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Abstract

Delaunayrefinementis a techniquefor generatingunstructuredmeshesof trianglesor tetrahedrasuitable
for usein the finite elementmethodor othernumericalmethodsfor solving partialdifferentialequations.
Popularizedby theengineeringcommunityin themid-1980s,Delaunayrefinementoperatesby maintaining
a Delaunaytriangulationor Delaunaytetrahedralization,which is refinedby theinsertionof additionalver-
tices.Theplacementof theseverticesis chosento enforceboundaryconformityandto improve thequality
of themesh.Pioneeringpapersby L. PaulChew andJimRupperthave placedDelaunayrefinementonfirm
theoreticalground. The purposeof this thesisis to further this progressby cementingthe foundationsof
two-dimensionalDelaunayrefinement,andby extendingthetechniqueandits analysisto threedimensions.

In two dimensions,I unify thealgorithmsof Chew andRuppertin acommontheoreticalframework. Using
Ruppert’s analysistechnique,I prove thatoneof Chew’s algorithmscanproducetriangularmeshesthatare
nicely graded,aresize-optimal,andhave no anglesmallerthan

���������
. (Chew proveda �
	 � boundwithout

guaranteeson gradingor size.) I show that thereare inputswith small anglesthat cannotbe meshedby
any algorithmwithout introducingnew smallangles;hence,all provablygoodmeshgenerationalgorithms,
includingthosenotyetdiscovered,suffer from afundamentallimitation. I introducetechniquesfor handling
small input anglesthat minimize the impact of this limitation on two-dimensionalDelaunayrefinement
algorithms.

In threedimensions,I introducea Delaunayrefinementalgorithmthatcanproducetetrahedralmeshesthat
arenicely gradedandwhosetetrahedrahave circumradius-to-shortest edgeratiosboundedbelow � ��� � . By
sacrificinggoodgradingin theory(but not in practice),onecanimprove theboundto � � � � . This theoretical
guaranteeensuresthatall poorquality tetrahedraexceptslivers (a particulartypeof poor tetrahedron)are
removed. Thesliversthatremainareeasilyremovedin practice,althoughthereis no theoreticalguarantee.
Theseresultsassumethatall inputanglesarelarge;theremoval of thisrestrictionremainsthemostimportant
openproblemin three-dimensionalDelaunayrefinement.Nevertheless,Delaunayrefinementmethodsfor
tetrahedralmeshgenerationhave theraredistinctionthatthey offer strongtheoreticalboundsandfrequently
performwell in practice.

I describemy implementationsof thetriangularandtetrahedralDelaunayrefinementalgorithms.Therobust-
nessof thesemeshgeneratorsagainstfloating-pointroundoff error is strengthenedby fastcorrectfloating-
point implementationsof four geometricpredicates:thetwo-dimensionalandthree-dimensionalorientation
andincircle tests.Thesepredicatesowe their speedto two features.First, they employ new fastalgorithms
for arbitraryprecisionarithmeticon standardfloating-pointunits. Second,they areadaptive; their running
time dependson thedegreeof uncertaintyof theresult,andis usuallysmall. Hence,thesepredicatescost
little morethanordinarynonrobustpredicates,but never sacrificecorrectnessfor speed.

Keywords: tetrahedralmeshgeneration,Delaunaytriangulation,arbitraryprecisionfloating-pointarith-
metic,computationalgeometry, geometricrobustness
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Chapter 1

Intr oduction

Meshescomposedof trianglesor tetrahedraareusedin applicationssuchascomputergraphics,interpo-
lation, surveying, and terraindatabases.Although the algorithmsdescribedin this documenthave been
usedsuccessfullyto generatemeshesfor theseandotherpurposes,thecentralfocusof this researchis the
generationof meshesfor usein numericalmethodsfor thesolutionof partialdifferentialequations.These
numericalmethodsarean irreplaceablemeansof simulatinga wide varietyof physicalphenomenain sci-
entific computing.Furthermore,they placeparticularlydifficult demandson meshgeneration.If onecan
generatemeshesthatarecompletelysatisfyingfor numericaltechniqueslike thefinite elementmethod,the
otherapplicationsfall easilyin line.

Delaunayrefinement, the topic of this thesis,is a meshgenerationtechniquethathastheoreticalguar-
anteesto backup its goodperformancein practice.Thecenterof this thesisis anextensive explorationof
thetheoryof Delaunayrefinementin two andthreedimensions,foundin Chapters3 and4. Implementation
concernsareaddressedin Chapter5. Delaunayrefinementis basedupona well-known geometricstructure
calledtheDelaunaytriangulation, reviewedin Chapter2.

This introductorychapteris devotedto explaining the problemthat the remainingchaptersundertake
to solve. Unfortunately, the problemis not entirely well-defined. In a nutshell,however, onewishesto
createa meshthatconformsto thegeometryof thephysicalproblemonewishesto model.Thismeshmust
be composedof trianglesor tetrahedraof appropriatesizes—possiblyvarying throughoutthe mesh—and
thesetrianglesor tetrahedramustbenicely shaped.Reconcilingtheseconstraintsis not easy. Historically,
the automationof meshgenerationhasproven to be more challengingthan the entire remainderof the
simulationprocess.

A detailedpreview of themainresultsof thethesisconcludesthechapter.

1



2 JonathanRichardShewchuk

Figure1.1: Two and three-dimensional finite element meshes. At left, each triangle is an element. At right,
each tetrahedron is an element.

1.1 Meshesand Numerical Methods

Many physicalphenomenain scienceand engineeringcan be modeledby partial differential equations
(PDEs). Whentheseequationshave complicatedboundaryconditionsor areposedon irregularly shaped
objectsor domains,they usuallydo not admit closed-formsolutions. A numericalapproximationof the
solutionis thusnecessary.

Numericalmethodsfor solvingPDEsincludethefiniteelementmethod(FEM), thefinitevolumemethod
(FVM, alsoknown asthecontrol volumemethod), andtheboundaryelementmethod(BEM). They areused
to modeldisparatephenomenasuchasmechanicaldeformation,heattransfer, fluid flow, electromagnetic
wavepropagation,andquantummechanics.Thesemethodsnumericallyapproximatethesolutionof alinear
or nonlinearPDEby replacingthe continuoussystemwith a finite numberof coupledlinear or nonlinear
algebraicequations.This processof discretizationassociatesa variablewith eachof a finite numberof
pointsin theproblemdomain.For instance,to simulateheatconductionthroughanelectricalcomponent,
the temperatureis recordedat a numberof points,callednodes, on the surfaceandin the interior of the
component.

It is not enoughto choosea setof points to act asnodes;the problemdomain(or in the BEM, the
boundaryof theproblemdomain)mustbepartitionedinto smallpiecesof simpleshape.In theFEM, these
piecesarecalledelements, andareusuallytrianglesor quadrilaterals(in two dimensions),or tetrahedraor
hexahedralbricks(in threedimensions).TheFEM employs a nodeat everyelementvertex (andsometimes
at other locations);eachnodeis typically sharedamongseveral elements.The collectionof nodesand
elementsis calleda finite elementmesh. Two andthree-dimensionalfinite elementmeshesareillustrated
in Figure1.1. Becauseelementshave simpleshapes,it is easyto approximatethebehavior of a PDE,such
astheheatequation,on eachelement.By accumulatingtheseeffectsover all the elements,onederivesa
systemof equationswhosesolutionapproximatesasetof physicalquantitiessuchasthetemperatureateach
node.

The FVM and the BEM also usemeshes,albeit with differencesin terminologyand differencesin
the meshesthemselves. Finite volume meshesare composedof control volumes, which sometimesare
clustersof trianglesor tetrahedra,andsometimesarethecellsof ageometricstructureknown astheVoronoi
diagram. In eithercase,anunderlyingsimplicialmeshis typicallyusedto interpolatethenodalvaluesandto
generatethecontrolvolumes.Boundaryelementmeshesdo not partitionanobject;only its boundariesare
partitioned.Hence,a two-dimensionaldomainwould have boundariesdivided into straight-lineelements,
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Figure1.2: Structured (left) and unstructured (right) meshes. The structured mesh has the same topology
as a square grid of triangles, although it is deformed enough that one might fail to notice its structure.

and a three-dimensionaldomainwould have boundariespartitionedinto polygonal(typically triangular)
elements.

Meshescan(usually)becategorizedasstructuredor unstructured.Figure1.2 illustratesanexampleof
each.Structuredmeshesexhibit auniformtopologicalstructurethatunstructuredmesheslack. A functional
definition is that in a structuredmesh,the indicesof the neighborsof any nodecanbe calculatedusing
simpleaddition,whereasanunstructuredmeshnecessitatesthestorageof a list of eachnode’s neighbors.

The generationof both structuredandunstructuredmeshescanbe surprisinglydifficult, eachposing
challengesof theirown. Thisdocumentconsidersonly thetaskof generatingunstructuredmeshes,andfur-
thermoreconsidersonly simplicialmeshes,composedof trianglesor tetrahedra.Mesheswith quadrilateral,
hexahedral,or othernon-simplicialelementsarepassedover, althoughthey compriseaninterestingfield of
studyin their own right.

