circle definedby the same
threevertices.)A subfcetis encroachedf avertex lies strictly insideits equatoriaspherepr if the
subfcetis expectedto appeaiin the tetrahedralizatiodut doesnot. (More on this shortly) Each
encroachedubficetis normally split by insertinga vertex at its circumcenter However, if a new
vertex would encroactuponary subsgment,it is notinsertedjnstead all the subsgmentsit would
encroachuponaresplit. SeeFigure4.9(b).

¢ A tetrahedrons saidto be skinnyif its circumradius-to-shtes edgeratio is largerthansomebound
B. (By thisdefinition,notall sliversareconsideredkinry.) Eachskinry tetrahedroris normallysplit
by insertinga vertex atits circumcenterthuseliminatingthetetrahedronseeFigure4.9(c). However,
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Figure4.9: Three operations for three-dimensional Delaunay refinement. (a) Splitting an encroached sub-
segment. Dotted arcs indicate where diametral spheres intersect faces. The subsegment and the en-
croaching vertex could each be on the surface or in the interior of the mesh. (b) Splitting an encroached
subfacet. The triangular faces shown are subfacets of a larger facet, with tetrahedra (not shown) atop them.
A vertex in the equatorial sphere of a subfacet causes a vertex to be inserted at its circumcenter. Afterward,
all equatorial spheres (included the two illustrated) are empty. (c) Splitting a bad tetrahedron. A vertex is
inserted at its circumcenter.

if anew vertex would encroachuponary subsgmentor subfcet,thenit is notinserted;instead all

the subsgmentsit would encroachuponaresplit. If the skinry tetrahedroris not eliminatedasa
result,thenall the subficetsits circumcentemould encroactuponaresplit. (A subtlepointis that,
if thetetrahedrons eliminatedby subsgmentsplitting, the algorithmshouldnot split ary subfcets
that appearduring subsgmentsplitting, or the boundspraovenin the next sectionwill not be valid.

Lazy programmerdeware.)

Encroachegubsgmentsaregiven priority over encroachegdubfcetswhich have priority over skinry
tetrahedra.

Thefirst obvious complicationis thatif a facetis missingfrom the meshiit is difficult to saywhatits
subficetsare. With segmentsthereis no suchproblem;if a sggmentis missingfrom themesh,anda vertex
is insertedat its midpoint,oneknows unambiguouslyherethe two resultingsubsgmentsshouldbe. It is
lessclearhow to identify subficetsthatdo notyet exist.

Thesolutionis straightforvard. For eachfacet,it is necessaryo maintainatriangulationof its vertices,
independenfrom thetetrahedralizatiom whichwe hopeits subficetswill eventuallyappearBy comparing
thetrianglesof a facets triangulationagainsthe facesof thetetrahedralizationpne canidentify subficets
thatneedhelpin forcing theirway into the mesh.For eachtriangularsubfcetin a facettriangulation Jook
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Facet

Figure4.10: The top illustrations depict a rectangular facet and its triangulation. The bottom illustrations
depict the facet’s position as an interior boundary of a PLC, and its progress as it is inserted into the tetra-
hedralization. Most of the vertices and tetrahedra of the mesh are omitted for clarity. The facet triangulation
and the tetrahedralization are maintained separately. Shaded triangular subfacets in the facet triangulation
(top center) are missing from the tetrahedralization (bottom center). The bold dashed line (bottom cen-
ter) represents a tetrahedralization edge that passes through the facet. Missing subfacets are forced into
the mesh by inserting vertices at their circumcenters (right, top and bottom). Each of these vertices is
independently inserted into both the triangulation and the tetrahedralization.

for a matchingfacein the tetrahedralizationif the latteris missing,inserta vertex at the circumcenteof
the subficet(subjectto rejectionif subsgmentsareencroached)asillustratedin Figure4.10. The vertex
is insertedinto both the tetrahedralizatiomndthe facettriangulation. Similarly, midpointsof encroached
subsgmentsareinsertednto thetetrahedralizatioandinto eachcontainingfacettriangulation.

In essenceRupperts algorithmusesthe sameprocedurdo recoser sggments.However, the procesof
forming a“one-dimensionalriangulation”is sosimplethatit passesinnoticed.

Which verticesof thetetrahedralizationeedto be consideredn afacettriangulation?t is afact,albeit
somavhat nonintuitive, thatif a facetappeardn a Delaunaytetrahedralizatioras a union of faces,then
the triangulationof the facetis determinedsolely by the verticesof the tetrahedralizatiorthat lie in the
planeof thefacet.If avertex lies closeto a facet,but notin the sameplane,it may causea subfcetto be
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Figure4.11:If a tetrahedron is Delaunay, the circumcircle of each of its faces is empty, because each face’s
circumcircle is a cross-section of the tetrahedron’s circumsphere.

missing(asin Figure4.10), but it cannotaffect the shapeof the triangulationif all subfcetsare present.
Why? Supposea subficetof a facetappearsn the tetrahedralizationThenthe subficetmustbe a faceof
a Delaunaytetrahedron.The subfacets circumcircleis empty becausets circumcircleis a cross-section
of the tetrahedrors empty circumsphereasillustratedin Figure4.11. Therefore,if a facetappearsn a
Delaunaytetrahedralizatignt appearsasa Delaunaytriangulation.Becausdhe Delaunaytriangulationis
unique(exceptin nondgenerateases)yerticesthatdo not lie in the planeof the facethave no effect on
how thefacetis triangulated.

Hence eachseparatelynaintainedfacettriangulationneedonly considewerticeslying in the planeof
thefacet.Furthermorepecaus@achfacetis sgment-boundedandsegmentsarerecovered(in thetetrahe-
dralization)beforefacets eachfacettriangulationcansafelyignoreverticesthatlie outsidethe facet(even
in thesameplane).Therequirementsetforth in Sectiord.1.1ensurghatall of theverticesandsegmentsof
afacetmustbeexplicitly identifiedin theinput PLC. The only additionalverticesto beconsideredrethose
thatwereinsertedon sggmentgo force segmentsandotherfacetsinto themesh.Thealgorithmmaintainsa
list of the verticeson eachsegment,readyto be calleduponwhena facettriangulationis initially formed.

Unfortunatelyif afacettriangulationis notuniquebecaus®f cocircularitydegeneracieghenthefore-
going statementboutextraplanarverticeshaving no effect on the triangulationdoesnot apply To be
specific, supposea facettriangulationhas four or more cocircular vertices,which are triangulatedone
way, whereagthe tetrahedralizatiortontainsa setof facesthat triangulatethe sameverticeswith a dif-
ferent (but also Delaunay)setof triangles,asillustratedin Figure4.12. (If exactarithmeticis not used,
nearly-dgeneratecaseamay teamup with floating-pointroundof error to male this circumstancenore
common.) An aggressie implementatiormight identify thesecasesand correctthe facettriangulationso
thatit matcheghetetrahedralizatiofit is notalwayspossibleto forcethetetrahedralizatioto matchthetri-
angulation).However, insertinga new vertex at the centerof the collective circumcircleis alwaysavailable
asalazyalternatve.

To appreciatewhy | shouldchoosethis ratherunusualmethodof forcing facetsinto the mesh,it is
worth comparingt with the mostpopularmethod[48, 96, 79]. In mary tetrahedrameshgeneratorsfacets
areinsertedby identifying pointswherethe edgesof the tetrahedralizatiorintersecta missingfacet,and
insertingverticesat thesepoints. The perils of sodoing areillustratedin Figure4.13. In theillustration,
avertex is insertedwherea tetrahedralizatiordge(bold dashedine) intersectghe facet. Unfortunately
the edgeintersectghe facetnearoneof the boundingsegmentsof the facet,andthe new vertex createsa
featurethatmay be arbitrarily small. Afterward, the only alternatves areto refinethe tetrahedranearthe
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Figure4.12: A facet triangulation and a tetrahedralization may disagree due to cocircular vertices. This oc-
currence may be diagnosed and fixed as shown here, or a new vertex may be inserted at the circumcenter,
removing the degeneracy.

Figure4.13: One may force a facet into a tetrahedralization by inserting vertices at the intersections of the
facet with edges of the tetrahedralization, but this method might create arbitrarily small features by placing
vertices close to segments.
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(@) (b)

Figure4.14: The relationship between the insertion radii of the circumcenter of an encroached subfacet
and the encroaching vertex. Crosses identify the location of an encroaching vertex having maximum dis-
tance from the nearest subfacet vertex. (a) If the encroached subfacet contains its own circumcenter, the
encroaching vertex is no further from the nearest vertex of the subfacet than /2 times the circumradius of
the subfacet. (b) If the encroached subfacet does not contain its own circumcenter, the encroaching vertex
may be further away.

new vertex to asmallsize,or to move or remove thevertex. Somemeshgeneratorgopewith this problem
by smoothinghe verticeson eachfacetafterthefacetis competelyinserted.

My facetinsertionmethoddoesnotinsertsuchverticesatall. A vertex consideredor insertionsoclose
to as@gmentis rejected anda subsgmentis split instead.This would not necessarilpetrueif edge-acet
intersectionsvere consideredor insertion,becausesuchan intersectionmay be neara vertex lying on
the sggment,andthusfail to encroachuponary subsgments. Subficetcircumcentersare betterchoices
becausehey arefar from the nearestertices,and cannotcreatea nev small featurewithout encroaching
uponasubsgment.

Anotheradwantageof my facetinsertionmethodis thatif a subficetis missingfrom the mesh,there
must be a vertex inside its equatorialsphere,or in a degeneratecase,several verticeson its equatorial
sphere.Hence for the purpose®f analysis missingsubficetsmay betreatedidenticallyto facetsthatare
presenbut encroachedAs in thetwo-dimensionatasethe sameis truefor missingsubsgments.

| shall passimplementatiordifficulties asideto analyzethe algorithm. In analysis however, subficets
presentanothercomplication. It would be nice to prove, in the mannerof Lemmals, thatwheneer an
encroachedubfcetis split atits circumcentertheinsertionradiusof thenewly insertedvertex is noworse
than/2 timessmallerthantheinsertionradiusof its parent.Unfortunatelythisis nottruefor thealgorithm
describedbove.

Considethetwo examplesof Figure4.14.If asubficetthatcontaingts own circumcenteis encroached,
thenthe distancebetweenthe encroachingrertex andthe nearestvertex of the subfcetis no morethan
V2 timesthe circumradiusof the subficet. This distances maximizedif the encroachingertex lies at a
poleof the equatoriasphergwherethe polesarethetwo pointsof the spherdurthestfrom its equator) as
illustratedin Figure4.14(a).However, if asubficetthatdoesnotcontainits own circumcenteis encroached,
thedistanceds maximizedif theencroachingertex lies onthe equatorequidistanfrom the two verticesof
thelongestedgeof the subficet,asin Figure4.14(b).Evenif theencroachingertex is well away from the
equatorits distancefrom the neareswvertex of the subficetcanstill be largerthan V2 timesthe radiusof
theequatoriabphere(l have confirmedthroughmy implementatiorthatsuchcasesio arisein practice.)
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Figure4.15: An encroached subfacet f that contains neither its own circumcenter v nor the projection of
the encroaching vertex p onto the plane containing f.

Ratherthansettlefor a looserguaranteemn quality, onecanmale a smallchangeto the algorithmthat
will yield a+/2 bound. Let f be anencroachedubficetthat doesnot containits own circumcentew, as
illustratedin Figure4.15.Lets andj beverticesof f, with 75 theedgethatseparateg fromv. Let p bethe
vertex thatencroachesponf; p will bethe parentof v if thealgorithmattemptdo insertv.

Let F' be the facetthat containsf. Let proj(p) be the orthogonalprojectionof p onto the plane
containingF' (andhencef). If projx(p) liesonthesamesideof ij asf (or onij), thereis no problem;the
ratio :—” cannotbe greaterthan+/2. However, if projx(p) lies on the samesideof ij asv (asillustrated),
thereis no suchguarantee.

In the latter case however, onecanshawv (with the following lemma)thatthereis someothersubficet
g of F' thatis encroachetby p andcontainsproj, (p). (Therearetwo suchsubfcetsf proj,(p) fallsonan
edge.)Onecanachiere the desirecboundby modifying the algorithmto split g first anddelaythe splitting
of f indefinitely

Lemma 26 (Projection Lemma) Let f be a subfacebf the Delaunaytriangulatedfacet F. Supposehat
f is encoathedby someverte p strictly insidethe equatorialsphee of f, but »p doesnot encioac upon
any subsgmentof F'. Thenprojz(p) falls within the facet ', andp encoahesupona subfacebf F' that
containsprojx (p).

Proof: First, | prove thatproj.(p) fallsinside F', usingsimilar reasoningo thatemplo/edin Lemmal3.
Supposédor the sale of contradictionthatprojz(p) falls outsidethefacetF. Let ¢ bethe centroidof f; c
clearlyliesinside F. Becausaall facetsare segment-boundedhe line sggmentconnecting: to projz(p)
mustintersectsomesubsgments. Let S betheplanethatcontainss andis orthogonalo F, asillustrated
in Figure4.16(a).

Becausef is a Delaunaysubficetof F, its circumcircle(in the planeof F) containsno verticesof F'.
However, its equatorialspheremay containvertices—includingp—and f might not appeaiin thetetrahe-
dralization.

It is apparenthatp andproj (p) lie onthesamesideof S, astheprojectionis definedorthogonallyto F'.
SaythatapointisinsideS if it is onthesamesideof S asc, andoutsideS if it is onthesamesideasp and
projr(p). Becauseahe circumcenteof f liesin F' (Lemmal3), andthe circumcircleof f cannotenclose
the endpointof s (f is Delaunayin F'), the portionof f’s equatorialsphereoutsideS lies entirelyinside
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Figure4.16: Two properties of encroached Delaunay subfacets. (a) If a vertex p encroaches upon a Delau-
nay subfacet f of a facet F', but its projection into the plane containing F' falls outside F, then p encroaches
upon some subsegment s of F' as well. (b) If a vertex p encroaches upon a subfacet f of a Delaunay trian-
gulated facet F', but does not encroach upon any subsegment of F', then p encroaches upon the subfacet(s)
g of F that contains projx(p).

the diametralsphereof s (asthe figure demonstrates)Because is strictly insidethe equatorialsphereof
f, p alsolies strictly within the diametralsphereof s, contradictingghe assumptiornthatp encroachespon
no subsgmentof F'.

It follows thatprojz (p) mustbecontainedn somesubficetg of F'. (Thecontainments notnecessarily
strict; projr (p) mayfall onanedgeinteriorto F', andbe containedn two subficets.)To completethe proof
of thelemma,| shallshav thatp encroachesipong. If f = g theresultfollows immediately soassume

thatf #£ g.

Again, let ¢ bethe centroidof f. Theline sggmentconnecting: to projp(p) mustintersectsomeedge
e of thesubfcetg, asillustratedin Figure4.16(b). Let £ bethe planethatcontainse andis orthogonato
F. Saythata pointis on the g-sideif it is on the samesideof £ asg. Becausedhe triangulationof F' is
Delaunaytheportionof f’'s equatorialsphereon the g-sideis entirely enclosedy the equatoriakphereof
g. Thepointp liesonthe g-sideor in £ (becauserojz(p) is containedn g), andp lies strictly within the
equatorialsphereof f, soit mustalsolie strictly within the equatorialsphereof g, andhenceencroaches
upong. [ |

Thereis onecasenotcoveredby the ProjectionLemma.lf f is missingtheclosesencroachinyertex v
mightlie preciselyontheequatoriabphereof f, andalsolie preciselyonthediametralsphereof s, thereby
failing to encroachs. In this case however, the circumcenteof f preciselycoincideswith the midpointof
s. Hence thealgorithms behaior will be no differentthanif s wereencroachedy v.

Oneway to interpretthe ProjectionLemmais to imaginethatthe facetF is orthogonallyextendedto
infinity, sothateachsubfcetof F' definesaninfinitely long triangularprism(Figure4.17). Eachsubfcets
equatorialspheredominatests prism,in the sensethatthe spherecontainsary pointin the prismthatlies
within the equatorialsphereof ary othersubfcetof F. If avertex p encroachesiponary subfcetof F,
thenp encroachesponthe subficetin whoseprismp is contained If p encroachesponsomesubficetof
F but is containedn noneof the prisms,thenp alsoencroachesponsomeboundarysubsgmentof F'.

In the latter case ary boundarysubsgmentsencroachediponby p aresplit until noneremains. The
ProjectionLemmaguaranteethatary subficetsof F' encroachedponby p areeliminatedin the process.
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Figure4.17: Each subfacet's equatorial sphere dominates the triangular prism defined by extending the
subfacet orthogonally.

On the otherhand,if the vertex p is containedin the prism of a subfcetg, andno subsgmentsare
encroachedthen splitting ¢ is a good choice. Several new subficetswill appearat leastone of which
containsproj, (p); if this subBcetis encroachedthenit is split aswell, and so forth until the subfcet
containingprojx(p) is not encroached.The ProjectionLemmaguaranteeshatary othersubfcetsof F
encroachedponby p (thosethatdo not containprojz(p)) areeliminatedin the process.

4.2.2 Proofof Termination

The proof of terminationfor the three-dimensionataseis similar to that of the two-dimensionalase.
Assumethatin theinput PLC, ary two incidentsegmentsare separatedby an angleof 60° or greater If
a sgmentmeetsa facetat onevertex, andthe projectionof the segmentonto the facet(usinga projection
directionorthogonatto the facet)intersectghe interior of the facet,thenthe angleseparatinghe segment
from thefacetmustbe greaterthanarccos ﬁ = 69.3°. If theprojectionof the sgmentdoesnotintersect
theinterior of thefacet,the ProjectionLemmaimpliesthatno vertex onthe segmentcanencroachuponary
subfcetof thefacetwithout alsoencroachingipona boundarysegmentof the facet,sothe 60° separation
betweersggmentds sufficient to ensureermination.

The conditionfor two incidentfacetsis more complicated. If both facetsare convex and meetat a
sggment,thenit is sufiicient for thefacetsto be separatedby a dihedralangleof 90° or greater In general,
thetwo facetamustsatisfythefollowing projectioncondition

For ary vertex v wheretwo facetsF' andG meet,let vis, (F') bethefacetregion of F visible from v,
anddefinevis, (G) likewise. By definition,vis, (F') andvis,(G) areincidentfacetregions. No pointof the
orthogonalprojectionof vis, (F') onto G mayfall in theinterior of vis,(G). Anotherway to word it is to
saythatvis, (F') is disjointfrom theinterior of the prismformedby projectingvis, (G) orthogonally(recall
Figure4.17). Formally, for ary pointv on F' N G, the projectionconditionrequiresthat proj; (vis, (F')) N
interior(vis,(G)) = @. This conditionis equivalentto the conversecondition,in which F and G trade
places.



98 JonatharRichardShevchuk

The payof of thisrestrictionis that,by Lemma26, no verte in vis, (F') mayencroactupona subfcet
containedentirely in vis,(G) without also encroachingupona subsgmentof G or a subficetof G not
entirelyin vis,(G). Thecorverseis alsotrue. The purposeof this conditionis to preventary vertex from
splitting a subfcetin anincidentfacetregion. Otherwise subfcetsmight be split to arbitrarily smallsizes
throughmutualencroachmerih regionsarbitrarily closeto v.

The projectionconditionjust definedis alwayssatisfiedby two facetsseparatedby a dihedralangleof
exactly 90°. It is alsosatisfiedby facetsseparatedby a dihedralanglegreaterthan90° if the facetsmeet
eachotheronly atsggmentavhoseendpointarenotreflex verticesof eitherfacet.(RecallFigure4.6,which
depictstwo facetsthat are separatedby a dihedralanglegreaterthan90° but fail the projectioncondition
because is areflex vertex of F'.)

Thefollowing lemma,whichextendsLemmal5to threedimensionsis truefor theDelaunayrefinement
algorithmdescribederetoforeif oneis carefulneverto splitanencroachedubficetf thatcontainseither
its own circumcentemor the projectionproj;(p) of the encroachingvertex p. (Even more liberally, an
implementatiorcaneasilymeasurdheinsertionradii of the parentandits potentialprogely, andmay split
f if thelatteris nolessthan\%2 timestheformer)

Theinsertionradiusis definedasbefore:r, is thelengthof the shortesedgeincidentto » immediately
afterv is inserted.The parentof a vertex is definedasbefore,with the following amendmentslf v is the
circumcenteof a skinry tetrahedronits parentp(v) is the mostrecentlyinsertedendpointof the shortest
edgeof thattetrahedronIf v is the circumcentef an encroachedubficet,its parentis the encroaching
vertex closesto v (whetherthatvertex is insertedor rejected).

Lemma 27 Letwv be a vertex of themesh,andlet p = p(v) beits parent, if oneexists. Theneitherr, >
Ifs(v), or r, > Crp, Whee

e C = B if v isthecircumcentenf a skinnytetrahedon,

o C = % if v is the midpointof an encoaded subsgmentor the circumcenterf an encoaded
subfacetandp is rejectedor insertion,

e C = -1 if v andp lie onincidentsggmentssepaatedby an angleof «, or if v liesin theinterior

2cos

of a facetincidentto a sggmentcontainingp at ananglea, whee 45° < a < 90°,
e C =sina if v andp are positionedasin the previouscase but with o < 45°, and

e C = Si‘}g if v andp lie within facetregionsthatare incidentat a sggments, if projg(p) lieswithin S
(this caseis includedonly to demonstate whyit shouldbe avoided),

or v andp lie within incidentfacetregionsthat do not meetat a sggmentS for which projg (p) lieswithin S.
For this case(which shouldalsobeavoided),| offer no analysis.

If onethinks of a subsgments midpointasits circumcenterone canseethis lemmaas having a hi-
erarchicalform: if the circumcenteif a simplex encroachesipona lowerdimensionakimple, thenthe
circumcenteis rejectedfor insertion,andthe circumcentef the lower-dimensionakimplex hasaninser
tion radiusup to v/2 timessmallerthanthatof the rejectedcircumcenter|f the circumcenteof a simplex
encroachesponanothersimplex having equalor higherdimensionthenthe circumcenteof the latterhas
aninsertionradiusthatdependsn partonthe anglebetweerthetwo simplices.l expectthis framavork to
generalizéo higherdimensionsandwill elaboraten Sectiord4.7.
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Proof of Lemma 27: If v is aninput verte, the circumcenterf a tetrahedronor the midpoint of an
encroachedubsgment,thenit maybetreatedexactly asin Lemmal5. Onecasefrom thatlemmais worth
briefly revisiting to shav thatnothingessentiahaschanged.

If v isinsertedatthemidpointof anencroachedubsgments, andits parentp = p(v) is acircumcenter
(of atetrahedroror subficet)thatwasconsideredor insertionbut rejectedbecausét encroachespons,
thenp lies strictly insidethe diametralsphereof s. Becausehe circumsphere/circumciee centeredat p
containsno vertices,andin particulardoesnot containthe endpointsof s, r,, > %; seeFigure4.18(a)for
anexamplewheretherelationis nearlyequality Notethatthe changerom circles(in thetwo-dimensional
analysis)to spheregnakeslittle difference. Perhapghe clearestway to seethis is to obsere thatif one
takes a two-dimensionakross-sectiorthat passeshroughs andp, the cross-sections indistinguishable
from thetwo-dimensionatase (The sameargumentcanbe madefor the casewherep andw lie onincident
segments.)

Only the circumstancevherew is the circumcenteof anencroachedubficetf remains.Let F' bethe
facetthatcontainsf. Therearefour casego consider

e If theparentp is aninputverte, or liesin a sggmentor facetregion notincidentto ary facetregion
containingy, thenlfs(v) < ry.

e If p is atetrahedrortircumcentethatwasconsideredor insertionbut rejectedbecausét encroaches
uponf, thenp lies strictly insidethe equatorialsphereof f. Becauseéhetetrahedralizatiois Delau-
nay the circumsphereenteredat p containsno vertices soits radiusis limited by the nearesvertex
of f. By assumptionf containseitherits own circumcenterr projs(p). In the formercase,’® is
minimizedwhenp is atthepole of f's equatoriakphereasillustratedin Figure4.18(b).In thelatter
case,:; is minimizedwhenproj;(p) is the intersectionof f’s longestedgeandthe bisectorof its

r

second-longestdge asillustratedin Figure4.18(c).In eithercasey, > %

¢ If p wasinsertedon asggmentthatis incidentto F' atonevertex a, separatethy anangleof o > 45°
(Figure4.18(d)),the sharedvertex a cannotlie insidethe equatoriakphereof f becausehefacetF
is Delaunay (Thisis trueevenif f doesnotappeatin thetetrahedralizatioh Becausehe segment
andfacetareseparatethy anangleof «, theangleZpav is atleasta. Becausef is encroachedipon
by p, p liesinsideits equatorialsphere.(If f is not presenin the tetrahedralizatiory mightlie on
its equatorialspherein a degeneratecase.) Analogouslyto the caseof two incidentsegments(see
Lemmals),if o > 45°, then’ is minimizedwhentheradiusof the equatorialspheres r, = |vp|,
andp I|es onthesphere(lIf theequatorlalspheraNereary smallerit couldnotcontainp.) Therefore,
Ty > If a < 45°, then® |s minimizedwhenv = proj;(p); thereforer, > rpsina.

QCosa

e If p andv lie within two facetreglonsthat areincidentat a sggment S, the analysisis lessopti-
mistic than the previous casebecausehereis no vertex that senes the function that a senesin
Figure4.18(d). As Figure4.19shaws, the equatorialspherecenteredat v is not constrainedy the
sggmentS (althoughit is constrainedy theverticeson S).

To find the minimum possiblevalue of :—; considerthe point projg (p), which (by assumption)ies

on somesubsgments of the sggmentS. Let d be the distancefrom p to projg(p). Because does

notencroachupons (otherwisethealgorithmwould split s in preferenceo f), thesmallesipossible

valueof 4 is .
Tp V2

In theabsencef ary constraintsy,, = |vp| is minimizedwhenv = proj(p), with theline sggment

vp orthogonato F. With this choiceof v, theangleZp[projs(p)]v is preciselythe dihedralanglea
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(a) (b)

(©)

Figure4.18: The relationship between the insertion radii of a child and its parent. (a) When a subsegment
is encroached upon by a circumcenter, the child’s insertion radius may be arbitrarily close to a factor of v/2
smaller than its parent’'s. (b) When a subfacet that contains its own circumcenter is encroached upon by
the circumcenter of a skinny tetrahedron, the child’s insertion radius may be arbitrarily close to a factor of
V2 smaller than its parent’s. (c) A bound better than /2 applies to a subfacet that does not contain its own
circumcenter, but does contain the projection of the encroaching vertex. (d) When a subfacet is encroached
upon by the midpoint of a subsegment, and the corresponding facet and segment are incident at one vertex,
the analysis differs little from the case of two incident segments.

separatinghe two facets.Hence the minimumvalueof ¢ is sina. Combiningthis with theresult
of the previous paragraph,:—; > Sf/‘;. Notethat, unlike the casewherea segmentmeetsa facetor
anothersggment theworstcases notachiezedwith p ontheequatoriasphereof f for ary angleless
than90°. [ ]

Lemmaz27 providesthe informationone needso ensurethat Delaunayrefinementwill terminate.As
with thetwo dimensionahlgorithms thekey is to preventary cycle whereinmeshverticesbegetchainsof
descendantwith eversmallerinsertionradii (Figure4.20).

Meshverticesaredividedinto four classesinput vertices(which cannotcontrilute to cycles),vertices
insertedinto segments verticesinsertedinto facetinteriors,andfree verticesinsertedat circumcenter®f
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Figure4.19: When two incident facet regions are separated by an angle less than 90°, and a subfacet of
one is encroached upon by a vertex in the interior of the other, the child’s insertion radius r, may be smaller
than its parent’s insertion radius r,. Hence, a 90° minimum separation is imposed.
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Figure4.20: Dataflow diagram illustrating the worst-case relation between a vertex's insertion radius and
the insertion radii of the children it begets. If no cycle has a product smaller than one, the three dimensional
Delaunay refinement algorithm will terminate.
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tetrahedra.As we have seen free verticescanfatherfacetverticeswhoseinsertionradii are smallerby a
factorof v/2, andthesefacetverticesin turn canfathersegmentverticeswhoseinsertionradii aresmallerby
anotherfactorof v/2. Hence to avoid spirallinginto theabyssijt is importantthatsegmentverticescanonly
fatherfreeverticeswhoseinsertionradii areat leasttwice aslarge. This constrainfixesthe bestguaranteed
circumradius-to-shagstedgeratioat B = 2.

The needto preventdiminishingcyclesalsoengendershe requirementhatincidentsegmentsbe sep-
aratedby anglesof 60° or more,just asit did in thetwo dimensionatase.A segmentincidentto a facet
mustbe separatetby anangleof atleastarccos 5 \/ﬁ = 69.3° sothatif avertex onthe sggmentencroaches

upona subficetof thefacet,thechild thatresultswill have aninsertionradiusatleasty/2 largerthanthatof
its parent.(Recallfrom Lemma27 thatr, > 5—2—.)

2cosa”

Theorem 28 Let Ifs,,;, be the shortestdistancebetweerntwo nonincidententities(vertices,segments,or
facets)of theinput PLC. Supposéehat anytwo incidentsegmentsare sepaatedby an angleof at least60°,
anytwo incidentfacetregions satisfythe projection condition and any sgmentincidentto a facetat one
verte is sepaatedfromit by an angleof at leastarccos 5 f or satisfieghe projectioncondition.

Suppose tetrahedon is consideedto beskinnyif its circumiadius-to-shogstedge ratio is larger than
B > 2. Thethree-dimensionaDelaunayrefinementlgorithm describedabove will terminate with no
tetrahedalization edge shorterthan|fs ;.

Proof: Supposdor the sale of contradictiornthatthe algorithmintroducesoneor moreedgesshorterthan
Ifsmin iNto the mesh. Let e be the first suchedgeintroduced. Clearly the endpointsof e cannotboth be
inputvertices nor canthey lie on nonincidensegmentsor facetregions.Let v bethemostrecentlyinserted
endpointof e.

By assumptionno edgeshorterthanlifs,;, existedbeforev wasinserted.Hence for ary ancestow of
v, 7q > lfSmin. Letp = p(v) bethe parentof v, let g = p(p) bethegrandparentf v (if oneexists),andlet
h = p(g) bethegreat-grandparemf v (if oneexists). Becausef the projectioncondition,» andp cannot
lie onincidentfacetregions. Considetthefollowing cases.

e If visthecircumcenteof askinry tetrahedronthenby Lemma27,r, > Br, > 2r,.

¢ If v isthemidpointof anencroachedubsgmentor the circumcenteof anencroachedubficet,and
p is thecircumcentepof a skinry tetrahedronthenby Lemma27,r, > %rp > \%rg > \/irg.

e If v is the midpointof an encroachedubsgment,p is the circumcentef an encroachedubfcet,
andg is thecircumcenteof askinry tetrahedronthenby Lemma27,r, > \L@rp > %rg > grh > .

¢ If v andp lie onincidentsggmentsthenby Lemma27,r, > . Becausex > 60°, r,, > ry,.

- 2cos

e If v isthecircumcentenf anencroachedubhcetandp lieson asegmentincident(atasingleverte<)
to thefacetcontainingv, thenby Lemma27,r, > . Becausex > arccos 7, Ty > \/2r,.

- 2cos

e If v is the midpointof anencroachedubsgment,p is the (rejected)circumcenteof anencroached
subficet,and g lies on a sgmentincident (at a single vertex) to the facetcontainingp, then by

1 1 1
Lemmaz27,r, > 757p > Wicosalo" Becausex > arccos 33 T > Ty,
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e If v is themidpointof anencroachedubsgment,andp hasbeeninsertedon a nonincidentsegment
or facetregion, thenby the definitionof parentpv is the shortesedgeintroducedby theinsertionof
v. Because andv lie on nonincidententities,p andv areseparatedy a distanceof at leastlfs iy,
contradictinghe assumptiorthate haslengthlessthanlfs iy .

In thefirst six casesy, > r, for someancestor of p in themesh.It follows thatr, > Ifs.;,, contradicting
theassumptiorthate haslengthlessthanlfs,,;,. Becausao edgeshorterthanlfsi, is everintroducedthe
algorithmmustterminate. [ ]

4.2.3 Proof of Good Grading

As with the two-dimensionahlgorithm, a strongerterminationproof is possible,shawving that all edges
in the final meshare proportionalin lengthto the local featuresizesof their endpointsandthusensuring
nicely gradedmeshes.The proof makesuseof Lemmal7, which generalizesinchangedo threeor more

dimensions. Recallthat the lemmastatesthatif r, > Cr, for somevertex v with parentp, thentheir

Ifs-weightedvertex densitiesarerelatedby theformulaD, = lfS(v) <1+ %.

Ty

Lemma 29 Supposehe quality bound B is strictly larger than 2, and all anglesbetweenseggmentsand
facetssatisfythe conditiondlistedin Theoem28, with all inequalitiesreplacedby strict inequalities.

Thee exist fixed constantsDy > 1, Dr > 1, and Dg > 1 sud that, for any vertex v inserted(or
rejected)at the circumcenteof a skinnytetrahedon, D,, < Dr; for anyvertex v inserted(or rejected)at
the circumcenteof an encoadedsubfacetD, < Dp; andfor anyvertex v insertedat the midpointof an
encoahedsubsgment,D, < Dg. Hence theinsertionradiusof everyvertex is proportionalto its local
featue size

Proof: Considerary non-inputvertex v with parentp = p(v). If p is aninputverte, thenD,, = liS(p) <1

T

p
Otherwiseassumédor the sale of inductionthatthelemmais truefor p. Hence,D, < max{Dr, Dr, Dg}.

First, suppose is insertedor consideredor insertionat the circumcenteof a skinry tetrahedronBy
Lemma27,r, > Br,. Thereforepy Lemmal7,D, < 1+ 224Pr.Dr.Ds} |t follows thatonecanprove
thatD, < Dt if Dy is chosersothat

max{Dr,Dp,Dgs}
B .

Dr>1+ 4.1)

Secondsuppose is insertedor consideredor insertionatthecircumcenteof asubfcetf. If its parent
p is aninput vertex or lies on a sggmentor facetregion not incidentto the facetregion containingw, then
Ifs(v) < ry, andthetheoremholds. If p is the circumcenteof a skinry tetrahedror(rejectedfor insertion

becausé encroachesponf), r, > % by Lemma27,soby Lemmal7,D, <1+ V2Dr.

Alternatively, if p lies onasementincidentto thefacetcontainingf, thenr, > 26’;”” by Lemma27,

andthusby Lemmal7,D, < 1+ 2Dg cos . It follows thatonecanprovethat D, < Dy if Dg ischosen
sothat

Dr
Dy

1++V2Dr, and (4.2)
1+ 2Dg cosa. (4.3)
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Third, suppose is insertedat the midpointof a subsgments. If its parentp is aninput verte or lies
on a segmentor facetregion not incidentto the sggmentcontainings, thenlfs(v) < r,, andthetheorem
holds.If p is thecircumcenteof askinry tetrahedromr encroachedubficet(rejectedor insertionbecause

it encroachespons), r, > % by Lemma27,soby Lemmal7,D, < 1 + v/2 max {Dr,Dp}.

Alternatiely, if p andv lie onincidentsggmentsthenr, > 2(;% by Lemma27,andthusby Lemmal7,
D, <1+ 2Dg cos a. It follows thatonecanprovethatD, < Dg if Dg is chosersothat

Ds > 1++2max{Ds,Dr} and (4.4)
Ds > 1+4+2Dgcosa. (4.5)

If the quality boundB is strictly largerthan2, conditions4.1,4.2,and4.4 aresimultaneoushgatisfied
by choosing

B+1++2 (1+v2)B++2 (3+V2)B
Dr=——F—F—, Dr = ; Dg = —F—7F—.
B-2 B-2 B-2
If thesmalleseanglears betweerary facetandary segmentis strictly greatethanarccos ﬁ = 69.3°,
conditions4.3and4.4 maybe satisfiedby choosing
1+ 2cosars 14++2
F Dg

_1—2\/§cosapg’ _1—2\/§cosapg’

if thesevaluesexceedthosespecifiedabore. In this case,adjust D upward if necessaraccordingto
condition4.1.

If thesmallesiangleass betweertwo segmentss strictly greaterthan60°, condition4.5 may be satis-

fied by choosing
1

~ 1—2cos ass’
if this valueexceedghosespecifiedabore. In this caseadjustD; and Dy upwardif necessargccording
to conditions4.1and4.2. [ |

Dgs

Notethatas B approache®, aggs approaches0°, or arg approachesrccos ﬁ thevaluesof Dr,
Dpg, andDg approachnfinity.

Ifs(v)
Dg+1"

Theorem 30 For anyvertex v of the outputmeshthedistanceto its neaestneighboris at least
Proof: Inequality4.4 indicatesthat Dy is largerthan Dy and Dr. Theremaindeiof the proofis identical
to thatof Theoreml9. [ |

To provide an example,supposeB = 2.5 andtheinput PLC hasno acuteangles. Then Dy = 9.8,
Dp =14.9, andDg = 22.1. Hence thespacingof verticesis atworstabout23 timessmallerthanthelocal
featuresize.