1.2 DesirablePropertiesof Meshesand MeshGenerators

Unfortunately, discretizingone’s objectof simulationis a more difficult problemthan it appearsat first
glance.A usefulmeshsatisfiesconstraintsthatsometimesseemalmostcontradictory. A meshmustconform
to theobjector domainbeingmodeled,andideallyshouldmeetconstraintsonboththesizeandshapeof its
elements.

Considerfirst thegoalof correctlymodelingtheshapeof a problemdomain.Scientistsandengineers
oftenwishto modelobjectsor domainswith complex shapes,andpossiblywith curvedsurfaces.Boundaries
may appearin the interior of a region aswell as on its exterior surfaces. Exterior boundariesseparate
meshedand unmeshedportionsof space,and are found on the outer surfaceand in internal holesof a
mesh.Interior boundariesappearwithin meshedportionsof space,andenforcetheconstraintthatelements
maynot piercethem. Theseboundariesaretypically usedto separateregionsthathave differentphysical
properties;for example,at the contactplanebetweentwo materialsof different conductivities in a heat
propagationproblem.An interior boundaryis representedby a collectionof edges(in two dimensions)or
faces(in threedimensions)of themesh.

In practice,curved boundariescanoften be approximatedby piecewise linear boundaries,so theoret-
ical meshgenerationalgorithmsareoftenbaseduponthe idealizedassumptionthat the input geometryis
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piecewiselinear—composedwithoutcurves.Thisassumptionis maintainedthroughoutthisdocument,and
curved surfaceswill not be given further consideration.This is not to say that the problemof handling
curvesis soeasilywavedaside;it surelydeservesstudy. However, thesimplifiedproblemis difficult enough
to provide amplegristlefor thegrinder.

Given an arbitrarystraight-linetwo-dimensionalregion, it is not difficult to generatea triangulation
that conformsto the shapeof the region. It is trickier to find a tetrahedralizationthat conformsto an
arbitrary linear three-dimensionalregion; someof the fundamentaldifficulties of doing so aredescribed
in Section2.1.3. Nevertheless,the problemis reasonablywell understood,anda thoroughsurvey of the
pertinenttechniques,in bothtwo andthreedimensions,is offeredby BernandEppstein[10].

A secondgoalof meshgenerationis to offer asmuchcontrolaspossibleover thesizesof elementsin
the mesh. Ideally, this control includesthe ability to gradefrom small to large elementsover a relatively
short distance. The reasonfor this requirementis that elementsize hastwo effects on a finite element
simulation. Small, denselypacked elementsoffer moreaccuracy than larger, sparselypacked elements;
but the computationtime requiredto solve a problemis proportionalto the numberof elements.Hence,
choosinganelementsizeentailstradingoff speedandaccuracy. Furthermore,theelementsizerequiredto
attainagivenamountof accuracy dependsuponthebehavior of thephysicalphenomenabeingmodeled,and
mayvary throughouttheproblemdomain.For instance,a fluid flow simulationrequiressmallerelements
amid turbulencethanin areasof relative quiescence;in threedimensions,the idealelementin onepartof
themeshmayvary in volumeby a factorof a million or morefrom theidealelementin anotherpartof the
mesh.If elementsof uniform sizeareusedthroughoutthemesh,onemustchoosea sizesmallenoughto
guaranteesufficient accuracy in themostdemandingportionof theproblemdomain,andtherebypossibly
incur excessively large computationaldemands.To avoid this pitfall, a meshgeneratorshouldoffer rapid
gradationfrom smallto largesizes.

Given a coarsemesh—onewith relatively few elements—itis not difficult to refineit to producean-
othermeshhaving a larger numberof smallerelements.Thereverseprocessis not soeasy. Hence,mesh
generationalgorithmsoftensetthemselvesthegoalof beingable,in principle,to generateassmalla mesh
aspossible.(By “small”, I meanonewith asfew elementsaspossible.)They typically offer theoptionto
refineportionsof themeshwhoseelementsarenotsmallenoughto yield therequiredaccuracy.

A third goalof meshgeneration,andtherealdifficulty, is thattheelementsshouldberelatively “round”
in shape,becauseelementswith largeor smallanglescandegradethequalityof thenumericalsolution.

Elementswith large anglescancausea large discretizationerror; the solutionyieldedby a numerical
methodsuchasthefinite elementmethodmaybefar lessaccuratethanthemethodwouldnormallypromise.
In principle,thecomputeddiscretesolutionshouldapproachtheexactsolutionof thePDEastheelement
sizeapproacheszero.However, BabuškaandAziz [3] show thatif meshanglesapproach��

	 � astheelement
sizedecreases,convergenceto theexactsolutionmayfail to occur.

Anotherproblemcausedby large anglesis large errorsin derivatives of the solution,which ariseas
an artifact of interpolationover the mesh. Figure1.3 demonstratesthe problem. The elementillustrated
hasvaluesassociatedwith its nodesthat representan approximationof somephysicalquantity. If linear
interpolationis usedto estimatethesolutionat non-nodalpoints,the interpolatedvalueat thecenterof the
bottomedgeis

� � , as illustrated. This interpolatedvaluedependsonly on the valuesassociatedwith the
bottomtwo nodes,andis independentof thevalueassociatedwith theuppernode.As theangleat theupper
nodeapproaches��

	 � , the interpolatedpoint (with value

� � ) becomesarbitrarily closeto the uppernode
(with value ��
 ). Hence,the directionalderivative of the estimatedsolutionin the vertical directionmay
becomearbitrarily large,andis clearlyspecious,eventhoughthenodalvaluesmaythemselvesbeperfectly
accurate.This effect occursbecausea linearly interpolatedvalueis necessarilyin error if thetruesolution
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Figure1.3: The nodal values depicted may represent an accurate estimate of the correct solution. Never-
theless, as the large angle of this element approaches ������� , the vertical directional derivative, estimated via
linear interpolation, becomes arbitrarily large.

Figure1.4: Elements are not permitted to meet in the manner depicted here.

is not linear, and any error is magnifiedin the derivative computationbecauseof the large angle. This
problemcanafflict any applicationthatusesmeshesfor interpolation,andnot just PDEsolvers. However,
theproblemis of particularconcernin simulationsof mechanicaldeformation,in which thederivativesof a
solution(thestrains)areof interest,andnot thesolutionitself (thedisplacements).

Small anglesarealsofeared,becausethey cancausethe coupledsystemsof algebraicequationsthat
numericalmethodsyield to be ill-conditioned[16]. If a systemof equationsis ill-conditioned,roundoff
error degradesthe accuracy of the solutionif the systemis solved by direct methods,andconvergenceis
slow if thesystemis solvedby iterative methods.

By placingalowerboundonthesmallestangleof atriangulation,oneis alsoboundingthelargestangle;
for instance,in two dimensions,if noangleis smallerthan � , thennoangleis largerthan ��

	 ����� � . Hence,
many meshgenerationalgorithmstake theapproachof attemptingto boundthesmallestangle.

Despitethis discussion,the effectsof elementshapeon numericalmethodssuchasthe finite element
methodarestill beinginvestigated.Ourunderstandingof therelativemeritof differentmetricsfor measuring
elementquality, or theeffectsof smallnumbersof poorqualityelementsonnumericalsolutions,is basedas
muchon engineeringexperienceandrumorasit is on mathematicalfoundations.Furthermore,thenotion
of a nicely shapedelementvariesdependingon the numericalmethod,the type of problembeingsolved,
andthe polynomialdegreeof the piecewise functionsusedto interpolatethe solutionover the mesh.For
physicalphenomenathat have anisotropicbehavior, the ideal elementmay be long and thin, despitethe
claim thatsmallanglesareusuallybad.Hence,thedesignerof algorithmsfor meshgenerationis shooting
atanill-definedtarget.

The constraintsof elementsize and elementshapeare difficult to reconcilebecauseelementsmust
meetsquarelyalongthe full extent of their sharededgesor faces. Figure1.4 illustratesillegal meetings
betweenadjacentelements. For instance,at left, the edgeof one triangularelementis a portion of an
edgeof an adjoiningelement. Therearevariantsof methodslike the finite elementmethodthat permit
suchnonconformingelements. However, suchelementsare not preferred,as they may degradeor ruin
the convergenceof the method. Although nonconformingelementsmake it easierto createa meshwith
seeminglynicelyshapedelements,theproblemsof numericalerrormaystill persist.

For an exampleof how elementquality and meshsize are tradedoff, look aheadto Figure3.19 on
Page61.
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1.3 Why UnstructuredMeshes?

Is it reallyworth thetroubleto useunstructuredmeshes?Theprocessof solvingthelinearor nonlinearsys-
temsof equationsyieldedby thefinite elementmethodandits brethrenis simplerandfasteron structured
meshes,becauseof theeaseof determiningeachnode’s neighbors.Becauseunstructuredmeshesnecessi-
tatethestorageof pointersto eachnode’s neighbors,theirdemandsonstoragespaceandmemorytraffic are
greater. Furthermore,the regularity of structuredmeshesmakesit straightforward to parallelizecomputa-
tionsuponthem,whereasunstructuredmeshesengendertheneedfor sophisticatedpartitioningalgorithms
andparallelunstructuredsolvers.

Nonetheless,therearecasesin which unstructuredmeshesarepreferableor even indispensable.Many
problemsaredefinedonirregularlyshapeddomains,andresiststructureddiscretization.Severalmoresubtle
advantagesof unstructuredmeshesarevisible in Figures1.6and1.7,which depictmeshesusedto modela
cross-sectionof theLosAngelesBasin,itself illustratedin Figure1.5.

A numericalmethodis usedto predictthesurfacegroundmotiondueto astrongearthquake. Themesh
of Figure 1.7 is finer in the top layersof the valley, reflectingthe much smallerwavelengthof seismic
wavesin thesofteruppersoil, andbecomescoarserwith increasingdepth,asthesoil becomesstiffer and
thecorrespondingseismicwavelengthincreasesby a factorof twenty. Whereasanunstructuredmeshcan
beflexibly tailoredto the physicsof this problem,the structuredmeshmustemploy a uniform horizontal
distribution of nodes,the densitybeingdictatedby the uppermostlayer. As a result, it hasfive timesas
many nodesasthe unstructuredmesh,andthe solutiontime andmemoryrequirementsof the simulation
arecorrespondinglylarger. The disparity is even morepronouncedin three-dimensionaldomainsandin
simulationswherethescalesof thephysicalphenomenavarymore.

Anotherimportantdifferenceis that themeshof Figure1.7 conformsto the interior boundariesof the
basinin awaythatthemeshof Figure1.6cannot,andhencemaybettermodelreflectionsof wavesfrom the
interfacesbetweenlayersof soil with differingdensities.Thisdifferencein accuracy only manifestsitself if
theunstructuredandstructuredmeshesundercomparisonarerelatively coarse.

Unstructuredmeshes,far betterthanstructuredmeshes,canprovide multiscaleresolutionandconfor-
mity to complex geometries.

1.4 Outline of the Thesis

Thecentraltopicof this thesisis thestudyof a technique,calledDelaunayrefinement, for thegenerationof
triangularandtetrahedralmeshes.Delaunayrefinementmethodsarebasedupona well-known geometric
constructioncalledtheDelaunaytriangulation, which is discussedextensively in Chapter2.

Chapter2 alsobriefly surveys someof thepreviousresearchonsimplicialmeshgeneration.Algorithms
baseduponthe Delaunaytriangulationarediscussed.So areseveral fundamentallydifferentalgorithms,
someof whicharedistinguishedby having provablygoodboundsonthequalityof themeshesthey produce.
Thereare several typesof boundsan algorithm might have; for instance,quite a few meshgeneration
algorithmsproduceprovably goodelements.In otherwords,somequality measure—usuallythesmallest
or largestangle—ofevery elementis constrainedby someminimum or maximumbound. Someof these
algorithmsalsooffer boundson thesizesof themeshesthey generate.For some,it is possibleto prove that
themeshesarenicelygraded,in amathematicallywell-definedsensethatis explainedin Chapter3. Roughly
speaking,thepresenceof smallelementsin oneportionof themeshdoesnot have anundulystrongeffect
on the sizesof elementsin anothernearbyportion of the mesh. Oneshouldbe awarethat the theoretical
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Figure1.5: Los Angeles Basin.

Figure1.6: Structured mesh of Los Angeles Basin.

Figure1.7: Unstructured mesh of Los Angeles Basin.

boundspromisedby meshgenerationalgorithmsarenot in everycasestrongenoughto beusefulguarantees
in practice,but someof thesealgorithmsdomuchbetterin practicethantheir theoreticalboundssuggest.

Jim RuppertandL. Paul Chew have developedtwo-dimensionalDelaunayrefinementalgorithmsthat
exhibit provableboundson elementquality, meshgrading,andmeshsize;thesealgorithmsareeffective in
practiceaswell. In Chapter3, I review thesealgorithms,unify them,andsolve an outstandingproblem
relatedto inputswith smallangles.

To clarify the relationshipbetweenthesealgorithms(includingmy own modifications),I list herethe
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provableboundson eachof thesealgorithmsprior andsubsequentto thepresentresearch.Chew’s first De-
launayrefinementalgorithm[19], publishedasatechnicalreportin 1989,wasthefirst Delaunayrefinement
algorithmto offer a guarantee:it producesmesheswith no anglesmallerthan �
	 � . Theelementsof these
meshesareof uniform size,however; gradingof elementsizesis not offered. Ruppert’s Delaunayrefine-
mentalgorithm[82], first publishedasa technicalreportin 1992[80], offersdifferentguarantees.Although
it promisesonly aminimumangleof roughly

� 	 ��� � , it alsooffersaguaranteeof goodgrading,whichin turn
canbeusedto prove thatthealgorithmis size-optimal: thenumberof elementsin thefinal meshis at most
a constantfactorlarger thanthenumberin thebestpossiblemeshthatmeetsthesameboundon minimum
angle. Chew publisheda secondDelaunayrefinementalgorithm[21] in 1993,which offers thesame�
	 �
lower boundashis first algorithm. Chew’s secondalgorithmproducesnicely gradedmeshesin practice,
althoughChew providesno theoreticalguaranteeof thisbehavior.

Ruppert’s algorithmandChew’s secondalgorithmcantake a minimumangleasa parameter, andpro-
ducea meshwith no anglesmallerthan that minimum. In Ruppert’s algorithm, this parametermay be
chosenbetween	 � and

� 	 ���
� . Theboundsongradingandsize-optimalityarestrongerfor smallerminimum
angles.As theminimumangleincreasesto

� 	 ��� � , theotherboundsbecomeprogressively weaker. In prac-
tice,bothRuppert’s algorithmandChew’ssecondalgorithmexhibit a tradeoff betweenelementqualityand
meshsize,but allow betterangleboundsthanthetheorypredicts.(Again,seeFigure3.19for anexampleof
thetradeoff in Ruppert’s algorithm.)

My new resultsin two-dimensionalmeshgeneration,alsodetailedin Chapter3, areasfollows. I show
that Ruppert’s analysistechniquecan be appliedto Chew’s secondalgorithm, and I therebyprove that
Chew’s secondalgorithm producesnicely gradedmeshesfor minimum anglesof up to roughly

���������
.

Hence,if a userspecifiesa minimum angleno greaterthan
������� �

, goodgradingandsize-optimalityare
guaranteed.(Observe thatthis improvesuponthe

� 	 ���
� boundof Ruppert’s algorithm.)If aminimumangle
between

���������
and �
	 � is specified,terminationis still guaranteed(by Chew’sown result),but goodgrading

andsize-optimalityarenot theoreticallyguaranteed(althoughthey areexhibited in practice).I alsointro-
ducethenotionof range-restrictedsegmentsplitting, which extendsanideaof Chew. Ruppert’s algorithm,
modifiedto userange-restrictedsegmentsplitting,is guaranteedto terminatefor minimumanglesupto �
	 � ,
like Chew’salgorithm.

Ruppert’s andChew’s algorithmsarenot entirelysatisfyingbecausetheir theoreticalguaranteesdo not
applywhentheproblemdomainhassmallangles.In thiscircumstance,theirbehavior is poorin practiceas
well; they mayevenfail to terminate.Thisproblemreflectsnotmerelya deficiency of thealgorithms,but a
fundamentaldifficulty in triangularmeshgeneration.Althoughsmallanglesinherentin theinput geometry
cannotberemoved,onewould like to find away to triangulateaproblemdomainwithoutcreatingany new
smallangles.I prove thatthis problemis not alwayssoluble.For instance,I canexhibit aninput thatbears
anangleof half adegree,andcannotbetriangulatedwithoutaddinganew anglesmallerthan �
	 � . Similarly,
for any angle � , however small, I canexhibit an input that cannotbe triangulatedwithout creatinga new
anglesmallerthan � . (Theinput I exhibit hasasmallanglewhich itself is muchsmallerthan � .)

This negative result implies that Ruppert’s algorithm will never terminateon suchan input; it will
ceaselesslytry to rid itself of removablesmallangles,only to find theculpritsreplacedby others.I propose
a modificationto thealgorithmthatpreventsthis cycle of endlessrefinement;terminationis guaranteed.A
few badanglesmustnecessarilyremainin the mesh,but theseappearonly nearsmall input angles.The
modificationdoesnotaffect thebehavior of thealgorithmon inputswith nosmallangles.

Basedon thesefoundations,I designa three-dimensionalDelaunayrefinementalgorithmin Chapter4.
Thischapteris theclimaxof thethesis,althoughits resultsarethesimplestto outline.I firstextendRuppert’s
algorithm to threedimensions,and show that the extensiongeneratesnicely gradedtetrahedralmeshes
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whosecircumradius-to-shortest edgeratiosarenearlyboundedbelow two. By adoptingtwo modifications
to the algorithm, equatorial lensesand range-restrictedsegmentsplitting, the boundon eachelement’s
circumradius-to-shortest edgeratio canbe improved to � ��� � with a guaranteeof goodgrading,or to � � � �
without. (Meshesgeneratedwith a boundof � � � � exhibit good gradingin practice,even if thereis no
theoreticalguarantee.)