As Figure4.21shaws, thealgorithmperformsmuchbetterin practice. Theupperleft meshis theinitial
tetrahedralizatioafterall ssgmentsandfacetsareinsertecandunwantedetrahedrdave beerremovedfrom
the holes. (Somesubsgmentsremainencroachedecauseluring the segmentandfacetinsertionstages,
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Initial tetrahedralizatioaftersggmentandfacet B =14, 0pin = 5.42°, Opax = 171.87°,
insertion.54 vertices,114tetrahedra. hmin = 1.25, 110vertices,211tetrahedra.
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B = 1.05, Omin = 1.01°, 00 = 178.21°, B =1.04, Omin = 1.01°, 010 = 178.21°,
hmin = 0.24, 2997vertices,11717tetrahedra. hmin = 0.13, 5884vertices,25575tetrahedra.

Figure4.21: Several meshes of a 10 x 10 x 10 PLC generated with different bounds (B) on quality. Below
each mesh is listed the smallest dihedral angle 6...i., the largest dihedral angle 6,,.«, and the shortest edge
length hmin. The algorithm does not terminate on this PLC for a bound of B = 1.03.
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Figure4.23: A counterexample demonstrating that the three-dimensional Delaunay refinement algorithm is
not size-optimal.

my implementatioronly splitsan encroachedubsgmentif it is missingor it is partof the facetcurrently
beinginserted.) After all encroachedubsgmentsandsubficetshave beensplit (upperright), the largest
circumradius-to-shagstedgeratio is alreadylessthan1.4, which is muchbetterthanthe proven boundof
2. Theshortestedgelengthis 1.25, andlfs,in = 1, sothe spectreof edgelengths23 timessmallerthan
thelocalfeaturesizehasnot materialized As thequality boundB decreaseshe numberof elementsn the
final meshincreasegracefullyuntil B dropsbelowv 1.05. At B = 1.03, thealgorithmfails to terminate.

Not surprisingly the objectdepictedis slightly harderto tetrahedralizef the unwantedtetrahedraare
notremovedfrom the holesbeforerefining. At B = 1.06, thealgorithmfails to terminate.

Figure4.22 offersa demonstratiomf the gradingof atetrahedralizatiogeneratedy Delaunayrefine-
ment. A cubehasbeentruncatedat onecorner cutting off a portion whosewidth is one-millionththat of
thecube.Althoughthis meshsatisfiesa quality boundof B = 1.2, goodgradingis very muchin evidence.

Unfortunately the proof of good gradingdoesnot yield a size-optimalityproof asit did in the two-
dimensionalcase. Gary Miller and Dafna Talmor (private communicationhave pointedout the coun-
terexampledepictedin Figure4.23. Insidethis PLC, two sggmentspassvery closeto eachotherwithout
intersecting. The PLC might reasonabl\be tetrahedralizedavith a few dozentetrahedrahaving bounded
circumradius-to-shagst edgeratios, if thesetetrahedranclude a sliver tetrahedrorwhosefour vertices
arethe endpointsof the two internalseggments.However, the bestmy Delaunayrefinementlgorithmcan
promiseis to fill theregionwith tetrahedravhoseedgelengthsareproportionalto the distancebetweerthe
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two sggments.Becauseéhis distancemaybearbitrarily small,the algorithmis not size-optimal.

4.3 DelaunayRefinementwith Equatorial Lenses

In thissection| improve the Delaunayrefinementlgorithmby replacingequatoriabpheresvith equatorial
lenseswhicharesimilarto the Chav-inspireddiametralensesntroducedn Section3.4. Thismodification
ensureghatthe algorithmterminatesandproduceswvell-gradedmeshedor ary boundon circumradius-to-

shortesedgeratiogreaterthan% = 1.63, whichis asignificantimprovementover the boundof two given

for Delaunayrefinementith equatoriakpheres.

4.3.1 Description of the Algorithm

My lens-basedlgorithmbeginswith theDelaunaytetrahedralizatioof afacet-bounde®LC, andperforms
Delaunayrefinementwith locked subsgmentsand subfaicets. A constrainedelaunaytetrahedralization
would be idealif onecould be generatedbut this is not generallypossible,so the algorithm attemptsto
recover all missingsegmentsfirst, andthenall missingfacets,locking eachsubsgmentand subficetas
soonasit appears.

Justasin the three-dimensionajeneralizatiorof Rupperts algorithm, subsgmentsare protectedby
diametralspheres.Missing subficetsare protectedby equatorialspheresbut ary subficetthatis present
in the tetrahedralizatiols protectedonly by an equatoriallens, illustratedin Figure4.24. The equatorial
lensof asubfcetf is theintersectiorof two ballswhosecenterdie on eachothers boundariesandwhose
boundariesntersectat the circumcircleof f. If r; is the circumradiusof f, the definingballs have radius
2Tf/\/§, andtheir centerdlie on the line orthogonalto f throughits circumcentera distanceof rf/\/ﬁ
from f. An equatoriallensis the revolution of a diametrallensaboutits shorteraxis. Unlike in the two-
dimensionatasejt doesnotseemnto bepossibleto achieve aresultanalogouso Lemma21 for alensangle
smallerthan30°, sol shallusealensangleof 30° throughout.

The subfacet f is consideredor splitting if thereis a vertex, or an attemptto inserta vertex, inside
or on the boundaryof its equatoriallens, unlessanothersubficetobstructsthe line of sight betweenthe
encroachingertex andthecircumcenteof f. (Throughouthissectionyisibility is deemedo beobstructed
only by interposingsubficets,and only if they are presentin the mesh,andthuslocked.) As usual,if
the circumcenterof f encroachesiponary subsgments,the encroachedgubsgmentsare split instead.
However, if f is split, all freevertices(but notinputverticesor verticesthatlie on segmentsor facets)that
lie in theinterior of the equatoriakphereof f andarevisible from the circumcenteof f aredeleted.Then,
a new vertex is insertedat the circumcenteof f, asillustratedin Figure4.25. The Delaunaypropertyis
maintainedhroughoutgxceptthatlocked subficetsarenotflipped. Hence thefinal meshis notguaranteed
to betruly Delaunaybut is effectively constrainedelaunay

As in two dimensionsthe adwantageof lensess thatwhena vertex v with parentp is insertedat the
centerof alens,its insertionradiusis boundedby theinequalityr, > r, cos 30° = @rp. As in thethree-
dimensionageneralizatiof Rupperts algorithm,theboundis only ensuredf thealgorithmrefusedo split

ary subfacetthat containsneitherits own circumcentemor the orthogonalprojectionof the encroaching
vertex.

Hereanew problemarises.SupposafacetF’ containsasubfcetf whoseequatorialensis encroached
uponby avertex p, but f containsneitherits own circumcentenor projx(p). Let g bethesubfcetof F' that
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Sideview. Top view.

Figure4.24: The equatorial lens (shaded) of a triangular subfacet is the intersection of two identical balls
whose boundaries meet at the subfacet’s circumcircle. Each ball's center lies on the surface of the other
ball.

Figure4.25: At left, the circumcenter of the bold tetrahedron encroaches upon the equatorial lens of the
bold subfacet. At right, all vertices in the subfacet’s equatorial sphere have been deleted, and a new vertex
has been inserted at the subfacet's circumcenter.
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containgrojx(p). Onewouldlike to have aguaranteesimilar to the ProjectionLemma,thatthe equatorial
lensof g is encroachediponby p. Unfortunatelythereis no suchguarantee.

Fortunately the next sectionwill shaw thattheinequalityr, > @rp holdsif v is the circumcenteof
g, evenif g is notencroachedHence therule governingsubficetencroachmeniemainsunchangedif an
encroachedubficetcontainsneitherits own circumcentenor the orthogonaprojectionof theencroaching
vertex, thenthe subficetcontainingthe orthogonalprojectionis splitinstead.

The guaranteesfferedby the ProjectionLemmaarejust asusefulfor understandindpelaunayrefine-
mentwith equatorialensesasthey werewith equatoriabpheresSuppose encroacheapontheequatorial
lensof f. Becausdhe equatoriallensof f is containedn the equatorialsphereof f, p encroachesipon
f'sequatoriabphereaswell. Becausehe modifiedalgorithmstill usesdiametralsphereso protectsubse-
mentstheProjectionLemmaimpliesthateitherp encroachesponasubsgment,or projz(p) lieswithin F.
In theformercasetheencroachedubsgmentis splitinsteadof f; in thelattercasetheProjectionLemma
guaranteethatsomesubgcetof F' containgrojz(p). Furthermorethe ProjectionLemmaguaranteethat
if onerepeatedlplitsthesubBcetcontainingoroj (p), F will eventuallycontainno subfcetsvhoseequa-
torial spheresareencroachedandthusalsoguaranteeshat 7' will eventuallycontainno subficetswhose
equatorialensesareencroached.

4.3.2 Proof of Termination and Good Grading

The three-dimensionaDelaunayrefinementalgorithmwith equatoriallenseslike Chew’s algorithm, re-
quiresfor its analysighattheinsertionradiusr. of thecircumcenter: of askinry tetrahedrorn beredefined
to betheradiusof ¢'s circumsphereA verte< w maylie in ¢’s circumspherebut only if thereis somelocked
subficetf separatingw from ¢. Eitherc liesonthesamesideof f ast, andthusnever interactswith w, or
c liesonthe samesideof f asw, but is notinsertedbecausédt encroachesipon f. Eitherway, ¢ doesnot
participaten anedgeshorterthanr.. Doesthenotionof separatiorbecomeambiguouseartheboundaries
of afacet?No, becauséacetsaresggment-boundedindall subsgmentsareprotectedy diametrakpheres.

Whena subfcetf is encroachedput no subsgmentis encroachedhe algorithmmay chooseo split
the subfcetg that containsproj, (p). Thefollowing lemmashaws thatthis choiceproducesa new vertex
whoseinsertionradiusis notmuchsmallerthanthatof its parent.

Lemma 31 Let f bea subfacebfafacetF. Letp bea tetrahedon circumcentethatencioacesuponthe
equatoriallensof f, andwhoseprojectionproj.(p) falls in somesubfacey of F' (whee g mayor maynot
be f). Supposéhatall verticesin the equatorialsphee of g are deleted(exceptthosenot visible fromthe
circumcentepof g), anda vertex v is insertedat thecircumcenteof g. Thenr, > @rp.

Proof: Becauseall verticesvisible from v are deletedfrom the equatorialsphereof g, r, is equalto the
radiusof thatequatorialsphere.(Verticesnot visible from v cannotaffect v’s insertionradius,becausean
edgecannotconnecthemto v.)

Without lossof generality definea coordinatesystemorientedsothat F' lies in the z-y plane,projz(p)
hasthe samey-coordinateasthe circumcenter of f (for instance poth might lie on the z-axis),andp is
above F, asillustratedin Figure4.26.

Let O bethelower of thetwo ballsthatdefinetheequatorialensof f. Let C' bethecenterof O, andlet
R betheradiusof O. Theline sggmentCc is alignedwith the z-axisand haslength%. Theline sgment
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proj:(p)

(b) Sideview. (c) Topview.

Figure4.26: Three views of an encroached equatorial lens.

c[projx(p)] is alignedwith the z-axis;let m beits length. Theline sggmentp[proj,(p)] is orthogonato F,
andthusalignedwith the z-axis;let h (for “height”) beits length,asFigure4.26(b)illustrates.

Draw achordof the circumcircleof f whosemidpointis proj,(p). As Figure4.26(c)shavs, thechord
is orthogonatto the line segmentc[proj, (p)], andthusalignedwith they-axis. Let 2d bethelengthof the
chord,sothatprojx(p) bisectsthe chordinto two line sggmentsof lengthd.

The significanceof d is thatit is a lower boundon r,, wherew is the circumcenteiof the subfcetg.
Why? Recallthatg containsproj,(p). However, because” is Delaunay noneof the verticesof g can
lie insidethe circumcircleof f. The circumcircleof g mustbe large enoughthatit cansatisfyboththese
constraintsthe smallesipossiblesuchcircumcircleis outlinedin bold in Figure4.26(c),andhasradiusd.

As Figure 4.26(b) malkes apparentthe z-coordinateof p differs from that of C' by m, andtheir z-
coordinatediffer by § + h. Because encroachesiponthe equatoriallensof f, p liesinsideor on the
boundaryof O. Hence by PythagorasLaw,

2
m? + (§+h) < R?.

Expandinggives

2
m? + (?) + Rh+ h? < R2. (4.6)
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proj. (p)

Figure4.27:Because p lies in the diametral lens, its height above the plane cannot be more than % times
the circumradius of the triangle that contains projx(p).

Eachendpointof the chordin Figure4.26(c)lies ontheboundaryof O, soby PythagorasLaw,

2
m? 4 d?* + (g) = R% (4.7

Subtractingequationd.7 from Inequality4.6 gives
Rh + h? < d°.

As Figure4.26(b)shaws, it is alwaystruethath < %, becausé¢he equatorialensof f doesnotextend
furtherthan% from the planecontainingF'. Recallthatd is alower boundonr,. Combiningthesebounds,

r2 > d* > Rh+ h?® > 3h%.

Let w bethevertex of g nearesprojn(p), asillustratedin Figure4.27. Becauserojx(p) lies within ¢
andthe circumradiusof g is r,, thelength|w[projx(p)]| is at mostr,. Thevertex p is the circumcenteof
a constraineelaunaytetrahedronbecauséehe circumspheref this tetrahedrorcontainsno vertex of F,
rp canbe no greaterthanthe distancelpw|. This distancecanbe computedby PythagorasLaw, because
w([projz(p)] is orthogonato p[proj.(p)] (theformerliesin F', whereashelatteris orthogonato F’). Hence,

2
Tp

lw[projx(p)]* + |p[projx(p)]|*
7"12, + h?
3.

2

VANVAN

IN

Therefore, Tp

IN

Ty,

andtheresultfollows. [ |

Lemma31is only applicableif all the verticesin the equatorialsphereof g thatarevisible from v are
deleted.If somesuchvertex u is notdeletedthenw is aninput vertex or lies on a subsgmentor subficet.
The verticesu andwv cannotlie on incidentfeatures,becausef the 60° minimum angle betweeninput
entitiesandthe projectionconditionbetweeninput facets. (The edgeof a lensrisesfrom the planeat an
angleof 60°.) Hence,thelocal featuresizeatv is at most|uv|, andr, > Ifs(v), asLemmaz27 indicates.
Chooseheinput vertex, sgmentvertex, or facetvertex closesto v to bethe parentof v.

Verticesareonly deletedwhena subfcetis split, andverticesarenever deletedfrom subfcets. Theo-
rem 28 setsa lower boundon the lengthof eachfacetedge,so only a finite numberof subfcetsplits can
occur After thelastsubfcetsplit, nomorevertex deletionsoccur soterminationis ensuredy Theoren?28.
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Theorem 32 Suppos¢hequality boundB is strictly larger than % andall anglesbetweersggmentsand
facetssatisfythe conditiondistedin Theoem28, with all inequalitiesreplacedby strict inequalities.

Thee exist fixedconstantsDr > 1, Drp > 1, and Dg > 1 sud that, for any vertex v inserted(or
rejected)at the circumcenteof a skinnytetrahedon, D, < Dr; for anyvertex v inserted(or rejected)at
the circumcenteof an encoadedsubfacetD, < Dp; andfor anyvertex v insertedat the midpointof an
encoathedsubsgment,D, < Dg.

Proof: Essentiallythe sameasthe proof of Lemma29, exceptthatLemma31 makesit possibleto replace
Condition4.2with

2
Drp>14—7=D 4.8
r 21+ 25Dr (4.8)

If thequalityboundB is strictlylargerthan%, Conditions4.1,4.4,and4.8aresimultaneouslgatisfied
by choosing

D _ V3B+V3+ 6 D _(2+V3)B+2 D _ (V3+v6+2V2)B
T BB—2v2 P BB—2y2 ST BB-2v2

Dr, Dr, and Dg mustalsosatisfythe conditionsspecifiedn Lemma29 regardingthe anglesbetween
sggmentsandfacetsandbetweersgments.If B > % Qpg > arccos ﬁ andags > 60°, thereare
valuesof Dy, Dr, andDg thatsatisfythetheorem. [ |

To compareequatoriallenseswith equatorialspheresconsideragaintetrahedralizinga PLC with no
acuteangles,applyinga quality boundof B = 2.5. Usingequatorialenses, Dy = 5.7, Dp = 7.5, and
Dg = 11.7. Comparewith the corresponding/alues9.8, 14.9, and22.1 derived for equatorialspheres
atthe endof Section4.2.3. Hence the worst-caserertex spacingfor Delaunayrefinemenwith equatorial
lensegs afactorof 1.8 betterthanwith equatorialspheres Becauseahe numberof tetrahedras inversely
proportionako the cubeof vertex spacingequatorialensesmprove theworst-caseardinalityof themesh

by afactorof aboutsix.

Equatoriallenseshave anotheradwvantage.With someeffort, it is possibleto shav thatif the dihedral
angleseparatingwo incidentfacetregionsis 60° or more,a vertex in onefacetregion cannotencroach
upona subfaicetof the otherwithout encroachingupona subsgmentof the other (Detailsare omitted.)
However, becausequatoriakpheresnustbe usedfor missingsubfcetsthis factdoesnotleadto asnicea
boundon edgelengthsasonemighthope.Givena PLC whoseincidentfacetsareseparatedy at least60°,
it is possibleto shav that Delaunayrefinementwill terminateif facetsarerecoreredoneat atime, but as
Lemma27 indicatesgachsuccesskly recareredfacetmayhave smalleredgeghanthe previouslyinserted
facetif it is encroachediponby verticesof the previousfacet. The lengthof the shortesedgein thefinal
meshmaybe exponentiallysmall,wherethe exponents proportionatto the numberof facets.Section5.3.1
suggestsa facetrecorery methodthatmight partly amelioratethis problem.

4.3.3 Diametral Lemons?

Thesuccessf diametrallensesn two dimensionsandequatorialensedn three,naturallyleadsoneto ask
whetherit might be possibleto furtherimprove the quality boundby replacingdiametralspheresvith some
smallerstructure. Theobviouschoice depictedn Figure4.28,is therevolution of adiametralensaboutits
longeraxis,yielding a pointedprolatespheroid call adiametal lemon
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Figure4.28: The diametral lemon of a subsegment is the revolution of a diametral lens about the subseg-
ment.

Top view. Sideview.

Figure4.29: An example demonstrating that diametral lemons don’t seem to improve the quality bound. In
this illustration, the diametral lemon of s is contained in the equatorial lens of f.

Alas, diametrallemonsarelemonsindeed,becausahey do not seemto improve the worst-caseatio
of /2 betweerthe insertionradii of a facetvertex anda subsgmentvertex it spavns. An examplethat
demonstratethisfailureis illustratedin Figure4.29. A subficetf meetsanotheisubficetg atasubsgment
s. Thecircumcenteof f coincideswith the midpointof s. The equatorialensof f extendsbeyond the
diametralemonof s, andoddly, f canbeencroachediponby avertex thatlies outsidethefacetcontaining
f, but doesnotencroachupons.

Supposéhatthesubfcetg is encroachedponby the circumcenteof someskinry tetrahedronandg’s
circumcentep is consideredor insertion. If p encroachesiponf, f is consideredor splitting. However,
the circumcenteof f encroachespons, sos is split atits midpointv. But neitherp northeape of f lie
in the diametrallemonof s, or particularlycloseto v; in theworstcase the insertionradiusof v might be
v/2 smallerthanthatof eitherp or theapex of f.

Couldwesimplyinsertp, declineto split s, andleave theequatorialensof f encroached®nfortunately
f andp mighttogetherform a skinry tetrahedronwhich mustberemaoved, andsplitting s maybe the best
way to accomplishtheremoval. Thereis no guaranteghatthe circumcentenf thistetrahedroris nearf or
s, andtheusualanalysigechniqueslo not seemto apply

Diametrallemonshave anotherfundamentaproblem. One purposeof ary protectie region, beit a
spherealens,or alemon,is to handlethe casewhereaskinry tetrahedrorcannotbeeliminatedby inserting
avertex atits circumcenterbecause locked subsgmentor subbcetpreventsthe tetrahedrorfrom being
eliminated.lt is thisrequirementhatdictateshe 30° anglethatdefineshe shapeof anequatorialens.

ConsiderFigure4.30. At left, thereappears tetrahedront whoseverticeslie ontheillustratedsphere,
which is the circumspheref t. Thoughnoneof the verticesof ¢ lies in or on the diametrallemonof the
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Figure4.30: A diametral lemon fails to ensure that a locked subsegment will not stand between a tetrahe-
dron and its circumcenter, whereas a diametral sphere succeeds.

subsgments, severaledgesof ¢t passthroughthelemon,above the segments. Thecircumcentek: of ¢ lies
outsidethelemonaswell, belov thesggments. If avertex is insertedate, ¢ will not beeliminatedbecause
s is locked andstandsbetweent andits circumcenter

At right, the lemon hasbeenreplacedwith a diametralsphere. An equatorhasbeendravn on the
diametralsphereprientedsothatit will appearircularwhenviewed from the circumcentee depicted.If
the diametralsphereof s is empty the verticesthatlie on ary emptycircumsphereenterecat ¢ cannotlie
above this equatar Hence,ary Delaunaytetrahedrorwhosecircumcenteis ¢ lies belov the subsgment,
andthe subsgmentwill not preventthetetrahedrorfrom beingeliminatedif avertex is insertedatc. The
diametralsphereappearso bethe smallesiprotectingshapehatcanmale this guarantee.

4.4 |mprovements

Theimprovementgo two-dimensionaDelaunayrefinementlescribedn Section3.5applyin threedimen-
sionsaswell. They arebriefly revisitedhere.

4.4.1 Impr oving the Quality Bound in the Interior of the Mesh

Any of the following threestratgies may be usedto improve the quality of mostof the tetrahedraf the
meshwithoutjeopardizingheterminationguarantee.

¢ Useaquality boundof B = 1 for tetrahedrahatarenotin contactwith facetor sggmentinteriors,
a quality boundof B = /2 (for equatorialspherespr B = % (for equatoriallenses)for ary
tetrahedrorthatis notin contactwith a segmentinterior but hasa vertex thatlies in the interior of
a facet,anda quality boundof B = 2 (for equatorialspherespr B = % (for equatoriallenses)
for ary tetrahedrorhaving a vertex thatlies in the interior of a segment. The flow diagramfor this
stratgy (with equatorialensespappearasFigure4.31.
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Figure4.31: Dataflow diagram for three-dimensional Delaunay refinement with equatorial lenses and im-
proved quality away from the boundaries.

e Attemptto insertthe circumcenteiof ary tetrahedrorwhosecircumradius-to-shted edgeratio is
largerthanone.If arny subsgmentsvouldbeencroachedhecircumcenteis rejectedasusual butthe
encroachedubsgmentsaresplit only if thetriangles circumradius-to-shagstedgeratio is greater
than+/2. If ary subficetswould be encroachedthey aresplit only if thetriangles circumradius-to-

shorteskedgeratiois greaterthan2 (for equatoriakpheresir % (for equatorialenses).

e Attemptto insertthe circumcenterof ary tetrahedrorwhosecircumradius-to-shteg edgeratio is
largerthanone. If any subsgmentsor subficetswould be encroachedthe circumcenteis rejected
asusual.Eachencroachedubsgmentis checledto determingheinsertionradiusof the new vertex
that might be insertedat its midpoint. Eachencroachedubficetis checled to determinewhether
its circumcentewould encroactuponary subsgments,andif so, whatthe insertionradiusof the
new verticesat their midpointswould be. If a subfcets circumcentedoesnot encroactuponary
subsgments the insertionradiusof the subfcets circumcenteiis determined.The only midpoints
and circumcentersnsertedare thosewhoseinsertionradii are at leastas large asthe length of the
shortestedgeof the skinry tetrahedron.

As in the two-dimensionakase,the secondand third stratgiestendto resultin a denserspacingof
verticesin theinterior of themeshthanthefirst stratgy. Also asin thetwo-dimensionatasegoodgrading
is maintainedf the quality boundB; in theinterior of the meshis greaterthanone. ThenEquation4.1is
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accompaniethy theequation
By

Dy >
T_BI_17

whichis familiar from Section3.5.1.

Unlike in the two-dimensionatase this improvementis not renderedinnecessarpy range-restricted
segmentsplitting (discussedelon). The two improvementscombinedoffer even betterboundsin the
interior of the mesh. It is possibleto apply a quality boundof B = 1 to tetrahedrahatarenotin contact
with facetor sggmentinteriors,anda quality boundof B = /2 (for equatorialspherespr B = % (for
equatorialenses}o all tetrahedra.

4.4.2 Range-RestrictedSegmentSplitting

As in two dimensionsthe quality boundof tetrahedranay be improved by range-restrictedegmentsplit-
ting, at the costof sacrificinggoodgradingin theory if notin practice. Terminationis provenbelow for a
boundof B = /2 (if equatorialspheresireused)or B = 13 (if equatorialensesareused).Furthermore,
the constrainion theangleseparating sggmentfrom a facetmayberelaxed from 69.3° to 60°.

In threedimensionstheillegal rangemusthave a geometricwidth of v/2 whetherone usesequatorial
sphere®r equatorialensespecausealiametralspheres@realwaysused.Hence subsgmentsarerestricted
to thelegal rangec2”, wherec € (1,1/2] andz is aninteger Segmentsof illegal lengtharesplit unevenly
asdescribedn Section3.5.2.

To prove thatthe procedurgerminates] requirea slightly differentdefinition of insertionradiusfloor
thanl usedfor thetwo-dimensionaproof. If v is aninputvertex or liesonasubsgmentor subfcet thenits
insertionradiusfloor 7/, is still definedto bethelargestpower of two strictly lessthanits insertionradiusr,.
However, if v is afreevertex insertedor rejectedfor insertionat the circumcentef a skinry tetrahedron,
thenr), is definedto be the largestpower of two strictly lessthan % (for equatorialspherespr @rv (for
equatoriallenses). This changein the definition accountsfor the casewherea tetrahedrorcircumcenter
encroachesponasubfcet,andunavoidably engendera child with smallerinsertionradius.

Lemma 33 Letlfsyi, betheshortestdistancebetweertiwo nonincidenentities(vertices sggmentspr facet
regions)of theinput PLC. Suppos¢hatanytwoincidentsggmentsare sepaatedby anangleof at least60°,

anytwo incidentfacetregions satisfythe projectioncondition,and any sggmentincidentto a facetat one
verte is sepaatedfromit by an angleof at least60° or satisfieghe projectioncondition.

Supposdhat a triangle is consideed to be skinnyif its circumiadius-to-shoest edge ratio is larger
than B > /2 if equatorialspheesare used,or B > % if equatoriallensesare used.Letv bea vertex of
themeshandletp = p(v) beits parent,if oneexists. Theneitherr!, > Ifsy;, /6, or rl, > r;,.

Proof: If v isaninputverte, or if v liesonasementor facetandits parentp is aninputvertex or liesona
nonincidensegmentor facetregion, thenlfsy;, < Ifs(v) < r, < 2r], andthetheoremholds.

If v is insertedatthecircumcenteof askinry tetrahedronthenby Lemmals,r, > Br, > Br]'o. Recall
thatr! is the largestpower of two strictly lessthan % (for equatorialspheres)r @rv (for equatorial
lenses)BecauseB is choserto cancelout the coeficientthatbiasesr, it follows thatr;, > 7,

If v is insertedat the circumcenteof anencroachedubgcetf, the casewherep is aninput vertex or

lies on a nonincidenffeaturehasbeenconsideredbore, andp cannotlie on anincidentfacet,sothereare
two casedeft.
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¢ If p lies on anincidentsggmentseparatedrom the facetcontainingf by ananglea, where60° <
a < 90°, thenby Lemma27,r, > 52— > r,. Thereforey), > r,,.

2cosa —

e If pisthecircumcentenf a skinry tetrahedronrejectedfor insertionbecausdt encroachespon f,
thenby Lemma27,r, > % if equatoriabpheresreused,or by Lemma3l,r, > @rp if equatorial

lensesareused. It follows thatr! > r;, becausehe coeficient thatbiasesheinsertionradiusfloor
of p is sochosen.

If v is insertedatthe midpointof anencroachedubsgment,thenthe analysispresentedn Lemma23
for thetwo-dimensionataseapplieswithoutchange. [ ]

Theorem 34 Supposehat the conditionson the quality boundand the anglesbetweerinput entitiesspec-
ified in Lemma33 hold. The Delaunayrefinementlgorithmsdescribedin this chapter augmentedvith
range-restrictedsggmentsplitting, will terminatewith no tetrahedalization edge shorterthan fSy,in /6.

Proof: By Lemma33,theinsertionradiusfloor ], of everyvertex v is eithergreatethanor equalto IfSy,in /6,
or greaterthanor equalto theinsertionradiusfloor of somepreeisting vertex. Becausea vertex’'s insertion
radiusfloor is a lower boundon its insertionradius,no edgesmallerthanlfsy,;, /6 is ever introducedinto
themesh andthealgorithmmustterminate. [ |

The boundcanbe improved to Ifsmin /4 in the samemannerdescribedollowing Theorem24. | rec-
ommendbothof the practicalmodificationgo range-restrictedegmentsplitting describedn Section3.5.2:
usethe closedlegal range[1, v/2], andusea splitting procedurehatoccasionallytakestwo splitsto getrid
of anillegal subsgment.

4.5 Comparison with the Delaunay Meshing Algorithm of Miller, Talmor,
Teng,Walkington, and Wang

The general-dimensionaheshgeneratioralgorithmof Miller, Talmor, Teng, Walkington,andWang[67]

bearsmary similaritiesto the presentresearchandas| shall demonstrateachieves theoreticalbounds
similar to thoseprovenin Section4.2.3for Delaunayrefinementwith equatorialspheresThe Miller etal.

algorithmdiffers from ordinary Delaunayrefinementin thatit begins by decidingwhat vertex spacingis

neededo meeta desiredboundon circumradius-to-sirtest edgeratio, andthengenerates setof vertices
to match.

Thealgorithmreliesupona spacingfunction f (v) definedover thedomainto be meshedlmaginethat
eachvertex v of the meshis the centerof a ball of radiusf(v). No two ballsareallowedto overlap. This
rule impliesthatary edgevw haslengthatleastf(v) + f(w). Hence,the spacingfunction setsa lower
boundon thedistancebetweerverticesthroughouthe mesh.

To achieve goodboundsonthecircumradius-to-strtest edgeratiosof thetetrahedraf themesh Miller
et al. form a maximalsphee-pa&ing, which is a setof verticeshaving the propertythat no additional
vertex may be addedwithout creatingoverlappingballs. Maximality ensureghat tetrahedrawith large
circumradiicannotexist; recall that Chew's first Delaunayrefinementalgorithmusesmaximality (with a
constanspacingunction)to eliminatetriangleshaving anglessmallerthan30°. Thesphere-packing also
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subjectto the restrictionthat verticesmay not lie insidethe protectivesphee of a subsgmentor subfacet,

muchlike the diametraland equatorialspheresof Delaunayrefinement. True maximality is troublesome
to achieve, andMiller et al. suggestelaxed forms of maximality that do not compromisehe tetrahedron
quality bounds;for instance circumcentemaximality in which no vertex may beinsertedat a tetrahedron
circumcentewithout creatingoverlappingballs,is sufiicient.

The adwantageof generatinga meshfrom a spacingfunction is that the completevertex setcanbe
generategbrior to andindependentlhfrom the tetrahedralizationnmuchlik e the earliestDelaunaymeshing
algorithmsin the engineerinditerature. As a result, it is relatively easyto parallelizethe Miller et al.
algorithm,whereadDelaunayrefinementalgorithmsaredifficult to parallelizebecausef synchronization
concernsvhenmultiple processorsre simultaneouslchangingthe topology of the mesh. Miller et al.
createamaximalsphere-packingn eachsegment.thenoneachfacet,andfinally in theinterior of themesh.
Eachseggmentmaybepacledindependentlyandoncethesggmentsarefinished,somayeachfacet.Finally,
three-dimensionakgionsarepacled. Evenwithin asingleregionor facetmaximalsphere-packing easier
to parallelizethanDelaunayrefinement After spherepackingis complete the verticesaretetrahedralized,
perhapswith a standardgarallelconvex hull algorithm.

The key innovation of the algorithmover earlieralgorithmsthat generatea completevertex setbefore
triangulationis theuseof thelocalfeaturesizeto determinevertex spacing.Provableboundsontetrahedron
quality may be obtainedby choosingthe spacingfunction f(v) = glfs(v) for a suficiently small value
of 5. The function Ifs(-) may be computedwith the help of octrees. Miller et al. shaw that, for this
spacingfunction, the three-dimensionalersionof their algorithmachieres circumradius-to-shtes edge

ratiosboundedbelov 5

T 1-(T+2v2)8

To comparethis boundwith theresultsof Section4.2.3,1 mustrevise Theoreml9 sothatthe minimum
lengthof anedgeis expressedn termsof both of theedges endpoints.

Theorem 35 For the Delaunayrefinementlgorithmsdiscussedn this chapter any edge vw of the final
meshhaslengthat Ieast%_

Proof: Lemma29 andTheorem32 shawv (eachfor adifferentvalueof Dg) that lfs(“) < Dy for ary vertex
v. Assumewithoutlossof generalitythatw wasaddedafterv, andthusthedlstancebetweenhetwovertlces
is atleastr,, > %. It follows that
Ifs(w) + Ifs(w)
Sy > —————.
low| > 7y > 5Ds
By Lemmal4,Ifs(w) + |vw| > Ifs(v), so

Ifs(w) + Ifs(v) — Jvw|
> .
lvw| > 2D

IfS(v) +1fS(w)

2Dg+1 u

It follows that |vw| >

Basednthevalueof Dg calculatedn Lemma29, Delaunayrefinementvith equatoriabpheregnsures
thatedgelengthsareboundedy theinequality

B—2
(7+2v2)B -2

[Ifs(v) + Ifs(w)].

|ow| >
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In a meshproducedby the algorithmof Miller etal., no edgevw is shorterthan f (v) + f(w). If f(p) =
Olfs(p), edgelengthsareboundedby theinequality

B—2
(7+2v2)B

It is not surprisingthat theseboundsare quite similar, asthe algorithmsare baseduponsimilar ideas,
andareultimately subjectto the sameimperatves of mathematicalaw. |1 do not know to whatdifference
betweerthe algorithmsoneshouldattribute the slightly betterboundfor Delaunayrefinementnorwhether
it marksa real differencebetweenthe algorithmsor is an artifact of the different methodsof analysis.
However, thereis no doubtaboutthe sourceof the additionalimprovementoneobtainsby usingequatorial
lensednsteadof equatoriakpheresTakingthevaluefor Dg from Theorem32, Delaunayrefinementvith
equatorialensegroducestetrahedralizatiomwhoseedgelengthsareboundedoy theinequality

V3B —2V2
(3v3+2v6 +4v2)B — 22

Edgelengthsin the Miller etal. algorithmandin Delaunayrefinementvith equatoriakphereslecrease
to zeroasthe quality boundapproacheswo, whereasas| have alreadydiscussedDelaunayrefinement
with equatorialensesproducesvell-gradedmeshedor quality boundsaslow as1.63. If range-restricted
segmentsplitting is used the quality boundmaybefurtherreducedo 1.15, althoughl canno longerprove
thatthefinal meshis not uniform.

[Ifs(v) + Ifs(w)].

lvw| >

[Ifs(v) + Ifs(w)].

|lvw| >

The real differencebetweenthe algorithms,however, is one not exposedby mathematics.Delaunay
refinemenis lazy, in the sensehatit insertsa vertex only if a skinry simplex is present.The Miller et al.
algorithmis notlazyatall; it is blind to themeshthatwould beformedby theverticest createsHowever, by
creatinga maximalsphere-packing insertsenoughverticesto ensurethatskinry simplicessimply cannot
survive.

How muchdoesmaximality cost? Figure4.32, reprintedfrom Rupperts original papey givesus some
idea. The figure chartsthe progressof the smallestanglein a triangularmeshduring a typical run of
Rupperts algorithm. (During this run, no specificangleboundwasapplied;rather thealgorithmrepeatedly
splitsthe worsttrianglein the mesh,evenif it is nicely shaped.)The analysispresentedn Section3.3.4
implies that eventually the curve shouldnever drop belon 20.7°. It is not clearhow long the algorithm
would have to run beforereachingthis halloved state,but it is clearthatthe algorithmarrivesat a mesh
satisfyinga20°, or even30°, angleboundlong before.A maximalsphere-packinglgorithmguaranteedo
obtaina 20° angleboundproducesa meshat the high endof the curve, wherethe curve cannotdip belov
20° again.Hence it generatesnary moreelementghanalazy algorithm.

For a moredirectexample,returnto Figure4.21in Section4.2.3. In theory to obtaina quality bound
of B = 2.5, onemight have to tolerateedgelengthsmorethantwenty timessmallerthanthelocal feature
size;in practice thenumberappearso becloserto two. Lazinessappeato buy youathousand-folgsmaller
mesh.

Is it possibleto simultaneouslybtainthe benefitsof Delaunayrefinementandthe parallelizability of
Miller etal.?