A boundon thecircumradius-to-shortest edgeratio of a tetrahedronis helpful, but doesnot imply any
boundontheminimumor maximumdihedralangle.However, somenumericalmethods,includingthefinite
elementmethod,requiresuchboundsto ensurenumericalaccuracy. The Delaunayrefinementalgorithm
is easilymodified to generatemesheswhereinall tetrahedrameetsomeboundon their minimum angle.
Terminationcanno longerbeguaranteedin theory, but is obtainedin practicefor reasonableanglebounds.

Themainshortcomingof my three-dimensionalDelaunayrefinementalgorithmis thatsevererestrictions
aremadethatoutlaw smallanglesin theinputgeometry. Onewouldlike to havemethodsfor handlingsmall
input anglessimilar to thoseI have developedfor the two-dimensionalcase. I am optimistic that such
methodswill befound,but I donotdiscusstheproblemin any depthherein.

I have implementedboth thetwo-dimensionalandthree-dimensionalDelaunayrefinementalgorithms.
A greatdealof careis necessaryto turnthesealgorithmsinto practicalmeshgenerators.My thoughtsonthe
choiceof datastructures,triangulationalgorithms,andotherimplementationdetailsarefoundin Chapter5.

Althoughnearlyall numericalalgorithmsareaffectedby floating-pointroundoff error, therearefunda-
mentalreasonswhy geometricalgorithmsareparticularlysusceptible.In ordinarynumericalalgorithms,
themostcommonproblemdueto roundoff error is inaccurateresults,whereasin computationalgeometry,
a commonresultis outright failure to produceany resultsat all. In many numericalalgorithms,problems
due to roundoff error canbe eliminatedby carefulnumericalanalysisandalgorithmdesign. Geometric
algorithmsyield to suchan approachwith greaterdifficulty, and the only easyway to ensuregeometric
robustnessis throughtheuseof exactarithmetic.

Unfortunately, exactarithmeticis expensive,andcanslow geometricalgorithmsconsiderably. Chapter6
detailsmy contributions to the solution of this problem. My approachis basedfirstly upon a new fast
techniquefor performingexact floating-pointarithmeticusingstandardfloating-pointunits,andsecondly
upona methodfor performingthesecomputationsadaptively, spendingonly asmuchtime asis necessary
to ensuretheintegrity of theresult.Usingthesetwo techniques,I have writtenseveralgeometricpredicates
thatgreatlyimprove the robustnessof my meshgenerators,andareusefulin othergeometricapplications
aswell.





Chapter 2

The DelaunayTriangulation and Mesh
Generation

The Delaunaytriangulationis a geometricstructurethat hasenjoyed greatpopularityin meshgeneration
sincemeshgenerationwasin its infancy. In two dimensions,it is nothardto understandwhy: theDelaunay
triangulationof a vertex setmaximizestheminimumangleamongall possibletriangulationsof thatvertex
set. If oneis concernedwith elementquality, it seemsalmostsilly to considerusinga triangulationthat is
notDelaunay.

This chaptersurveys Delaunaytriangulations,their properties,andseveralalgorithmsfor constructing
them.I focusonly ondetailsrelevantto meshgeneration;for moregeneralsurveys,Aurenhammer[1], Bern
andEppstein[10], andFortune[33] arerecommended.I alsodiscusstwo generalizationsof theDelaunay
triangulation:theconstrainedDelaunaytriangulation,which ensuresthat input segmentsarepresentin the
mesh,andthe Delaunaytetrahedralization,which generalizesthe Delaunaytriangulationto threedimen-
sions.TheDelaunaytetrahedralizationis not quitesoeffective astheDelaunaytriangulationat producing
elementsof goodquality, but it hasneverthelessenjoyednearlyasmuchpopularityin themeshgeneration
literatureasits two-dimensionalcousin.

Also foundin this chapteris a brief survey of researchin meshgeneration,with specialattentiongiven
to methodsbasedonDelaunaytriangulationsandtetrahedralizations, andmethodsthatgeneratemeshesthat
areguaranteedto have favorablequalities.Thesealgorithmsarepartof thehistorythatled to thediscovery
of theprovably goodDelaunayrefinementalgorithmsstudiedin Chapters3 and4.

11
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Figure2.1: A Delaunay triangulation.

Figure2.2: Each edge on the convex hull is Delaunay, because it is always possible to find an empty circle
that passes through its endpoints.

2.1 DelaunayTriangulations and Tetrahedralizations

2.1.1 The DelaunayTriangulation

In two dimensions,a triangulationof a set � of verticesis a set � of triangleswhoseverticescollectively
form � , whoseinteriorsdonot intersecteachother, andwhoseunioncompletelyfills theconvex hull of � .

The Delaunaytriangulation  of � , introducedby Delaunay[27] in 1934, is the graphdefinedas
follows. Any circle in theplaneis saidto beemptyif it containsno vertex of � in its interior. (Verticesare
permittedon the circle.) Let ! and " be any two verticesof � . The edge!#" is in  if andonly if there
existsanemptycircle thatpassesthrough! and " . An edgesatisfyingthis propertyis saidto beDelaunay.
Figure2.1illustratesaDelaunaytriangulation.

TheDelaunaytriangulationof avertex setis clearlyunique,becausethedefinitiongivenabovespecifies
anunambiguoustestfor thepresenceor absenceof anedgein thetriangulation.Every edgeof theconvex
hull of a vertex set is Delaunay. Figure2.2 illustratesthe reasonwhy. For any convex hull edge $ , it is
alwayspossibleto find anemptycircle thatcontains$ by startingwith thesmallestcontainingcircle of $
and“growing” it away from thetriangulation.
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Figure2.3: Every triangle of a Delaunay triangulation has an empty circumcircle.
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v

Figure2.4: If the triangle % is not Delaunay, then at least one of its edges (in this case, & ) is not Delaunay.

Every edgeconnectinga vertex to its nearestneighboris Delaunay. If ' is the vertex nearest" , the
smallestcirclepassingthrough" and ' doesnotcontainany vertices.

It’s not at all obvious that thesetof Delaunayedgesof a vertex setcollectively formsa triangulation.
For thedefinitionI have givenabove, theDelaunaytriangulationis guaranteedto bea triangulationonly if
theverticesof � arein general position, heremeaningthatno four verticesof � lie on a commoncircle.
As a first stepto proving this guarantee,I describethenotionof a Delaunaytriangle. Thecircumcircle of
a triangleis theuniquecircle thatpassesthroughall threeof its vertices.A triangleis saidto beDelaunay
if andonly if its circumcircleis empty. This definingcharacteristicof Delaunaytriangles,illustratedin
Figure2.3,is calledtheemptycircumcircle property.

Lemma 1 Let � be a triangulation. If all the trianglesof � are Delaunay, thenall the edgesof � are
Delaunay, andviceversa.

Proof: If all thetrianglesof � areDelaunay, thenthecircumcircleof every triangleis empty. Becauseevery
edgeof � belongsto a triangleof � , everyedgeis containedin anemptycircle,andis thusDelaunay.

If all theedgesof � areDelaunay, supposefor thesake of contradictionthatsometriangle ( of � is not
Delaunay. Because� is a triangulation,( cannotcontainany vertices(exceptits corners),sosomevertex
" of � lies insidethecircumcircleof ( , but outside( itself. Let $ betheedgeof ( thatseparates" from the
interiorof ( , andlet ' bethevertex of ( opposite$ , asillustratedin Figure2.4.Onecannotdraw acontaining
circleof $ thatcontainsneither" nor ' , so $ is notDelaunay. Theresultfollows by contradiction. )
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e e

Figure2.5: Two triangulations of a vertex set. At left, & is locally Delaunay; at right, & is not.

e

Figure2.6: In this concave quadrilateral, & cannot be flipped.

Themethodby whichI provethattheDelaunaytriangulationis atriangulationis somewhatnonintuitive.
I will describea well-known algorithmcalledtheflip algorithm, andshow thatall theedgesof thetriangu-
lationproducedby theflip algorithmareDelaunay. ThenI will show thatnootheredgesareDelaunay.

Theflip algorithmbeginswith anarbitrarytriangulation,andsearchesfor anedgethatis not locally De-
launay. All edgeson theboundary(convex hull) of thetriangulationareconsideredto belocally Delaunay.
For any edge$ notontheboundary, theconditionof beinglocally Delaunayis similarto theconditionof be-
ing Delaunay, but only thetwo trianglesthatcontain$ areconsidered.For instance,Figure2.5demonstrates
two differentwaysto triangulatea subsetof four vertices.In the triangulationat left, theedge$ is locally
Delaunay, becausethedepictedcontainingcircleof $ doesnotcontaineitherof theverticesopposite$ in the
two trianglesthatcontain $ . In thetriangulationat right, $ is not locally Delaunay, becausethetwo vertices
opposite$ precludethepossibilitythat $ hasanemptycontainingcircle. Observe thatif thetrianglesat left
arepartof a largertriangulation,$ mightnotbeDelaunay, becauseverticesmaylie in thecontainingcircle,
althoughthey lie in neithertriangle.However, suchverticeshave no bearingon whetheror not $ is locally
Delaunay.

Whenever theflip algorithmidentifiesanedgethatis not locally Delaunay, theedgeis flipped. To flip an
edgeis to deleteit, therebycombiningthe two containingtrianglesinto a singlecontainingquadrilateral,
andthento insertthecrossingedgeof thequadrilateral.Hence,anedgeflip couldconvert thetriangulation
at left in Figure2.5 into thetriangulationat right, or vice versa.(Theflip algorithmwouldperformonly the
latterflip.) Notall triangulationedgesareflippable,asFigure2.6shows,becausethecontainingquadrilateral
of anedgemightnotbeconvex.
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Figure2.7: (a) Case where & is locally Delaunay. (b) Case where & is not locally Delaunay. The edge
created if & is flipped is locally Delaunay.

Lemma 2 Let $ bean edge of a triangulationof � . Either $ is locally Delaunay, or $ is flippableandthe
edge createdbyflipping $ is locally Delaunay.

Proof: Let " and ' betheverticesopposite$ , whichtogetherwith $ definethecontainingquadrilateralof $ ,
illustratedin Figure2.7.Let * bethecircle thatpassesthrough" andtheendpointsof $ . Either ' is strictly
inside * , or ' liesonor outside* .

If ' is on or outside * , as in Figure 2.7(a), then the empty circle * demonstratesthat $ is locally
Delaunay.

If ' is inside * , then ' is containedin the sectionof * definedby $ andopposite" ; this sectionis
shadedin Figure2.7(b). Thecontainingquadrilateralof $ is thusconstrainedto bestrictly convex, andthe
edge$ is flippable. Furthermore,thecircle thatpassesthrough " and ' , andis tangentto * at " , doesnot
containtheendpointsof $ , asFigure2.7(b)demonstrates;hencetheedge"�' is locally Delaunay. )

Thesuccessof theflip algorithmrelieson thefact,provenbelow, thatif any edgeof thetriangulationis
notDelaunay, thenthereis anedgethatis not locally Delaunay, andcanthusbeflipped.

Lemma 3 Let � bea triangulationwhoseedgesareall locallyDelaunay. Theneveryedgeof � is (globally)
Delaunay.

Proof: Supposefor thesake of contradictionthatall edgesof � arelocally Delaunay, but someedgeof �
is not Delaunay. By Lemma1, thelatterassertionimpliesthatsometriangle ( of � is not Delaunay. Let "
bea vertex insidethecircumcircleof ( , andlet $�+ betheedgeof ( thatseparates" from theinterior of ( , as
illustratedin Figure2.8(a).Without lossof generality, assumethat $
+ is orientedhorizontally, with ( below
$
+ .

Draw a line segmentfrom the midpoint of $�+ to " (seethe dashedline in Figure2.8(a)). Let $
+ , $�, ,
$�- , �.�.� , $./ be the sequenceof triangulationedges(from bottomto top) whoseinteriorsthis line segment
intersects.(If the line segmentintersectssomevertex other than " , replace" with the first suchvertex.)
Let '10 bethevertex above $.0 that formsa triangle (20 in conjunctionwith $.0 . Because� is a triangulation,
'1/434" .
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Figure2.8: (a) If 5 lies inside the circumcircle of % , there must be an edge between 5 and % that is not locally
Delaunay. (b) Because 5 lies above &�6 and inside the circumcircle of % , and because 786 lies outside the
circumcircle of % , 5 must lie inside the circumcircle of %96 .

By assumption,$�+ is locallyDelaunay, so ':+ liesoutsidethecircumcircleof ( . AsFigure2.8(b)shows,it
follows thatthecircumcircleof (;+ containseverypointabove $
+ in thecircumcircleof ( , andhencecontains
" . Repeatingthis argumentinductively, onefindsthat thecircumcircleof (9/ contains" in its interior. But
'1/434" is avertex of (2/ , whichcontradictstheclaim that " is in theinteriorof thecircumcircleof (9/ . )

An immediateconsequenceof Lemma3 is that if a triangulationcontainsanedgethatis not Delaunay,
thenit containsanedgethatis not locally Delaunay, andthustheflip algorithmmayproceed.Thefollowing
lemmashows thattheflip algorithmcannotbecometrappedin anendlessloop.

Lemma 4 Givena triangulationof < vertices,theflip algorithmterminatesafter =?>@< ,�A edgeflips,yielding
a triangulationwhoseedgesareall Delaunay.

Proof: Let BC>D� A bea functiondefinedover all triangulations,equalto thenumberof vertex-trianglepairs
>@"#EF( A suchthat " is avertex of � , ( is a triangleof � , and " lies insidethecircumcircleof ( . Because� has
< verticesand =?>@< A triangles,BC>D� AHG =?>@< ,�A .

Supposean edge $ of � is flipped, forming a new triangulation �JI . Let (K+ and (L, be the triangles
containing$ , andlet " + and " , betheapicesof ( + and ( , . Because$ is not locally Delaunay, " + is contained
in the circumcircleof (L, , and "�, is containedin thecircumcircleof (;+ . Let ( I + and ( I , be the trianglesthat
replace( + and ( , after the edgeflip. Let * + , * , , *MI+ , and *:I, be the circumcirclesof ( + , ( , , (2I + , and (9I,
respectively, asillustratedin Figure2.9(a).

It is notdifficult to show that *N+POC*Q,SRT*MI+ OC*MI, (Figure2.9(b))and *N+PUC*Q,SRT*:I+ UC*MI, (Figure2.9(c)).
Therefore,if avertex " lies inside <WV circumcirclesof trianglesof � , andhencecontributes <WV to thecount
BM>D� A , then " lies insideno morethan <WV circumcirclesof trianglesof �JI , andcontributesat most <WV to the
count BM>D�JI A . If, aftertheedgeflip, a vertex is countedbecauseit lies in *MI+ or *:I, , thenit musthave lain in
*N+ or *Q, beforetheedgeflip; andif it lies in both * I+ and * I, , thenit musthave lain in both *N+ and *Q, .

However, thevertices" + and " , eachlie in onelesscircumcirclethanbeforetheedgeflip. For instance,
"�+ lay in *Q, , but lies in neither * I+ nor * I, . Hence,BC>D� I AYX BM>D� A �Z� .
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Figure2.9: (a) Circumcircles before and after an edge flip. (b) The union of the circumcircles afterward
(shaded) is contained in the union of the prior circumcircles. (c) The intersection of the circumcircles after-
ward (shaded) is contained in the intersection of the prior circumcircles.
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Figure2.10: If no four vertices are cocircular, two crossing edges cannot both be Delaunay.

Theflip algorithmterminatesafter =?>@< , A edgeflips becauseB G =?>@< , A , every edgeflip reducesB by
at leasttwo, and B cannotfall below zero. The flip algorithmterminatesonly whenevery edgeis locally
Delaunay;thus,by Lemma3, everyedgeis Delaunay. )

Theorem 5 Let � be a set of three or more verticesin the plane that are not all collinear. If no four
verticesof � are cocircular, theDelaunaytriangulationof � is a triangulation,andis producedby theflip
algorithm.

Proof: Becausetheverticesof � arenot all collinear, thereexistsa triangulationof � . By Lemma4, the
applicationof theflip algorithmto any triangulationof � producesa triangulation whoseedgesareall
Delaunay.

I shallshow thatno otheredgeis Delaunay. Considerany edge" + " ,\[G  , with " + EF" , G � . Because 
is a triangulation,"P+]"�, mustcrosssomeedge':+F'^, G  . Because':+F'^, is in  , it is Delaunay, andthere
is acircle * passingthrough':+ and '^, whoseinteriorcontainsneither"�+ nor "�, . Becauseno four vertices
arecocircular, at leastoneof "�+ and "�, liesstrictly outside* . It follows thatnoemptycirclepassesthrough
"�+ and "�, , hence"�+L"�, is notDelaunay(seeFigure2.10).

Therefore, is theDelaunaytriangulationof � . )
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(a) (b) (c)

Figure2.11:Three ways to define the Delaunay diagram in the presence of cocircular vertices. (a) Include
all Delaunay edges, even if they cross. (b) Exclude all crossing Delaunay edges. (c) Choose a subset of
Delaunay edges that forms a triangulation.

What if � containscocircularvertices? In this circumstance,the Delaunaytriangulationmay have
crossingedges,asillustratedin Figure2.11(a).Becauseanarbitrarilysmallperturbationof theinputvertices
canchangethetopologyof thetriangulation,� andits Delaunaytriangulationaresaidto bedegenerate.