Thebenefitof equatorialensesanperhapderealizedin the Miller etal. algorithm. It seemsstraight-
forward to form a sphere-packingn which subficetsare protectedwith lensesratherthanspheres.The
sticking pointis tetrahedralizinghe verticesof the sphere/lenpacking. Lensesdo not guarantee Delau-
nay mesh,andthe improved boundsthataccompay themare a direct benefitof relaxingthe requirement
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Figure4.32: Progress of the minimum angle of a triangulation during a run of Ruppert’s algorithm. (Courtesy
Jim Ruppert.)

thatmeshede Delaunay As Section2.1.3demonstratess generalalgorithmfor constructingconstrained
Delaunaytetrahedralizationgs not going to appear Doesa maximal sphere/lengpackinghave special
propertieshat guaranteghat a constrainedelaunaytetrahedralizatiorranbe formed? If so, is therean

algorithmfor generatinguchtetrahedralizationsPwill notpursuethe questiorhere.

It alsoseemsstraightforvard to userestrictedsubsgmentlengthswhen generatinga sphere-packing
of a sggment,but the only obvious way to reapthe improved boundsprovenin Section4.4.2is to put all
the subsgmentsof the meshinto the samerange sothatthe shortestindlongestsubsgmentsof the mesh
differ in lengthby a factorno greaterthan+/2. While Delaunayrefinementwith range-restrictedeggment
splitting might obtainthe sameunfortunateesultin theworstcasejt rarelyhappensn practicebecausef
thealgorithms laziness.

And whatof laziness¥or ameshgeneratioralgorithmto insertverticeslazily, it mustbeableto exam-
ine the quality of the simplicesof the currentmesh.Unfortunatelythis impliesmaintaininga triangulation,
which would seemto rule out the easyparallelizationthat Miller et al. offer. Onehopesfor, but doesnot
expectto see,an elegantresolutionto this dilemma. A suggestioris to usethe Miller et al. algorithmto
generataninitial meshwith coarsemertex spacingthanthe theorysuggeststhenrefineit to remove the
few poorquality elementghatappearEvenif thelatterstepis sequentialit maybe shortenoughthatmost
of the speedbenefitof parallelizatiorarerealized.

4.6 Sliver Removal by DelaunayRefinement

Althoughl have provennotheoreticaguaranteeaboutDelaunayrefinemens ability to remove sliver tetra-
hedrajt is nonethelesmaturalto wonderwhetheDelaunayrefinementnight be effective in practice.If one
insertsa vertex atthe circumcenteof eachsliver tetrahedronwill the algorithmfail to terminate?

As Figure4.33demonstratedelaunayrefinementansucceedor usefuldihedralanglebounds.Each
of the meshesllustratedwasgeneratedby applyinga circumradius-to-shors¢ edgeratio boundB, anda
dihedralangleboundf.,,;,. Not surprisingly asthe bound B wasstrengthenedhe boundé,,;,, hadto be
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Figure 4.33: Meshes created by Delaunay refinement using equatorial spheres and bounds on both
circumradius-to-shortest edge ratio B and smallest dihedral angle 6,,;,. Also listed for each mesh is its
largest dihedral angle 6,,., and its shortest edge length h;,. The best lower bound on dihedral angles
obtained for this PLC is 23.2°. Compare with Figure 4.21 on Page 105.

wealened,or the algorithmdid not terminate. For eachmeshillustrated, raising the bound#é,,,;, by one
degreecauseghe algorithmto fail to halt. It is not necessaryo usea circumradius-to-shted edgeratio
boundat all. However, evenif dihedralanglesarethe solecriterionfor judging tetrahedrorguaity | have
goodreasorto believe thatsmallermeshesareachieredif poortetrahedrareorderedsothatthosewith the
largestcircumradius-to-shitest edgeratiosaresplit earliest.SeeSection5.3.3for furtherdiscussion.

Chew [22] offershintsasto why goodresultsareobtained A sliver canalwaysbeeliminatedby splitting
it, but how canoneavoid creatingnew sliversin theprocessZTheav obseresthatanewly insertedvertex can
only take partin asliverif it is positionedbadlyrelative to atriangularfacealreadyin themesh.Figure4.34
illustratesthe setof badpositions.At left, asideview of the planecontainingafaceof thetetrahedralization
is dravn. A tetrahedrorformedby thefaceandanew vertex canhave a smalldihedralangleonly if thenew
vertex lies within the slabdepictedthis slabis the setof all pointswithin a certaindistancefrom theplane.
Latein the Delaunayrefinementprocesssucha tetrahedrorcanonly ariseif its circumradius-to-shees
edgeratio is small, which implies thatit mustlie in the region coloredblackin Figure4.34 (left). This
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Figure4.34:Left: A side view of the plane containing a triangular face. In conjunction with this face, a newly
inserted vertex can form a sliver with both a small dihedral angle and a small circumradius-to-shortest edge
ratio only if it is inserted in the disallowed region (black). Right: An oblique view of the disallowed region of
a triangular face.

disallowedregion, depictedatright, is shapedike aring with anhouiglasscross-section.

Chev shaws thatif the slabassociatedvith eachfaceis suficiently thin, a randomizedelaunayre-
finementalgorithm canavoid ever placinga vertex in the disalloved region of ary face. The key ideais
thateachnew vertex is notinsertedpreciselyat a circumcenterrather a candidatevertex is generatedt a
randomlychoseriocationin theinnerhalf of the circumsphera’radius.If thecandidaterertex liesin some
faces disallovedregion, thecandidatés rejectedanda new onegeneratedh its stead.

Thealgorithmwill eventuallygeneratea successfutandidatebecaus¢he numberof nearbytriangular
facesis bounded,andthe volume of eachdisalloved region is small. If the sum of the volumesof the
disalloved regionsis lessthanthe volumeof the region in which candidateverticesaregenerateda good
candidatewill eventuallybefound. To ensurehatthis conditionis met,the slabsaremadevery thin.

Chev derivesan explicit boundon the worst-casdetrahedroraspectatio, which is too smallto sene
asa practicalguarantee However, thereis undoubtedlya greatdealof slackin the deriation. Evenif the
slabsaremadethick enoughto offer ausefulboundontheminimumdihedralangle thesmallvolumeof the
disallovedregion suggestshatthe practicalprospectaregood. My non-randomizedelaunayrefinement
algorithmseemdo verify thisintuition. | have not yet testedwhethemrandomizatioris helpful in practice.
Although randomizatiormay reducethe frequeng with which slivers are generatedthe act of inserting
verticesoff-centerin circumspheresealensthe boundon circumradius-to-shtest edgeratio.

Unfortunatelymy practicalsuccess removing sliversis probablyduein partto the severerestrictions
oninputanglel have imposeduponDelaunayrefinementPractitionergeportthatthey have the mostdiffi-
culty removing sliversattheboundaryof amesh gspeciallynearsmallangles Figure2.350n Page38 offers
ademonstratiorf this obseration. Meshimprovementtechniquesuchasoptimization-basedmoothing
andtopologicaltransformationsgdiscussedn Section2.2.4,canlikely remove someof the imperfections
thatcannotberemoreddirectly by Delaunayrefinement.
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4.7 Generalizationto Higher Dimensions

| do not intendto carry out a full analysisof higherdimensionalDelaunayrefinementalgorithmshere.
However, | suspecthattherearenofurtherbarriersto fully generalizinghe method.

Themostimportantresultto generalizas the ProjectionLemma(Lemma26), which| have everyreason
to believe holdstrue for higherdimensionaFfacets.The ProjectionLemmais critical becausét specifiesa
conditionunderwhich incidentconstrainegolytopescanbe guaranteeahot to encroachuponeachother
Specifically if the lowerdimensionaboundarypolytopesof a constrainedacetare not encroachedthen
thesubfcetsof thatfacetcanonly beencroachedponby verticesin thefacets orthogonalprojection.

Additionally, the ProjectionLemmamalesit possibleto choosean encroachedimplex to split sothat
theinsertionradiusof the newly insertedvertex is no worsethan/2 timessmallerthanthatof its parent,
regardlesof the dimensionalityof the simplicesunderconsideratiorfor splitting. Hence,in d dimensions
oneexpectsto achieve a quality boundB > \/idfl with goodgradingby usingthe straightforvard gen-

eralizationof Rupperts algorithm,and B = \@d_Z (without a guaranteef goodgrading)with the useof
range-restrictedegmentsplitting. | amalsooptimisticthatlensesratherthanspheresganbeusedo protect
subficetsof dimensiond — 1, althoughspheresnustbe usedto protectlower-dimensionakubfcets.If so,

onemay achieve a quality boundB > \[72: with a guarante®f goodgrading,and(ford > 3) B = \/5\21
without.

If onebelievesthatthe ProjectionLemmageneralizego higherdimensionsthenLemma27, Theo-
rem 28, LemmaZ29, and Theorem30 seemto generalizen straightforvard ways. The mostcomplicated
piecesof LemmaZ27 arethosedealingwith acuteanglesbetweensimplices. Without someadditionalal-
gorithmic insight, acuteanglesprobablycannotbe toleratedbetweensimplicesof dimensionhigherthan
one.An acuteanglebetweera sgment(1-simplex) andanothersimplex of dimensionk may be permitted
for ary k, but theanglemustbe largerthanarccos ﬁ If range-restrictedggmentsplitting is used this

anglemayberelaxedto arccos ﬁ for k > 2.

Of coursethis discussiorbegs the questionof whetheranyonewould wantsuchanalgorithm. A four-
dimensionameshgeneratomightfind usein space-timdinite elementmethodswheretimeis represented
asa fourth spatialdimension. This might be an ideal applicationfor Delaunayrefinementmethods be-
causefor someproblemsno additionalsmallangleswill ensuefrom consideratiorof thetime dimension.
Commonly the region to be mesheds nothing more complicatedthan an unchanginghree-dimensional
objectextrudedorthogonallyin thetime dimension. In this case the reasonto createa four-dimensional
meshis sothatonemayadjustthedensityof nodeghroughtimein orderto tracktime-dependentultiscale
phenomenasuchasturbulentfluid flow.

4.8 Conclusions

Delaunayefinements aneffective techniqudor three-dimensionaheshgenerationlts theoreticabuaran-
teeson elementguality andmeshgradingmale it attractve. Takenatfacevalue,however, theseguarantees
arenot wholly satisfying. Thereis no guaranteehatsliverscanbe eliminated. Althoughthe constantD g
derived in Section4.3.2 gives us confidencehat edgesizescannotbecomesmallerthan one twelfth the
local featuresizewhenapplyinga quality boundof B = 2.5, this boundmay seeminsuficiently strongfor
practicalpurposesespeciallywhenonerecallsthatthe numberof elementss inverselyproportionalto the
cubeof theedgelength.
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Fortunately Delaunayrefinemenfalls into the classof algorithmsthat usuallyoutperformtheir worst-
casebounds.Theprooftechniquesisedio analyzeDelaunayefinementail to take into accounagreatdeal
of “slack” in themeshtherelationshipbetweertheinsertionradii of a parentandits child is usuallylooser
thanin theworstcase.This slackaccumulateasonetracesasequencef descendantsom aninputvertex.
Onecanapply a tighterboundon circumradius-to-shagst edgeratio thanthe theorysuggestss possible,
or evenapplyboundson dihedralanglesandstill producea small, nicely gradedmesh.

Despitethis pleasangjapbetweertheoryandpractice the theoryis helpful for suggestingnnovations
thatarelikely to bearfruit in practice suchasequatorialenses.

The main outstandingproblemin three-dimensionaDelaunayrefinementis the questionof how to
handlesmallinput angles.ls therea methodaseffective asthe Quitter, presentedn Section3.7?Modified
segmentsplitting using concentricsphericalshellsis probablyasgoodan ideain threedimensionsasin
two, but it only beginsto addresshe possibleproblems Whataboutfacetsseparatetty smallanglesHow
cantheir verticesbe keptfrom encroachingiponeachothers subficets?Onesuggestions to modify the
methodof subficetsplitting. If two subficetsmeetat a subsgment,separatedby a smallangle,andoneof
the subfcetsis encroachedperhapst shouldbe split in sucha way thatan equilateraltriangleis formed
at the subsgment. In this manner subficetsseparatedby small anglesare preventedfrom engagingn a
diminishingspiral of mutualencroachmenjust assubsgmentsare preventedfrom doing so by modified
segmentsplitting. This ideaholdspromise,but falls shortof a completesolutionto the problemof small
angles.

In two dimensionsthereis a sure-firesolution: never inserta vertex whoseinsertionradiusis smaller
thanthe insertionradiusof its mostrecentlyinsertedancestar An impedimentto usingthis stratgy in
threedimensionspesideghe awful elementst producesjs that boundaryrecorery mayfail if a missing
subsgmentor subfcetis not split becausef this rule. This problemis surmountedn two dimensiondy
theconstrainedelaunaytriangulation put this optionis not availablein three.Section5.3.1suggestaway
to garnersomeof theadvantage®f constrainedriangulation but offersno guarantees.

Neverthelessif segmentsandfacetsareinsertedn sequencegndthesubsgmentsandsubficetsof each
arelocked assoonasthey arerecosered,thenthey will all berecoreredeventually As | mentionedat the
endof Section4.3.2,the lengthof the shortestedgein the final meshmay be exponentiallysmall, where
theexponentis proportionalto the numberof facets.After theboundariehave beencompletelyrecovered,
thesure-firesolutioncanbeapplied.Hencejt is alwayspossibleo ensurghatthree-dimensionddelaunay
refinementerminatesalthoughthe elementsnight be poorin quality andmuchsmallerthandesired.



Chapter 5

Implementation

Triangleis a C programfor two-dimensionameshgeneratiorandconstructiorof Delaunaytriangulations,
constrainedelaunaytriangulationsandVoronoidiagrams Pyramidis a C programfor three-dimensional
meshgeneratiorand Delaunaytetrahedralizatian Theseprogramsare implementation®f the Delaunay
refinementlgorithmsdiscussedn the previous chaptersTriangleandPyramidarefast,memory-eficient,
androbust. Triangle computesDelaunaytriangulationsand constrainedelaunaytriangulationsexactly;
PyramidcomputeDelaunaytetrahedralizationexactly.

Feature®f bothprogramsncludeuserspecifiedconstraintoon elementguality andsize,userspecified
holesandconcaities, the ability to refinepreeisting triangulationsandthe economicaliseof exactarith-
meticto improve robustness.This chapterdiscussesnary of the key implementatiordecisionsjncluding
the choiceof triangulationalgorithmsanddatastructuresthe stepstakento createandrefinea mesh,and
otherissues.The useof exact arithmeticto ensurethe correctnessf Delaunaytriangulationsandtetrahe-
dralizationsandto improve therobustnes®f bothmeshgeneratorsis discussedat lengthin Chapter6.

Many of the implementatiordecisionsn a complex programlike a meshgeneratodependuponhow
onewishesto tradeoff speedandmemoryuse.TriangleandPyramidaredesignedo supportarge scientific
computingprojects,in which the sizesof the mesheghat can be producedare limited by the available
memory andnot by theamountof time theprogramcanrun. Thereforemary of the decisiongdescribedn
thischaptermaremotivatedby the desireto male spaceefficiengy a priority, withoutundulysacrificingspeed.
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Delaunaytriangulationtimings (seconds)
Numberof points 10,000 100,000 1,000,000
Pointdistribution | Uniform | Boundary | Tilted || Uniform | Boundary | Tilted || Uniform | Boundary | Tilted

Algorithm Random | of Circle Grid Random | of Circle Grid Random | of Circle Grid
Div&Conq, alternatingcuts

robust 0.33 0.57 0.72 4.5 5.3 55 58 61 58

non-rolust 0.30 0.27 0.27 4.0 4.0 35 53 56 44
Div&Conq, vertical cuts

robust 0.47 1.06 0.96 6.2 9.0 7.6 79 98 85

non-rolust 0.36 0.17 | failed 5.0 2.1 4.2 64 26 | failed
Sweepline

non-rolust 0.78 0.62 0.71 10.8 8.6 10.5 147 119 139
Incremental

robust 1.15 3.88 2.79 24.0 112.7 | 101.3 545 1523 | 2138

non-rohust 0.99 2.74 | failed 21.3 94.3 | failed 486 1327 | failed

Table5.1: Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha processor, not including I/O.
Robust and non-robust versions of the Delaunay algorithms were used to triangulate points chosen from
one of three different distributions: uniformly distributed random points in a square, random approximately
cocircular points, and a tilted square grid.

5.1 Triangulation Algorithms

5.1.1 Comparisonof ThreeDelaunayTriangulation Algorithms

A meshgeneratorestsontheefficieng of its triangulationalgorithmsanddatastructuressol discusghese
first.

Therearemary Delaunaytriangulationalgorithms,someof which are suneyed andevaluatedoy For-
tune[33] andSuandDrysdale[91, 90]. Theirresultsindicatearoughparity in speedto within afactorof
two, amongthe incrementainsertionalgorithmof Lawson[59], the divide-and-conquealgorithmof Lee
andSchachtef60], andtheplane-sweeplgorithmof Fortune[31]; however, theimplementationghey study
werewritten by differentpeople.l believethatTriangleis thefirstinstancen whichall threealgorithmshave
beenimplementedvith the samedatastructuresandfloating-pointtests,by one personwho gave roughly
equalattentionto optimizing each.(Somedetailsof howv theseimplementationsvere optimizedappeaiin
Section5.1.2.)

Table 5.1 compareghe algorithms,including versionsthat use exact arithmetic (see Chapter6) to
achiere robhustnessandversionghatuseapproximatarithmeticandarehenceasteut mayfail or produce
incorrectoutput.(Therobustandnon-rolustversionsareotherwisddentical.)As SuandDrysdaleg91] also
found, the divide-and-conquealgorithmis fastestwith the sweeplinealgorithmsecond.Theincremental
algorithmperformspoorly, spendingmostof its time in pointlocation. (SuandDrysdaleproduceda better
incrementainsertionimplementatiorby usingbucketing to performpointlocation,but it still ranksthird.
Triangledoesnot usebucketingbecausé is easilydefeatedasdiscussedn Section5.1.2.) Theagreement
betweemmy resultsandthoseof SuandDrysdalelendssupportto their rankingof algorithms.

An importantoptimizationto thedivide-and-conquealgorithm,adaptedrom Dwyer[30], is to partition
the verticeswith alternatinghorizontalandvertical cuts(Lee and Schachtes algorithmusesonly vertical
cuts). Alternatingcutsspeedhe algorithmand,whenexact arithmeticis disabled reduceits likelihoodof
failure. Onemillion pointscanbetriangulateccorrectlyin a minuteon afastworkstation.

All threetriangulationalgorithmsareimplementedoasto eliminateduplicateinput points;if notelimi-
nated duplicatescancausecatastrophic¢ailures.The sweeplinaalgorithmcaneasilydetectduplicatepoints
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asthey areremoved from the event queue(by comparingeachwith the previous point removed from the
gueue),andthe incrementainsertionalgorithmcan detecta duplicatepoint after point location. My im-
plementatiorof thedivide-and-conquesilgorithmbegins by sortingthe pointsby their z-coordinatesafter
which duplicatescan be detectedand removed. This sorting stepis a necessanpart of the divide-and-
conqueralgorithmwith vertical cuts, but not of the variantwith alternatingcuts (which mustperforma
sequencef median-findingoperationsalternatelyby « andy-coordinates)Hence thetimingsin Table5.1
for divide-and-conqueriangulationwith alternatingcutscouldbeimprovedslightly if onecouldguarantee
thatno duplicateinput pointswould occur;theinitial sortingstepwould beunnecessary

5.1.2 Technicallmplementation Notes

This sectionpresentsechnicaldetailsof my Delaunaytriangulationimplementationshatareimportantfor
aryonewhowishesto evaluatethe usefulnes®f my evaluations or to modify the code.

The sweeplineand incrementalDelaunaytriangulationimplementationsomparedby Su and Drys-
dale[91] eachusesomevariantof uniformbucketingto locatepoints.Bucketingyieldsfastimplementations
on uniform point sets,but is easilydefeateda small, denseclusterof pointsin alarge, sparselypopulated
region may all fall into a singlebucket. | have not usedbucketing in Triangle, preferringalgorithmsthat
exhibit good performancewith ary distribution of input points. As a result, Trianglemay be slower than
necessaryhentriangulatinguniformly distributed point sets,but will not exhibit asymptoticallyslowver
runningtimeson difficult inputs.

Fortunes sweeplinealgorithm usestwo nontrivial datastructuresin additionto the triangulation: a
priority queueto storeevents,and a balancedtree datastructureto storethe sequencef edgeson the
boundaryof the mesh. Fortunes own implementationavailable from Netlib, usesbucketing to perform
boththesefunctions;hencean O(n log ) runningtime is not guaranteedandSuandDrysdale[91] found
thattheoriginalimplementatiorexhibits O (n3/2) performancen uniformrandompointsets.By modifying
Fortunes codeto usea heapto storeevents they obtained?(n log n) runningtime on uniformly distributed
pointsetsandbetterperformancdor pointsetshaving morethanabout50,000points. However, they found
thatbucketing outperformsa heapon smallerpoint sets.

Triangles implementatiorusesa heapaswell, andalsousesa splaytree[88] to storemeshboundary
edgessothatanO(n log n) runningtime is attainedregardles®f thedistribution of points.Not all bound-
ary edgesarestoredin thesplaytree;whenanew edgeis createdit is insertednto thetreewith probability
0.1. (Thevalue0.1 waschosenempirically to minimize the triangulationtime for uniform randompoint
sets.) At ary time, the splaytree containsa randomsampleof roughly onetenth of the boundaryedges.
Whenthe sweeplinesweepgastaninput point, the point mustbe locatedrelative to the boundaryedges;
this point locationinvolves a searchin the splaytree, followed by a searchon the boundaryof the trian-
gulationitself. By keepingthe splaytreesmall, this schememprovesthe speedand memoryuseof point
locationwithout changingthe asymptoticperformance.This is an exampleof how randomizatiorcanbe
usedto reducethe constantstatherthanthe asymptoticbehaior, associateavith ageometricalgorithm.

A splaytreeadjustsitself sothatfrequentlyaccesseitemsarenearthe top of thetree. Hence,a point
setorganizedso thatmary new verticesappearat roughly the samelocationon the boundaryof the mesh
is likely to be triangulatedquickly. This effect partly explainswhy Triangles sweeplinemplementation
triangulategointson the boundaryof a circle morequickly thanthe otherpoint sets eventhoughthereare
mary moreboundaryedgesn thecocircularpointsetandthe splaytreegrons to bemuchlarger(containing
O(n) boundaryedgesinsteadof O(y/n)). For this reason,| believe that splay treesare bettersuitedto
sweeplineDelaunaytriangulationthanotherbalancedreealgorithms,suchasred-blackirees.
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Triangles incrementalinsertionalgorithmfor Delaunaytriangulationusesthe point location method
proposedby Micke, Saias,and Zhu [72]. Their jump-and-walkmethodchoosesa randomsampleof
O(n'/?) verticesfrom the mesh(wheren is the numberof nodescurrentlyin the mesh) determinesvhich
of theseverticess closesto thequerypoint,andwalksthroughthe meshfrom thechoservertex towardthe
guerypointuntil thetrianglecontainingthatpointis found. Micke etal. shav thattheresultingincremental
algorithmtakes expected®(n*/3) time on uniform randompoint sets. Table 5.1 appeargo confirm this
analysis. Triangleusesa samplesize of 0.45n'/3; the coeficient was chosenempirically to minimize the
triangulationtime for uniformrandompointsets.Trianglealsocheckghe previouslyinsertedooint, because
in mary practicalpointsets,ary two consecutie pointshave a high likelihoodof beingneareachother

| have notimplementedhe O(nlogn) pointlocationschemesuggestedby Guibas,Knuth, and Sharir
[46], althoughit promisedo outperformthe methodof Miicke et al. Evenwith asymptoticallybetterpoint
location,the incrementainsertionalgorithmseemaunlikely to surpasghe performancesf the divide-and-
conqueralgorithm.

5.2 Data Structures

5.2.1 Data Structuresfor Triangulation in Two Dimensions

Shouldonechooseadatastructurethatusesarecordto represeneachedge or onethatusesarecordto rep-
reseneachtriangle?Trianglewasoriginally written usingGuibasandStolfi’'s quad-edg datastructurg47]
(without the Flip operator) thenrewritten usinga triangle-basedatastructure.The quad-edgelatastruc-
tureis popularbecausat is elegant, becauset simultaneouslyepresentsa graphandits geometricdual
(suchasa Delaunaytriangulationandthe corresponding/oronoidiagram),andbecauséuibasand Stolfi
give detailedpseudocodéor implementingthe divide-and-conqueandincrementaDelaunayalgorithms
usingquad-edges.

Despiteghefundamentatlifferencedbetweerthedatastructuresthequad-edge-baseohdtriangle-based
implementation®f Trianglearebothfaithful to the Delaunaytriangulationalgorithmspresentedyy Guibas
andStolfi [47] (I did notimplementa quad-edgsweeplinealgorithm),andhenceoffer afair comparisorof
the datastructures.Perhapghe mostusefulobseration of this chapterfor practitionerds thatthe divide-
and-conquealgorithm, the incrementaklgorithm,and Rupperts Delaunayrefinementalgorithmwereall
spedby afactorof two by the triangulardatastructure.(However, it is worth noting thatthe codedevoted
specificallyto triangulationis roughly twice as long for the triangulardatastructure.) A differenceso
pronouncediemand®xplanation.

First, consideithedifferentstoragadlemand®f eachdatastructurejllustratedin Figure5.1. Eachquad-
edgerecordcontainsfour pointersto neighboringquad-edgesandtwo pointersto vertices(the endpoints
of the edge). Eachtriangle recordcontainsthreepointersto neighboringtriangles,and three pointersto
vertices.Hence bothstructuresontainsix pointers.A triangulationcontainsroughlythreeedgedor every
two triangles.Hence thetriangulardatastructureis morespace-dicient.

It is difficult to ascertairwhy thetriangulardatastructureis superiorin time aswell asspaceput one
canmalke educatednferencesWhena programmalesstructuralchangego atriangulation the amountof
time useddependsn partonthenumberof pointersthathave to bereadandwritten. Thisamountis smaller
for thetriangulardatastructuremoreof the connectyity informationis implicit in eachtriangle. Cacheing
is improved by the fact that fewer structuresare accessed.(For large triangulations,ary two adjoining
guad-edgesr trianglesareunlikely to lie in thesamecachdine.)
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Figure5.1: A triangulation (top) and its corresponding representations with quad-edge (left) and triangular
(right) data structures. Each quad-edge and each triangle contains six pointers.

Both the quad-edgeandtriangledatastructuresmuststorenot only pointersto their neighborsput also
the orientationsof their neighborsto make clearhow they areconnected For instance gachpointerfrom
a triangleto a neighboringtriangle hasan associatedrientation(a numberbetweenzero and two) that
indicateswhich edgeof the neighboringtriangleis contacted An importantspaceoptimizationis to store
theorientationof eachquad-edger trianglein thebottomtwo bits of thecorrespondingointer Thus,each
recordmustbe alignedon a four-byte boundary This spaceoptimizationis probablya speedptimization
aswell, as memorytraffic in modernmachinesis becomingmore and more expensie comparedo bit
operations.

Becausdhe triangle-basedlivide-and-conquealgorithmproved to be fastestjt is worth exploring in
somedepth. At first glance the algorithmanddatastructureseemincompatible. The divide-and-conque
algorithmrecursiely halvestheinput verticesuntil they arepartitionedinto subset®f two or threevertices
each. Eachsubsetis easily triangulated(yielding an edge,two collinear edges,or a triangle), and the
triangulationsaremegedtogetherto form larger ones.But how doesonerepresenanedgeor a sequence
of collinearedgeswith atriangulardatastructureAf oneusesa deggeneratdriangleto represenanisolated
edge theresultingcodeis clumsybecausef theneedto handlespecialcasesOnemight partitiontheinput
into subset®f threeto five vertices but this doesnot helpif thepointsin a subsetrecollinear

To presere the eleganceof GuibasandStolfi’s presentatiomf the divide-and-conquealgorithm,each
triangulationis surroundedvith a layer of “ghost” triangles,onetriangleper corvex hull edge. The ghost
trianglesareconnectedo eachotherin aring abouta“vertex atinfinity” (reallyjustanull pointer).A single
edgeis representedly two ghosttriangles asillustratedin Figure5.2.

Ghosttrianglesareusefulfor efficiently traversingthe corvex hull edgesduringthe mege step. Some
are transformednto real trianglesduring this step; two triangulationsare sevn togetherby fitting their
ghosttrianglestogethelik e theteethof two gears.(Someedgeflips arealsoneeded SeeFigure5.3.) Each
meige stepcreatenly two new triangles;oneat the bottomandoneat the top of the seam.After all the
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Figure5.2: How the triangle-based divide-and-conquer algorithm represents an isolated edge (left) and
an isolated triangle (right). Dashed lines represent ghost triangles. White vertices all represent the same
“vertex at infinity”; only black vertices have coordinates.

Figure5.3: Halfway through a merge step of the divide-and-conquer algorithm. Dashed lines represent
ghost triangles and triangles displaced by edge flips. The dotted triangle at bottom center is a newly created
ghost triangle. Shaded triangles are not Delaunay and will be displaced by edge flips.

meige stepsaredone the ghosttrianglesareremoved andthe triangulationis passean to the next stageof
meshing.

Ghosttrianglesareespeciallyusefulfor reducingheamounbf special-caseode.For example consider
performinganedgeflip betweertwo trianglesthatlie atthe boundaryof the mesh.Thetwo trianglesmust
bedetachedrom their neighborsrotateda quarterturn, andreattachedOneof thetasksperformedduring
reattachmenis adjustingthe pointersof eachof the four neighboringtriangles. Without ghosttriangles,
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someof the neighborsmight be null pointers,andconditionalcodeis requiredto checkeach. With ghost
triangles,the conditionalsare not required. Although this may seemlike a trivial concernthe numberof
similar casesn which ghosttrianglessimplified theimplementatiorof Trianglewaslarge enoughto make
it worthy of note.

Preciselythe samedatastructure,ghosttrianglesandall, is usedin the sweeplineimplementatiorto
representhe growing triangulation. Ghosttrianglesare handyfor representinghe danglingedgesthat
appeaion the advancingfront of the triangulation,andfor navigatingalongthe front during pointlocation.
Detailsareomitted.

5.2.2 Data Structuresfor Mesh Generationin Two Dimensions

Augmentationgo the quad-edgendtriangledatastructuresarenecessaryo supportthe constrainedrian-

gulationsneededor meshgenerationAs Section3.3mentionedPelaunayefinementanbeimplemented
with or without locked edges. As a practicalmatter though,subsgmentsneedto be flaggedso that en-

croachedsubsgmentscanbequickly detectedHence thereis nothingto loseby locking subsgmentsand

aspeedmprovementwill result,becauseinnecessargdgeflips arenot performed.

Otheraugmentationareneededoo. Additional informationmay be associatedvith eachsubsgment,
vertex, and elementof the mesh. Commonly subsgmentsand verticesmust carry markers to identify
which segmentsthey lie upon, so thatthe correctboundaryconditionsmay be appliedto themin a finite
elementsimulationor othernumericalPDE solver. If a smoothingalgorithmis implementedit will need
to know which subsgmentsare connectedogetherinto a single segment,so that verticesmay be moved
alongthe length of the segment. If curved sgmentsare supportedjnformationaboutthe cunatureof a
subsgmentis neededwhenaer that subsgmentis split. (At the time of this writing, Triangle supports
markersfor boundaryconditionsand storessubsgmentconnectiity. Smoothingandcurved surfacesare
notimplemented.)

Eachtriangle of the meshmay needto carry associatedattributes suchasits maximumpermissible
triangleareaor physicalconstant:meededor afinite elementsimulation.Verticesmight alsohave physical
constantsassociatedvith them. It is alsousefulfor a meshgeneratotto be ableto tag eachelementto
identify theregion of the meshin which the elemenftalls. Triangle,for instanceallows the userto specify
segment-boundedegionsof the meshwhoseelementshouldbetaggedwith specifiechumericalmarlers.

While eachelementof the meshmay have associatedttributes,the only edgeghatgenerallyhave ary
specialinformationassociateavith themaresubsgments.Hence,it is easieto augmenthetriangulardata
structureto includesubsgmentattributes,usinga separatelatastructurethatrepresenta subsgment,than
to augmenthe quad-edgelatastructureto includeelementattributes.

I modify the triangulardatastructureto meetthe requirementsiescribedabore by augmentingeach
trianglewith threeextra pointers(onefor eachedge) which areusuallynull but maypointto a subsgment
datastructure(Figure 5.4). In large mesheswherethe numberof trianglesis determinedprimarily by
areaconstraintandnot by theinput geometry only a minority of edgesare subsgments sothe memory
occupiedby subsgmentsis small. However, the memoryoccupiedby trianglesis increasedy one-half.
In the specialcasewhereinformationis associatedvith subsgmentsbut not with elementsthe additional
threepointersin eachtriangleeliminatethe spaceadvantageof thetriangulardatastructurerelative to quad-
edges but not its speedadwantage. Triangle usesthe longernine-pointerrecordonly if subsgmentsare
presentsix-pointertrianglesareusedfor unconstraine@®elaunaytriangulation.

In large meshesmaostof the pointersfrom trianglesto subsgmentsare null, so eachtrianglerecord
canbereducedo seven pointersby usingjust a singlesubsgmentpointer In a trianglethat contactsno



132 JonatharRichardShevchuk

|
=

Figure5.4: Shaded boxes represent subsegments, which may be linked together into segments. Each
triangle has three additional pointers that reference adjoining subsegments.

subsgment,this pointeris null. In atrianglethatcontactsoneor moresubsgments this pointerpointsto
a separateecordcontainingthreepointersto subsgments. The numberof thesespecialrecordsis small,
sothey increasehe spacerequirement®nly modestly | have notimplementedhis spaceoptimizationin
Triangle.

A moreaggressie optimizationwouldbeto usetheoriginal six-pointertriangles but eachof atriangles
threepointersto neighborsanpointto eitheratriangleor a subsgment. A one-bittag (possiblyhiddenin
thelower bits of eachpointer)would distinguishbetweerthetwo. This spaceoptimizationwould increase
theamountof conditionalcodeexecuted;jt is not clearhow badits effect on runningtime would be.

To save spaceandtime, TriangleandPyramiddo not maintainpointersfrom meshverticesto ary other
structure.Variablesin eachprogramoften denotea vertex not by pointingdirectly to the vertex, but rather
by pointingto an elementhat containsthe vertex. Hence meshstructuresonnectedo the vertex maybe
identified.

5.2.3 Data Structuresfor ThreeDimensions

Thereareatleastthreechoicesof datastructureto represenatetrahedralizationOnecouldusea recordto
represeneachtetrahedronarecordto represeneachface,or arecordto represeneachpairingof afaceand
anedge(hencethreerecordspertriangularface). Thelaststructure proposedy Dobkin andLaszlo[29],
is the mostgeneralandcanbe usedto represenarbitraryspatialsubdvisions. However, a tetrahedralizer
doesnot needthis generalityandmemoryconsiderationsasilyrule out all but thefirst option.

Considerfor instance the minimum memoryrequirementdgor a tetrahedron-basedelaunaytetrahe-
dralizer andfor aface-basetktrahedralizerin theformercasejllustratedin Figure5.5(a),therecordthat
represents tetrahedrormusthave eight pointers:four for its vertices,andfour for the adjoiningtetrahe-
dra. In thelatter casejllustratedin Figure5.5(b),therecordthatrepresentsa triangularfacemusthave six
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Figure5.5: (a) Tetrahedron-based data structure. (b) Face-based data structure. (c) A doubly linked list of
faces about an edge.

pointers,andideally hasnine: threefor its vertices,andthreeor six thatpointto adjacentriangularfaces.
The choiceof threeor six dependn whetheronewishesto have a singly-linked or doubly-linked list of
facesabouteachedgeof the tetrahedralizationthe latteris illustratedin Figure5.5(c). A singly-linked list
of faceds slower to traverse, andmorecumbersoméo program.

Thereareroughly two facesstoredfor eachtetrahedronbecauseachtetrahedrorhasfour faces,and
eachface(excepton exterior boundaries)s sharedby two tetrahedraHence the costof aface-basedata
structureis twelve or eighteerpointerspertetrahedronwhich markedly exceedgehe memoryrequirements
of thetetrahedron-baseghtastructure.

For meshgenerationas opposedo Delaunaytetrahedralizationthe datastructuresmust be ableto
representonstrainedgubficetsandsubsgments andbe ableto associatattributeswith subficets subsg-
ments elementsandvertices.As in thetwo-dimensionatase suchattributesmightbeassociatedvith each
elemenbf themesh put theonly edgesandfaceghatgenerallycarrysuchinformationaresubsgmentsand
subfcets.Hence thetetrahedron-basethtastructurels moreutilitarian thatthe face-basedatastructure.
Thetetrahedratiatastructurealmostcertainlyresultsin afasterimplementationif thetwo-dimensionaDe-
launayimplementationareary indication.| have notattemptedmplementingetrahedralizatioalgorithms
with ary otherdatastructure.

The remainderof this sectionis devotedto a discussiorof how the tetrahedron-basedatastructureis
modifiedin Pyramidto accommodatsubBicetsandsubsgments.Justasthe triangulardatastructureuses
threeadditionalpointersto attachsubsgments the tetrahedratlatastructureusesfour additionalpointers
to attachsubfcets.As in the two-dimensionatase,if the meshis large, the datastructureghatrepresent
subficetsand subsgmentsoccugy only a small portion of memory andthe four pointersfrom a tetrahe-
dronto adjoiningsubficetscan be reducedo one, or even zero. Hence,a tetrahedrafrecord consistsof
eightpointersif only Delaunaytetrahedralizatiois performedor eight, nine, or twelve pointersfor mesh
generation(Pyramidcurrentlyuseswelve pointersin thelattercase.)