The definitionof “Delaunaytriangulation”is usuallymodifiedto prevent edgesfrom crossing.Occa-
sionally, oneseesin the literaturea definitionwhereinall suchcrossingedgesareomitted;polygonswith
morethanthreesidesmayappearin theDelaunaydiagram,asFigure2.11(b)shows. (Theusefulnessof this
definition follows in partbecausethegraphthusdefinedis thegeometricdualof thewell-known Voronoi
diagram.)For mostapplications,however, it is desirableto have a truetriangulation,andsomeof theDe-
launayedges(andthus,someof theDelaunaytriangles)areomittedto achieve this,asin Figure2.11(c).In
this case,theDelaunaytriangulationis no longerunique.Theflip algorithmwill find oneof theDelaunay
triangulations;thechoiceof omittedDelaunayedgesdependsuponthestartingtriangulation.Becausenu-
mericalmethodslike thefinite elementmethodgenerallyrequirea true triangulation,I will usethis latter
definitionof “Delaunaytriangulation”throughouttherestof thisdocument.

Delaunaytriangulationsarevaluablein partbecausethey have thefollowing optimalityproperties.

Theorem 6 Amongall triangulationsof a vertex set,theDelaunaytriangulationmaximizestheminimum
anglein the triangulation,minimizesthe largestcircumcircle, andminimizesthe largestmin-containment
circle, where themin-containmentcircleof a triangle is thesmallestcircle thatcontainsit.

Proof: It canbe shown that eachof thesepropertiesis locally improved whenan edgethat is not locally
Delaunayis flipped.Theoptimaltriangulationcannotbeimproved,andthushasnolocally Delaunayedges.
By Theorem5, a triangulationwith no locally Delaunayedgesis theDelaunaytriangulation. )

The propertyof max-minangleoptimality wasfirst notedby Lawson[59], andhelpsto accountfor
thepopularityof Delaunaytriangulationsin meshgeneration.Unfortunately, neitherthis propertynor the
min-maxcircumcirclepropertygeneralizesto Delaunaytriangulationsin dimensionshigherthantwo. The
propertyof minimizingthelargestmin-containmentcirclewasfirst notedby D’AzevedoandSimpson[25],
andhasbeenshown to hold for higher-dimensionalDelaunaytriangulationsby Rajan[78].
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Figure2.12: The Delaunay triangulation of a set of vertices does not usually solve the mesh generation
problem, because it may contain poor quality triangles and omit some domain boundaries.

Figure2.13: By inserting additional vertices into the triangulation, boundaries can be recovered and poor
quality elements can be eliminated.

2.1.2 Planar Straight Line Graphs and ConstrainedDelaunayTriangulations

GiventhattheDelaunaytriangulationof asetof verticesmaximizestheminimumangle(in two dimensions),
why isn’t theproblemof meshgenerationsolved? Therearetwo reasons,both illustratedin Figure2.12,
which depictsan input objectanda Delaunaytriangulationof theobject’s vertices.Thefirst reasonis that
Delaunaytriangulationsareobliviousto theboundariesthatdefineanobjector problemdomain,andthese
boundariesmayor maynot appearin a triangulation.Thesecondreasonis thatmaximizingtheminimum
angleusuallyisn’t goodenough;for instance,thebottommosttriangleof thetriangulationof Figure2.12is
quitepoor.

Bothof theseproblemscanbesolvedby insertingadditionalverticesinto thetriangulation,asillustrated
in Figure2.13. Chapters3 and4 will discussthis solutionin detail. Here,however, I review a different
solutionto thefirst problemthatrequiresno additionalvertices.Unfortunately, it is only applicablein two
dimensions.

Theusualinput for two-dimensionalmeshgenerationis not merelya setof vertices.Most theoretical
treatmentsof meshingtake astheir input a planar straight line graph (PSLG).A PSLGis a setof vertices
andsegmentsthat satisfiestwo constraints.First, for eachsegmentcontainedin a PSLG,the PSLGmust
alsocontainthe two verticesthat serve asendpointsfor that segment. Second,segmentsarepermittedto
intersectonly at theirendpoints.(A setof segmentsthatdoesnotsatisfythisconditioncanbeconvertedinto
a setof segmentsthatdoes.Runa segmentintersectionalgorithm[24, 85], thendivide eachsegmentinto
smallersegmentsat thepointswhereit intersectsothersegments.)

TheconstrainedDelaunaytriangulation(CDT) of a PSLG _ is similar to theDelaunaytriangulation,
but every inputsegmentappearsasanedgeof thetriangulation.An edgeor triangleis saidto beconstrained
Delaunayif it satisfiesthe following two conditions. First, its verticesare visible to eachother. Here,
visibility is deemedto be obstructedif a segmentof _ lies betweentwo vertices. Second,thereexists a
circle thatpassesthroughtheverticesof theedgeor trianglein question,andthecirclecontainsno vertices
of _ thatarevisible from theinteriorof theedgeor triangle.

Segmentsof _ arealsoconsideredto beconstrainedDelaunay.

Figure2.14demonstratesexamplesof aconstrainedDelaunayedge$ andaconstrainedDelaunaytrian-
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Figure2.14:The edge & and triangle % are each constrained Delaunay. Bold lines represent segments.

(a) (b) (c)

Figure2.15: (a) A planar straight line graph. (b) Delaunay triangulation of the vertices of the PSLG. (c)
Constrained Delaunay triangulation of the PSLG.

gle ( . Input segmentsappearasbold lines. Althoughthereis no emptycircle thatcontains$ , thedepicted
containingcircleof $ containsnoverticesthatarevisiblefrom theinteriorof $ . Therearetwo verticesinside
thecircle, but botharehiddenbehindsegments.Hence,$ is constrainedDelaunay. Similarly, thecircum-
circle of ( containstwo vertices,but botharehiddenfrom theinterior of ( by segments,so ( is constrained
Delaunay.

Is thisnotionof visibility ambiguous?For instance,whatif a triangle ( hasavertex " in its circumcircle,
anda segment ` only partly obstructstheview, sothat " is visible from somepointsin ( but not others?In
this case,oneof theendpointsof ` alsolies in thecircumcircleof ( , so ( is unambiguouslynot constrained
Delaunay. (This argumentdoesnot extendto threedimensions,unfortunately, which largely explainswhy
noconsistentdefinitionof constrainedDelaunaytetrahedralizationhasbeenput forth.)

Figure2.15 illustratesa PSLG,a Delaunaytriangulationof its vertices,anda constrainedDelaunay
triangulationof thePSLG.Someof theedgesof theCDT areconstrainedDelaunaybut notDelaunay. Take
note:constrainedDelaunaytriangulationsarenotnecessarilyDelaunaytriangulations.

Like Delaunaytriangulations,constrainedDelaunaytriangulationscanbeconstructedby theflip algo-
rithm. However, theflip algorithmshouldbegin with a triangulationwhoseedgesincludeall thesegments
of the input PSLG.To show thatsucha triangulationalwaysexists (assumingthe input verticesarenot all
collinear),begin with an arbitrarytriangulationof theverticesof the PSLG.Examineeachinput segment
in turn to seeif it is missingfrom the triangulation.Eachmissingsegmentis forcedinto thetriangulation
by deletingall theedgesit crosses,insertingthenew segment,andretriangulatingthe two resultingpoly-
gons(oneon eachsideof thesegment),asillustratedin Figure2.16. (For a proof thatany polygoncanbe
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Figure2.16: Inserting a segment into a triangulation.

triangulated,seeBernandEppstein[10].)

Oncea triangulationcontainingall theinputsegmentsis found,theflip algorithmmaybeapplied,with
the provision that segmentscannotbe flipped. The following resultsmay be proven analogouslyto the
proofs in Section2.1.1. The only changesthat needbe madein the proofs is to ignore the presenceof
verticesthatarehiddenbehindinputsegments.

Lemma 7 Let � bea triangulation.If all thetrianglesof � areconstrainedDelaunay, thenall theedgesof
� are constrainedDelaunay, andviceversa. )
Lemma 8 Let � bea triangulationwhoseunconstrainededges(thosethatdonotrepresentinputsegments)
are all locally Delaunay. Theneveryedge of � is (globally)constrainedDelaunay. )
Lemma 9 Givena triangulation of < verticesin which all input segmentsare representedas edges, the
flip algorithmterminatesafter =?>@< ,�A edge flips, yieldinga triangulationwhoseedgesare all constrained
Delaunay. )
Theorem 10 Let _ beaPSLGcontainingthreeor moreverticesthatarenotall collinear. If nofourvertices
of _ arecocircular, theconstrainedDelaunaytriangulationof _ is a triangulation,andis producedby the
flip algorithm. )
Theorem 11 Amongall constrained triangulationsof a PSLG,the constrained Delaunaytriangulation
maximizestheminimumangle, minimizesthe largestcircumcircle, andminimizesthe largestmin-contain-
mentcircle. )

In thecasewhereaninputPSLGhasnosegments,theconstrainedDelaunaytriangulationreducesto the
Delaunaytriangulation.Hence,by proving theseresultsfor theCDT, they arealsoprovenfor theDelaunay
triangulation.However, I insteadpresentedthesimplerproofsfor theDelaunaytriangulationto aidclarity.