The datastructurethat represents& subficetcontainsthree pointersto its vertices,three pointersto
adjoiningsubfcets,andtwo pointersto adjoiningtetrahedraThe threepointersto adjoiningsubficetsare
usedonly to indicatecoplanameighbordn a commonfacet. Thesepointersareimportantto the Delaunay
refinementalgorithm, becausehey indicatethat the sharededgecan be flipped to satisfy the Delaunay
criterionwhenaverte is insertedn thefacet.Figure5.6illustratestwo subfcetsconnectedtaflippable
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Figure5.6: The records representing subfacets (shaded) have pointers to adjoining tetrahedra, subfacets,
and vertices. Subfacets are directly linked to each other only if they are part of the same facet, and the
edge they share is flippable.
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Figure5.7: (a) Tetrahedra and subsegments are only connected via subfacets. (b) Each subsegment has
a full complement of wings which are subfacets that anchor it to adjoining tetrahedra.

edgeandsandwichedetweertetrahedrathattogetherform a quadrilaterafacet.Figure4.10in Chapterd
illustratesa circumstancén which suchedgeflips occur

Eachsubficetalsohasthreepointersto adjoining subsgments. To sase space thereare no pointers
directly connectingetrahedrandadjoiningsubsgmentsiconnectionbetweertetrahedrandsubsgments
areentirelymediatedhroughsubficets asillustratedin Figure5.7(a).Becaus@a subsgmentmaybeshared
by any numberof subficetsandtetrahedragachsubsgmenthasa pointerto only oneadjoiningsubficet
(chosenarbitrarily); the othersmustbe found throughthe connectrity of the mesh. To ensurethat every
subsgmentincidentto atetrahedromaybefound,eachsubsgmenthasafull complemenof wings which
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Figure5.8: Subsegments are represented by degenerate subfacets. A chain of linked subsegments form
a segment. Open circles represent null vertices. The pointers directed upward in the illustration point to
adjoining subfacets, which may or may not be solid. Different subsegments of this segment may even point
to subfacets of different facets.

aresubfcetsthatlink a subsgmentto its adjoiningtetrahedraasillustratedin Figure5.7(b). Someor all
of thesesubficetsmay be nonsolidsubfacetswhich arenot “real” subficets but arepresentsolelyfor the
purposeof connectingetrahedrao subsgments.Only solid subfacetswhichlie within facetsarelockedin
place.Thefacesoccupiedby nonsolidsubficetsareeligible for flipping accordingo the Delaunaycriterion.

It hasproven to be quite convenientto represensubsgmentswith the samedatastructureusedfor
subficets,in amannerillustratedin Figure5.8. A subfcetrecordusedto represent subsgmenthasone
null vertex oppositeits “real” edge.A subsgmentis similar to aghosttriangle:it is connectedtits “real”
edgeto anadjoiningtriangularsubficet,andit is linkedto neighboringsubsgments(of the samesegment)
atits “fake” edges.The decisionto represensubsgmentswith the samedatastructureusedfor subficets
haseliminatedthe needfor muchspecial-caseodethat Pyramidwould otherwiseincorporate.

5.3 Implementing DelaunayRefinementAlgorithms

This sectiondescribesDelaunayrefinementasit is implementedin Triangle and Pyramid. Figures5.9
through5.13illustratethe procesof meshinga PSLGthatrepresentanelectricguitar

Thefirst stageof both Triangleand Pyramidis to find the Delaunaytriangulationor tetrahedralization
of the input vertices,asin Figure5.10. In general,someof the input segmentsand facetsare missing
from thetriangulationthe secondstageis to recorer them. Figure5.11lillustratesthe constrainedelaunay
triangulationof theinput PSLG.

Thethird stageof the algorithm,which divergesfrom Rupper{82], is to remove trianglesor tetrahedra
from concaitiesandholes(Figure5.12). Thefourth stageof thealgorithmis to applyaDelaunayrefinement
algorithmto themeshasdescribedn Chapters and4. Figure5.13illustratesafinal meshhaving noangles
smallerthan20°.

Thelastthreestagesaredescribedn thefollowing sections.

5.3.1 Segmentand FacetRecovery

Althoughthe theoreticaltreatmentof encroachedubsgmentsand subfcetsis no differentfor thosethat
are missingandthosethatare presentn the mesh,they aretreatedvery differentlyin practice. Whereas
missingsegmentsandfacetsrequirethe maintenancef a separatériangulationof eachsegmentandfacet
(whichis almosttrivial for sggments),subsgmentsandsubfcetsthatare presenin the meshdo not, and
theirencroachmertanbedetectednuchmoreeasily Furthermoremissingsubsgmentsandsubfcetscan
sometimede recoreredwithout insertinga new vertex. For reasongo be statedshortly this solutionis

oftenpreferable.
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Figure5.9: Electric guitar PSLG.

Figure5.10: Delaunay triangulation of vertices of PSLG. The triangulation does not conform to all of the
input segments.

Figure5.11: Constrained Delaunay triangulation of PSLG.

M i,

Figure5.12: Triangles are removed from concavities and holes.

Figure5.13: Conforming Delaunay triangulation with 20° minimum angle.
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Trianglecanforcethe meshto conformto theinput segmentsin oneof two ways,selectabldy theuser
Thefirstwasdescribedn Section3.3; arny segmentthatfailsto appeain the meshis recursvely dividedby
insertingverticesalongits length,usingLawsons incrementalnsertionalgorithmto maintainthe Delaunay
property until the entiresggmentis representedsa union of edgesof the mesh. Subsgmentsarelocked
asthey appearinputsegmentghatarenot missingfrom theinitial triangulationmustalsobeidentifiedand
locked.

The secondchoiceis to simply usea constrainedelaunaytriangulation,asFigure5.11demonstrates.
Eachsggmentis insertedby deletingthetrianglesit overlaps,andtheregion on eachsideof the segmentis
Delaunaytriangulatechnev (recallFigure2.16on Page21). No new verticesareinserted.Triangleuseshe
constrainedelaunaytriangulationby default.

Incrementalnsertionof segmentsis not an optimalmethodof constructinga constrainedelaunaytri-
angulation;l could have choserthe optimal O(n logn) divide-and-conquemethodof Chewv [18] instead.
However, practicalinputsareusuallycomposednainly of short,easilyinsertedsegments AlthoughChew’s
algorithmis optimal, it carriesa larger constantoverheadthan purely Delaunaydivide-and-conquetrian-
gulation,andwould likely be slower on mostpracticalinputs. | have notimplementedChew’s constrained
Delaunaytriangulationalgorithm,andhencecannottestthis notion, but I doubtthe effort would be worth
theends.

Although the definition of “PSLG” normally disallovs segmentintersectiongexceptat sggmentend-
points),TrianglecandetectsegmentintersectionaindinsertverticesappropriatelyWhenTriangleis finding
anddeletingthetrianglesthatoverlapa missingsegment,it detectsary subsgmentsthatcrossthe missing
segment,andsplitseachsuchsubsgmentby insertinga new vertex attheintersectiorpoint. Trianglealso
noticesif a missingsggmentpasseshroughanexisting vertex, andrecursvely insertsthetwo subsgments
yieldedby splitting the segmentat the intersectingvertex. However, if a segmentpassevery closeto an
existing vertex, but doesnot meetit precisely(asdeterminedy theexactpredicateslescribedn Chapte6),
avery smallfeatureis formed; hence usersshouldbe wary of placingverticesin sggmentinteriorsin the
hopesthat Triangle will deemthem collinear Instead,input segmentsshouldbe split into smallerinput
segmentsattheverticesthey areintendedo intersect.

Pyramid,unfortunatelydoesnot have the choiceof forming a constrainedelaunaytetrahedralization,
becauseonstrainedelaunaytetrahedralizationdo not alwaysexist. However, subsgmentsandsubficets
cansometimedbeintroducednto the meshnot by vertex insertion but by the useof appropriateedgeflips.
For instance,a 2-3 flip might be usedto restorea missingsubsgment,anda 3-2 flip might be usedto
restorea missingsubficet. More generally amissingsubsgmentor subfaicetmight berestoredy a clever
sequencef flips. However, recall from Chapter2 that a tetrahedralizatiorthat conformsto the missing
subsgmentsandsubficetsdoesnotnecessarilgxist, andthe NP-hardneseesultof RuppertandSeidel[83]
suggestshatit mightnotbefeasibleto determinavhethersuchatetrahedralizatioexists. Hence onemust
rely on heuristicswhen attemptingto recoser subsgmentsand subficetswithout insertingnew vertices.
Onemustresortto insertinga new vertex, in themannerescribedn Sectiond.2,if the heuristicsail.

Onemightask,why goto suchtroubleto avoid insertingnew verticeswhenrecoseringmissingsubsg-
mentsandsubficets?After all, if asubsgmentor subficetis missing theremustbeavertex in its protecting
sphergexceptin raredegenerateases)andthe subsgmentor subfcetwill besplitanyway. Therearetwo
answersFirst,whenasubsgment(in two dimensionspr subficet(in three)hasbeenrecarered,its protect-
ing diametralcircle or equatorialspherecanbe replacedwith a diametrallensor equatoriallens, possibly
avertinga vertex insertion. Secondpverrefinementlueto small externalfeaturesasdescribedn the next
sectionmaybereducedr averted.
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5.3.2 Concavities and Holes

In both Triangleand Pyramid,usersmay createholesin their meshesy specifyinghole pointswherean
“element-eatingirus” is plantedandspready depth-firstsearchuntil its advanceis haltedby segmentgin
two dimensions)r facets(in three). This simple mechanismsavesboth the userandthe implementation
from a commonoutlook of solid modelingwherein one must define orientedcurves whoseinsidesare
clearlydistinguishabldrom their outsides.Exteriorboundariegwhich separate triangulatedegion from
an untriangulatedegion, and include boundariesof holes)and interior boundarieqwhich separatawo
triangulatedegions)aretreatedn a unifiedmanner

If the region beingmesheds not convex, concaities arerecognizedrom unlocked edgeg(in two di-
mensionspr faceqin threedimensionspnthe boundaryof the mesh andthe sameelement-eatingirusis
usedto hollow themout (recall Figure5.12). The usermay selectan optionthat causeshe convex hull of
theinput to be automaticallyprotectedwith subsgmentsor subfcets.If this optionis chosenthe useris
relieved of theresponsibilityof providing a sgment-boundedr facet-boundedhput. Concaities canstill
be createdby specifyingappropriatéhole pointsjustinsidethe cornvex hull, but sgmentsor facetsmustbe
usedto demarcateheinternalboundaryof the concaity.

Triangle and Pyramidremove extraneouselementsrom holesand concaities beforethe refinement
stage. This presentao problemfor the refinementalgorithms. The main concernis that generalpoint
locationis difficult in a noncomwex triangulation. Fortunately the mostgeneralform of point locationis
not neededor Delaunayrefinement. Pointlocationis usedonly to find the circumcenteiof an element,
which may be accomplishedy walking from the centroidof the elementtoward the circumcenter If the
pathis blocked by a subsgmentor subfcet,the culprit is marked asencroachedandthe searchmay be
abandoned(Recallthatthisis preciselyhow Chen's secondelaunayrefinementlgorithm[21] decidego
splitasegment.)Becausehe meshis sgment-boundedin two dimensionspr facet-boundedn three) the
searchmusteithersucceedr befoiled by anencroacheentity. Moreover, in two dimensionsif diametral
circles(ratherthanlenses)areused,Lemmal3 guaranteethatary circumcenterconsideredor insertion
fallsinsidethemesh althoughroundof errormightperturbit to justoutsidethemesh.Theanalogousesult
canbeprovenin threedimensions.

An adwantageof removing elementseforerefinements that computationis not wastedrefining ele-
mentgthatwill eventuallybedeleted A moreimportantadwantages illustratedin Figure5.14.If extraneous
elementsemainduringtherefinemenstage pverrefinementanoccurif very smallfeaturesoutsidetheob-
jectbeingmeshedtausethe creationof smallelementsnsidethe mesh.Ruppert82] suggestsolvingthis
problemby usingthe constrainedelaunaytriangulationandignoringinteractionghattake placeoutside
theregion beingtriangulated Early removal of trianglesprovidesa nearlyeffortlessway to accomplistthis
effect. Subsgmentsandsubgcetsthatwould normallybe considere@ncroacheareignored(Figure5.14,
right), becausencroachedubsgmentsarediagnosedy noticingthatthey occuroppositeanobtuseangle
in atriangle.(Seethe next sectionfor details.)

This adwantagecanbe castinto a formal framewvork by redefiningthe notion of local featuresize. Let
thegeodesidistancebetweerntwo pointsbethelengthof the shortespathbetweerthemthatdoesnot pass
throughanuntriangulatedegion of the plane.In otherwords,ary geodesigpathmustgo aroundholesand
concaities. GivenaPSLGX andapointp in thetriangulatedegionof X, definethelocalfeaturesizelfs(p)
to bethesmallestvaluesuchthatthereexist two pointsu andv thatlie on nonincidentverticesor sgments
of X, andeachof u andwv is within a geodesiadistanceof Ifs(p) from p. This is essentiallythe same
asthe definition of local featuresize givenin Section3.3.2,exceptthat Euclideandistancesarereplaced
with geodesiadistances. All of the proofsin Chapter3 canbe madeto work with geodesiadistances,
becausé. emmal4 depend®nly uponthetriangleinequality which holdsfor geodesidistancesswell as
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Figure5.14: Two variations of Ruppert's Delaunay refinement algorithm with a 20° minimum angle. Left:
Mesh created using segment recovery by recursive splitting and late removal of triangles. This illustration
shows exterior triangles, just prior to their removal, to show why overrefinement occurs. Right: Mesh created
using the constrained Delaunay triangulation and early removal of triangles.

Euclideandistancesandbecause child andits parentarenever separatedyy an untriangulatedegion of
the plane. This changecanyield improved boundson edgelengthsin someregionsof the mesh,because
smallexterior featuresareno longertakeninto accountn thedefinitionof local featuresize.

Theseobserationsaboutgeodesidistancecanalsobeappliedto surfacemeshingwhereinonemeshes
two-dimensionaplanarsurfacesembeddedn threedimensions.Thesesurfacesmay meetat sharedsey-
ments,sothatsmallfeaturesizesin onesurfacemay propagateénto another Again, the geodesidistance
betweenwo pointsis thelengthof the shortespathbetweerthemthatdoesnot passhroughanuntriangu-
latedregion. Hence the pathis restrictedo lie in theinputsurfaces.Two-dimensionaDelaunayrefinement
algorithmsmaybeappliedin this context with virtually nochange.

The problemof overrefinementue to small external featuresis not solved for tetrahedraimeshing,
however. Constrainedelaunaytetrahedralizatiahare not an option, andthe vertex insertionmethodfor
recovering sggmentsandfacetscanoverrefine. However, if missingsubsgmentsand subficetsare given
priority overotherencroachedubsgmentsandsubfcetsif they arerecoreredwith asfew vertex insertions
aspossible(using heuristicmethodshasedon flips, asdescribedn the previous section);andif holesare
emptiedmmediatelyafterall missingsubsgmentsandsubficetsarerecorered,muchor all of thepotential
overrefinementanbe avoided.However, | canoffer no guarantee.

Anothersourceof spurioussmallfeatureds the corvex hull of theinput, whichappearastheboundary
edgesor facesof theinitial triangulation. To give a two-dimensionakxample,if aninputvertex lies just
insidetheconvex hull, andthenearestorvex hull edgeis treatedasa subsgment thenthelocal featuresize
nearthe vertex may be artificially reducedo anarbitrarily smalllength. In threedimensionsthis problem
may be causedhot only by verticesjustinsidethe convex hull, but alsoby segmentsthat passnearconvex
hull edges.Thesemay arise,for instancewhenthe inputis a pre-triangulatecdurfacemeshwith exterior
dihedralanglesthatareslightly lessthan180°, just shortof corvexity. Whenthe inputis tetrahedralized,
sliver tetrahedramayfill thesecrevices.

Hence,it is importantthat convex hull edgesandfacesare not treatedas subsgmentsand subfcets,
exceptfor thoseedgesand facesspecificallyidentified by the userassuch. However, if the meshis not
segment-boundedr facet-boundedt is not clearhow to treatexterior skinry trianglesor tetrahedravhose
circumcentergall outsidethe mesh. Theremoval of elementdrom concaities yields a sgment-bounded



140 JonatharRichardShevchuk

(@) (b)

Figure5.15: (a) Constrained Delaunay triangulation of the guitar PSLG and its convex hull. (b) Close-up of
a small angle formed at the bottom of PSLG because of the convex hull.

or facet-boundedhesh sothatDelaunayrefinemeninay proceed.

Small anglespresentanothermotivation for remaving elementsfrom holesand concaities prior to
applyingthe Delaunayrefinementlgorithm. If a smallangleis presenwithin a hole or concaity (rather
thanin thetriangulategortionof thePSLG) thesmallanglehasno effectonthemeshingorocessHowever,
if the meshwererefinedprior to the carvingof concaities andholes,unnecessarilgmall elementgmight
be producedpr therefinemenstagemightfail to terminate. This problemcanappeamvith dastardlystealth
whenmeshingcertainnonconex objectsthatdonotappeato have smallangles A very smallanglemaybe
unexpectedlyformedbetweera definingsegmentof the objectandanedgeof thecorvex hull, asillustrated
in Figure5.15. Theuser unavareof theeffectof thecorvex hull edge would be mystifiedwhy the Delaunay
refinemenalgorithmfailsto terminateonwhatappearso beaneasyPSLG.(In fact,thisis how thenegative
resultof Section3.6 first becameavidentto me.) Early removal of elementdrom concaities evadesthis
problem.

In TriangleandPyramid the samesggment-boundedr facet-boundedepth-firstsearctusedto demar
cateholesandconcaities is alsousedto tagthe element®f selectedegionsof the meshwith markersthat
indicatewhichregionthey lie in.

5.3.3 DelaunayRefinement

Therefinemenstagés illustratedon atwo-dimensionaPSLGin Figure5.16.As wasnotedin the previous
section holesandinterior boundarieareeasilyaccommodatelly the Delaunayrefinementlgorithm.

Trianglemaintainsa queueof encroachedubsgmentsanda queueof skinry triangles,eachof which
areinitialized at the beginning of the refinementstageand maintainedthroughout;every vertex insertion
mayaddnen membergo eitherqueue Pyramidmaintainsqueuesf encroachedubsgmentsencroached
subficetsandskinry tetrahedraThe queuef encroachedubsgmentsandsubficetsrarely containmore
thanafew items,exceptat the beginning of therefinemenstage whenthey maycontainmary.

Eachqueuds initialized by traversingalist of all subsgmentssubficetstrianglespr tetrahedrgpresent
in the mesh. Detectionof encroachegubsgmentsand subficetsis a local operation. For instance,a
subsgmentmaybetestedfor encroachmeny inspectingonly thoseverticesthatappeadirectly opposite
thesubsgmentin atriangle(atriangularfacein threedimensions).

To seewhy thisfactis true,considerFigure5.17(a).Both of thevertices(v andw) oppositethesegment
s lie outsidethediametrakircle of s. Becaus¢hemeshis constrainedelaunayeachtriangles circumcircle
isempty(onits sideof s), andthereforeahediametrakircle of s isempty As Figure5.17(b)shavs,thesame
algumentis true of diametrallensespecausa diametrallensis definedby circulararcspassinghrougha
segments endpoints.
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Figure 5.16: Demonstration of the refinement stage. The first two images are the input PSLG and its
constrained Delaunay triangulation. In each image, highlighted segments or triangles are about to be split,
and highlighted vertices are rejected for insertion. Note that the algorithm easily accommodates interior

boundaries and holes.
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Figure5.17: (a) If the apices (here, v and w) of the triangles that contain a subsegment s are outside the
diametral circle of s, then no vertex lies in the diametral circle of s, because the triangles are Delaunay. (b)

The same statement is true for the diametral lens of s.
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The sameargumentsapplyin threedimensiongo diametralspheresequatoriakpheresandequatorial
lenses.In eachcasea subsgmentor subficetmay be quickly testedfor encroachmertby testingonly the
tetrahedrahatcontainthe subsgmentor subfacetin question.

After the queuesareinitialized, the Delaunayrefinementprocessmay causeother subsgmentsand
subficetsto becomeencroached.The mostohvious way to testwhethera new vertex encroachesipon
somesubsgmentor subfcetis to insertit into the triangulation thentesteachof the edgesandfacesthat
appeamppositethe vertex in sometriangle,tetrahedronor triangularface. If a subsgmentor subfacetis
encroachedit is insertedinto the appropriataqueue,andthe new vertex may have to be deletedfrom the
mesh.Thedecisionto accepbr rejectavertex depend®n thetype of vertex beinginserted.

e Subsgmentmidpoints: Thesearenever rejected.

e Subfacetircumcentes: Accordingto thedescriptiorof three-dimensionddelaunayefinemengiven
in Chapter4, thesearerejectedf they encroachupona subsgment. However, to obtainthe bounds
provenin Chapter4, it is only necessaryo rejecta subfcetcircumcenteif it encroachesipona
subsgmentof the samefacet.This factreduceghe amountof testingthatmustbedone.

e Circumcentes of skinnytrianglesandtetraheda: Thesearerejectedf they encroachuponary sub-
segmentor subfcet.

Thetestfor subsgments|f they areprotectedoy diametralcirclesor spheresis quitesimple.Let ¢ be
atriangleformedby a subsgments anda vertex v oppositeit. If theangleatv is greaterthan90°, then
v encroachesipon s; this testreducego a dot product. The testsfor encroachmenof diametrallenses,
equatoriabpheresandequatorialensesaremorecomplicated.

| turn from the topic of detectingencroachmenb the topic of managinghe queueof skinry elements
(whichalsoholdselementsghataretoolarge,asdictatedby boundsspecifiecby theuser).Eachtime avertex
is insertedor deletedgachnew triangleor tetrahedronhatappearss tested andis insertednto thequeusf
its qualityis too poor, or its areaor volumetoo large. Thenumberof trianglesor tetrahedran thefinal mesh
is determinedn partby the orderin which skinry elementsaresplit, especiallywhena strongquality bound
is used.Figure5.18demonstrateBow sensitve Rupperts algorithmis to theorder For thisexamplewith a
33° minimumangle,a heapof skinry trianglesindexed by their smallestangleconfersa 35%reductionin
meshsizeover afirst-in first-outqueue.(This differenceis typical for stronganglebounds but thankfully
seemdo disappearffor small anglebounds.) The discrepang probablyoccursbecauseircumcenterof
very skinry trianglesare likely to eliminatemore skinry trianglesthan circumcentersof mildly skinry
triangles.Unfortunatelya heapis slow for large meshesespeciallywhensmallareaconstraintgorceall of
the elementsnto the heap.Delaunayrefinemenusuallytakes O (n) time in practice but the useof aheap
increaseshe compleity to O(nlogn).

The solutionusedin Triangle and Pyramid, chosenexperimentally is to use64 FIFO queuesgach
representing differentintenal of circumradius-to-shagst edgeratios. Oddly, it is counterproducte in
practiceto orderwell-shapedlementssoonequeues usedfor well-shapedut too-lage elementavhose
qualityratiosareall roughlysmallerthan0.8 (in Triangle,correspondingo anangleof about39°) or one(in
Pyramid). Elementswith larger quality ratiosarepartitionedamongthe remainingqueues Whena skinry
elements choserfor splitting, it is takenfrom the “worst” nonemptyqueue.A queueof nonemptygueues
is maintainedsothata skinry elemenimaybechosemuickly. This methodyieldsmeshesomparablevith
thosegeneratedisinga heap but is only slightly slower thanusinga singlequeue.
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Figure5.18: Two meshes with a 33° minimum angle. The left mesh, with 290 triangles, was formed by
always splitting the worst existing triangle. The right mesh, with 450 triangles, was formed by using a
first-come first-split queue of skinny triangles.

During the refinementphase,Triangle generatesabout 22,800 new verticesper secondon a DEC
3000/700. Pyramidgenerates more modest800 verticesper second. Verticesare insertedusinga flip-
basedncrementaDelaunayalgorithm,but in Triangleareinsertednuchmorequickly thanTable5.1would
suggesbecauseatriangles circumcentecanbelocatedquickly by startingthe searchatthetriangle.

5.4 Conclusions

TriangleandPyramidwereoriginally designecandimplementedo meetthe needf the Quale project[7]
at Carngjie Mellon University a multidisciplinaryeffort to studyearthqua&-inducedgroundmotionin the
Los Angelesbasin. Sucha studyis necessarilof large magnitude andexertsa greatdealof stressonthe
softwareinfrastructurghatsupportst. TriangleandPyramidhave risento thechallengegeneratingneshes
of upto 77 million tetrahedraélementsAs well asusingTrianglewithin the Quale project,| havereleased
it for public use,andexpectto releasePyramidin a similar mannemwithin the next year

In thetwo yearssinceTrianglewasreleasedo thepublic,| have heardfrom researcheranddevelopers
who areusing Trianglefor a surprisingvariety of applications.Triangle seemdo be particularlypopular
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for triangulatingsuney and map data; for maintainingterrain databasesgspeciallyfor usein real-time
simulations;andfor discontinuitymeshingfor globalillumination methodssuchasradiosity | have also
heardrom individualsusingTrianglefor moresurprisingapplicationssuchasstereovision, interpolationof
speeclhsignals,computingthe orientationof text imagesmodelingreflectionsof high frequeng radiofrom
structuresn cities, modelingthe densityof starsin the sky, the triangulationof virtual worlds for a video
game,andecologicalresearcltulminatingin a paperby N. V. Joshi,entitled“The SpatialOrganizationof
PlantCommunitiesn a Deciduoud-orest:

Of course,Triangle hasalso beenusedby mary researcherfor numericalsimulation. Applications
includeelectricalcurrentpropagatiorin the myocardium simulationof suigery on a modelof the human
corneatransporfprocesses estuarieandcoastalwaters tomographianodelsof the seismicstructurebe-
neathEurasia Schibdingers equationin quantumconfinedstructuresfwo-and-a-half-dimensi@ waveg-
uideproblemseglectrostati@ndmagnetostatimodelingof complex multielectrodesystemsgontrolvolume
FEM for fluid flow andheattransfer andsurfacemeshingfor BEM on integratedcircuits.

Theseexamplesrepresenonly a selectedew of the applicationsthat peoplehave written to tell me
about,whichin turn surelyrepresenbnly afractionof the peoplewho areusingTriangle. Severalcompa-
nieshave alsopurchasedicensedo useTrianglein theircommerciaproductsfor purposesncludingbeam
elementvisualization thermalanalysis,interpolationbetweergrids for an oceanfloor databaseyisualiza-
tion of mining data,andcartoonanimation.

Theupshotis thattherehaslong beenanunansweredeedfor robustmeshgeneratiorin agreatvariety
of applicationdomains Althoughtherewastriangularmeshingsoftwareavailablefreely on the netprior to
Triangle,mary of my usersreportthatnonehadthe combinationof flexibility, robustnessandeaseof use
of Triangle.



Chapter 6

Adaptive PrecisionFloating-Point
Arithmetic and Fast Robust Geometric
Predicates

Fromthe beginning of theimplementatiorof Triangle,andwell into the developmeniof Pyramid floating-
pointroundof problemsplaguedme. Eachprogramwould sometimesrash,sometimedind itself stuckin
an endlesdoop, andsometimegproducegarbledoutput. At first | believed that| would be ableto fix the
problemsy understandingow thealgorithmswventwrongwhenroundof errorproducedncorrectanswers,
andwriting special-caseodeto handleeachpotentialproblem. Someof the robustnesgproblemsyielded
to this approachbut othersdid not. Fortunately Steven Fortuneof AT&T Bell Laboratoriesorvincedme,
in a few brief but well-wordedemail messagegandin several longerand equally well-wordedtechnical
papers)io choosahealternatve pathto robustnesswhich ledto theresearcldescribedn this chapter For
reasonghatwill becomeapparentexactarithmeticis the betterapproacho solvingmary, if notall, of the
robustnessvorriesassociateavith triangulation.

Herein,| malke threecontritutionsto geometriacobustnessthefirst two of which | hopewill find appli-
cationelsavherein numericalanalysis.Thefirstis to offer fastsoftware-level algorithmsfor exactaddition
and multiplication of arbitrary precisionfloating-pointvalues. The secondis to proposea techniquefor
adaptve precisionarithmeticthatcanoftenspeedhesealgorithmswhenonewishesto performmultipreci-
sioncalculationghatdo not alwaysrequireexactarithmetic but mustsatisfysomeerrorbound.Thethird is
to provide a practicaldemonstratiomf thesetechniquesin theform of implementationsf severalcommon
geometriccalculationsvhoserequireddegreeof accurag depend®n their inputs. Theserobustgeometric
predicatesreadaptve; their runningtime depend®n the degreeof uncertaintyof theresult,andis usually
small.

Thesealgorithmswork oncomputersvhosefloating-pointarithmeticusesadix two andexactrounding,
including machinescomplyingwith the IEEE 754 standard.The inputsto the predicatesnay be arbitrary
singleor doubleprecisionfloating-pointnumbers C codeis publicly availablefor the 2D and3D orientation
andincircle tests,andis usedvery successfullyn both TriangleandPyramid. Timings of theimplementa-
tionsdemonstrat¢heir effectiveness.

145
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6.1 Intr oduction

Softwarelibrariesfor arbitraryprecisionfloating-pointarithmeticcanbe usedto accuratelyperformmary
errorproneor ill-conditionedcomputationshatwould beinfeasibleusingonly hardware-supportedpprox-
imatearithmetic. Someof thesecomputationdave accurag requirementsghatvary with their input. For
instance considerthe problemof finding the centerof a circle, given threepointsthat lie on the circle.
Normally, hardwareprecisionarithmeticwill sufice, butif theinputpointsarenearlycollinear theproblem
is ill-conditionedandthe approximatecalculationmayyield awildly inaccurateesultor adivision by zero.
Alternatively, anexactarithmeticlibrary canbe usedandwill yield a correctresult,but exactarithmeticis
slow; onewould ratheruseit only whenonereally needso.

This chaptepresentswo techniquegor writing fastimplementationsf extendedprecisioncalculations
like these anddemonstratethemwith implementation®f four commonlyusedgeometrigpredicatesThe
first techniqueis a suiteof algorithms,several of themnew, for performingarbitrary precisionarithmetic.
The methodhasits greatestadwantagein computationghat processvaluesof extendedbut small preci-
sion (several hundredor thousandits), andseemddeal for computationabeometryandsomenumerical
methodswheremuchbenefitcanbe realizedfrom a modestincreasdn precision. The secondechnique
is a way to modify thesealgorithmsso that they computetheir resultadaptvely; they are quick in most
circumstancesyut arestill slov whentheir resultsare proneto have high relative error A third subjectof
this chapteiis ademonstratiof thesetechniquesvith implementationandperformanceneasuremenisf
four commonlyusedgeometrigpredicatesAn elaboratiorof eachof thesethreetopicsfollows.

Methodsof simulatingexactarithmeticin software canbe classifiedby several characteristicsSome
exactarithmeticlibrariesoperateon integersor fixed-pointnumberswhile othersoperateon floating-point
numbers.To represena numbey the formerlibrariesstorea significandof arbitrarylength;the latter store
an exponentaswell. Somelibraries usethe hardwares integer arithmeticunits, whereasothersusethe
floating-pointunits. Oddly, thedecisionto useintegersor floating-pointnumbersnternallyis orthogonato
thetypeof numbelbeingrepresentedt wasoncethenormto useintegerarithmeticto build extendedoreci-
sionfloating-pointlibraries,especiallywhenfloating-pointhardwarewasuncommoranddifferedbetween
computemmodels. Timeshave changedand modernarchitecturesre highly optimizedfor floating-point
performancepn mary processorsfloating-pointarithmeticis fasterthaninteger arithmetic. The trendis
reversingfor software librariesaswell, andthereare several proposalgo usefloating-pointarithmeticto
performextended-precisiomtegercalculations FortuneandVanWyk [37, 36], Clarkson23], andAvnaim,
BoissonnatDevillers, PreparataandYvinec[2] have describedalgorithmsof this kind, designedo attack
the samecomputationabeometryrobustnesgproblemsconsideredaterin this chapter Thesealgorithms
aresuneyedin Section6.2.

Anotherdifferentiatingfeatureof multiprecisionlibrariesis whetherthey usemultiple exponents Most
arbitraryprecisionlibrariesstorenumbersn amultiple-digitformat, consistingof a sequencef digits (usu-
ally of largeradix, like 232) coupledwith asingleexponent.A freely availableexampleof the multiple-digit
approachis Bailey’s MPFUN packagg4], a sophisticategortablemultiprecisionlibrary that usesdigits
of machine-dependenadix (usually2?*) storedassingleprecisionfloating-pointvalues.An alternatve is
the multiple-componerformat, whereina numberis expressedisa sumof ordinaryfloating-pointwords,
eachwith its own significandandexponent{76, 26, 61]. This approacthasthe advantagehattheresultof
anadditionlike 2300 4 2300 (which maywell arisein calculationdike the geometrigpredicatesliscussed
in Section6.5.1)canbe storedin two words of memory whereaghe multiple-digit approachwill useat
least601 bits to storethe sum,andincur a correspondingpeedoenaltywhenperformingarithmeticwith
it. On the otherhand,the multiple-digit approachcan more compactlyrepresenmostnumbers because
only oneexponents stored.(MPFUN sacrificeghis compactnesw take adwantageof floating-pointhard-
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ware;the exponentof eachdigit is unused.)More pertinentis the differencein speeddiscussedriefly in
Section6.3.1.

The algorithmsdescribedhereinusefloating-pointhardvare to perform extendedprecisionfloating-
pointarithmetic,usingthe multiple-componenapproachThesealgorithms describedn Section6.3,work
undertheassumptiothathardwarearithmeticis performedn radix two with exactrounding.This assump-
tion holdson processorsompliantwith the IEEE 754 floating-pointstandard Proofsof the correctnessf
all algorithmsaregiven.

The methodshereinare closelyrelatedto, and occasionallytaken directly from, methodsdeveloped
by Priest[76, 77], but arefaster The improvementin speedarisespartly becausériests algorithmsrun
on a wide variety of floating-pointarchitectureswith different radicesand roundingbehaior, whereas
mine are limited to and optimizedfor radix two with exact rounding. This specializationis justified by
the wide acceptancef the IEEE 754 standard.My algorithmsalso benefitfrom a relaxationof Priests
normalizatiorrequirementwhichis lessstrictthanthenormalizatiorrequiredby multiple-digitalgorithms,
but is nonethelesime-consumingo enforce.

| demonstrat¢hesemethodswith publicly availablecodethatperformsthe two-dimensionahndthree-
dimensionabrientationandincircle tests calculationghatcommonlyarisein computationagjeometry The
orientationtest determinesvhethera point lies to the left of, to the right of, or on a line or plane;it is
an importantpredicateusedin mary (perhapsmost) geometricalgorithms. The incircle testdetermines
whetherapointliesinside,outside or on acircle or sphereandis usedfor Delaunaytriangulation.Inexact
versionsof thesetestsare vulnerableto roundof error, andthe wrong answersthey producecan cause
geometricalgorithmsto hang,crash,or produceincorrectoutput. Althoughexactarithmeticbanisheshese
difficulties, it is commonto hearreportsof implementationdeing slowed by factorsof ten or more as
a consequencfsb6, 36]. For thesereasonscomputationayjeometryis an importantarenafor evaluating
extendedprecisionarithmeticschemes.

The orientationandincircle testsevaluatethe sign of a matrix determinant.lt is significantthat only
thesign,andnotthe magnitudepf the determinants neededFortuneandVanWyk [36] take adwantageof
thisfactby usinga floating-pointfilter: the determinants first evaluatedapproximatelyandonly if forward
error analysisindicatesthat the sign of the approximateresult cannotbe trusteddoesone usean exact
test. | carrytheir suggestiono its logical extremeby computinga sequencef successiely moreaccurate
approximationgo the determinantstoppingonly whenthe accurag of the signis assured. To reduce
computatiortime, approximationgeusea previous, lessaccuratecomputationwhenit is economicato do
so. Procedureshusdesignedareadaptve; they refinetheir resultsuntil they arecertainof the correctness
of their answer Thetechniqueis not limited to computationaeometrynor is it limited to finding signs
of expressionsijt canbe emplo/edin ary calculationwherethe requireddegreeof accurag varies. This
adaptve approachis describedn Section6.4, andits applicationto the orientationand incircle testsis
describedn Section6.5.