2.1.3 The DelaunayTetrahedralization

TheDelaunaytetrahedralizationof a vertex set � is a straightforwardgeneralizationof theDelaunaytrian-
gulationto threedimensions.An edge,triangularface,or tetrahedronwhoseverticesaremembersof � is
saidto beDelaunayif thereexistsanemptyspherethatpassesthroughall its vertices. If no five vertices
arecospherical,theDelaunaytetrahedralizationis a tetrahedralizationandis unique.If cosphericalvertices
arepresent,it is customaryto definetheDelaunaytetrahedralizationto bea truetetrahedralization.As with
degenerateDelaunaytriangulations,a subsetof theDelaunayedges,faces,andtetrahedramayhave to be
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Figure2.17: This hexahedron can be tetrahedralized in two ways. The Delaunay tetrahedralization (left)
includes an arbitrarily thin tetrahedron known as a sliver, which could compromise the accuracy of a fi-
nite element simulation. The non-Delaunay tetrahedralization on the right consists of two nicely shaped
elements.

omittedto achieve this, thussacrificinguniqueness.Thedefinitionof Delaunaytriangulationgeneralizesto
dimensionshigherthanthreeaswell.

I havementionedthatthemax-minangleoptimalityof thetwo-dimensionalDelaunaytriangulation,first
shown by Lawson[59], doesnot generalizeto higherdimensions.Figure2.17illustratesthis unfortunate
fact with a three-dimensionalcounterexample. A hexahedronis illustratedat top. Its Delaunaytetrahe-
dralization,which appearsat lower left, includesa thin tetrahedronknown asa sliver or kite, which may
have dihedralanglesarbitrarily closeto 	 � and ��

	 � . A betterquality tetrahedralizationof thehexahedron
appearsat lower right.

Edgeflips, discussedin Section2.1.1,have a three-dimensionalanalogue,which togglesbetweenthese
two tetrahedralizations. Therearetwo typesof flips in threedimensions,bothillustratedin Figure2.18. A
2-3 flip transformsthe two-tetrahedronconfigurationinto the three-tetrahedronconfiguration,eliminating
theface acb�d�$ andinsertingtheedgee�f andthreetriangularfacesconnectinge�f to b , d , and $ . A 3-2flip is
thereversetransformation,whichdeletestheedgee�f andinsertstheface a?bgdP$ .

Recallfrom Figure2.6thata two-dimensionaledgeflip is notpossibleif thecontainingquadrilateralof
anedgeis notstrictly convex. Similarly, athree-dimensionalflip is notpossibleif thecontaininghexahedron
of theedgeor facebeingconsideredfor eliminationis notstrictly convex. A 2-3 flip is preventedif theline
ehf doesnotpassthroughtheinteriorof thefaceacb�d�$ . A 3-2flip is preventedif acb�d�$ doesnotpassthrough
theinteriorof theedgeehf (Figure2.18,bottom).

Although the ideaof a flip generalizesto threeor moredimensions,the flip algorithmin its simplest
form doesnot. Joe[52] givesan examplethat demonstratesthat if the flip algorithmstartsfrom an arbi-
trary tetrahedralization,it maybecomestuckin a local optimum,producinga tetrahedralizationthat is not
Delaunay. The tetrahedralizationmaycontaina locally non-Delaunayfacethatcannotbeflippedbecause
its containinghexahedronis notconvex, or a locally non-Delaunayedgethatcannotbeflippedbecauseit is
containedin morethanthreetetrahedra.

It is notknown whetheranarbitrarytetrahedralizationcanalwaysbetransformedinto anotherarbitrary
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Figure2.18:Flips in three dimensions. The two-tetrahedron configuration (left) can be transformed into the
three-tetrahedron configuration (right) only if the line i�j passes through the interior of the triangular facekml]n & . The three-tetrahedron configuration can be transformed into the two-tetrahedron configuration only
if the plane containing

kml]n & passes through the interior of the edge i�j .
tetrahedralizationof thesamevertex setthroughasequenceof flips. Nevertheless,Delaunaytetrahedraliza-
tionscanbeconstructedby anincrementalinsertionalgorithmbasedonflips, discussedin Section2.1.4.

Any algorithmbasedon flips in dimensionsgreaterthantwo mustgive someconsiderationto thepos-
sibility of coplanarvertices.For instance,a three-dimensionalflip-basedincrementalDelaunaytetrahedral-
izationalgorithmmustbeableto explicitly or implicitly performthe4-4 flip demonstratedin Figure2.19.
This transformationis handywhentheverticesb , d , $ , and o arecoplanar. Thisflip is directlyanalogousto
the two-dimensionaledgeflip, whereintheedged2o is replacedby theedgeb.$ . 4-4 flips areusedoften in
caseswhereb , d , $ , and o lie onaninteriorboundaryfacetof anobjectbeingmeshed.Oneshouldbeaware
of thespecialcasewhereb , d , $ , and o lie onanexteriorboundary, andthetop two tetrahedra,aswell asthe
vertex e , aremissing.Onemight referto thiscaseasa2-2flip.

A programmerdoesnot needto implementthe 4-4 flip directly, becauseits effect canbe duplicated
by performinga 2-3 flip (for instance,on tetrahedrae�b�d2o and e�dP$�o ) followedby a 3-2 flip. However, this
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Figure2.19: A 4-4 flip. The vertices
l
,
n
, & , and p are coplanar. This transformation is analogous to the

two-dimensional edge flip (bottom).

sequencetransientlycreatesasliver tetrahedronbgdP$�o (createdby thefirst flip andeliminatedby thesecond)
with zerovolume,which maybeconsideredundesirable.It is up to the individual programmerto decide
how bestto addressthis issue.

AlthoughDelaunaytetrahedralizationsareinvaluablefor three-dimensionalmeshgeneration,they are
in many waysmorelimited thantheir two-dimensionalbrethren.Thefirst difficulty is that,whereasevery
polygoncanbetriangulated(withoutcreatingadditionalvertices),therearepolyhedrathatcannotbetetrahe-
dralized.Scḧonhardtfurnishesanexampledepictedin Figure2.20(right). Theeasiestway to envision this
polyhedronis to begin with a triangularprism. Imaginegraspingtheprismsothatoneof its two triangular
facescannotmove,while theoppositetriangularfaceis rotatedslightly aboutits centerwithoutmoving out
of its plane. As a result,eachof the threesquarefacesis broken alonga diagonalreflex edge (anedgeat
which thepolyhedronis locally concave) into two triangularfaces.After this transformation,theupperleft
cornerandlower right cornerof each(former)squarefaceareseparatedby a reflex edgeandareno longer
visibleto eachotherthroughtheinteriorof thepolyhedron.Hence,novertex of thetopfacecanseeall three
verticesof thebottomface. It is not possibleto choosefour verticesof thepolyhedronthatdo not include
two separatedby a reflex edge;thus,any tetrahedronwhoseverticesareverticesof thepolyhedronwill not
lie entirelywithin thepolyhedron.Scḧonhardt’s polyhedroncannotbetetrahedralizedwithout insertingnew
vertices.

Nevertheless,any convex polyhedroncan be tetrahedralized.However, it is not always possibleto
tetrahedralizeaconvex polyhedronin amannerthatconformsto interiorboundaries,becausethoseinterior
boundariescouldbe the facetsof Scḧonhardt’s polyhedron.Hence,constrainedtetrahedralizationsdo not
alwaysexist. Whatif we forbid constrainedfacets,but permitconstrainedsegments?Figure2.21illustrates
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Figure2.20:Schönhardt’s untetrahedralizable polyhedron (right) is formed by rotating one end of a triangu-
lar prism (left), thereby creating three diagonal reflex edges.

Figure2.21:A set of vertices and segments for which there is no constrained tetrahedralization.

a setof verticesandsegmentsfor which aconstrainedtetrahedralizationdoesnotexist. (Theconvex hull, a
cube,is illustratedfor clarity, but noconstrainedfacetsarepresentin theinput.) Threeorthogonalsegments
passby eachothernearthecenterof thecube,but donot intersect.If any oneof thesesegmentsis omitted,
a tetrahedralizationis possible.Hence,unlike thetwo-dimensionalcase,it is notalwayspossibleto inserta
new segmentinto a tetrahedralization.

Evenin caseswherea constrainedtetrahedralizationdoesexist, nobodyhasyet put forth a convincing
definitionof constrainedDelaunaytetrahedralization. It seemsunlikely thatthereexistsadefinitionthathas
thedesiredqualitiesof uniqueness,symmetry, androtationalinvariance(in nondegeneratecases).This dif-
ficulty arisesbecause,whereasa segmentcleanlypartitionsa circumcirclein two dimensions,exceptwhen
anendpointof thesegmentlies in thecircle,segmentsandfacetsdonotnecessarilypartitioncircumspheres
in threedimensions.