Readersvho wish to usethesepredicatesn their own applicationsareencouragedo dovnloadthem
andtry themout. However, be certainto read Section6.6, which coverstwo importantissuesthat must
be consideredo ensurethe correctnes®f the implementation:your processos floating-pointbehaior
andyour compilers optimizationbehaior. Furthermorepe awarethat exact arithmeticis not a panacea
for all robustnesswvoes;its usesand limitations are discussedn Section6.2. Exactarithmeticcanmake
robust mary algorithmsthat take geometricinput and return purely combinatorialoutput; for instance a
fully robust corvex hull implementationcan be producedwith recourseonly to an exact orientationtest.
However, in algorithmsthatconstructnewn geometricobjects exactarithmeticis sometimegonstrainedy
its costandits inability to represenarbitraryirrationalnumbers.
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A few words are appropriateto describesomeof the motivation for pursuingrobust predicatesfor
floating-point,ratherthaninteger, operands.One might ague that real-\aluedinput to a geometricpro-
gramcanbe scaledandapproximatedn integerform. Indeed therearefew geometricproblemsthattruly
requirethe rangeof magnitudethat floating-pointstorageprovides, andinteger formatshada clearspeed
adwantageover floating-pointformatsfor small-scalesxact computatiorprior to the presentresearch.The
bestargumentfor exactfloating-pointlibrariesin computationajeometrybesidesornveniencejs the fact
that mary existing geometricprogramsalreadyuse floating-pointnumbersinternally andit is easierto
replacetheir geometricpredicateswith robust floating-pointversionsthanto retrofit the programsto use
integersthroughout.Online algorithmspresentanotheragument,becausehey arenot alwayscompatible
with the scaled-inpuaipproach.Onecannotalwaysknow in advancewhatresolutionwill berequired,and
repeatedescalingsmay be necessaryo supportan internal integer format whenthe inputs are real and
unpredictableln ary case] hopethatthisresearctwill male it easierfor programmers$o choosebetween
integer andfloating-pointarithmeticasthey prefer

6.2 RelatedWork in Robust Computational Geometry

Most geometricalgorithmsarenot originally designedor robustnesstall; they arebasednthereal RAM
mode] in which quantitiesareallowedto be arbitraryreal numbersandall arithmeticis exact. Thereare
se/eralwaysa geometricalgorithmthatis correctwithin therealRAM modelcangowrongin anencounter
with roundof error The outputmight be incorrect,but be correctfor someperturbatiorof its input. The
resultmight be usableyet not be valid for ary imaginableinput. Or, the programmay simply crashor fail
to producearesult. To reflectthesepossibilities geometricalgorithmsaredividedinto several classesvith
varying amountsof robustness:exact algorithms which are always correct;robust algorithms which are
always correctfor someperturbationof the input; stablealgorithms for which the perturbationis small;
guasi-bhust algorithms whoseresultsmight be geometricallyinconsistentput neverthelessatisfy some
wealenedconsisteng criterion; andfragile algorithms which are not guaranteedo produceary usable
outputat all. The next several pagesaredevotedto a discussiorof representate researchin eachclass,
andof the circumstancem which exactarithmeticandothertechniquesreor arenotapplicable For more
extensve suneys of geometriaobustnessseeFortune[34] andHoffmann[50].

Exact algorithms. A geometricalgorithmis exactif it is guaranteetb producea correctresultwhengiven
anexactinput. (Of course theinputto ageometricalgorithmmay only be anapproximatiorof somereal-
world configurationput this difficulty is ignoredhere.)Exactalgorithmsuseexactarithmeticin someform,
whetherin theform of amultiprecisionlibrary or in amoredisguisedorm.

Thereareseveral exactarithmeticschemeslesignedspecificallyfor computationafjeometry;mostare
methoddor exactly evaluatingthe sign of a determinantandhencecanbe usedto performthe orientation
andincircle tests. Clarkson[23] proposesan algorithmfor usingfloating-pointarithmeticto evaluatethe
sign of the determinanbf a small matrix of integers. A variantof the modified Gram-Schmidprocedure
is usedto improve the conditioningof the matrix, so that the determinantan subsequentlye evaluated
safelyby Gaussiarelimination. The 53 bits of significandavailablein IEEE doubleprecisionnumbersare
sufiicientto operateon 10 x 10 matricesof 32-bitintegers. Clarkson$ algorithmis naturallyadaptve; its
runningtime is smallfor matricesvhosedeterminantsirenot nearzerd.

1 The methodpresentedn Clarksons paperdoesnot work correctlyif the determinants exactly zero,but Clarkson(personal
communicationotesthatit is easilyfixed. “By keepingtrack of the scalingdoneby the algorithm, an upperboundcanbe
maintainedor the magnitudeof the determinanbf the matrix. Whenthatupperbounddropsbelov one,the determinanmustbe
zero,sincethematrix entriesareintegers,andthe algorithmcanstop’
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Recently Avnaim, BoissonnatDevillers, Preparataand Yvinec [2] proposedanalgorithmto evaluate
signsof determinant®f 2 x 2 and3 x 3 matricesof p-bit integersusingonly p and(p + 1)-bit arithmetic,
respectiely. Surprisingly thisis sufficient evento implementthe inspheretest(which is normally written
asa4 x 4 or 5 x 5 determinant)put with a handicapn bit compleity; 53-bitdoubleprecisionarithmetic
is sufiicientto correctlyperformtheinsphereeston pointshaving 24-bitintegercoordinates.

FortuneandVanWyk [37, 36] proposea moregeneralapproachnot specificto determinantspr even
to predicates}that representsntegers using a standardmultiple-digit techniquewith digits of radix 222
storedas double precisionfloating-pointvalues. (53-bit double precisionsignificandsmale it possible
to add several productsof 23-bit integersbeforeit becomesecessaryo normalize.) Ratherthanusea
general-purposarbitrary precisionlibrary, they have developedLN, an expressioncompiler that writes
codeto evaluatea specificexpressionexactly. The sizeof the operandss arbitrary but is fixedwhenLN
is run; an expressiorcanbe usedto generateseveral functions,eachfor agumentsof differentbit lengths.
Becauseahe expressionand the bit lengthsof all operandsare fixed in advance,LN can tune the exact
arithmeticaggressiely, eliminatingloops,function calls,andmemorymanagementThe runningtime of
a function producedby LN dependsn the bit compleity of the inputs. FortuneandVan Wyk reportan
orderof-magnitudespeedmprovementover the useof multiprecisionlibraries(for equalbit compleity).
FurthermorelLN gainsanotherspeedmpraovementby installingfloating-pointfilters wherever appropriate,
calculatingerrorboundsautomatically

Karasick Lieber, andNackmar{56] reporttheirexperience®ptimizingamethodfor determinanevalu-
ationusingrationalinputs. Theirapproachreduceghebit compleity of theinputsby performingarithmetic
on intenals (with low precisionbounds)ratherthanexact values. The determinanthus evaluatedis also
anintenal; if it containszero,the precisionis increasedandthe determinanteesaluated. The procedure
is repeatedintil the intenal doesnot containzero (or containsonly zero),andthe resultis certain. Their
approachs thusadaptve, althoughit doesnot appeato usetheresultsof oneiterationto speedhenext.

Becauseahe Clarksonand Avnaim et al. algorithmsare effectively restrictedto low precisioninteger
coordinates| do not comparetheir performancewith that of my algorithms,thoughtheirsmay be faster
Floating-pointinputsaremoredifficult to work with thanintegerinputs, partly becausef the potentialfor
the bit compleity of intermediatesaluesto grow morequickly. (The Karasicketal. algorithmalsosufers
this difficulty, andis probablynot competitie with the othertechniquesliscussedhere,althoughit maybe
thebestexisting alternatve for algorithmsthatrequirerationalnumberssuchasthosecomputingexactline
intersections.Whenit is necessaryor analgorithmto usefloating-pointcoordinatesthe aforementioned
methodsare not currentlyan option (althoughit might be possibleto adaptthemusingthe techniquesf
Section6.3). | amnotawareof ary prior literatureon exactdeterminantevaluationthatconsiderdloating-
pointoperandsexceptfor onelimited example: Ottmann,Thiemt,andUllIrich [74] adwcatethe useof an
accumte scalar productoperationjdeally implementedn hardware (thoughthe software-level distillation
algorithmdescribedn Section6.3.8mayalsobe used)asawayto evaluatesomepredicatesuchasthe2D
orientationtest.

Exactdeterminanalgorithmsdo not satisfythe needsf all applications A programthatcomputedine
intersectionsequiresrationalarithmetic;an exactnumeratoandexactdenominatomustbe stored.If the
intersectionsnaythemselesbecomeendpointof linesthatgeneratenoreintersectionsthenintersections
of greaterandgreaterit compleity may be generatedEven exactrationalarithmeticis not sufficient for
all applications;a solid modeley for instance might needto determinethe verticesof the intersectionof
two independensolidsthathave beenrotatedthrougharbitraryangles.Yet exactfloating-pointarithmetic
cant even copewith rotatinga square45° in the plane,becauserrational vertex coordinategesult. The
problemof constructedrrational valueshasbeenpartly attacled by the implementatiorof “real” numbers
in the LEDA library of algorithmg[13]. Valuesderivedfrom squareroots(andotherarithmeticoperations)
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are storedin symbolic form when necessary Comparisonswith suchnumbersare resohed with great
numericalcare,albeitsometimest greatcost; separatiorboundsare computedvherenecessaryo ensure
thatthe signof anexpressioris determinedaccuratelyFloating-poinffilters andanotherform of adaptvity
(approximatingaresultrepeatedlydoublingthe precisioneachtime) areusedaswell.

For theremaindeiof this discussiongonsiderations restrictedo algorithmswhoseinput is geometric
(e.g. coordinatesare specified)but whoseoutputis purely combinatorial,suchas the constructionof a
convex hull or anarrangementf hyperplanes.

Robust algorithms. Therearealgorithmsthat canbe madecorrectwith straightforvard implementations
of exactarithmetic,but suffer an unacceptabléossof speed.An alternatve is to relaxthe requiremenbf
a correctsolution, andinsteadaccepta solutionthatis “close enough”in somesensethat dependsupon
the application. Without exact arithmetic, an algorithm must somehw find a way to producesensible
outputdespitehefactthatgeometridestsoccasionallytell it lies. No generatechniquehiave emepgedyet,
althoughbandagesave appearedor specificalgorithms,usuallyensuringrobustnesor quasi-robistness
throughpainstakingdesignand error analysis. The lack of generalityof thesetechniquess not the only
limitation of therelaxed approacho robustnessthereis a morefundamentadlifficulty thatdeserescareful
discussion.

WhendisastestrikesandarealRAM-correctalgorithmimplementedn floating-pointarithmeticfailsto
produceameaningfukesult,it is oftenbecauséhealgorithmhasperformedestswhoseresultsaremutually
contradictory Figure 6.1 shaws an error thatarosein the triangulationmeging subroutineof Triangles
divide-and-conqueDelaunaytriangulationimplementationThe geometricallynonsensicatiangulationin
theillustrationwasproduced.

On closeinspectionwith a detugger | found that the failure was causedby a singleincorrectresult
of theincircle test. At the bottomof Figure 6.1 appearfour nearlycollinear pointswhosedeviation from
collinearity hasbeengreatly exaggeratedor clarity. The pointsa, b, ¢, andd had beensortedby their
z-coordinatesandb hadbeencorrectlyestablishedby orientationtests)to lie below theline ac andabore
theline ad. In principle, a programcould deducefrom thesefactsthata cannotfall insidethe circle dcb.
Unfortunatelytheincircle testincorrectlydeclaredhata lay inside,therebyleadingto theinvalid result.

It is significantthattheincircle testwasnot justwrongabouttheseparticularpoints;it wasinconsistent
with the “known combinatorialfacts. A correctalgorithm (that computesa purely combinatorialresult)
will produceameaningfuresultif its testresultsarewrongbut areconsistentith eachother becaus¢here
existsaninput for which thosetestresultsare correct. Following Fortune[32], analgorithmis robustif it
alwaysproduceghe correctoutputunderthe real RAM model,andunderapproximatearithmeticalways
producesanoutputthatis consistentvith somehypotheticainputthatis a perturbatiorof thetrueinput; it
is stableif this perturbatioris small. Typically, boundson the perturbatiorare proven by backward error
analysis.Usingonly approximaterithmetic,Fortunegivesanalgorithmthatcomputes planarcorvex hull
thatis correctfor pointsthathave beenperturbedby arelative errorof atmostO(e) (wheree is themachine
epsilondefinedn Section6.4.2),andanalgorithmthatmaintainsatriangulationthatcanbemadeplanarby
perturbingeachvertex by arelative errorof at mostO(n2e), wheren is the numberof vertices.If it seems
surprisingthata “stable” algorithmcannotkeepa triangulationplanar considerthe problemof insertinga
new vertex socloseto an existing edgethatit is difficult to discernwhich sideof the edgethe vertex falls
on. Only exactarithmeticcanpreventthe possibility of creatingan“inverted’triangle.

Onemight wonderif my triangulationprogramcanbe maderobust by avoiding ary testwhoseresult
canbeinferredfrom previoustests.Fortune[32] explainsthat

[a]nalgorithmis parsimoniousf it never performsatestwhoseoutcomehasalreadybeendeter
minedastheformal consequencef previoustests.A parsimoniousilgorithmis clearlyrobust,
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Figure6.1: Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff
error. Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that

the point b lay between the lines ac and ad, but an incorrect incircle test claimed that a lay inside the circle
dcb.

sinceary paththroughthe algorithmmustcorrespondo somegeometricinput; makinganal-
gorithmparsimoniouss the mostobviousway of makingit robust. In principleit is possibleto
malke analgorithmparsimonioussinceall primitive testsarepolynomialsign evaluations the
questionof whetherthecurrenttestis alogical consequencef previoustestscanbephraseds
astatemenof theexistentialtheoryof thereals.Thistheoryis atleastNP-hardandis decidable
in polynomialspacg15]. Unfortunatelythefull power of thetheoryseemdo benecessarfor
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someproblems. An exampleis the line arrangementproblem given a setof lines (specified
by real coordinatega, b, ¢), sothatax + by = c), computethe combinatorialstructureof the
resultingarrangemenin the plane.lIt follows from recentwork of Mnev [71] thatthe problem
of decidingwhethera combinatorialarrangemenis actuallyrealizablewith linesis ashardas
the existentialtheory of the reals. Hencea parsimoniousalgorithmfor the line arrangement
problem. .. seemgo requirethe solutionof NP-hardproblems.

Because=xact arithmeticdoesnot requirethe solution of NP-hardproblems,an intermediatecourse
is possible;one could emplgy parsimoy wheneer it is efficient to do so, andresortto exact arithmetic
otherwise.Consisteng is guaranteedf exacttestsareusedto bootstrapthe “parsimory engin€. | amnot
awareof ary algorithmsin the literaturethat take this approachalthoughgeometricalgorithmsare often
designedy theirauthorgo avoid the moreobviously redundantests.

Quasi-robust algorithms. The difficulty of determiningwhetheraline arrangemenis realizablesuggests
that, without exact arithmetic,robustnessas definedabose may be an unattainablegoal. However, some-
timesone cansettlefor an algorithmwhoseoutputmight not be realizable. | placesuchalgorithmsin a
baglabeledwith the fuzzy term quasi-phust which | apply to ary algorithmwhoseoutputis someha
provably distinguishabldrom nonsenseMilenkovic [65] circumentsthe aforementionedP-hardnesse-
sultwhile usingapproximaterithmeticby constructingpseudo-linearrangements pseudo-lings a curve
constrainedo lie very closeto anactualline. Fortune[35] presentsa 2D Delaunaytriangulationalgorithm
thatconstructsusingapproximaterithmetic atriangulationthatis nearlyDelaunayin awell-definedsense
usingthe pseudo-line-lik notion of pseudocirclesUnfortunately the algorithms runningtime is O (n?),
which comparegoorly with the O(n logn) time of optimal algorithms. Milenkovic’s and Fortunes al-
gorithmsare both quasi-stablehaving small error bounds.Milenkovic’s algorithmcanbe thoughtof asa
quasi-rolistalgorithmfor line arrangementsr asarobustalgorithmfor pseudo-linearrangements.

Barber[8] pioneeredanapproachn which uncertaintyincludingtheimprecisionof inputdata,is a part
of eachgeometricentity Boxesare structureghat specifythe locationandthe uncertaintyin location of
averte, edge,facet,or othergeometricstructure.Boxesmay ariseeitherasinput or asalgorithmiccon-
structions;ary uncertaintyresultingfrom roundof erroris incorporatednto their shapesndsizes.Barber
presentsalgorithmsfor solvingthe point-in-polygonproblemandfor constructingcorvex hulls in ary di-
mension.For the point-in-polygonproblem,“can't tell” is a valid answeiif the uncertaintyinherentin the
inputor introducedby roundof error preventsa suredetermination The salientfeatureof Barbers Quick-
hull convex hull algorithmis thatit meigeshull facetsthat cannotbe guaranteedthrougherror analysis)
to beclearlylocally corvex. The boxcomple producedoy the algorithmis guaranteedo containthe true
convex hull, boundingit, if possible pothfrom within andwithout.

The degreeof robustnesgequiredof an algorithmis typically determinedby how its outputis used.
For instancemary pointlocationalgorithmscanfail whengiven a non-planatriangulation.For this very
reasonmy triangulatorcrashedfterproducingtheflawedtriangulationin Figure6.1.

The readershouldtake threelessondrom this section. First, problemsdueto roundof canbe severe
anddifficult to solve. Secondgvenif theinputsareimpreciseandtheuserisn't picky abouttheaccurayg of
theoutput,internalconsisteng maystill benecessarif ary outputis to be producedatall; exactarithmetic
may be requiredevenwhenexactresultsarent. Third, neitherexactarithmeticnor clever handlingof tests
thattell falsehoodss auniversalbalm. However, exactarithmeticis attractive whenit is applicablebecause
it canbeemployed by nave programdeveloperswithout thetime-consumingneedfor carefulanalysisof a
particularalgorithms behaior whenfacedwith imprecision.(I occasionalljhearof implementationsvhere
morethanhalf the developers’time is spentsolving problemsof roundof erroranddegenerag.) Hence,
efforts to improve the speedf exactarithmeticin computationajeometryarewell justified.
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6.3 Arbitrary PrecisionFloating-Point Arithmetic

6.3.1 Background

Mostmodernprocessorsupportfloating-pointnumbersof the form <significandx 28XPONeNt The signif-

icandis a p-bit binary numberof the form b.bbb . . ., whereeachb denotesa single bit; oneadditionalbit

representshe sign. This researchldoesnot addressssuesof overflov andunderflav, sol allow the expo-

nentto beanintegerin therange[—oo, oc]. (Fortunately mary applicationshave inputswhoseexponents
fall within a circumscribedange. The four predicatesmplementedor this chaptemwill not overflov nor

underflov if theirinputshave exponentsn therange[—142, 201] andlEEE 754 doubleprecisionarithmetic
is used.) Floating-pointvaluesare generallynormalized which meanghatif a valueis not zero, thenits

mostsignificantbit is setto one,andthe exponentadjustechccordingly For example,in four-bit arithmetic,
binary 1101 (decimall3) is representeds1.101 x 23. Seethe suney by Goldbeg [44] for a detailed
explanationof floating-pointstorageformats,particularlythe IEEE 754 standard.

Exactarithmeticoftenproducesaluesthatrequiremorethanp bitsto store.For thealgorithmsherein,
eacharbitraryprecisionvalueis expressedsanexpansiod z = z, + - - - + z» + =1, whereeachz; is called
a componenbdf z andis representedby a floating-pointvalue with a p-bit significand. To imposesome
structureon expansionsthey arerequiredto be nonwerlappingandorderedby magnitude(z,, largest,zq
smallest). Two floating-pointvaluesz andy arenonoverlappingif the leastsignificantnonzerobit of z is
more significantthanthe mostsignificantnonzerobit of y, or vice versa;for instance the binary values
1100 and—10.1 arenonoverlapping,whereasl01 and10 overlap? The numberzerodoesnot overlapary
number An expansionis nonoverlappingif all its componentsare mutually nonoverlapping. Note that
a numbermay be representedby mary possiblenonoverlappingexpansions;consider1100 + —10.1 =
1001 + 0.1 = 1000 + 1 + 0.1. A nonoverlappingexpansionis desirablebecauset is easyto determine
its sign (take the sign of thelargestcomponentpr to producea crudeapproximatiorof its value (take the
componentvith largestmagnitude).

Two floating-pointvaluesz andy areadjacentf they overlap,if = overlaps2y, or if 2z overlapsy. For
instance 1100 is adjacento 11, but 1000 is not. An expansionis nonadjacentf no two of its components
areadjacentSurprisingly ary floating-pointvaluehasa correspondingonadjacenéxpansionfor instance,
11111 mayappeamtfirst notto berepresentablasanonoverlappingexpansionof one-bitcomponentshut
considetthe expansionl00000 + —1. Thetrick is to usethe signbit of eachcomponento separatét from
its largerneighbor We will laterseealgorithmsin which nonadjacenéxpansionsarisenaturally

Multiple-componentlgorithms(basedon the expansiongdefinedabove) canbe fasterthan multiple-
digit algorithmsbecaus¢helatterrequireexpensie normalizatiorof resultsto fixeddigit positionswhereas
multiple-componendlgorithmscanallow theboundariebetweercomponentso wanderfreely. Boundaries
arestill enforcedbut canfall at ary bit position. In addition,it usuallytakestime to corvert anordinary
floating-pointnumberto the internalformatof a multiple-digitlibrary, whereasary ordinaryfloating-point
numberis anexpansionof lengthone. Conversionoverheaccanaccountfor a significantpartof the costof
smallextendedprecisioncomputations.

The centralconceptuatifferencebetweerstandardnultiple-digit algorithmsandthe multiple-compo-
nentalgorithmsdescribedereinis thattheformerperformexactarithmeticby keepingthebit compleity of
operandsmallenoughto avoid roundof error, whereaghelatterallow roundof to occur thenaccountor

2Notethatthis definition of expansionis slightly differentfrom thatusedby Priest[76]; whereadriestrequiresthatthe expo-
nentsof any two component®f the expansiondiffer by atleastp, no suchrequirements madehere.
3Formally,  andy arenonaverlappingif thereexist integersr ands suchthatz = r2° and|y| < 2°, ory = r2° and|z| < 2°.



154 JonatharRichardShevchuk

it afterthefact. To measureoundof quickly andcorrectly a certainstandardf accuray is requiredfrom
the processos floating-pointunits. The algorithmspresentedhereinrely on the assumptiorithataddition,
subtractionandmultiplicationareperformedwith exactrounding This meanghatif theexactresultcanbe
storedin a p-bit significand thenthe exactresultis producedjf it cannotthenit is roundedto the nearest
p-bit floating-pointvalue. For instancejn four-bit arithmeticthe productl1l x 101 = 100011 is rounded
to 1.001 x 2°. If avaluefalls preciselyhalfway betweentwo consecutie p-bit values,a tiebreakingrule
determineghe result. Two possibilitiesare the round-to-gen rule, which specifiesthat the value should
be roundedto the nearesp-bit valuewith anevensignificand,andthe round-tavard-zerorule. In four-bit
arithmetic,10011 is roundedo 1.010 x 2* undertheround-to-eenrule,andto 1.001 x 2% undertheround-
toward-zerarule. The IEEE 754 standardspecifiesound-to-gentiebreakingasa default. Throughouthis
chapterthesymbols®, ©, and® represenp-bit floating-pointaddition,subtractionandmultiplicationwith
exactrounding.Dueto roundof, theseoperatordack seseral desirablearithmeticproperties Associatvity
is anexample;in four-bit arithmetic,(1000 ¢ 0.011) & 0.011 = 1000, but 1000 & (0.011 ¢ 0.011) = 1001.
A list of reliableidentitiesfor floating-pointarithmeticis givenby Knuth [57].

Roundof is oftenanalyzedn termsof ulps or “units in thelastplace’ An ulpistheeffective magnitude
of thelow-order(pth) bit of ap-bit significand.An ulp is definedrelative to a specificfloatingpoint value;|
shalluseulp(a) to denotethis quantity For instancejn four-bit arithmetic,ulp(—1100) = 1, andulp(1) =
0.001.

Anotherusefulnotationis err(a ® b), whichdenotesheroundof errorincurredby usingap-bit floating-
point operation® to approximatea real operations (addition, subtractionmultiplication, or division) on
theoperands andb. Notethatwhereasulp is anunsignedquantity err is signed.For ary basicoperation,
a®b=axb+ era®b), andexactroundingguaranteethat|err(a ® b)| < ulp(a & b).

In the pageghatfollow, variouspropertiesof floating-pointarithmeticare proven, andalgorithmsfor
manipulatingexpansionsaredevelopedbasedntheseproperties Throughoutpinaryanddecimalnumbers
areintermixed; the baseshouldbe apparenfrom context. A numberis saidto be expressiblein p bits if
it canbe expressedvith a p-bit significand,not countingthe sign bit or the exponent.| will occasionally
refer to the magnitudeof a bit, definedrelative to a specificnumber;for instance the magnitudeof the
secondhonzerdaoit of binary—1110 is four. Theremaindeof this sectionis quitetechnicalthereademay
wish to skip the proofson afirst reading. The key new resultsare Theorem48, 54, and59, which provide
algorithmsfor summingandscalingexpansions.

6.3.2 Propertiesof Binary Arithmetic

Exactroundingguaranteethat|err(a ® b)| < 1ulp(a ® b), but onecansometimedind a smallerboundfor

the roundof error asevidencedby the two lemmatabelon. The first lemmais usefulwhenoneoperand
is much smallerthanthe other andthe secondis usefulwhenthe sumis closeto a power of two. For

Lemmata36 through40, let a andb bep-bit floating-pointnumbers.

Lemma36 Leta ® b= a+ b+ erra & b). Theroundof error |err(a @ b)| is nolarger than|a| or |b|. (An
analagyousresultholdsfor subtiaction.)

Proof: Assumewithoutlossof generalitythat|a| > |b|. Thesuma & b is the p-bit floating-pointnumber
closesto a + b. Buta is ap-bit floating-pointnumbey so|err(a @ b)| < |b| < |a|. (SeeFigure6.2.) [

Corollary 37 Theroundof error err(a @ b) canbeexpressedwith a p-bit significand.
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101.1  110.0 110.1 111.0 111.1 1000 1001 1010

a ad®b
a+b

Figure6.2: Demonstration of the first two lemmata. Vertical lines represent four-bit floating-point values.
The roundoff error is the distance between a + b and a ® b. Lemma 36 states that the error cannot be larger
than |b|. Lemma 38(b) states that if |a + b| < 2¢(2P*! + 1) (for i = —2 and p = 4, this means that a + b falls
into the darkened region), then the error is no greater than 2¢. This lemma is useful when a computed value
falls close to a power of two.

Proof: Assumewithoutlossof generalitythat|a| > |b|. Clearly theleastsignificantnonzerdit of err(a®b)
is nosmallerin magnitudethanulp(b). By Lemma36, |err(a @ b)| < |b|; hencethesignificandof err(a & b)
is nolongerthanthatof b. It follows thaterr(a @ b) is expressibldn p bits.

Lemma 38 For anybasicfloating-pointopemtion , leta ® b = a * b+ errla ® b). Then:

(@) If |err(a ® b)| > 2¢ for someinteger 4, then|a * b| > 2¢(2P + 1).

(b) If |erma @ b)| > 2° for someinteger 4, then|a * b| > 2¢(2PF1 4 1).
Proof:

(@) The numbers2?(2P),2¢(2P — 1),2¢(2P — 2),...,0 areall expressiblein p bits. Any value|a  b| <
2¢(2P + 1) is within adistancdessthan2’ from oneof thesenumbers.

(b) The numbers2?(2P+1) 2¢(2P+1 — 2) 2¢(2PF1 — 4),... 0 areall expressiblein p bits. Any value
la * b| < 2¢(2P*! + 1) is within adistanceof 2¢ from oneof thesenumbers(SeeFigure6.2.) [

Thenext two lemmatadentify specialcasegor which computerarithmeticis exact. Thefirst shavsthat
additionandsubtractiorareexactif theresulthassmallermagnitudehantheoperands.

Lemma 39 Supposehat|a + b| < |a| and|a + b| < |b]. Thena & b = a + b. (Ananalaousresultholds
for subtmaction.)

Proof: Withoutlossof generalityassumea| > |b|. Clearly theleastsignificantnonzerabit of ¢ + b is no
smallerin magnitudehanulp(b). However, |a + b| < |b]. It follows thata + b canbe expressedn p bits. B

Mary of thealgorithmswill rely onthefollowing lemma,which shavs thatsubtractions exactfor two
operandsvithin afactorof two of eachother:
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a = 1 10 1 a =1 0 0 1 x 21
b = 1010 b = 1 001
a—b = 11 a—b = 1 00 1

Figure6.3: Two demonstrations of Lemma 40.

Lemma 40 (Sterbenz[89]) Suppos¢hatb € [3,2a]. Thena © b = a — b.

Proof: Withoutlossof generalityassuméa| > |b|. (Theothercases symmetricbecausesb = —b6—a.)
Thenb € [, a]. Thedifferencesatisfiesa — b| < |b| < |al; theresultfollows by Lemma39. [

Two examplesdemonstratindeemma40 appeain Figure6.3. If a andb have the sameexponentthen
floating-pointsubtractioris analogouso finding thedifferencebetweertwo p-bit integersof thesamesign,
andtheresultis expressiblén p bits. Otherwisetheexponentsof a andb differ by one,becausé € [, 2a).
In this casethedifferencehasthe smallerof thetwo exponentsandsocanbe expressedn p bits.

6.3.3 Simple Addition

An importantbasicoperationin all thealgorithmsfor performingarithmeticwith expansionss theaddition
of two p-bit valuesto form anonaoverlappingexpansion(of lengthtwo). Two suchalgorithms dueto Dekker
andKnuthrespeciiely, arepresented.

Theorem 41 (Dekker [26]) Let a and b be p-bit floating-pointnumbes sud that |[a| > |b|. Thenthe
following algorithmwill producea nonwverlappingexpansionz + y sud thata + b = z + y, whee z isan
approximationto a + b andy representsheroundof error in the calculationof z.

FAST-TWO-SuMm(a, b)
1 rT<=adb

2 Dbyjyal =z Oa
3y =00 byjyal

4 return (z,vy)

Proof: Line 1 computes: + b, but may be subjectto rounding,sowe have z = a + b + errfa ® b). By
assumptiona| > |b|, soa andz musthave the samesign(or z = 0).

Line 2 computeghe quantity by 1,5, Which is the value thatwasreally addedto a in Line 1. This
subtractioris computedxactly; this factcanbe proven by consideringwo caseslf a andb have thesame
sign,orif |b] < % thenz € [Z,2a] andonecanapplyLemma40 (seeFigure6.4). Ontheotherhand,if a
andb areoppositein signand|b| > % thenb € [—%, —a] andonecanapplyLemma40to Line 1, shaving
thatz wascomputedexactly andthereforeb, ;1,5 = b (seeFigure6.5). In eithercasethe subtractions
exact,sobyjpyg == —a =b+erma®b).

Line 3 is alsocomputedexactly. By Corollary37,b — byrtyal = —€rMa @ b) is expressiblén p bits.

It follows thaty = —err(a @ b) andz = a + b+ err(a @ b), hencea + b = z + y. Exactrounding
guaranteethat|y| < %ulp(a:), sox andy arenonoverlapping. [ |
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a = 11 1 1 x 22
b = 1 0 01
r = a®b =10 0 1 x 23
a = 111 1 x 22
y = bObyjyal = - 11

Figure6.4: Demonstration of FAST-Two-SumM where a and b have the same sign. The sum of 111100 and
1001 is the expansion 1001000 + —11.

a 1 0 0 1 x 21
b = - 1011
z = a®b = 11 1
a = 1 0 0 1 x 21
y = bObjjryal = 0

Figure6.5: Demonstration of FAST-Two-Sum where a and b have opposite sign and |b| > |;i|

Notethatthe outputsz andy do not necessariljhave the samesign,asFigure 6.4 demonstratesTwo-
term subtraction(* FAST-TwO-DIFF’) is implementedoy the sequencer < a © b; byjiygl < @ © z;
Y < byirtyal © b- Theproofof the correctnessf this sequencés analogougo Theorem4 1.

The difficulty with using FAST-Two-SuM is the requirementhat |a| > |b|. If the relative sizesof
a andb areunknavn, a comparisonis requiredto orderthe addendsbeforeinvoking FAST-TwO-SuM.
With most C compilerd, perhapsthe fastestportableway to implementthis testis with the statement
“if ((a>b) == (a > -b))". This testtakestime to execute,and the slovdowvn may be sur
prisingly large becauseon modernpipelinedand superscalaarchitecturesanif statementoupledwith
imperfectmicroprocessobranchpredictionmay causea processos instructionpipelineto drain. This ex-
planationis speculatie andmachine-dependertut the Two-Sum algorithmbelav, which avoids a com-
parisonat the costof threeadditionalfloating-pointoperationsjs usuallyempirically faste?. Of course,
FasT-Two-SuM remaindasterif therelative sizesof theoperandsreknown a priori, andthecomparison
canbeavoided.

Theorem 42 (Knuth [57]) Leta andb be p-bit floating-pointnumbes, whee p > 3. Thenthe follow-
ing algorithm will producea nonwerlappingexpansionz + y sud thata + b = z + y, whee z is an

4The exceptionsarethosefew thatcanidentify andoptimizethef abs() mathlibrary call.

50On aDEC Alpha-basedvorkstationusingthe bundledC compilerwith optimizationlevel 3, Two-Sum usesroughly65%as
muchtime asFAST-Two-SuM conditionedwith thetest‘i f ((a > b) == (a > -b))”. OnaSRARCstationlPX, usingthe
GNU compilerwith optimizationlevel 2, Two-Sum usesoughly85%asmuchtime. Ontheotherhand,usingthe SFARCstations
bundledcompilerwith optimization(which producesslower codethangcc), conditionalFAST-Two-SuM usesonly 82%asmuch
time asTwo-SuMm. Thelessonis thatfor optimalspeedpnemusttime eachmethodwith one’s own machineandcompiler
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a = 1 1. 1 1
b = 110
r = adb =1 0 0 O x 21
a = 1 1. 1 1
byirtual = zOa = 110
Qyirtual = z © byirtual = 1 00
broundof = b © byirtual = 1
@roundof ~ a © ayjrtyal = — 0. 01
Y = aroundof @ broundof = 0. 11

Figure6.6: Demonstration of Two-SumM where |a| < |b| and |a| < |z|. The sum of 11.11 and 1101 is the
expansion 10000 + 0.11.

approximationto a + b andy is theroundof error in the calculationof x.

Two-SuM(a, b)

rT<adb

byirtual =z S @

ayirtual < * © byjrtual
broundof = 0 © byjrtual
Aroundof < @ © Ayijrtual

Y <= argundof @ broundof
return (z,y)

NOoO ok, WN PP

Proof: If |a| > |b|, thenLines1, 2, and4 correspongreciselyto the FAST-Two-SuM algorithm. Recall
from the proof of Theorem41 that Line 2 is calculatedexactly; it follows that Line 3 of Two-Sum is
calculatedexactly as well, becauseujryg) = a canbe expressedactly. Hence,ayoyndof IS 2ero,
¥ = brgundof 1S computedexactly, andthe procedures correct.

Now, supposéhat|a| < |b|, andconsidertwo caseslf |z| < |a| < |b|, thenz is computedexactly by
Lemma39. It immediatelyfollows thatbyrt,al = 0 ayirtual = @ @andbroundof: %roundof: @ndy are
zero.

Corversely if |z| > |a|, Lines 1 and 2 may be subjectto rounding,soz = a + b + errfa @ b),
andbyiriya = b + era ® b) + er(z © a). (SeeFigure6.6.) Lines 2, 3, and5 are analogousgo the
threelines of FAST-TwoO-DIFF (with Line 5 negated),so Lines 3 and 5 are computedexactly. Hence,

ayirtual = % — birtual = @ — Mz © a), andaroyndof = €Mz S a).

Becausdb| > |a|, we have |z| = |a @ b| < 2|b|, sotheroundof errorserr(a & b) anderr(z & a) each
cannotemorethanulp(b), sobyiryal € [5. 28] (for p > 3) andLemmad0 canbeappliedto shav thatLine
4 is exact. Hencebroundof = —€fMa @ b) — err(z © a). Finally, Line 6 is exactbecausdy Corollary 37,
aroundof T broundof = —€rMa @ b) is expressiblén p bits.

It followsthaty = —erf(a @ b) andz = a + b+ err(a & b), hencen + b = z + y. [

Two-termsubtraction(* Two-DIFF’) is implementedoy the sequencer <= a © b; byryyal < @ © T;
avirtual <= Z @ byirtuali broundof < bvirtual © b @roundof < @ © avirtuali ¥ < %roundof @ Proundof-
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Corollary 43 Letz andy bethevaluesreturnedby FAST-TWO-SuM or TWO-SUM.

(@) If |y| > 2° for someinteger i, then|z + y| > 2¢(2P + 1).

(b) If |y| > 2° for someinteger i, then|z + y| > 2¢(2P+ + 1),

Proof: y is theroundof error—err(a @ b) for somea andb. By Theoremstland42,a +b =z +y. The
resultsfollow directly from Lemma38. [ |

Corollary 44 Letz andy bethevaluesreturnedby FAST-TwWO-SuM or Two-SuM. Ona madinewhose
arithmeticusesround-to-eentiebreaking x andy are nonadjacent.

Proof: Exactroundingguaranteethaty < %ulp(x). If theinequalityis strict, z andy arenonadjacentlf
y= %ulp(x), theround-to-genrule ensureshattheleastsignificantbit of the significandof z is zero,soz
andy arenonadjacent. [ ]

6.3.4 ExpansionAddition

Having establishedhow to addtwo p-bit values,l turn to the topic of how to addtwo arbitrary precision
valuesexpressedsexpansionsThreemethodsareavailable. EXPANSION-SUM addsanm-componenex-

pansiorto ann-componenexpansionin O(mn) time. LINEAR-EXPANSION-SUM andFAST-EXPANSION-

Sum dothesamein O(m + n) time.

Despiteits asymptoticddisadwantage EXPANSION-SUM canbefasterthanthelineartime algorithmsin
casewvherethesizeof eachexpansioris smallandfixed,becaus@rogramoopscanbecompletelyunrolled
andindirectionoverheaccanbe eliminated(by avoiding the useof arrays).Thelineartime algorithmshave
conditionalsthat make suchoptimizationsuntenable.Hence,EXPANSION-SUM and FAST-EXPANSION-
SuM arebothusedin theimplementationef geometriqpredicateslescribedn Section6.5.

EXPANSION-SUM andLINEAR-EXPANSION-SUM both have the propertythat their outputsare non-
overlappingif their inputs are nonoverlapping,and nonadjacentf their inputs are nonadjacent. FAST-
EXPANSION-SUM is fasterthan LINEAR-EXPANSION-SUM, performingsix floating-pointoperationgper
componentatherthannine, but hasthreedisadwantages.First, FAST-EXPANSION-SUM doesnot always
presere eitherthe nonoerlappingnor the nonadjacenproperty;insteadjt preseresanintermediatgrop-
erty, describedater Secondywheread INEAR-EXPANSION-SUM makesnoassumptiomboutthetiebreak-
ing rule, FAST-EXPANSION-SUM is designedfor machinesthat use round-to-gen tiebreaking,and can
fail on machineswith othertiebreakingrules. Third, the correctnesgproof for FAST-EXPANSION-SUM
is muchmoretedious. Nevertheless| use FAST-EXPANSION-SUM in my geometricpredicatesandrele-
gatethe slowver LINEAR-EXPANSION-SUM to AppendixA. Usersof machineghat have exact rounding
but not round-to-gen tiebreakingshouldreplacecalls to FAST-EXPANSION-SUM with callsto LINEAR-
EXPANSION-SUM.

A complicatingcharacteristiof all the algorithmsfor manipulatingexpansionss that theremay be
spuriouszerocomponentscatteredhroughouthe outputexpansionsevenif no zeroswerepresenin the
inputexpansionsFor instanceif theexpansiond111+4-0.0101 and1100+0.11 arepasse@sinputsto ary of
thethreeexpansioradditionalgorithmstheoutputexpansionn four-bit arithmeticis 11100+0+0+0.0001.
Onemaywantto addexpansionghusproducedo otherexpansionsfortunately all the algorithmsin this
chaptercopewell with spuriouszerocomponentsn their input expansions.Unfortunately accountingor
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Figure6.7: Operation of GRoOw-EXPANSION. The expansions e and h are illustrated with their most signif-
icant components on the left. All Two-Sum boxes in this chapter observe the convention that the larger
output (z) emerges from the left side of each box, and the smaller output (y) from the bottom or right. Each
Q; term is an approximate running total.

thesezerocomponentsouldcomplicatehecorrectnesproofssignificantly To avoid confusionmostof the

proofsfor theadditionandscalingalgorithmsarewritten asif all inputcomponent&renonzero.Spurious
zeroscanbeintegratedinto the proofs(afterthefact) by notingthatthe effect of a zeroinput components

alwaysto producea zerooutputcomponentvithout changingthe valueof theaccumulatofdenotedoy the

variable@). Theeffect canbelikenedto a pipelinedelay;it will becomeclearin thefirst few proofs.

Eachalgorithmhasan accompaying dataflav diagram,like Figure6.7. Readerswill find the proofs
easierto understandf they follow the diagramswhile readingthe proofs,andkeepseveral factsin mind.
First,Lemma36indicateshatthedown arrav from any Two-SuM boxrepresentanumbemo largerthan
eitherinput to the box. (This is why a zeroinput componentyields a zero outputcomponent.)Second,
Theoremstl and42 indicatethatthe down arrov from ary Two-SuM box represents.numbertoo small
to overlapthe numbemrepresentedly theleft arrov from the box.

I begin with analgorithmfor addinga singlep-bit valueto anexpansion.

Theorem45 Lete = )1, e; bea nonoverlappingexpansionof m p-bit componentsandlet b be a p-bit
valuewheep > 3. Suppos¢hatthecomponents, es, . .., e, aresortedin orderofincreasingmagnitude
exceptthatanyofthee; maybezen. Thenthefollowingalgorithmwill producea nonoverlappingexpansion
h sud thath = Zg’j{l h; = e + b, whee thecomponent&, ho, . .., h,,+1 arealsoin order of increasing
magnitude exceptthat any of the h; may be ze. Furthermoeg, if e is honadjacentand round-to-een
tiebreakingis usedthenh is nonadjacent.

GROW-EXPANSION(e, b)
1 Qo<b
2 fori<1tom
3 (Qi, hi) <= TWO-SUM(Qi-1, i)
4 hm_|_1 = Qm
5 return h
Q; is anapproximatesumof b andthefirst: componentsf e; seeFigure6.7.In animplementationthe
array( canbecollapsednto asinglescalar
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Proof: At the endof eachiteration of the for loop, the invariantQ; + Z;Zl hj = b+ Z;Zl e; holds.
Certainlythisinvariantholdsfor 1 = 0 afterLine 1 is executed FromLine 3 andTheorem42, we have that
Qi + h; = Q;_1 + ¢;; from this onecandeducenductively thattheinvariantholdsfor all (relevantvalues
of) i. Thus,afterLine 4is executed 7" hj = 7% e + b.

For all i, the outputof Two-SuM (in Line 3) hasthe propertythat h; and 2; do not overlap. By
Lemma36, |h;| < |e;|, andbecause: is a nonorerlappingexpansionwhosenonzerocomponentsre ar
rangedn increasingorder h; cannotoverlapary of e; 11, e;+2, . . .. It follows thath; cannotoverlapary of
thelatercomponent®f h, becauseheseareconstructecy summing@; with latere componentsHence,
h is nonoverlappingandincreasingexceptingzerocomponent®f ). If round-to-eentiebreakings used,
thenh; andQ@; arenonadjacentor all 7 (by Corollary44),soif e is nonadjacenthenh is nonadjacent.

If ary of thee; is zero,thecorrespondingutputcomponent; is alsozero,andtheaccumulatovalue@
isunchanged@; = Q;_1). (ForinstanceconsiderFigure6.7,andsupposehates is zero. Theaccumulator
value @, shiftsthroughthe pipelineto become)s, anda zerois harmlesslyoutputashs. The sameeffect
occursin severalalgorithmsin this chapter) [ ]

Corollary 46 Thefirstm componentsf & are ead nolarger thanthecorrespondinggomponentfe. (That
is, |hi| <le1l,|ho| < lea|,-- -, |hm| < |em]|.) Furthermoe, |hq1| < |b].

Proof: Follows immediatelyby applicationof Lemma36 to Line 3. (Both of thesefactsare apparenin
Figure6.7. Recallthatthe down arronv from ary Two-Sum box represents numbemo largerthaneither
inputto thebox.) ]

If e is along expansiontwo optimizationsmight be advantageousThe first is to usea binary search
to find the smallesttcomponenbf e greaterthanor equalto ulp(b), andstartthere. A variantof thisidea,
without the searchjs usedin the next theorem.The secondoptimizationis to stopearlyif the outputof a
Two-SuM operationis thesameasits inputs;the expansioris alreadynonoverlapping.

A ndive way to add one expansionto anotheris to repeatedlyuse GROW-EXPANSION to add each
componenbf oneexpansiono the other Onecanimprove thisideawith a smallmodification.

Theorem47 Lete = > 1", e; and f = Y%, fi be nonoverlappingexpansionsof m and n p-bit com-
ponentsrespectivelywhere p > 3. Supposehat the component®f bothe and f are sortedin order of
increasingmagnitude exceptthatanyofthee; or f; maybezew. Thenthefollowingalgorithmwill produce
a nonoverlappingexpansionk sut thath = 34" h; = e + f, wheethecomponentsf 4 arein order of
increasingmagnitude exceptthat any of the h; maybe zen. Furthermoe, if e and f are nonadjacenaind
round-to-@entiebreakingis usedthenh is nonadjacent.

EXPANSION-SUM (e, f)

1 h<e
2 fori<1ton
3 (hishit1s-- - hiym) <= GROW-EXPANSION((hi, hit1, - - -5 Bitm-1), fi)

4 return h
Proof: Thaty 74" h; = =™, e; + Y1, f; uponcompletioncanbe provenby inductionon Line 3.

After settingh < e, EXPANSION-SUM traverseshe expansionf from smallestto largestcomponent,
individually addingthesecomponents$o h using GROw-EXPANSION (seeFigure6.8). Thetheoremwould
follow directly from Theoremd45 if eachcomponentf; wereaddedto the whole expansionk, but to save
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Figure6.8: Operation of EXPANSION-SUM.
time, only the subexpansion(h;, hj+1,- . ., hitm—1) 1S considered.(In Figure6.8, this optimizationsaves

threeTwo-SumM operationghatwould otherwiseappeain thelower right cornerof thefigure.)

When; is consideredthecomponentdy, fo, ..., fi_1 have alreadybeensummednto h. Accordingto
Corollary46, |h;| < |f;| afteriteration; of Line 3. Becausef is anincreasingnonoverlappingexpansion,
for ary j < 4, h; cannotoverlap f;, andfurthermorelh;| < |f;| (unlessf; = 0). Thereforewhenonesums
fi into h, onecanskip thefirsti — 1 component®sf 4 without sacrificingthenonoverlappingandincreasing
propertiesof h. Similarly, if e and f areeachnonadjacentpne canskip thefirsti — 1 component®f A
without sacrificingthe nonadjacenpropertyof h.

No difficulty ensuedf f; is a spuriouszerocomponentbecausezero doesnot overlap ary number
GRoOW-EXxPANSION will depositazeroath; andcontinuenormally ]

Unlike EXPANSION-SUM, FAST-EXPANSION-SUM doeshot presere the nonoverlappingor nonadja-
centpropertiesbut it is guaranteedo producea stronglynonoverlappingoutputif its inputsare strongly
nonorerlapping.An expansionis strongly nonoverlappingif no two of its componentsreoverlapping,no
componenis adjacento two othercomponentsandary pair of adjacenttomponent$iave the property
that both componentgan be expressedvith a one-bitsignificand(thatis, both are powers of two). For
instance, 11000 + 11 and 10000 + 1000 + 10 + 1 areboth strongly nonoverlapping,but 11100 + 11 is
not, noris 100 + 10 + 1. A characteristiof this propertyis thata zerobit mustoccurin the expansionat
leastonceevery p + 1 bits. For instancein four-bit arithmetic,a stronglynonoverlappingexpansionwvhose
largestcomponenis 1111 canbe no greaterthan1111.01111011110. ... Any nonadjacengxpansionis
strongly nonorerlapping,andary stronglynonoverlappingexpansionis nonoverlapping,but the corverse
implicationsdo not apply Recallthat ary floating-pointvalue hasa nonadjacenexpansion;hence,ary
floating-pointvalue hasa strongly nonoverlappingexpansion. For example,1111.1 may be expressedas
10000 + —0.1.



Arbitrary PrecisionFloating-PointArithmetic 163

g5 g4 g3 92 g1
Qs Two Q4 Two Qs Two Q2 ?A sg
‘ < < < W
Sum Sum Sum SuM
hs ha h3 ha hy

Figure6.9: Operation of FAST-EXPANSION-SUM. The @; terms maintain an approximate running total.

Underthe assumptiorthat all expansionsare stronglynonoverlapping,it is possibleto prove the first
key resultof this chapter:the FAST-EXPANSION-SUM algorithmdefinedbelon behaes correctly under
round-to-gentiebreaking.Thealgorithmcanalsobe usedwith round-tavard-zeraarithmetic but the proof
is different.l have emphasizedound-to-gen arithmeticheredueto the IEEE 754 standard.

A variantof this algorithmwaspresentedy Priest[76], but it is useddifferently here. Priestusesthe
algorithmto sumtwo nonoverlappingexpansionsandprovesundergenerakonditionsthatthe components
of the resultingexpansionoverlap by at mostonedigit (i.e. onebit in binary arithmetic). An expensie
renormalizatiorstepis requiredafterward to remorve the overlap. Here,by contrastthe algorithmis used
to sumtwo stronglynonoverlappingexpansionsandtheresultis alsoa stronglynonoverlappingexpansion.
Not surprisingly the proof demandsnorestringentconditionsthan Priestrequires:binary arithmeticwith
exactroundingandround-to-gen tiebreaking,consonantvith the IEEE 754 standard No renormalization
is needed.

Theorem48 Lete = > ", e; and f = Y_1* ; f; be strongly nonoverlappingexpansionf m andn p-bit
componentgespectivelywhee p > 4. Supposehatthe componentsf bothe and f are sortedin order of
increasingmagnitude exceptthatanyof thee; or f; maybezen. Ona madinewhosearithmeticusesthe
round-to-@enrule, the following algorithmwill producea strongly nonoverlappingexpansionk sud that
h = Y""h; = e+ f, whee thecomponentsf h are alsoin order of increasingmagnitude exceptthat
anyof theh; maybezep.

FAST-EXPANSION-SUM (e, f)

1 Mergee andf into asinglesequence, in orderof
nondecreasinmagnitudgpossiblywith interspersederos)

(Q2,h1) < FAST-TWO-SUM (g2, 91)

fori<3tom+n
(Qi, hi—1) <= TWO-SUM(Qi-1,9:)

hm—|—n ~ Qm—l—n

6 return h

a b~ wnN

Q; is anapproximatesumof thefirst; component®f g; seeFigure6.9.

Severallemmatawill aidthe proofof Theoremd8. | begin with a proofthatthe sumitself is correct.
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Lemma49(Q Invariant) At the end of ead iteration of the for loop, the invariant Q; + Ej-;ll hj =
23:1 g; holds. This assues us that after Line 5 is aecuted,zgnjl" h; = E;”:ﬁ” gj, sothe algorithm

producesa correctsum.

Proof: Theinvariantclearlyholdsfor i = 2 afterLine 2 is executed.For largervaluesof 4, Line 4 ensures
thatQ; + h;_1 = Q;_1 + g;; theinvariantfollows by induction. [ |

Lemmab50 Letg = Zle g; bea seriesformedby meging two strongly nonoverlappingexpansionsor a
subseriesherof Supposehat gy, is thelargestcomponenandhasa nonzeo bit of magnitude2’ or smaller
for someinteger i. Then| Y%, g;| < 2¢(2P*! — 1), and| =521 ;| < 2(2°).

Proof: Letéandf bethe expansiongor subsequencdkereof)from which § wasformed,andassumehat
thecomponeng, comesrom the expansiore. Becausgjy is thelargestcomponenbf e andhasanonzero
bit of magnitude2’ or smaller andbecausé is stronglynonoverlapping,|é] is lessthan?2? (2P — %). (For
instanceijf p = 4 and: = 0, then|e| < 1111.0111101111....) Thesameboundappliesto the@<pansionf,
solg = e+ f| < 2i(2rt! —1).

If we omit g, from the sum,therearetwo casedo consider If g, = 2t then|e — g is lessthan 2,
and|f] is lessthan2¢(2). (For instancejf p = 4, i = 0, andg = 1, then|é — gj| < 0.10111101111.. .,
and|f| < 1.10111101111....) Corversely if g, # 2/, then|é — g/ is lessthan2i(}), and|f| is less
than2¢(2P — 1). (For instancejf p = 4, i = 0, andg, = 1111, then|e — g < 0.0111101111..., and
|f] < 1111.0111101111....) In eithercase|g — G| = |€ — Gk + f| < 2¢(2P). |

Lemma51 Theexpansionh producedby FAST-EXPANSION-SUM is a nonoverlappingexpansionwhose
componentare in order of increasingmagnitude(exceptingzeios).

Proof: Supposéor the sale of contradictiorthattwo successe nonzeracomponent®f i overlapor occur
in orderof decreasingnagnitude.Denotethe first suchpair producefl h;_; andh;; thenthe components
hi,...,h;—1 arenonwerlappingandincreasingexceptingzeros).

Assumewithout lossof generalitythatthe exponentof h;_, is zero,sothath;_ is of theform £1.x,
whereanasteriskrepresenta sequencef arbitrarybits.

Q; andh;_, areproducedyy a Two-Sum or FAST-TwoO-SuM operationandarethereforenonadjacent
by Corollary44 (becaus¢heround-to-g@enrule is used).Q); is thereforeof theform + x 00 (having no bits
of magnitudesmallerthanfour). Becauseéh;_1| > 1, Corollary43(a)guaranteethat

|Qi + hi—1| > 27 + 1. (6.1)

Becausehe offending componentsh;_; and h; are nonzeroand either overlappingor of decreasing
magnitude theremustbe at leastone nonzerobit in the significandof #; whosemagnitudes no greater
thanone. Onemay ask,wheredoesthis offendingbit comefrom? h; is computedby Line 4 from Q; and
gi+1, andtheoffendingbit cannotcomefrom @; (whichis of theform + * 00), soit musthave comefrom
gi+1- Hence,|g; 11| hasa nonzerobit of magnitudeoneor smaller Applying Lemma50, onefinds that

| Z;:l g,]| < 2p'

51t is implicitly assumedherethatthe first offendingpair is not separatedy interveningzeros. The proof could be written to
considetthe casewhereinterveningzerosappearbut thiswould make it ev’enmoreconvoluted. Trustme.
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\Zi~—1gil{ |2 el < [ g+ ] 0111101111011
= |Z,,f],,|< 1111 0111101111011
> 2 hy| < 0.1 111111111111
|Qz+hzl|g 1000011110111 10101

Figure6.10: Demonstration (for p = 4) of how the Q Invariant is used in the proof that h is nonoverlapping.
The top two values, e and f, are being summed to form h. Because g¢;41 has a nonzero bit of magnitude
no greater than 1, and because g is formed by merging two strongly nonoverlapping expansions, the sum
IZJ_1 gi| + |Z h ;| can be no larger than illustrated in this worst-case example. As a result, |Q; + h;—1|
cannot be Iarge enough to have a roundoff error of 1, so |h;_1| is smaller than 1 and cannot overlap g; ;.
(Note that g;,1 is not part of the sum; it appears above in a box drawn as a placeholder that bounds the
value of each expansion.)

A boundfor E h canbederived by recalllngthathZ 1 is of theform +£1.x, andhq,...,h;_1 are
nonwerlapplngandmcreasmgHence,\ j:1 h]| < 1.

Rewrite theQ Invariantin theform Q; + h; 1 = >5_; g; — >-'=3 h;. Usingtheboundsderivedabore,
we obtain
Qi +hi 1] <2 + 1. (6.2)
SeeFigure6.10for aconcreteexample.
Inequalitiess.1and6.2 cannothold simultaneouslyTheresultfollows by contradiction. [ ]

Proof of Theorem 48: Lemmad49 ensureshath = e + f. Lemma51 eliminatesthe possibility thatthe
componentsf h overlapor fail to occurin orderof increasingnagnitudeijt remainsonly to prove thath is
stronglynonorerlapping.Supposehattwo successie nonzeracomponents,;_; andh; areadjacent.

Assumewithout lossof generalitythatthe exponentof h;_; is zero,sothath;_; is of theform £1.x.
As in theproofof Lemma51, Q; musthave theform + x 00.

Becausé; ; andh; areadjacenttheleastsignificantnonzerdit of h; hasmagnitudgwo; thatis, h; is
of theform + x 10. Againwe ask,wheredoesthis bit comefrom? As before this bit cannotcomefrom @,
soit musthave comefrom g; 1. Hence,|g;+1| hasa nonzeraobit of magnitudewo. Applying Lemma50,
wefind that| %] g;] < 2P72 — 2 and| 35, g;| < 2P+,

Boundsforz h andz h canalsobederived by recalllngthathZ 1 isof theform +1.x andis
thelargestcomponenbfanoncverlappmgapansmn.Hence|E h il <2, and|2 h il < 1.

Rewriting the Q Invariantin theform Q; ;1 + ki = -3t g; — Y07} hy, we obtain
|Qit1 + hi| < 2PF2. (6.3)
TheQ Invariantalsogivesustheidentity Q; + h;—1 = E§:1 9j — E“ 2 h;j. Hence,
Qi + hi—1] < 27! 4 1. (6.4)

Recallthat the value |h;| is at least2. Considerthe possibility that |z;| might be greaterthan2; by
Corollary 43(b), this canoccuronly if |Q; 1 + h;| > 2P*2 + 2, contradictinginequality6.3. Hence,|h;|
mustbeexactly 2, andis expressiblen onebit. (Figure6.11givesanexamplewherethisoccurs.)
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es = 11110 e; = 0.1
f3 =1x 27 fg = 11110 f1 =0.1
Qs | Two |, Q4 Two [, % Two [, Q2 %vsg
SUM |71 496 | SUM [ 190000 | SUM 1 SUM
hs = 1.1 x 27
hy =0 hs = —10 he = —1 hi=0

Figure6.11: A four-bit example where FAST-EXPANSION-SUM generates two adjacent components h, and
hs. The figure permits me a stab at explaining the (admittedly thin) intuition behind Theorem 48: suppose
hs is of the form +1.x. Because h, is the roundoff term associated with )3, @3 must be of the form %00 if
round-to-even arithmetic is used. Hence, the bit of magnitude 2 in h3 must have come from es. This implies
that |e2| is no larger than 11110, which imposes bounds on how large |@Q3| and |Q4| can be (Lemma 50);
these bounds in turn imply that |h2| can be no larger than 1, and |hz| can be no larger than 10. Furthermore,
h4 cannot be adjacent to hg because neither ()4 nor f3 can have a bit of magnitude 4.

Similarly, thevalue|h;_+| is atleastl. Considerthe possibilitythat|h;_;| mightbe greaterthan1; by
Corollary43(b),this canoccuronly if |Q; + h;_1| > 2PT! + 1, contradictingnequality6.4. Hence | h; 1|
mustbeexactly 1, andis expressiblen onebit.

By Corollary43(a),|@Q; + hi—1| > 2P + 1 (becauséh;_1| = 1). Usingthis inequality the inequality
|Z;;21 h;| < 1, andthe Q Invariant,onecandeducethat | Z;Zl gj| > 2P. Becausg is formedfrom two
nonoverlappingincreasingexpansionsthisinequalityimpliesthat|g;| > 2°~2 > 100 binary (recallingthat
p > 4), andhencey; 2, g;+3, - - - mustall be of theform + * 000 (having no bits of magnitudesmallerthan
8). Qi1 isalsoof theform £ x 000, becausé); 1 andh; areproducedy a Two-Sum or FAST-TWO-Sum
operationandarethereforenonadjacenby Corollary44 (assumingheround-to-genrule is used).

BecauseR;+; andg;2,git3,... areof the form + x 000, h;41, hito,... mustbe aswell, andare
thereforenotadjacento h;. It follows thath cannotcontainthreeconsecutie adjacentomponents.

Theseagumentsrove thatif two componentsf h areadjacentbothareexpressibldn onebit, andno
othercomponentsireadjacento them.Hence } is stronglynonoverlapping. [ ]

Theproofof Theorem48is morecomple thanonewould like. It is unfortunatehatthe proofrequires
stronglynonaoverlappingexpansionsjt would be more parsimoniousf FAST-EXPANSION-SUM produced
nonorerlappingoutputfrom nonorerlappinginput, or nonadjacendutputfrom nonadjaceninput. Unfortu-
nately it doesneither For a countergampleto the former possibility consideraddingthe nonoverlapping
expansionl 1110000+ 111140.1111 toitselfin four-bit arithmetic.(This exampleproducesnoverlapping
expansionif oneusestheround-to-genrule, but notif oneusesthe round-tavard-zerorule.) For a coun-
terexampleto thelatterpossibility seeFigure6.11. Onapersonahote,it took mequiteabit of effort to find
a propertybetweemonawerlappingandnonadjacenthatis presered by FAST-EXPANSION-SUM. Several
conjecturesvere laboriouslyexaminedand discardedbeforel converged on the stronglynonorverlapping
property | persistenly because¢he algorithmconsistentlyworksin practice.
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It is also unfortunatethat the proof requiresexplicit considerationof the tiebreakingrule. FAST-
EXPANSION-SUM works just aswell on a machinethat usesthe round-tavard-zerorule. The conditions
underwhich it works arealsosimpler—the outputexpansionis guaranteedo be nonwerlappingif thein-
put expansionsare. One might hopeto prove that FAST-EXPANSION-SUM works regardlessof rounding
mode, but this is not possible. Appendix B demonstrateshe difficulty with an exampleof how mixing
round-tavard-zeroandround-to-gen arithmeticcanleadto the creationof overlappingexpansions.

ThealgorithmsEXPANSION-SUM andFAST-EXPANSION-SUM canbemixedonly to alimited degree.
EXPANSION-SUM preseresthe nonoverlappingandnonadjacenpropertiesbut not the stronglynonover-
lapping property; FAST-EXPANSION-SUM preseres only the stronglynonorverlappingproperty Because
nonadjacengxpansionsarestronglynonoverlapping,andstronglynonoverlappingexpansionsrenonover-
lapping,expansiongproducedxclusively by oneof thetwo algorithmscanbefed asinputto the other but it
maybedangerouso repeatedlywitchbackandforth betweerthetwo algorithms.In practice EXPANSION-
SuM is only preferredfor producingsmall expansionswhich arenonadjacenandhencesuitableasinput
to FAST-EXPANSION-SUM.

It is usefulto considerthe operationcountsof the algorithms.EXPANSION-SUM usesmn TwWO-SuM
operationsfor a total of 6mn flops (floating-pointoperations).FAST-EXPANSION-SUM usesm + n — 2
Two-Sum operationsandone FAST-TwO-SuM operationfor atotal of 6m + 6n — 9 flops. However, the
meigestepof FAST-EXPANSION-SUM requiresn+n— 1 comparisoroperation®f theform*“if |e;| > | f;]”.
Empirically, eachsuchcomparisorseemgo take roughlyaslong asthreeflops; hence aroughmeasures
to estimatehat FAST-EXPANSION-SUM takesaslong to executeas9m + 9n — 12 flops.

Theseestimatesorrelatewell with the measuregerformancef the algorithms. | implementeceach
procedureasafunctioncall whoseparameterarevariable-lengtlexpansionstoredasarrays andmeasured
themon a DEC Alpha-basedvorkstationusingthe bundledcompilerwith optimizationlevel 3. By plotting
their performanceover a variety of expansionsizesandfitting curwves,| foundthat EXPANSION-SUM runs
in 0.83(m + n) — 0.7 microsecondsand FAST-EXPANSION-SUM runsin 0.54mn + 0.6 microseconds.
FAST-EXPANSION-SUM is alwaysfasterexceptwhenone of the expansionshasonly one componentjn
which caseGRow-EXPANSION shouldbeused.

As | have mentionedhowever, thebalanceshiftswhenexpansiorlengthsaresmallandfixed. By storing
small,fixed-lengthexpansionasscalawvariablegatherthanarraysonecanunroll theloopsin EXPANSION-
SuM, remore arrayindexing overheadandallow componentso be allocatedto registersby the compiler
Thus,EXPANSION-SUM is attractive in this specialcase andis usedto advantagen my implementatiorof
the geometricpredicate®f Section6.5. Notethat FAST-EXPANSION-SUM is difficult to unroll becausef
theconditionaldn its initial meging step.

Ontheotherhand,theuseof arraysto storeexpansiongandnon-unrolledoopsto managehem)con-
fersthe adwantagethat spuriouszerocomponentganeasily be eliminatedfrom outputexpansions.n the
procedure§$SROW-EXPANSION, EXPANSION-SUM, andFAST-EXPANSION-SuM, aswell astheprocedures
ScaLE-ExPaNsiON andCOMPRESS in thesectiongo come,zepo eliminationcanbeachievedby maintain-
ing a separaténdex for the outputarrayh andadwancingthis index only whenthe procedureproducesa
nonzerocomponendf A. In practice,versionsof thesealgorithmsthat eliminatezerosare almostalways
preferabldo versionghatdont (exceptwhenloop unrolling confersa greateradwvantage) Zeroelimination
addsasmallamountof overheador testingandindexing, but thelosttimeis virtually alwaysregainedwhen
furtheroperationsareperformedon theresultingshorteneaxpansions.

Experiencesuggestshatit is economicato useunrolledversionsof EXPANSION-SUM to form expan-
sionsof upto aboutfour componentdpleratinginterspersederos andto useFAST-EXPANSION-SUM with
zeroeliminationwhenforming (potentially)larger expansions.
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6.3.5 Simple Multiplication

The basicmultiplicationalgorithmcomputesa nonoverlappingexpansionequalto the productof two p-bit
values.The multiplicationis performedby splitting eachvalueinto two halveswith half the precisionthen
performingfour exactmultiplicationson thesefragments Thetrick is to find away to split a floating-point
valuein two. Thefollowing theoremwasfirst proven by Dekker [26]:

Theorem52 Let a be a p-bit floating-pointnumberwhee p > 3. Choosea splitting point s sud that
£ < s < p — 1. Thenthefollowing algorithmwill producea (p — s)-bit valueapj anda nonoverlapping
(s — 1)-bit valuea|o sud that|ahi| > ‘a|0| anda = apj + a|g-

SPLIT(a, s)

1 c=(2°+1)Q®a
2 apjg < ¢ ©a

3 apj < ¢S apig
4 alg < a O apj

5  return (apj,ag)

The claim may seemabsurd.After all, ap,; anda)g have only p — 1 bits of significandbetweerthem;
how canthey carryall the informationof a p-bit significand?The secretis hiddenin the sign bit of q|5.
For instancethe seven-bitnumber1001001 canbe split into the three-bitterms1010000 and—111. This
propertyis fortunate,becausevenif p is odd, asit is in IEEE 754 doubleprecisionarithmetic,a canbe
splitinto two | £ ]-bit values.

Proof: Line 1 is equivalentto computing2®a @ a. (Clearly 2°a canbe expressedxactly, becausenulti-
plying a valueby a power of two only changests exponentanddoesnot changats significand.)Line 1 is
subjectto rounding,sowe have ¢ = 2°a + a + err(2°a @ a).

Line 2 is alsosubjectto rounding,soapiq = 2°a + er2°a @ a) + err(c © a). It will becomeapparent
shortly thatthe proof relieson shawing thatthe exponentof apig is no greaterthanthe exponentof 2%a.

Both|err(2*a @ a)| and|err(c © a)| areboundedy $ulp(c), sotheexponentof ap,;,; canonly belargerthan
thatof 2%q if every bit of the significandof a is nonzeroexceptpossiblythe last (in four-bit arithmetic,a
musthave significand1110 or 1111). By manuallycheckingthe behaior of SpLIT in thesetwo casespne
canverify thatthe exponentof apjg is never largerthanthatof 2%a.

Thereasorthis factis usefulis becausewith Line 2, it impliesthat|err(c© a)| < Sulp(2°a), andsothe
errortermerr(c © a) is expressiblan s — 1 bits (for s > 2).

By Lemma40, Lines 3 and4 arecalculatedexactly. It follows thatap; = a — err(c © a), anda)g =
errc © a); thelatteris expressibldn s — 1 bits. To shav thatap,; is expressiblén p — s bits, considerthat
its leastsignificantbit cannotbe smallerthanulp(ay;g) = 2°ulp(a). If apj hasthe sameexponentasa,
thenap; mustbe expressiblein p — s bits; alternatvely, if ap; hasanexponentonegreaterthanthatof a
(because — err(c © a) hasalargerexponenthana), thenap,; is expressibleén onebit (asdemonstratech
Figure6.12).

Finally, theexactnes®f Line 4 impliesthata = apj + a|g asrequired. ]

Multiplication is performedby settings = [£7, sothatthe p-bit operands: andb are eachsplit into
two | £ |-bit pieces,apj, a|g, bpj, andbjy. The productsapibni, aobhi: @hiblo. @andajgb)g caneachbe
computed=xactly by thefloating-pointunit, producingfour values.Thesecouldthenbe summedusingthe
FAST-EXPANSION-SUM proceduren Section6.3.4. However, Dekker [26] providesseveralfasterwaysto
accomplishthe computation Dekker attributesthe following methodto G. W. Veltkamp.
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a = 1 1
23q = 11101
c = (22+1)®a =1 0 0 0 0
a = 1 1
abig = cSa = 1 1100
api = c@abig = 1 00

alpg =  aOap; =

Figure6.12: Demonstration of SpLIT splitting a five-bit number into two two-bit numbers.

a =
h —
T = a®b
ahj ® b
err1 = 2O (apj ® bpj)
alo ® b
errg = err1 © (ajg ® bpj)
ahj ® bg
err3 = errs © (ap; ® bg)
ajp ® bg

-y = err3O (a)g ® bip)

x 23
x 24

x 23

x 21

11101

11101
=110110
=110001
= 101 0 0O
= 101 010
= 10 0110
= 101 010
= - 1000
= 1 00
= — 1100

x 26
x 26
x23
x 22
x 22
x 22

Figure 6.13: Demonstration of Two-PRODUCT in six-bit arithmetic where a = b = 111011, apj = byj =
111000, and a|5 = b = 11. Note that each intermediate result is expressible in six bits. The resulting

expansion is 110110 x 26 + 11001.

Theorem53 Leta andb be p-bit floating-pointhnumbes, whee p > 6. Thenthe following algorithmwill
producea nonoverlappingexpansionz + y sud thatab = x + y, whee z is an appoximationto ab and
y representgheroundof error in the calculationof z. Furthermog, if round-to-&entiebreakingis used,z

andy are nonadjacent(SeeFigure 6.13.)

Two-PRODUCT(a, b)

O~NO O WN P

T<=a®b

(ani: ajg) = SPLIT(a, [§5])
(bhi> blo) = SPLIT(b, [5])
erry <= z © (apj ® by;j)
erry <= err1 © (ajg ® bpj)
errs <= erry © (apj ® big)
y < (019 @ bjg) O errs
return (z,y)
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Proof: Line 1is subjecto rounding,sowe have z = ab+err(a®b). Themultiplicationsin Lines4 through
7 areall exact,becauseachfactorhasno morethan[gj bits; it will be proventhateachof the subtractions
is alsoexact,andthusy = —erra ® b).

Withoutlossof generalityassumehatthe exponentf o andb arep — 1, sothat|a| and|b| areintegers
in therange{2?~ !, 27 —1]. In theproofof Theorenb2it emegedthat|ap,;| and|by| areintegersin therange
[2P~1,27], and|a)p| and|b|o| areintegersin therange[0, 27/21-1]. Fromtheserangesandthe assumption
thatp > 6, onecanderie the inequalities|ajg| < zlapil, [bol < 5lbpil, anderra ® b) < 2°71 <
33 (9hibhil

Intuitively, apibp; oughtto be within a factorof two of a ® b, sothatLine 4 is computedexactly (by
Lemma40). To confirmthis hunch,notethatz = ab + erfa ® b) = apibpi + a1obhi + ehiblo + 2oblo +
erf(a ® b) = apibnj £ &7lanibpil (Usingtheinequalitiesstatedabove), which justifiesthe useof Lemma40.
Becausd.ine 4 is computedvithoutroundof, erry = ajgbpj + apiblo + a|gblo + €Ma @ b).

We areassuredhatLine 5 is executedwithout roundof errorif thevalueerry — ajgbpj = apjbg +
ajpblo + erMla ® b) is expressiblen p bits. | prove thatthis propertyholdsby shaving thatthe left-hand
expressioris amultiple of 2/7/21 andtheright-handexpressioris strictly smallerthan2/32/21,

Theupperboundontheabsolutevalueof theright-handexpressiorfollows immediatelyfrom the upper
boundsfor apj, ajo, bl anderr(a @ b). To shav that the left-handexpressionis a multiple of 2/7/21,
considerthaterr; mustbeamultiple of 27! because ® b andap;b; have exponentsof atleast2p — 2.
Henceerri — ajobpj mustbeamultiple of 27/21 because is aninteger, andby,; is amultiple of 2/7/21.
Hence Line 5is computedxactly, anderry = apibjg + a|gb|o + €M(a ® b).

To shaw thatLine 6 is computedwithout roundof error notethata)yb)g is aninteger no greaterthan
or—1 (because, andb areintegersno greatethan2/?/?1-1) anderr(a ® b) is anintegernogreatetthan
2°=1 Thus,errs = apbjo + €rMla @ b) is anintegerno greaterthan2?, andis expressiblén p bits.

Finally, Line 7 is exactsimply because) = —err(a ® b) canbeexpressedn p bits. Henceab = = + y.

If round-to-gentiebreakings used,z andy arenonadjaceniby analogyto Corollary44. ]

6.3.6 ExpansionScaling

The following algorithm,which multiplies an expansionby a floating-pointvalue, is the secondkey new
resultof this chapter

Theorem54 Lete = )7 e; bea nonoverlappingexpansionof m p-bit componentsandlet b be a p-bit
valuewhee p > 4. Supposehatthe componentsf e are sortedin order of increasingmagnitude except
that any of the e; maybe zeo. Thenthe following algorithmwill producea nonoverlappingexpansionh
sudthath = S.2™ h; = be, whee the componentsf 4 are alsoin order of increasingmagnitude except
thatanyoftheh; maybezen. Furthermog, if e is nonadjacenandround-to-e@entiebreakingis usedthen
h is nonadjacent.
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Figure6.14: Operation of SCALE-EXPANSION.

SCALE-EXPANSION(e, b)
(Q2,h1) < Two-PRODUCT (€1, b)
fori<2tom
(T3,t;) < Two-PRODUCT(e;, b)
(Q2i—1, h2i—2) <= TWO-SUM(Q2i—2, t;)
(Qgi, hQZ’_l) < FAST-TWO-Sum (TZ, QQi_l)
h2m ~ QZm
7 return h

OO WNPR

As illustratedin Figure6.14, SCALE-EXPANSION multiplies eachcomponenbf e by b andsumsthe
results.It shouldbe apparentvhy thefinal expansion is the desiredoroduct,but it is not soobviouswhy
thecomponentsf h areguaranteetb be nonoverlappingandin increasingorder Two lemmatawill aidthe
proof.

Lemma55 Lete; ande; betwo nonorerlappingnonzeo componentsfe, withi < j and|e;| < |e;|. Let
T; bea correctlyroundedapproximationto e;b, andlet T; + t; bea two-componengxpansionexactlyequal
to e;b. (Sud an expansionis producedby Line 3, but here is definedalsofor ¢ = 1.) Thent; is too small
in magnitudeto overlapthe double-widthproducte;b. Furthermoe, if e; ande; are nonadjacentthent; is
notadjacentto e;b.

Proof: By scalinge andb by appropriatepowersof 2 (therebyshifting their exponentswithout changing
their significands)pnemayassumavithoutlossof generalitythate; andb areintegerswith magnituddess
than2?, andthat|e;| < 1 (andhencearadix pointfalls betweere; ande;).

It follows thate;b is aninteger, and|e;b| < 2P. Thelatterfactandexactroundingimply that|¢;| < 3.
Hencee;b and¢; donotoverlap.

If e; ande; arenonadjacentscalee sothate; is anintegerand|e;| < 3. Then|t;| < 1, soe;b andt;
arenotadjacent. |

Lemma56 For some;, letr bethesmallesinteger sud that|e;| < 2" (hencee; doesnotoverlap2™). Then
|Q22‘ < 2r|b|, andthus|h2i_1| < 2r_1U|p(b).
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Proof: Theinequality|Q2;| < 2"|b| holdsfor i = 1 afterLine 1 is executedevenif Q- is roundedto a
larger magnitudepecausege; b| < 27|b|, and2”|b| is expressiblen p bits. For larger valuesof 4, the bound
is proven by induction. Assumethat R is the smallestinteger suchthat |e; 1| < 2%; by the inductve
hypothesis|Qa;_2| < 2%|b|.

Because; ande;_; arenonoverlapping,e; mustbe a multiple of 2%, Supposéhatr is the smallest
integersuchthat|e;| < 27; then|e;| < 27 — 2F.

Lines 3, 4, and5 compute,;, anapproximatiorof QQo; 2 + e;b, andaresubjectto roundof errorin
Lines4 and5. SupposehatQ2;_2 ande;b have the samesign, that |Q2;_2| hasits largestpossiblevalue
2E|p|, andthat|e; | hasits largestpossiblevalue2™ — 2%. For theseassignmentspundof doesnot occurin
Lines4 and5, and|Q2;| = |Q2i—2 + €;b| = 27|b|. Otherwiseroundof mayoccur but the monotonicityof
floating-pointmultiplicationandadditionensureshat|Qs;| cannotbe largerthan2” |b|.

Theinequality|ho;_1| < 27 lulp(b) is guaranteeddy exactroundingbecauseés; 1 is theroundof term
associateavith the computatiorof Qo; in Line 5. [ |

Proof of Theorem 54: One can prove inductively that at the end of eachiteration of the for loop, the
invariant Qa; + >-5:5' h; = 35_; e;b holds. Certainlythis invariantholdsfor i = 1 after Line 1 is
executed.By inductionon Lines 3, 4, and5, onecandeducehattheinvariantholdsfor all (relevantvalues
of) 4. (The useof FAST-Two-Sum in Line 5 will be justified shortly) Thus, afterLine 6 is executed,
by =bY T e

| shall prove thatthe component®f 4 arenonoverlappingby shaving thateachtime a componenbf
h is written, that componenis smallerthananddoesnot overlapeitherthe accumulatoi) nor ary of the
remainingproducts(e;b); hencethe componentannotoverlapary portionof their sum. Thefirst claim,
that eachcomponent:; doesnot overlapthe accumulatorQ; 1, is true becauseér; is the roundof error
incurredwhile computing@;+1.

To shawv thateachcomponenbf k is smallerthananddoesnot overlapthe remainingproducts| shall
considerh;, theremainingoddcomponent®f 4, andtheevencomponentsf & separatelyThe component
h1, computedby Line 1, doesnot overlapthe remainingproducts(esb, esb, . ..) by virtue of Lemmab5.
The even componentswhich arecomputedby Line 4, do not overlapthe remainingproductsbecauseby
applicationof Lemma36 to Line 4, acomponenthsy;_s| is no largerthan|¢;|, whichis boundedn turn by
LemmaS55.

Oddcomponent®f kA, computeddy Line 5, do not overlapthe remainingproductsby virtue of Lemma
56, which guaranteeshat |ho; 1| < 27 'ulp(b). The remainingproductsare all multiples of 2"ulp(b)
(because¢heremainingcomponent®f e aremultiplesof 27).

If round-to-gentiebreakings used the outputof eachTwo-Sum, FAST-Two-SuMm, and Two-PRro-
DUCT statemenis nonadjacentlf e is nonadjacenaswell, theargumentsabove areeasilymodifiedto shav
thath is nonadjacent.

Theuseof FAST-TwO-SuM in Line 5 is justified becauséT;| > |Q2;—1| (exceptif T; = 0, in which
caseFAST-Two-Sum still works correctly). To seethis, recallthate; is a multiple of 2% (with R defined
asin Lemmab56), and considertwo cases:if |e;| = 2%, thenT; is computedexactly and#; = 0, so
IT;| = 2B|b] > |Q2i—2| = |Q2i—1]- If |e;] is largerthan2Z, it is at leasttwice aslarge, andhenceT; is at
least2|Q2;_»|, Soevenif roundof occursandt; is notzero,|T;| > |Qaoi_a| + |ti| > |Q2i—1].

Note thatif aninput componentk; is zero, thentwo zero outputcomponentsare produced,and the
accumulatowalueis unchanged@2; = Q2;_2). [ ]

Thefollowing corollarydemonstratethat SCALE-EXPANSION is compatiblewith FAST-EXPANSION-
SuM.
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Figure 6.15: An adjacent pair of one-bit components in a strongly nonoverlapping input expansion may
cause SCALE-EXPANSION to produce an adjacent pair of one-bit components in the output expansion.

Corollary 57 If e is strongly nonoverlapping and round-to-&en tiebreakingis used,thenh is strongly
nonorerlapping

Proof: Because: is nonoverlapping,h is nonoverlappingby Theorem54. We have alsoseenthatif e
is nonadjacentthenh is nonadjacenand hencestrongly nonoverlapping;but e is only guaranteedo be
stronglynonorerlapping,andmaydeviate from nonadjacenc

Supposewo successie components; ande;;; areadjacentBy thedefinitionof stronglynonoverlap-
ping,e; ande; 1 arebothpowersof two andarenotadjacento e;_; or e; 2. Let s betheintegersatisfying
e; = 2° ande;, 1 = 2°T!. For thesecomponentthe multiplication of Line 3 is exact, so T; = 2°b,
T = 2°F1h, andt; = t;1; = 0. Applying Lemma36to Line 4, hy;_o = hy; = 0. However, the compo-
nentshg;_1 andhy;+1 may causedifficulty (seeFigure6.15). We know h is nonoverlapping but canthese
two componentbe adjacento their neighborsor eachother?

The agumentsusedin Theorem54 to prove that h is nonadjacentif e is nonadjacenaind round-to-
eventiebreakings used,canbe appliedhereaswell to shav thathy; 1 andho;;1 arenotadjacento ary
component®f h producedbeforeor afterthem,but they maybe adjacento eachother Assumethathg; |
andhe; 1 areadjacen{they cannotbe overlapping).

hai+1 is computedn Line 5 from 7; 11 and@2;+1. Thelatteraddends equalto Q;, becausé;; = 0.
(Q2; iIsnotadjacento hoy; 1, becauséhey areproducedn Line 5from aFAST-TwoO-SuM operationHence,
theleastsignificantnonzerdit of ;11 (thatis, thebit thatcause# to beadjacento hy;_1) musthave come
from T}, 1, whichis equalto 2571b. It follows thaths; 1 isamultipleof 25T 1ulp(b). Becausege;, 1| < 2512,
Lemma56impliesthat |hg; 1| < 25T ulp(b). Hence,ha;y 1| = 25+ ulp(b).

Similarly, becausege;| < 25*!, Lemma56impliesthat|ho;_1| < 2°ulp(b). The componentss;,; and
he;—1 canonly beadjacenin thecaselhy;—1| = 2°ulp(b). In this casebothcomponentsareexpressiblen
onebit.

Hence eachadjacenpair of one-bitcomponenti theinput cangive riseto anisolatedadjacenpair of
one-bitcomponentén the output,but no otheradjacentomponentsnay appear If e is stronglynonover
lapping,sois h. ]
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6.3.7 Compressionand Approximation

Thealgorithmsfor manipulatingexpansionglo not usuallyexpresstheir resultsin the mostcompactorm.
In additionto the intersperseaero componentghat have alreadybeenmentioned(and are easily elimi-
nated),it is alsocommonto find componentshatrepresenobnly a few bits of an expansiors value. Such
fragmentatiorrarely becomeserere, but it cancausethe largestcomponenbf an expansionto be a poor
approximatiorof the value of the whole expansion;ithe largestcomponentnay carry aslittle asonebit of
significance.Sucha componentnay result, for instance from cancellationduring the subtractionof two
nearlyequalexpansions.

The ComPRESS algorithmbelow findsacompacform for anexpansion Moreimportantly CoMPRESS
guaranteeshatthe largestcomponenis a good approximationto the whole expansion. If round-to-een
tiebreakings used,COMPRESS alsocorvertsnonoverlappingexpansionsnto nonadjacenéxpansions.

Priest[76] presentsa more complicated’Renormalization”procedurethat compressesptimally. Its
greaterunningtime is rarelyjustified by the maiginal reductionin expansioriength,unlessthereis a need
to putexpansionsn acanonicaform.

Theorem58 Lete = Y 1", e; be a nonoerlapping expansionof m p-bit componentswhee m > 3.
Suppos¢hatthe componentsf e are sortedin order of increasingmagnitude exceptthatanyof thee; may
bezen. Thenthefollowing algorithmwill producea nonoverlappingexpansiom: (nonadjacenif round-to-
eventiebreakingis used)suc thath = ;" ; h; = e, whee thecomponent#; are in order of increasing
magnitude If A # 0, noneof the h; will bezeo. Furthermoe, the largestcomponent,, apploximatesh
with an error smallerthanulp(h.,).

COMPRESS(e)

1 Q<en

2 bottom < m

3 for i < m — 1 downto 1

4 (Q,q) < FAST-TWO-SUM (Q, €;)
5 if ¢ # 0then

6 Gbottom = Q

7 bottom < bottom — 1

8 Q<q

9 Gbottom <= @

10 top<=1

11 for i < bottom + 1tom

12 (Q, q) < FAST-TWO-SuM(g;, Q)
13 if ¢ # 0 then

14 hiop <= Q

15 top<=top+1

16 hip = Q

17  Setn (thelengthof k) to top

18 returnh

Figure6.16illustratesthe operationof COMPRESS. For clarity, g andh arepresente@stwo separate
arraysin the ComPRESS pseudocodequt they canbecombinednto a singleworking arraywithout conflict
by replacingevery occurrencef “g” with “h”.
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Figure6.16: Operation of CoMPRESS when no zero-elimination occurs.

Proof Sketch: CoMPRESS workshy traversingtheexpansiorfrom largestto smallescomponentthenback
from smallesto largest,replacingeachadjacenpair with its two-componensum. Thefirst traversal,from
largestto smallestdoesmostof the compressionThe expansiong,,, + gm—_1 + * * * + gpottom, Producedoy
Lines 1 through9 hasthe propertythatg,; 1 < ulp(g;) for all j (andthussuccessie componentsverlap
by atmostonebit). Thisfactfollows becaus¢heoutputof FAST-Two-SuM in Line 4 hasthepropertythat
g < %ulp(Q), andthevalueof g thusproducedcanonly beincreasedlightly by the subsequeradditionof
smallernonoverlappingcomponents.

The secondtraversal, from smallestto largest, clips ary overlappingbits. The useof FAST-Two-
SuM in Line 12 is justified becausehe propertythatg;_1 < ulp(g;) guaranteeshat @ (the sumof the
componentghat are smallerthang;) is smallerthang;. The expansionh;,, + hip—1 + -+ + ho + hy
is nonorerlapping(nonadjacentf round-to-gen tiebreakingis used)becauseé~AsT-Two-SuM produces
nonorerlapping(nonadjacentdutput.

During the secondraversal,an approximatedotal is maintainedn the accumulato). The component
h,_1 is producedby the last FAST-Two-Sum operatiorthat producesa roundof term; this roundof term
is no greaterthanulp(h,,). Hencethesum|h,_1 + hp_2 + - + ho + h1| (Wherethe componentsf &
arenonoverlapping)is lessthanulp(h,, ), thereforelh — h,| < ulp(hy,). [

To ensurethat h,, is a goodapproximatiorto 4, only the secondtraversalis necessaryhowever, the
first traversalis moreeffective in reducingthe numberof componentsThefastestvay to approximatee is
to simply sumits componentf§rom smallestto largest;by thereasoningisedabore, theresulterrsby less
thanoneulp. This obserationis the basisfor an APPROXIMATE procedureghatis usedin the predicate®f
Section6.5.

Theoremb8 is not the strongesstatementhatcanbe madeaboutComMPRESS. COMPRESS is effective
evenif the component®f the input expansionhave a certainlimited amountof overlap. Furthermorethe
boundfor |k — h,| is nottight. (I conjectureghatthelargestpossiblerelative erroris exhibitedby anumber
that containsa nonzerobit every pth bit; obsere that1 + ulp(1) + [ulp(1)]?> + - - - cannotbe further
compressed.Jheseémprovementomplicatethe proof andarenot exploredhere.
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Figure6.17: Distillation of sixteen p-bit floating-point values.

6.3.8 Other Operations

Distillation is theproces®f summingk unordereg-bit values.Distillation canbeperformedoy thedivide-
and-conquealgorithmof Priest[76], which usesary expansionadditionalgorithmto sumthe valuesin a
tree-like fashionasillustratedin Figure6.17. Eachp-bit addends aleaf of thetree,andeachinterior node
represents call to an expansionadditionalgorithm. If EXPANSION-SUM is used(andzeroeliminationis
not), thenit doesnot matterwhetherthe treeis balanceddistillation will take precisely%k(k: —1) Two-
SuM operationsregardlessof the orderin which expansionsarecombined.If FAST-EXPANSION-SUM is
used,the speedof distillation dependstronglyon the balanceof thetree. A well-balancedreewill yield
anO(klog k) distillation algorithm,anasymptotiamprovementover distilling with EXPANSION-SUM. As
| have mentionedjt is usuallyfastesto usean unrolled EXPANSION-SUM to createexpansionsof length
four, andFAST-EXPANSION-SUM with zeroeliminationto sumtheseexpansions.

To find theproductof two expansions: and f, useSCALE-EXPANSION (with zeroelimination)to form
theexpansiong f, efs, .. ., thensumtheseusinga distillation tree.

Division cannotalways,of course be performedexactly, but it canbe performedto arbitraryprecision

by aniterative algorithmthat employs multiprecisionadditionand multiplication. ConsultPriest[76] for
onesuchalgorithm.

The easiestvay to comparetwo expansionds to subtractonefrom the other andtestthe sign of the
result. An expansions sign can be easily testedbecausef the nonorerlappingproperty; simply check
the sign of the expansions mostsignificantnonzerocomponent.(If zeroeliminationis emplg/ed, check
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the componentith the largestindex.) A nonoverlappingexpansionis equalto zeroif andonly if all its
componentareequalto zero.

6.4 Adaptive PrecisionArithmetic

6.4.1 Why Adaptivity?

Exactarithmeticis expensve, andwhenit canbe avoided, it shouldbe. Someapplicationsdo not need
exact results,but requirethe absoluteerror of a resultto fall belov somethreshold. If this thresholdis

known beforethe computationis performed,it is economicalto emplg/ adaptivity by prediction One
writes several procedureseachof which approximateshe resultwith a differentdegreeof precision,and
with acorrespondinglyifferentspeedErrorboundsarederivedfor eachof theseproceduresthesebounds
aretypically much cheapetto computethanthe approximationghemseles, exceptfor the leastprecise
approximationFor ary particularinput, theapplicationcomputegheerrorboundsanduseshemto choose
the procedurdghatwill attainthe necessaraccurag mostcheaply

Sometimeshowever, onecannotdeterminewhethera computatiorwill be accurateenoughbeforeit is
done.An exampleis whenonewishesto boundtherelative error, ratherthantheabsoluteerror, of theresult.
(A specialcaseis determiningthe sign of an expressionthe resultmusthave relative errorlessthanone.)
Theresultmayprove to be muchlargerthanits errorbound,andlow precisionarithmeticwill sufice, or it
may be socloseto zerothatit is necessaryo evaluateit exactly to satisfythe boundon relative error One
cannotgenerallyknow in advancehow muchprecisionis needed.

In the context of determinanevaluationfor computationafjeometryFortuneandVanWyk [36] suggest
usingafloating-poinffilter. An expressioris evaluatedapproximatelyn hardwareprecisionarithmeticfirst.
Forward error analysisdeterminesvhetherthe approximateresultcanbe trusted;if not, an exactresultis
computedlf theexactcomputatioris only neededccasionallythe applicationis slovedonly alittle.

Onemight hopeto improve this ideafurther by computinga sequencef increasinglyaccurateesults,
testingeachonein turn for accurag. Alas, wheneer anexactresultis required,onesuffers both the cost
of the exact computationandthe additionalburdenof computingseveral approximateresultsin adwance.
Fortunatelyit is oftenpossibleto useintermediateesultsassteppingstonego moreaccurataesults;work
alreadydoneis notdiscardedut is refined.

6.4.2 Making Arithmetic Adaptive

FasT-Two-SuM, Two-SuM, and Two-ProbucT eachhave thefeaturethatthey canbe brokeninto two
parts:Line 1, which computesanapproximateesult,andtheremaininglines,which calculatethe roundof
error Thelatter moreexpensve calculationcanbe delayeduntil it is neededif it is ever neededatall. In
thissensetheseroutinescanbemadeadaptive sothatthey only produceasmuchof theresultasis needed.
| describeherehow to achieve the sameeffect with moregenerakxpressions.

Any expressiorcomposeaf addition,subtractionandmultiplicationoperationganbecalculatecadap-
tively in a mannerthatdefinesa naturalsequencef intermediataesultswhoseaccurag it is appropriate
to test. Sucha sequencés mosteasilydescribedy consideringhetreeassociatedavith the expressionas
in Figure6.18(a). The leavesof this treerepresentloating-pointoperandsandits internalnodesrepresent
operationsReplacesachnodewhosechildrenarebothleazeswith thesumz; + y;, wherez; representthe
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Figure6.18: (a) Formula for the square of the distance between two points a and b. (b) The lowest subex-
pressions in the tree are expressed as the sum of an approximate value and a roundoff error. (c) A simple
incremental adaptive method for evaluating the expression. The approximations A; and A, are generated
and tested in turn. The final expansion A3 is exact. Each 4; includes all terms of size O(ei 1) or larger, and
hence has error no greater than O(e?). (d) Incremental adaptivity taken to an extreme. The three subex-
pression trees Ty, T1, and T» are themselves calculated adaptively. Each B; incorporates only the terms
needed to reduce its error to O(e?).

approximatevalueof the subexpressionandy; representshe roundof errorincurredwhile calculatingz;,
asillustratedin Figure6.18(b).Expandthe expressiorto form apolynomial.

In the expandedexpressionthetermscontainingmary occurrencesf y variables(roundof errors)are
dominatedby termscontainingfewer occurrencesAs an example,considerthe expression(a, — b;)? +
(ay — by)? (Figure6.18),which calculateghe squareof the distancebetweertwo pointsin the plane. Set
az — by = 1 + y1 anday — by = z2 + y2. Theresultingexpressiongxpandedn full, is

(22 + 22) + (22191 + 22292) + (2 + 13). (6.5)

It is significantthateachy; is smallrelative to its corresponding:;. Using standarderminologyfrom
forwarderroranalysig97], thequantity%ulp(l) is calledthe madine epsilon denotec:. Recallthatexact
roundingguaranteethat|y;| < e|z;|; thequantitye boundgherelativeerror errla ® b) / (a ® b) of ary basic
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floating-pointoperation.Notethate = 27P. In IEEE 754 doubleprecisionarithmetic,e = 27%3; in single
precisione = 2724,

Expressiorb.5 canbe divided into threeparts,having magnitudeof O(1), O(e), and O(€?), respec
tively. DenotethesepartsTy, T, andT>. More generally for ary expressiorexpandedn this mannerlet
T; bethesumof all productscontainingi of they variables sothatT; hasmagnitude?(e?).

Onecanobtainan approximationd; with errorno largerthanO(e’) by computingexactly the sumof
thefirst j terms, T, throughT};_;. Thesequencel;, A, ... of increasinglyaccurateapproximationganbe
formedincrementally;A; is theexactsumof A;_; andT;_,;. Membersof this sequencaregeneratecnd
testedasillustratedin Figure6.18(c),until oneis sufiiciently accurate.

The approximation4; is not the way to achieze an error boundof O(¢?) with the leastamountof
work. For instance,a floating-pointcalculationof (2% + x3) using no exact arithmetictechniqueswill
achiere anO(e) errorbound,albeitwith alargerconstanthantheerrorboundfor A;. Experimentatiomas
shavn thatthe fastestadaptve predicatesrewritten by calculatingan approximatiorhaving boundO (/)
asquickly aspossiblethenmoving onto thenext smallerorderof magnitude Improvementsn theconstant
prefacingeacherrorboundwill make a differencein only a smallnumberof casesHence,| will consider
two modificationsto the techniqugust described.The first modificationcomputesacherror boundfrom
the minimum possiblenumberof roundof terms. This lazy approachs presentecherefor instructional
purposeshut is not generallythefastest.The secondnodificationl will considerandtheonel recommend
for use,is fasterbecausét spenddesstime collatingsmalldata.

Thefirst modificationis to computethe subexpressiondy, 77, andT; adaptvely aswell. Themethod
is thesame:replacesachbottom-lerel subexpressiorof Ty (andT; andTy) with thesumof anapproximate
resultandanerrorterm,andexpandTy into asumof termsof differing order An approximationB; having
anerrorboundof magnitude?(e?’) maybefoundby approximatingeachT’ termwith errorO(e’). Because
the term T}, hasmagnitudeat mostO(e*), it neednot be approximatedvith ary betterrelative errorthan
O(e=F).

Figure6.18(d)shavsthatthemethods aslazy aspossiblejn thesenseghateachapproximationB; uses
only the roundof termsneededo obtainan O(e?) errorbound. (Notethatthis is true at every level of the
tree.lt is apparentn thefigurethatevery roundof termproduceds fed into a differentcalculationthanthe
largertermproducedvith it.) However, thelaziestapproachs notnecessarilyhefastesapproachThecost
of thismethods unnecessarillargefor two reasonsFirst, recallfrom Section6.3.8thatFA ST-EX PANSION-
Sum is mosteffective whentermsaresummedn abalancednanner Theadditionsn Figure6.18(d)areless
well balancedhanthosein Figure6.18(c). Secondandmoreimportantly thereis a gooddealof overhead
for keepingtrack of mary small piecesof the sum; the methodsacrificesmost of the advantagef the
compressetbrm in which expansionsarerepresentedr-igure6.18(d)doesnot fully revealhow convoluted
this extremeform of adaptvity canbecomefor larger expressions.In additionto having an unexpectedly
large overheadthis methodcanbe exasperatindor the programmer

Thefinal methodfor incrementabhdaptvity | shallpresentwhichis usedto derive the geometrigpredi-
catesn Section6.5,falls somavherebetweerthetwo describedabore. As in thefirst method computethe
sequencel, Ao, ..., anddefinealso 4y = 0. We have seenthatthe error boundof eachterm A; maybe
improvedfrom O(e?) to O (/1) by (exactly) addingT} toit. However, becaus¢hemagnitudeof 7 itselfis
O(€?), the sameeffect canbe achieved (with aslightly worseconstanin the errorbound)by computingT;;
with floating-pointarithmeticandtoleratingtheroundof errog, ratherthancomputing7’; exactly. Hence an
approximationC; 1 having anO(e’ ') errorboundis computedby summing4, andaninexpensve cor-
rectionalterm whichis merelythefloating-pointapproximatiorto 7}, asillustratedin Figure6.19.C, 11 is
nearlyasaccurateasA;, but takesmuchlesswork to computelf C;; is notsuficiently accuratethenit
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Figure6.19: An adaptive method of intermediate complexity that is frequently more efficient than the other
two. Each C; achieves an O(e?) error bound by adding an inexpensive correctional term (labeled “ct”) to
Aiq.

is thrown away, andthe exactvalueof T} is computedandaddedo A; to form A, ;. This schemeaeuses
thework donein performingexact calculationsput doesnot reusethe correctionakerms. (In practice,no
speedcanbegainedby reusingthe correctionaterms.)

Thefirst value(C1) computedoy this methodis anapproximatiorto Tp; if C; is sufficiently accurate,
it is unnecessario computethe y terms,or useary exactarithmetictechniquesat all. (Recallthatthey
termsaremoreexpensve to computethanthe z terms.)Thisfirst testis identicalto FortuneandVanWyk's
floating-pointfilter.

This methoddoesmorework during eachstageof the computatiorthanthe first method,but typically
terminate®nestageearlier It is sloverwhentheexactresultmustbecomputedbut is fastetin applications
thatrarelyneedanexactresult.In somecasesit maybedesirabldo testcertainmembersf bothsequences
A andC for accuray; the predicateslefinedin Section6.5do so.

All threemethod=f makingexpressionsdaptve aremechanicahndcanbeautomatedAn expression
compilersimilarto FortuneandVanWyk’'s[37], discusseéh Section6.2,wouldbevaluablejt couldcorvert
expressiongnto codethatevaluateghesesxpressionsidaptvely, with automaticallycomputecderrorbounds.

The reademay wonderif writing anexpressionn sum-of-productform isn't inefficient. In ordinary
floating-pointarithmeticit oftenis, but it seemgo male little differencewhenusingthe exactarithmetic
algorithmsof Section6.3. Indeed,the multiplication operationdescribedn Section6.3.8 multiplies two
expansionsdy expandingthe productinto sum-of-productéorm.

Theseideasare not exclusively applicableto the multiple-componenapproachto arbitrary precision
arithmetic. They will work with multiple-digitformatsaswell, thoughthe detailsdiffer.
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6.5 Implementation of Geometric Predicates

6.5.1 The Orientation and Incir cle Tests

Leta, b, ¢, andd befour pointsin the plane.Definea proceduréORIENT2D(a, b, ¢) thatreturnsa positve

valueif the pointsa, b, andc arearrangedn counterclockwiserder a negative valueif the pointsarein

clockwiseorder andzeroif the pointsarecollinear A morecommon(but lesssymmetric)interpretation
is that ORIENT2D returnsa positive valueif ¢ lies to the left of the directedline ab; for this purposethe
orientationtestis usedby mary geometricalgorithms.

Definealsoa procedured NCIRCLE(a, b, ¢, d) thatreturnsa positive valueif d lies insidethe oriented
circle abc. By orientedcircle, | meanthe unique (and possibly degenerateXircle througha, b, andec,
with thesepointsoccurringin counterclockwis@rderaboutthe circle. (If thesepointsoccurin clockwise
order INCIRCLE will reversethesign of its output,asif the circle’s exterior wereits interior) INCIRCLE
returnszeroif andonly if all four pointslie onacommoncircle. Both ORIENT2D andINCIRCLE have the
symmetrypropertythatinterchangingary two of their parameterseverseghe signof theirresult.

Thesedefinitionsextendtrivially to arbitrarydimensionsFor instance ORIENT3D(a, b, ¢, d) returnsa
positive valueif d lies below the orientedplanepassinghrougha, b, andc. By orientedplane | meanthat
a, b, andc appeain counterclockwis@rderwhenviewedfrom above the plane.(Onecanapplyaleft-hand
rule: orientyour left handwith fingerscurledto follow the circular sequencebe. If your thumb points
toward d, ORIENT3D returnsa positive value.) To generalizeghe orientationtestto dimensionalityd, let
u1,u2,. .. ,uq betheunitvectors;ORIENT is definedsothat ORIENT (u1, ug, - - . , ug,0) = 1.

In ary dimension the orientationandincircle testsmay be implementedas matrix determinants For
threedimensions:

az ay a, 1
ORIENT3D(a, b,c,d) = b by o 1 (6.6)
cz ¢y ¢ 1
dy dy d, 1
ay —dy ay—dy a,—d,
= | by—dy by—dy b,—d, (6.7)
g —dy cy—dy c,—d,
2 L 2 2
az Gy G, a;+ ag +a; 1
be by b, bi+b,+b 1
INSPHERE(a, b,c,d,e) = | ¢z ¢y ¢, c2+ cé +c 1 (6.8)
do dy di d+dy+dl 1
€x €y € e%—l—ey+e§ 1
az—ep Gy —ey a;—e; (az—egp)’+ (ay—ey)? + (a, —e,)?
_ _ _ _ 2 _ 2 _ 2
o bg—ep by—ey by—e, (by—eg)?+ (by —ey)* + (b —e;)
T ol ep—er cy—ey co—e, (co—er)?+(cy—ey)?+ (e, —ey)? (6.9)
T T y Y z z T T y Y z z
dy —ex dy—ey dy—e, (dy—ez)>+ (dy —ey)? + (d, —e,)?

Thesdormulaegeneralizeo otherdimensionsn theobviousway. Expression§.6and6.7canbeshavn
to beequivalentby simplealgebraidransformationsascanExpression§.8and6.9with alittle moreeffort.
Theseequivalencesareunsurprisingoecaus@neexpectsthe resultof any orientationor incircle testnotto
changéf all the pointsundego anidenticaltranslationin the plane. Expressiors.7, for instance follows
from Expressior6.6 by translatingeachpointby —d.
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N

Figure6.20: Shaded triangles can be translated to the origin without incurring roundoff error (Lemma 40).
In most triangulations, such triangles are the common case.

Whencomputingthesedeterminantsisingthe techniquef Section6.3, the choicebetweenExpres-
sions6.6and6.7,or betweer6.8and6.9, is not straightforvard. In principle, Expressiorb.6 seemgrefer
able becausét canonly producea 96-componengexpansion,whereasExpression6.7 could producean
expansionhaving 192 componentsThesenumbersaresomeavhat misleading however, becausavith zero-
elimination,expansiongarelygrown longerthansix componentin realapplications NeverthelessExpres-
sion 6.7 takesroughly 25% moretime to computein exactarithmetic,andExpressior6.9takesabout50%
moretime thanExpressior6.8. Thedisparitylikely increasen higherdimensions.

Neverthelessthe mechanic®f errorestimationturn thetide in the otherdirection. Importantasa fast
exacttestis, it is equallyimportantto avoid exact testswheneer possible. Expression$.7 and6.9 tend
to have smallererrors(andcorrespondinglysmallererror estimatespecauseheir errorsarea function of
the relative coordinatesf the points,whereaghe errorsof Expression$.6 and6.8 area function of the
absolutecoordinate®f the points.

In mostgeometricapplicationsthe pointsthat sene asparameterso geometricteststendto be close
to eachother Commonly their absolutecoordinatesare muchlargerthanthe distancedbetweerthem. By
translatingthe pointssothey lie nearthe origin, working precisionis freedfor the subsequentalculations.
Hence,the errorsand error boundsfor Expressions$.7 and 6.9 are generallymuch smallerthanfor Ex-
pression$.6 and6.8. Furthermorethe translationcanoften be donewithout roundof error Figure6.20
demonstratea toy problem:supposeéORIENT2D is usedto find the orientationof eachtrianglein atrian-
gulation. Thanksto Lemma40, ary shadedrianglecanbe translatedso thatoneof its verticeslies at the
origin withoutroundof error;thewhite trianglesmay or maynot suffer from roundof duringsuchtransla-
tion. If thecompletetriangulationis muchlargerthanthe portionillustrated,only a smallproportionof the
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triangles(thoseneara coordinateaxis)will suffer roundof. Becausexacttranslationis the commoncase,
my adaptve geometrigpredicatesestfor andexploit this case.

Onceadeterminanhasbeenchoserfor evaluation thereareseveralmethodgo evaluateit. A numberof
methodsaresuneyedby FortuneandVanWyk [36], andonly theirconclusioris repeatedhere. Thecheapest
methodof evaluatingthe determinanbf a5 x 5 or smallermatrix seemgo be by dynamicprogramming
appliedto cofactorexpansion.Evaluatethe (g) determinant®f all 2 x 2 minorsof thefirst two columns,
thenthe (g) determinantsf all 3 x 3 minorsof thefirst threecolumns andsoon. All four of my predicates
usethis method.

6.5.2 ORIENTZ2D

My implementationof ORIENT2D computesa sequencedf up to four results(labeledA throughD) as
illustratedin Figure6.21. The exactresultD maybe aslong assixteencomponentshut zeroeliminationis
usedsoalengthof two to six component$s morecommonin practice.

A, B, andC arelogical placeso testtheaccurag of theresultbeforecontinuing.ln mostapplications,
the majority of callsto ORIENT2D will endwith the floating-pointapproximationA, which is computed
without resortto ary exactarithmetictechniques Although the four-componenexpansionB, like A, has
anerrorof O(e), it is anappropriatesalueto testbecause is the exactresultif thefour subtractionstthe
bottomof the expressiortree are performedwithout roundof error (correspondingo the shadedriangles
in Figure6.20). Becausehis is the commoncase,ORIENT2D explicitly testsfor it; executioncontinues
only if roundof occurredduringthe translationof coordinatesandB is smallerthanits error bound. The
correctedestimateC hasanerrorboundof O(e?). If Cis notsuficiently accuratethe exactdeterminan
is computed.

Therearetwo unusuafeatureof thistest,bothof whicharisebecausenly thesignof thedeterminanis
neededFirst, the correctionatermaddedto B to form C is not addedexactly; instead the APPROXIMATE
procedureof Section6.3.7is usedto find an approximationB’ of B, andthe correctionalterm is added
to B’ with the possibility of roundof error The consequenerrorsmay be of magnitude®(eB), which
would normally precludeobtainingan error boundof O(€?). However, the sign of the determinants only
questionabléf B is of magnituded(e), soanO(e?) errorboundfor C canbe established.

The secondinterestingfeatureis that, if C is not sufiiciently accurate no more approximationsare
computedbeforecomputingthe exactdeterminantTo understanavhy, considerthreecollinearpointsa, b,
andc; thedeterminantefinedby thesepointsis zero.If acoordinateof oneof thesepointsis perturbedy a
singleulp, thedeterminantypically increaseso O(¢). Hence pnemightguesghatwhenadeterminanis no
largerthanO(e?), it is probablyzero. Thisintuition seemso holdin practicefor all thepredicatesonsidered
herein,on bothrandomand“practical” point sets. Determinantghatdon't stopwith approximationC are
nearlyalwayszero.

The derivation of errorboundsfor thesevaluesis tricky, soanexampleis given here. The easiestvay
to applyforward erroranalysisto an expressionwhosevalueis calculatedn floating-pointarithmeticis to
expressthe exactvalueof eachsubexpressionn termsof the computedvalueplusanunknavn errorterm
whosemagnitudeis bounded.For instancethe errorincurredby the computationz <= a @ b is no larger
thane|z|. Furthermorethe erroris smallerthanela + b|. Eachof theseboundsis usefulunderdifferent
circumstancedf ¢ representthetruevaluea + b, anabbreiatedway of expressinghesenotionsis to write
t = z + e|z| andt = z + €|t|. Henceforththis notationwill beusedasshorthandor therelationt = z + A
for some) thatsatisfieg\| < e|z| and|A| < €lt|.
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Figure6.21: Adaptive calculations used by the 2D orientation test. Dashed boxes represent nodes in the

original expression tree.

Let usconsiderthe errorboundfor A. For eachsubexpressionin the expressioriree of the orientation
test,denoteits true (exact) valuet; andits approximatevaluez; asfollows.

th =a, —c; T = a; O cCy
t2 =by — ¢y T2 = by O ¢y
t3 = ay — ¢y T3 =0ay OS¢y
ts = by —cy T4 =b, O ¢y
ts = t1to 5 =11 ® I
tg = t3ly Tg = T3 ® T4
ta =15 — tg A =156 x4

Fromthesedefinitions,it is clearthatt; = z1 + €|z1|; similar boundshold for ¢, t3, and¢,. Obsere
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Approximation Errorbound
A (3e + 16€2) @ (|z5| @ |76
B’ (2¢ +12€%) @ (|z5| @ |w])
C (3¢ +8¢%) ® |B'| @ (9¢” + 64¢®) ® (|z5] @ |z6])

Table 6.1: Error bounds for the expansions calculated by ORIENT2D. B’ is a p-bit approximation of the
expansion B, computed by the APPROXIMATE procedure. Note that each coefficient is expressible in p bits.

alsothatzs = z1 ® 9 = 122 + €|z5]. It follows that

ts =tity = x129 + (2¢ + €%)|z129|
= x5+ €|zs| £ (2¢ + €2)(|z5| + €|z5))
= x5+ (3¢ + 3¢ + €°)|z5].

Similarly, ts = z & (3¢ + 3€2 + €3)|z¢].

It may seemodd to be keepingtrack of termssmallerthan O(e), but the effort to find the smallest
machine-representatoeficient for eacherrorboundis justifiedif it ever preventsa determinantompu-
tationfrom becomingmoreexpensve thannecessaryAn errorboundfor A cannow bederived.

ta=1ts—ts = x5—x6=+ (3¢+ 32 +€)(|zs| + |z6])
= A+elAl+ (3e+ 3¢+ ) (|zs| + |76))

Onecanminimizethe effect of theterme|A| by takingadwantageof the factthatwe areonly interestedn
thesignof ¢4. Onecanconcludewith certaintythatA hasthecorrectsignif

(I1—¢)|A|l > (3e+ 3¢ + 63)(\:B5| + |zg|),

whichis trueif
|Al > (3e + 6€ + 863)(\:B5| + |z6])-

This boundis not directly applicable becausedts computatiorwill incurroundof error To accountfor
this, multiply the coeficient by (1 + €)? (afactorof (1 + ) for the additionof |z5| and|zs|, andanother
suchfactorfor themultiplication). Hence we aresecurehatthe signof A is correctif

Al > (3¢ +12¢” + 24€%) @ (|z5| @ |6])-

This boundis not directly applicableeither becausehe coeficient is not expressiblen p bits. Rounding
up to the next p-bit numbeywe have the coeficient (3¢ + 16¢2), which shouldbe exactly computecbnceat
programinitialization andreusedduringeachcall to ORIENT2D.

Errorboundsfor A, B/, andC aregivenin Table6.1. The boundfor B’ takesadwantageof Theorenb8,
which shavs that B’ approximate® with relative errorlessthan2e. (Recallfrom Section6.3.7 thatthe
largestcomponendf B might have only onebit of precision.)

Theseboundshave the pleasingpropertythat they are zeroin the commoncasethat all threeinput
pointslie on a horizontalor vertical line. Hence,althoughORIENT2D usuallyresortsto exact arithmetic
whengivencollinearinput points,it only performstheapproximatdest(A) in thetwo caseshatoccurmost
commonlyin practice.
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DoubleprecisionORIENT2D timingsin microseconds
Points| Uniform | Geometric| Nearly

Method Random| Random | Collinear
Approximate(6.7) 0.15 0.15 0.16
Exact(6.6) 6.56 6.89 6.31
Exact(6.7) 8.35 8.48 8.13
Exact(6.6), MPFUN 92.85 94.03 84.97
Adaptive A (6.7),approximate 0.28 0.27 0.22
Adaptive B (6.7) 1.89
Adaptive C (6.7) 2.14
Adaptive D (6.7),exact 8.35
LN adaptve (6.7),approximate 0.32 n/a

LN adaptve (6.7),exact n/a 4.43

Table6.2: Timings for ORIENT2D on a DEC 3000/700 with a 225 MHz Alpha processor. All determinants
use the 2D version of either Expression 6.6 or the more stable Expression 6.7 as indicated. The first
two columns indicate input points generated from a uniform random distribution and a geometric random
distribution. The third column considers two points chosen from one of the random distributions, and a third
point chosen to be approximately collinear to the first two. Timings for the adaptive tests are categorized
according to which result was the last generated. Each timing is an average of 60 or more randomly
generated inputs. For each such input, time was measured by a Unix system call before and after 10,000
iterations of the predicate. Individual timings vary by approximately 10%. Timings of Bailey’s MPFUN
package and Fortune and Van Wyk’s LN package are included for comparison.

Compilereffectsaffect the implementatiorof ORIENT2D. By separatinghe calculationof A andthe
remainingcalculationsnto two procedureswith theformercallingthelatterif necessary reducedhetime
to computeA by 25%, presumablybecausef improvementsin the compilers ability to performregister
allocation.

Table 6.2 lists timings for ORIENT2D, given randominputs. Obsere that the adaptve test, whenit
stopsat the approximateesultA, takesnearlytwice aslong asthe approximatdestbecaus®f the needto
computean errorbound. Thetableincludesa comparisorwith Bailey’s MPFUN [4], choserbecausédt is
thefastesportableandfreely availablearbitraryprecisionpackagd know of. ORIENT2D codedwith my
(nonadaptie) algorithmsis roughlythirteentimesfasterthanORIENT2D codedwith MPFUN.

Also includedis a comparisorwith anorientationpredicatefor 53-bitintegerinputs,createcby Fortune
andVanWyk’s LN. The LN-generatedrientationpredicates quite fastbecausét takesadwantageof the
factthatit is restrictedto boundedntegerinputs. My exacttestscostlessthantwice asmuchasLN's; this
seemdike areasonabl@riceto payfor theability to handlearbitraryexponentsn theinput.

Thesdimingsarenotthewholestory; LN’ sstaticerrorestimates typically muchlargerthantheruntime
error estimateusedfor adaptve stageA, andLN usesonly two stagesof adaptvity, sothe LN-generated
predicatesreslowverin someapplicationsasSection6.5.4will demonstratelt is significantthatfor 53-bit
integerinputs,themultiple-stageredicatewill rarelypassstageB becauseheinitial translationis usually
donewithout roundof error;hencethe LN-generatedDRIENT2D usuallytakesmorethantwice aslong to
produceanexactresult. It shouldbe emphasizedhowever, thatthesearenotinherentdifferencesetween
LN’s multiple-digit integer approachand my multiple-componenfloating-pointapproach;LN could, in
principle,emplg the sameruntimeerrorestimateanda similar multiple-stageadaptvity scheme.
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Approximation Errorbound
A (Te + 56€%) ® (g @ ap D o)
B’ (3e + 28€%) ® (g ® ap @ )
C (3e + 8¢?) ® |B'| @ (26€ + 288€%) @ (g D o ® )
g = |z1| ® (lze| @ |27])
= e, ©0d:| @ (|(bz © ds) ® (cy © dy)| @ [(by © dy) ® (cz © di)|)
a = [b,0d|® (|(cz ©ds) ®(ay ©dy)| @ |(cy ©dy) ® (az ©dy)l)
ac = [c; 0d;| @ (|(az ©dz) ® (by ©dy)| ® |(ay ©dy) ® (b © da)])

Table6.3: Error bounds for the expansions calculated by ORIENT3D.

DoubleprecisionORIENT3D timingsin microseconds
Points| Uniform | Geometric| Nearly

Method Random| Random | Coplanar
Approximate(6.7) 0.25 0.25 0.25
Exact(6.6) 33.30 38.54 32.90
Exact(6.7) 42.69 48.21 42.41
Exact(6.6), MPFUN 260.51 262.08| 246.64
Adaptive A (6.7),approximate 0.61 0.60 0.62
Adaptive B (6.7) 12.98
Adaptive C (6.7) 15.59
Adaptive D (6.7),exact 27.29
LN adaptve (6.7),approximate 0.85 n/a

LN adaptve (6.7),exact n/a 18.11

Table6.4: Timings for ORIENT3D on a DEC 3000/700. All determinants are Expression 6.6 or the more
stable Expression 6.7 as indicated. Each timing is an average of 120 or more randomly generated inputs.
For each such input, time was measured by a Unix system call before and after 10,000 iterations of the
predicate. Individual timings vary by approximately 10%.

6.5.3 ORIENT3D, INCIRCLE, and INSPHERE

Figure6.22illustratesthe implementatiorof ORIENT3D, whichis similarto the ORIENT2D implementa-
tion. A is the standardloating-pointresult. B is exactif the subtractionst the bottomof thetreeincurno
roundof. C representadropin theerrorboundfrom O(e) to O(€2). D is the exactdeterminant.

Errorbounddfor thelargestcomponenbf eachof theseexpansionsaregivenin Table6.3,partlyin terms
of thevariablesry, zg, andzz in Figure6.22. Theboundsarezeroif all four inputpointssharehe samez-,
y-, Or z-coordinatesoonly theapproximatdestis neededn themostcommoninstance®f coplanarity

Table 6.4 lists timings for ORIENT3D, given randominputs. The error boundfor A is expensve to
computeandincreasesheamountof time requiredto performthe approximateestin theadaptve caseby
afactorof two andahalf. Thegapbetweemmy exactalgorithmandMPFUN is smallerthanin the 2D case,
but is still afactorof nearlyeight.
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Approximation Errorbound
A (10€ + 96€%) ® (g @ ap D c)
B’ (4e + 48€%) ® (g ® ap D )
C (3e + 8¢?) ® |B| @ (44€® + 576€3) @ (g © ap D )
a = ((6:0d:)° @ (ay © dy)2) ® (|(bs © dz) ® (cy © dy)| B [(by © dy) ® (cz © dg)|)

Qp ((bz © dz)2 ® (by © dy)Z) ® (|(cz © dz) ® (ay © dy)| ® |(cy © dy) ® (az © da)])
a. = ((ez© dw)2 ® (cy © dy)Q) ® (|(az ©dz) ® (by © dy)| ® |(ay © dy) ® (by © dy)])

Table6.5: Error bounds for the expansions calculated by INCIRCLE. Squares are approximate.

DoubleprecisionINCIRCLE timingsin microseconds
Points| Uniform | Geometric/ Nearly

Method Random| Random | Cocircular
Approximate(6.9) 0.31 0.28 0.30
Exact(6.8) 71.66 83.01 75.34
Exact(6.9) 91.71 118.30 104.44
Exact(6.8), MPFUN 350.77 343.61 348.55
Adaptive A (6.9),approximate 0.64 0.59 0.64
Adaptive B (6.9) 44.56
Adaptive C (6.9) 48.80
Adaptive D (6.9),exact 78.06
LN adaptve (6.9),approximate 1.33 n/a

LN adaptve (6.9),exact n/a 32.44

Table6.6: Timings for INCIRCLE on a DEC 3000/700. All determinants are the 2D version of either Expres-
sion 6.8 or the more stable Expression 6.9 as indicated. Each timing is an average of 100 or more randomly
generated inputs, except adaptive stage D. (It is difficult to generate cases that reach stage D.) For each
such input, time was measured by a Unix system call before and after 1,000 iterations of the predicate.
Individual timings vary by approximately 10%.

Oddly, thetablerevealsthatD is calculatednorequickly thanthe exactresultis calculatedoy the non-
adaptve versionof ORIENT3D. Theexplanationis probablythatD is only computedvhenthedeterminant
is zeroor very closeto zero,hencehelengthsof theintermediateexpansionaresmallerthanusual andthe
computatiortime is less. Furthermorewhensomeof the point coordinatesretranslatedvithout roundof
error, theadaptve predicatégnoresbranche®f the expressiortreethatevaluateto zero.

INCIRCLE is implementedsimilarly to ORIENT3D, asthe determinantsiresimilar. Thecorresponding
errorboundsappeain Table6.5,andtimingsappeain Table6.6.

Timingsfor INSPHERE appeain Table6.7. Thisimplementatiordiffersfrom the othertestsin that,due
to programmetazinessD is not computedncrementallyfrom B; rather if C is notaccurateenoughD is
computedrom scratch Fortunately C is usuallyaccurateenough.

TheLN exacttestshave anadwantageof afactorof roughly2.5for INCIRCLE and4 for INSPHERE, SO
the costof handlingfloating-pointoperandss greaterwith the larger expressions As with the orientation
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Doubleprecisionl NSPHERE timingsin microseconds
Points| Uniform | Geometric| Nearly

Method Random| Random | Cospherical
Approximate(6.9) 0.93 0.95 0.93
Exact(6.8) 324.22 378.94 347.16
Exact(6.9) 374.59 480.28 414.13
Exact(6.8),MPFUN 1,017.56| 1,019.89 1,059.87
Adaptive A (6.9),approximate 2.13 2.14 2.14
Adaptive B (6.9) 166.21
Adaptive C (6.9) 171.74
Adaptive D (6.8),exact 463.96
LN adaptve (6.9),approximate 2.35 n/a

LN adaptve (6.9), exact n/a 116.74

Table6.7: Timings for INSPHERE on a DEC 3000/700. All determinants are Expression 6.8 or the more
stable Expression 6.9 as indicated. Each timing is an average of 25 or more randomly generated inputs,
except adaptive stage D. For each such input, time was measured by a Unix system call before and after
1,000 iterations of the predicate. Individual timings vary by approximately 10%.

tests this costis mediatedoy bettererrorboundsandfour-stageadaptvity.

Thetimingsfor the exactversionsof all four predicateshav somesensitvity to the distribution of the
operandsthey take 5% to 30%Ilongerto executewith geometricallydistributedoperandgwhoseexponents
vary widely) thanwith uniformly distributedoperandsThis differenceoccursbecausegheintermediateand
final expansionsare larger whenthe operandshave broadly distributed exponents. The exact orientation
predicatesare cheapestvhen their inputs are collinear/coplanarbecauseof the smallerexpansionsthat
result,but this effect doesnot occurfor theexactincircle predicates.

6.5.4 Performancein Two Triangulation Programs

To evaluatethe effectivenessof the adaptve testsin applications, integratedtheminto Triangleand
Pyramid,andrecordedthe speedsf 2D divide-and-conqueDelaunaytriangulationand 3D incremental
Delaunaytetrahedralizatiorundervarious conditions. For both 2D and 3D, threetypesof inputs were
tested:uniform randompoints, pointslying (approximately)n the boundaryof a circle or sphereanda
squareor cubicgrid of lattice points,tilted soasnot to be alignedwith the coordinateaxes. The lattertwo
werechoserfor their nastinessThe latticeshave beentilted usingapproximatearithmetic,sothey arenot
perfectlycubical,andthe exponentsof their coordinatevary enoughthat LN cannotbe used.(l have also
tried perfectlatticeswith 53-bitintegercoordinatesbut ORIENT3D andINSPHERE hever passstageB; the
perturbedatticesarepreferrecherebecausehey occasionallyforcethe predicatesnto stageC or D.)

The resultsfor 2D, which appeaiin Table 6.8, indicatethatthe four-stagepredicatesadd about8% to
thetotal runningtime for randomlydistributedinput points,mainly becausef theerrorboundtests.For the
moredifficult point sets,the penaltymay be asgreatas30%. Of course this penaltyappliespreciselyfor
the pointsetsthataremostlik ely to causedifficultieswhenexactarithmeticis not available.

The resultsfor 3D, outlinedin Table6.9, arelesspleasing. The four-stagepredicatesadd about35%
to thetotal runningtime for randomlydistributedinput points; for pointsdistributed approximatelyon the
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2D divide-and-conquebelaunaytriangulation
Uniform | Perimeter| Tilted
Random | of Circle Grid
Inputsites 1,000,000| 1,000,000/ 1,000,000
ORIENT2D calls
Adaptive A, approximate| 9,497,314| 6,291,742 9,318,610
Adaptive B 121,081
Adaptive C 118
Adaptive D, exact 3
Averagetime, us 0.32 0.38 0.33
LN approximate 9,497,314| 2,112,284 n/a
LN exact 4,179,458 n/a
LN averagetime, us 0.35 3.16 n/a
INCIRCLE calls
Adaptive A, approximate| 7,596,885| 3,970,796| 7,201,317
Adaptive B 50,551 176,470
Adaptive C 120 47
Adaptive D, exact 4
Averagetime, uS 0.65 1.11 1.67
LN approximate 6,077,062 0 n/a
LN exact 1,519,823| 4,021,467 n/a
LN averagetime, us 7.36 32.78 n/a
Progranrunningtime, seconds
Approximateversion 57.3 59.9 48.3
Rokustversion 61.7 64.7 62.2
LN rohustversion 116.0 214.6 n/a

Table6.8: Statistics for 2D divide-and-conquer Delaunay triangulation of several point sets. Timings are
accurate to within 10%.

surfaceof a spherethe penaltyis a factorof eleven. Ominously however, the penaltyfor the tilted grid

is uncertain,becausedhe tetrahedralizatiorprogramusing approximatearithmeticfailed to terminate. A

dehuggerrevealedthatthe pointlocationroutinewasstuckin aninfinite loop becaus& geometridnconsis-
teng hadbeenintroducednto the meshdueto roundof error Rolustarithmeticis not alwaysslower after
all.

In theseprogramgandlikely in ary program) threeof the four-stagepredicategINSPHERE beingthe
exception)arefasterthantheir LN equivalents.Thisis a surprise consideringhatthe four-stagepredicates
accepts3-bit floating-pointinputswhereaghe LN-generategredicatesarerestrictedto 53-bit integerin-
puts. However, the integer predicatesvould probablyoutperformthe floating-pointpredicatesf they were
to adoptthe sameruntimeerrorestimateanda similar four-stageadaptvity scheme.
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3D incrementaDelaunaytetrahedralization
Uniform Surface Tilted
Random | of Sphere| Grid
Inputsites 10,000 10,000 10,000
ORIENT3D calls
Adaptive A, approximate| 2,735,668| 1,935,978| 5,542,567
Adaptive B 602,344
Adaptive C 1,267,423
Adaptive D, exact 28,185
Averagetime, us 0.72 0.72 4.12
LN approximate 2,735,668 1,935,920 n/a
LN exact 58 n/a
LN averagetime, us 0.99 1.00 n/a
INSPHERE calls
Adaptive A, approximate, 439,090 122,273| 3,080,312
Adaptive B 180,383| 267,162
Adaptive C 1,667| 548,063
Adaptive D, exact
Averagetime, uS 2.23 96.45 48.12
LN approximate 438,194 104,616 n/a
LN exact 896 199,707 n/a
LN averagetime, us 2.50 70.82 n/a
Progranrunningtime, seconds
Approximateversion 4.3 3.0 0o
Rohustversion 5.8 34.1 108.5
LN robustversion 6.5 30.5 n/a

Table 6.9: Statistics for 3D incremental Delaunay tetrahedralization of several point sets. Timings are
accurate to within 10%. The approximate code failed to terminate on the tilted grid input.

6.6 Caveats

Unfortunatelythearbitraryprecisionarithmeticroutinesdescribedhereinarenot universallyportable;both
hardwareandcompilerscanpreventthemfrom functioningcorrectly

Compilerscaninterfereby makinginvalid optimizationsbasedon misconceptionsboutfloating-point
arithmetic.For instancea clever but incorrectcompilermight causeexpansionarithmeticalgorithmsto fail
by derving the“fact” thatb,j 4,5 COMputedoy Line 2 of FAST-Two-SuM, is equalto b, andoptimizing
the subtractionaway. This optimizationwould be valid if computersstoredarbitraryrealnumbersput is
incorrectfor floating-pointnumbersUnfortunatelynotall compilerdevelopersareawareof theimportance
of maintainingcorrectfloating-pointlanguagesemanticsbut asawhole, they seento beimproving. Gold-
beg [44, §3.2.3] presentseveral relatedexamplesof how carefully designechumericalalgorithmscanbe
utterly ruinedby incorrectoptimizations.

Even floating-pointunits that usebinary arithmeticwith exactrounding,including thosethatconform
to the|EEE 754 standardcanhave subtlepropertieshatundermingheassumptionsf thealgorithms.The
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mostcommonsuchdifficulty is the presenceof extendedprecisioninternalfloating-pointregisters,such
asthoseon the Intel 80486 and Pentiumprocessors.While suchregistersusuallyimprove the stability
of floating-pointcalculationsthey causethe methodsdescribechereinfor determiningthe roundof of an
operationto fail. Thereareseveral possibleworkarounddor this problem.In C, it is possibleto designate
avariableasvolatile, implying thatit mustbe storedto memory This ensureghatthe variableis rounded
to a p-bit significandbeforeit is usedin anotheroperation. Forcing intermediatevaluesto be storedto
memoryandreloadedcanslow down the algorithmssignificantly andthereis a worseconsequencezven
a volatile variablecould be doublyrounded beingroundedonceto theinternalextendedprecisionformat,
thenroundedagainto single or double precisionwhenit is storedto memory The result after double
roundingis not alwaysthe sameasit would beif it hadbeencorrectlyroundedto the final precision,and
Priest[77, pagel03] describesa casewhereinthe roundof error producedby doubleroundingmay not
be expressiblan p bits. This might be alleviatedby a morecomplex (andslower) versionof FAST-Two-
SuM. A bettersolutionis to configureones processoto roundinternallyto doubleprecision.While most
processorsvith internal extendedprecisionregisterscanbe thus configured,and mostcompilersprovide
supportfor manipulatingprocessocontrolstate suchsupportvariesbetweercompilersandis not portable.
Neverthelessthe speedadvantageof multiple-componeninethodsnakesit well worth thetroubleto learn
theright incantatiorto correctlyconfigureyour processor

The algorithmsdo work correctlywithout specialtreatmenion mostcurrentUnix workstations.Nev-
erthelessysersshouldbe carefulwhentrying the routines,or moving to a new platform,to ensurethatthe
underlyingassumptionsf the methodarenotviolated.

6.7 Conclusions

Thealgorithmspresentedhereinaresimpleandfast;looking at Figure6.9, it is difficult to imaginehow ex-
pansiongouldbesummedvith fewer operationsithoutspeciahardwareassistancelwo featureof these
techniguesccounfor theimprovementin speedelative to othertechniquesespeciallyffor numbersvhose
precisionis only afew component#n length. Thefirst is therelaxationof the usualconditionthathnumbers
be normalizedto fixed digit positions. Instead,one enforcesthe muchwealer conditionthat expansions
be nonoverlapping(or stronglynonorerlapping).Expansionganbe summedandtheresultingcomponents
madenonoverlappingat a costof six floating-pointoperationandonecomparisorpercomponentlt seems
unlikely thatnormalizatiorto fixed digit positionscanbe donesoquickly in a portableway on currentpro-
cessors.The secondeatureto which | attribute the improved speeds the factthat mostpackagesequire
expensve corversionsbetweenordinaryfloating-pointhumbersandthe packagesinternalformats. With
thetechnique$riestandl describeno conversionsarenecessary

The readermay be misled andattritute the whole differencebetweenmy algorithmsand MPFUN to
thefactthatl storedoubleprecisioncomponentsyhile MPFUN storessingleprecisiondigits, andimagine
the differencewould go awvay if MPFUN werereimplementedn doubleprecision.Sucha belief betraysa
misunderstandingf how MPFUN works. MPFUN usesdoubleprecisionarithmeticinternally andobtains
exact resultsby using digits narrav enoughthat they canbe multiplied exactly Hence,MPFUN'’s half-
precisiondigits arean integral part of its approach:to calculateexactly by avoiding roundof error The
surpriseof multiple-componentethodsis that reasonablspeedcanbe attainedby allowing roundof to
happenthenaccountindor it afterthefact.

As well asbeingfast,multiple-componenalgorithmsarealsoreasonablyortable makingno assump-
tionsotherthanthata machinehasbinaryarithmeticwith exactrounding(andround-to-gentiebreakingf
FAST-EXPANSION-SUM isto beusednsteadf LINEAR-EXPANSION-SUM). No representation-depcert
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trickslik e bit-maskingto extractexponenftfieldsareused.Therearestill machineghatcannotexecutethese
algorithmscorrectly but their numbersseemo be dwindling asthe IEEE standardbecome®ntrenched.

Perhapshe greatestimitation of the multiple-componenapproachs thatwhile it easily extendsthe
precisionof floating-pointnumbers thereis no simpleway to extend the exponentrangewithout losing
muchof thespeedTheoblviousapproachassociatingseparatexponenfield with eachcomponentis sure
to betoo slonv. A morepromisingapproactis to expresseachmultiprecisionnumberasa multiexpansion
consistingof digits of very large radix, whereeachdigit is an expansioncoupledwith anexponent.In this
schemethetrue exponentof acomponentis thesumof the componens own exponentandthe exponentof
the expansionthatcontainst. Thefastalgorithmsdescribedn this chaptercanbe usedto addor multiply
individual digits; digits arenormalizedby standardnethodgsuchasthoseusedby MPFUN). IEEE double
precisionvalueshave anexponentrangeof —1022 to 1023, soonecouldmultiply digits of radix 2199 with
a simpleexpansionmultiplicationalgorithm,or digits of radix 22°°° with a slightly morecomplicatedone
thatsplitseachdigit in half beforemultiplying.

TheC codel have madepublicly availablemightform thebeginningof anextensie library of arithmetic
routinessimilar to MPFUN, but a greatdeal of work remainsto be done. In additionto the problemof
expandingthe exponentrange thereis oneproblemthatis particularto the multiple-componenapproach:
it is not possibleto use FFT-basedmultiplication algorithmswithout first renormalizingeachexpansion
to a multiple-digit form. This normalizationis not difficult to do, but it coststime and putsthe multiple-
componenimethodat a disadwantagerelative to methodsthat keepnumbersin digit form asa matterof
course.

As Priestpoints out, multiple-componenalgorithmscan be usedto implementextended(but finite)
precisionarithmeticaswell asexact arithmetic;simply compressandthentruncateeachresultto a fixed
numberof componentsPerhapghe greatespotentialof thesealgorithmslies not with arbitraryprecision
libraries,butin providing afastandsimplewayto extendslightly theprecisionof critical variablesn numer
ical algorithms.Hence it would not bedifficult to provide a routinethatquickly computeghe intersection
point of two segmentswith doubleprecisionendpointscorrectlyroundedo adoubleprecisionresult.If an
algorithmcanbe madesignificantlymorestableby usingdoubleor quadrupleprecisionfor a few key val-
ues,it maysave aresearchefrom spendinga greatdealof time devising andanalyzinga stableralgorithm;
Priest[77, §5.1] offerssereralexamples.Speedconsiderationmaymale it untenabldo accomplistthis by
callingastandardxtendedorecisionlibrary. Thetechnique$riestandl have developedaresimpleenough
to becodeddirectlyin numericalalgorithms avoiding functioncall overheadandconversioncosts.

A usefultool in codingsuchalgorithmswould be an expressioncompilersimilar to FortuneandVan
Wyk’s LN [37, 36], which corverts an expressioninto exact arithmeticcode,completewith error bound
derivation andfloating-pointfilters. Suchatool could alsoautomatehe procesof breakingan expression
into adaptve stagesasdescribedn Section6.4.

To seehow adaptvity canbe usedfor morethanjust determininghe signof anexpressionsuppos@®ne
wishesto find, with relative errorno greaterthan1%, the centerd of a circle that passeshroughthe three
pointsa, b, andc. Onemay usethefollowing expressions.

Qg — Cg (a':c - Cw)2 + (ay - Cy)2
by —cp  (by — )2+ (by — ¢y)?
Qz —Cp Gy —Cy
by —cy by —cy

ay—cy (az — Cw)2 + (ay — Cy)2
by —cy (br —cz)?+ (by — cy)?
Qg — Cp Gy —Cy
by —cz by —cy

dw:Cz_ ,dy:Cy—l-

2 2

The denominatoof thesefractionsis preciselythe expressioncomputecby ORIENT2D. The computation
of d isunstabléf a, b, andc arenearlycollinear;roundof errorin thedenominatocandramaticallychange
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theresult,or causea division by zero. Disastercanbe avoided, andthe desirederror boundenforced by
computingthe denominatomvith a variantof ORIENT2D thatacceptsaanapproximatioronly if its relative
erroris roughlyhalf of onepercentA similaradaptve routinecouldaccuratelycomputethe numerators.

It mightbefruitful to explorewhetherthemethodglescribedy Clarkson[23] andAvnaimetal.[2] can
be extendedby fastmultiprecisionmethodgo handlearbitrarydoubleprecisionfloating-pointinputs. One
could certainlyrelax their constrainton the bit compleity of theinputs;for instancethe methodof Av-
naimetal. could be madeto performthe INSPHERE teston 64-bit inputsusingexpansionf lengththree.
Unfortunatelyit is not obvious how to adapttheseintegerbasedechniquedo inputswith wildly differing
exponents.It is alsonot clearwhethersuchhybrid algorithmswould be fasterthanstraightforvard adap-
tivity. NeverthelessClarksons approacHooks promisingfor larger determinants Although my methods
work well for smalldeterminantsthey areunlikely to work well for sizesmuchlargerthan5 x 5. Evenif
oneusesGaussiareliminationratherthancofactorexpansion(animportantadjustmenfor matricedarger
than5 x 5), theadaptvity techniquedoesnot scalewell with determinantshecausef thelarge numberof
termsin theexpandedoolynomial. Clarksons techniquemaybethe only economicabpproacHor matrices
largerthan10 x 10.

Whetheror not theseissuesare resohed in the nearfuture, researchersan make usetoday of tests
for orientationandincircle in two andthreedimensionghatarecorrect,fastin mostcasesandapplicable
to single or double precisionfloating-pointinputs. | invite working computationalgeometergo try my
codein theirimplementationsandhopethatit will save themfrom worrying aboutrobustnessothey may
concentrat®n geometry
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Appendix A

Linear-Time ExpansionAddition without
Round-to-Even Tiebreaking

Theorem59 Lete = >, e; and f = Y1, fi be nonoverlappingexpansionsof m and n p-bit com-
ponentsrespectivelywhere p > 3. Supposehat the component®f bothe and f are sortedin order of
increasingmagnitude exceptthatanyofthee; or f; maybezew. Thenthefollowingalgorithmwill produce
a nonoverlappingexpansionh sud thath = >"41" h; = e + f, whee the componentsf & are alsoin
order of increasingmagnitude exceptthatanyof the h; maybezeo.

LINEAR-EXPANSION-SUM (e, f)
1 Mergee andf into asinglesequence, in orderof
nondecreasinmagnitudgpossiblywith interspersederoes)
(Q2,92) < FAST-TWO-SUM (g2, g1)
fori <3tom+n
(R;, hi—2) <= FAST-TWO-SUM(g;,qi—1)
(QZ‘, qi) < Two-SuMm (Qi—la Rz)
hmin-1 < Gmin
hm—l—n <~ Qm—l—n
8 return h

~No oh~,wWN

Qi + ¢; is anapproximatesumof thefirst i componentsf g; seeFigureA.1.

Proof: At the endof eachiterationof the for loop, the invariant@; + ¢; + >5-3 hj = Y5, g; holds.
Certainlythisinvariantholdsfor ¢ = 2 afterLine 2 is executed FromLines4 and5, we have thatQ; + ¢; +
hi_o = Q;_1 + ¢;_1 + g;; theinvariantfollows by induction. (The useof FAST-Two-Sum in Line 4 will
be justified shortly) This assuresisthatafterLines6 and7 are executed,zg?gl” h; = Z;”;l” gj, sothe
algorithmproducesa correctsum.

Theproofthath is nonoverlappingandincreasingeliesonthefactthatthecomponentsf g aresummed
in orderfrom smallesto largest,sotherunningtotal ); + g; never grows muchlargerthanthenext compo-
nentto besummed Specifically | prove by inductionthattheexponentof (); is atmostonegreatethanthe
exponentof g;,1, andthe components, ..., h;_; arenonoerlappingandin orderof increasingnagni-
tude(exceptingzeros).This statemenholdsfor i = 2 becauséQs| = g1 ® go| < 2|g2| < 2|g3]. To prove
thestatemenin thegenerakase assuméfor theinductive hypothesisjhattheexponentof ¢); ; is atmost
onegreatetthanthe exponentof g;, andthecomponent&, ..., h;_o arenonoverlappingandincreasing.
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g5 g4 g3 92 g1
Qs Two Q4 Two Qs Two Q2 ?A ST
< ¢ < WO
Sum Sum Sum SuM
A A A
Y Y Y
FasT FasT FasT
Two |« Two |« Two |«
a5 Rs| Sum |44 Ry Sum |3 Rs| Sum | @
Vo I I I
h5 h4 h3 h2 hl

FigureA.1l: Operation of LINEAR-EXPANSION-SUM. Q; + ¢; maintains an approximate running total. The
FAST-TwoO-SuM operations in the bottom row exist to clip a high-order bit off each ¢; term, if necessary,
before outputting it.

gi—1 istheroundof errorof the Two-Sum operatiorthatproduces);_1, S0|gi—1| < %ulp(Qi_l). This
inequalityandtheinductive hypothesismply that|g;—1| < ulp(g;), whichjustifiesthe useof a FAST-Two-
SuM operationin Line 4. This operationproduceshesum|R; + h;_a| = |g; + gi—1] < (2P + 1)ulp(g;).
Corollary43(a)impliesthat|h;_2| < ulp(g;). Becausé, ..., h;_o arenonwerlappingwe have thebound
| 3523 byl < ulp(g:) < ulp(gita)-

Assumewithout loss of generalitythat the exponentof g; 1 is p — 1, sothatulp(g;+1) = 1, and
lg1l, 192, - - -, |gi+1| areboundedbelon 27. Because is formedby memging two nonoverlappingincreasing
expansions| 2;321 g;j| < 2P 4+ 2P~1. Considerfor instancejf g;+1 = 1000 (in four-bit arithmetic);then
| 23:1 gj| canbeno greatethanthesumof 1111.1111... and111.1111.. ..

Substitutingtheseboundsinto the invariantgiven at the beginning of this proof, we have |Q; + gi| <
|Z;;% hil + 12521951 < 27 4 2P~! 4 1, which confirmsthat the exponentof Q; is at mostonegreater
thanthe exponentof g; 1.

To shaw that h;_; is larger than previous componentf i (or is zero) and doesnot overlap them,
obsere from FigureA.1 thath;_; is formed(for i« > 3) by summingg;.1, R;, and@;_1. It canbe shavn
thatall threeof theseareeitherequalto zeroor too large to overlaph;_2, andhencesois h;_;. We have
alreadyseerthat|h;_s| < ulp(g;), whichis boundedn turnby ulp(g;+1). It is clearthat|h;_s| is too small
to overlap R; becauséoth areproducedby a FAST-TwO-SuMm operation. Finally, |h;_o| is too smallto
overlap@;_1 becauséh; o| < |g;—1| (applyingLemma36to Line 4),and|g;_1| < %ulp(Qi,l).

The foregoing discussiorassumeshat noneof the input componentss zero. If ary of the g; is zero,
the correspondingutputcomponent;_, is alsozero,andthe accumulatovalues@ andg areunchanged

(Qi = Qi-1, 9 = gi—1)- n



Appendix B

Why the Tiebreaking Rule is Important

Theorem48is complicatedy theneedo considethetiebreakingule. Thisappendixgivesanexamplethat
provesthatthis complicationis necessaryo ensurethat FAST-EXPANSION-SUM will producenonoverlap-
ping output. If ones processodoesnot useround-to-gentiebreakingonemight useinsteadanalgorithm
thatis independenof thetiebreakingule, suchasthe slowver LINEAR-EXPANSION-SUM in AppendixA.

Section6.3.4gave examplesthatdemonstrat¢hat FAST-EXPANSION-SUM doesnot presere the non-
overlappingor nonadjacenproperties. The following exampledemonstratethat, in the absenceof ary
assumptioraboutthetiebreakingrule, FAST-EXPANSION-SUM doesnot presere ary propertythatimplies
thenonoverlappingproperty (As we have seentheround-to-genrule ensureshatFAST-EXPANSION-SUM
preseresthestronglynonoerlappingproperty)

For simplicity, assumehat four-bit arithmeticis used. Supposehe round-tavard-zerorule is initially
in effect. Theincompressiblexpansion2* 4 28 4+ 24 4 1 and2!! 4 26 4 22 caneachbe formedby
summingtheir componentsvith arny expansionadditionalgorithm. Summingthesetwo expansionsFAST-
EXPANSION-SUM (with zero elimination) yields the expansion1001 x 2'' + 28 4 26 4 24 4 22 4 1.
Similarly, onecanform the expansion1001 x 20 + 27 + 25 + 23 4 21, Summingthesetwo in turnyields
1101 x 2M 2194 1111 x 25424 423 +22 21 41, whichis nonaverlappingbut notstronglynonaoverlapping.

Switchingto theround-to-genrule, supposd-AST-EXPANSION-SUM is usedto sumtwo copiesof this
expansion. The resulting“expansion”is 111 x 23 4+ —2!1 4 210 4 25 4 25 4+ 21 'which containsa
pair of overlappingcomponentsHencejt is notsafeto mix theround-tavard-zerocandround-to-genrules,
andit is not possibleto prove that FAST-EXPANSION-SUM producesnonoverlappingexpansiongfor ary
tiebreakingule.

Although the expansionabove is not nonoverlapping,it is not particularlybad, in the sensehat Ap-
PROXIMATE will nonethelesproduceanaccurateapproximatiorof the expansiors value. It canbeproven
that, regardlessof tiebreakingrule, FAST-EXPANSION-SUM presereswhat| call the weaklynonoverlap-
ping property which allows only a smallamountof overlapbetweercomponentseasilyfixed by compres-
sion. (Detailsare omittedhere,but | am quite certainof the result. | produceda proof similar to that of
Theorem48, andrivalling it in compleity, beforel discoreredthe strongly nonoverlappingproperty) |
conjecturghatthe geometrigpredicate®f Section6.5work correctlyregardlesf tiebreakingule.
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