Anothernail in thecoffin of constrainedtetrahedralizationscomesfrom RuppertandSeidel[83], who
show thattheproblemof determiningwhetheror notapolyhedroncanbetetrahedralizedwithoutadditional
verticesis NP-complete.Hence,theprospectsfor developingconstrainedtetrahedralizationalgorithmsthat
consistentlyrecover boundariesarepessimistic.

The meshgenerationalgorithmdiscussedin Chapter4 recoversboundariesby strategically inserting
additionalvertices.Unfortunately, RuppertandSeidelalsoshow thattheproblemof determiningwhethera
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Figure2.22: The Bowyer/Watson algorithm in two dimensions. When a new vertex is inserted into a trian-
gulation (left), all triangles whose circumcircles contain the new vertex are deleted (center; deleted triangles
are shaded). Edges are created connecting the new vertex to the vertices of the insertion polyhedron (right).

polyhedroncanbetetrahedralizedwith only q additionalverticesis NP-complete.On thebright side,Bern
andEppstein[10] show thatany polyhedroncanbe tetrahedralizedwith the insertionof =?>@< , A additional
vertices,sothedemandsof tetrahedralizationarenot limitless.

2.1.4 Algorithms for Constructing DelaunayTriangulations

Threetypesof algorithmsarein commonusefor constructingDelaunaytriangulations.The simplestare
incrementalinsertionalgorithms,whichhave theadvantageof generalizingto arbitrarydimensionality, and
will bediscussedin somedepthhere.In two dimensions,therearefasteralgorithmsbasedupondivide-and-
conquerandsweeplinetechniques,whichwill bediscussedhereonly briefly. Referto SuandDrysdale[91,
90] for aninformativeoverview of theseandothertwo-dimensionalDelaunaytriangulationalgorithms.The
discussionbelow is centeredon abstractfeaturesof the algorithms;seeSection5.1 for further detailson
implementation.

Incrementalinsertionalgorithmsoperateby maintaininga Delaunaytriangulation,into which vertices
areinsertedoneata time. Theearliestsuchalgorithm,introducedby Lawson[59], is baseduponedgeflips.
An incrementalalgorithmthat doesnot useedgeflips, andhasthe advantageof generalizingto arbitrary
dimensionality, wasintroducedsimultaneouslyby Bowyer [12] andWatson[93]. Thesetwo articlesappear
side-by-sidein a singleissueof theComputerJournal+ . I will examinetheBowyer/Watsonalgorithmfirst,
andthenreturnto thealgorithmof Lawson.

In theBowyer/Watsonalgorithm,whena new vertex is inserted,eachtrianglewhosecircumcirclecon-
tainsthenew vertex is no longerDelaunay, andis thusdeleted.All othertrianglesremainDelaunay, andare
left undisturbed.Thesetof deletedtrianglescollectively form an insertionpolyhedron, which is left vacant
by thedeletionof thesetriangles,asillustratedin Figure2.22.TheBowyer/Watsonalgorithmconnectseach
vertex of theinsertionpolyhedronto thenew vertex with anew edge.Thesenew edgesareDelaunaydueto
thefollowing simplelemma.

Lemma 12 Let " bea newly insertedvertex, andlet ' bea vertex of a triangle ( that is deletedbecauseits
circumcircle contains" . Then"�' is Delaunay.

Proof: SeeFigure2.23. The circumcircleof ( containsno vertex but " . Let * be the circle that passes
through" and ' , andis tangentto thecircumcircleof ( at ' . * is empty, so "�' is Delaunay. )
r
Thetwo algorithmsaresimilar in all essentialdetails,but BowyerreportsabetterasymptoticrunningtimethanWatson,which

on closeinspectionturnsout to be nothingmore than an artifact of his moreoptimistic assumptionsaboutthe speedof point
location.
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Figure2.23: If 5 is a newly inserted vertex, and 7 is a vertex of a triangle % whose circumcircle contains
only 5 , then 5�7 is Delaunay.

Figure2.24: The Bowyer/Watson algorithm in three dimensions. At left, a new vertex falls inside the cir-
cumspheres of the two tetrahedra illustrated. (These tetrahedra may be surrounded by other tetrahedra,
which for clarity are not shown.) These tetrahedra are deleted, along with the face (shaded) between them.
At center, the five new Delaunay edges (bold dashed lines). At right, the nine new Delaunay faces (one for
each edge of the insertion polyhedron) are drawn translucent. Six new tetrahedra are formed.

All new edgescreatedby the insertionof a vertex " have " asan endpoint.This mustbe true of any
correctincrementalinsertionalgorithm,becauseif anedge(not having " asanendpoint)is not Delaunay
before" is inserted,it will notbeDelaunayafter " is inserted.

TheBowyer/Watsonalgorithmextendsin a straightforward way to three(or more)dimensions.When
a new vertex is inserted,every tetrahedronwhosecircumspherecontainsthenew vertex is deleted,asillus-
tratedin Figure2.24. Thenew vertex thenfloatsinsidea hollow insertionpolyhedron, which is theunion
of thedeletedtetrahedra.Eachvertex of theinsertionpolyhedronis connectedto thenew vertex with anew
edge.Eachedgeof theinsertionpolyhedronis connectedto thenew vertex with anew triangularface.

In its simplestform, the Bowyer/Watsonalgorithmis not robust againstfloating-pointroundoff error.
Figure2.25illustratesa degenerateexamplein which two triangleshave thesamecircumcircle,but dueto
roundoff erroronly oneof themis deleted,andthetrianglethatremainsstandsbetweenthenew vertex and
the othertriangle. The insertionpolyhedronis not simple,andthe triangulationthat resultsafter the new
trianglesareaddedis nonsensical.

In two dimensions,this problemmay be avoided by returningto Lawson’s algorithm[59], which is
baseduponedgeflips. Lawson’s algorithmis illustratedin Figure2.26.

Whena vertex is inserted,the triangle that containsit is found, and threenew edgesare insertedto
attachthenew vertex to theverticesof thecontainingtriangle. (If thenew vertex falls uponanedgeof the
triangulation,thatedgeis deleted,andfour new edgesareinsertedto attachthenew vertex to thevertices
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Figure2.25:The Bowyer/Watson algorithm may behave nonsensically under the influence of floating-point
roundoff error.

Figure2.26:Lawson’s incremental insertion algorithm uses edge flipping to achieve the same result as the
Bowyer/Watson algorithm.

of the containingquadrilateral.)Next, a recursive proceduretestswhetherthe new vertex lies within the
circumcirclesof any neighboringtriangles;eachaffirmative testtriggersanedgeflip thatremovesa locally
non-Delaunayedge. Eachedgeflip revealstwo additionaledgesthat mustbe tested.Whenthereareno
longerany locally non-Delaunayedgesoppositethenew vertex, thetriangulationis globallyDelaunay.

Disregardingroundoff error, Lawson’salgorithmachievesexactlythesameresultastheBowyer/Watson
algorithm. In the presenceof roundoff error, Lawson’s algorithm avoids the catastrophiccircumstance
illustratedin Figure2.25. Lawson’s algorithmis not absolutelyrobust againstroundoff error, but failures
arerarecomparedto themostnäıve form of theBowyer/Watsonalgorithm. However, theBowyer/Watson
algorithmcanbeimplementedto behave equallyrobustly; for instance,theinsertionpolygonmaybefound
by depth-firstsearchfrom theinitial triangle.

A betterreasonfor notingLawson’salgorithmis thatit is slightlyeasierto implement,in partbecausethe
topologicalstructuremaintainedby thealgorithmremainsatriangulationatall times.GuibasandStolfi [47]
provideaparticularlyelegantimplementation.

Joe[53, 54] andRajan[78] have generalizedLawson’s flip-basedalgorithmto arbitrarydimensionality.
Of course,thesealgorithmshave thesameeffectastheBowyer/Watsonalgorithm,but maypresentthesame
advantagesfor implementationthatLawson’salgorithmoffersin two dimensions.

I do not review the mathematicsunderpinningthree-dimensionalincrementalinsertionbasedon flips,
but I shall try to convey someof the intuition behindit. Returningfirst to the two-dimensionalalgorithm,
imagineyourselfasanobserver standingat the newly insertedvertex. From your vantagepoint, suppose
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Figure2.27:Left: The shaded triangles are considered to be visible from the new vertex, and are considered
for removal (by edge flip). Right: Triangles under consideration for removal fall into two categories. The
upper right triangle has an apex (open circle) visible through its base edge & from the new vertex. Only one
of this triangle’s sides faces the new vertex. The lower right triangle has an apex (the same open circle)
that is not visible through its base edge &�s , and thus the base edge cannot be flipped. Two of this triangle’s
sides face the new vertex.

thatany triangle(not adjoiningthe new vertex) is visible to you if it might beeligible for removal by the
next edgeflip. Thesetrianglesareshadedin Figure2.27.

For eachsuchtriangle,therearetwo cases.Theapex of thetriangle(thevertex hiddenfrom yourview)
mayor maynot fall within thesectorof your vision subtendedby thebaseedgeof thetriangle.If theapex
falls within this sector, thenonly the baseedgeof the trianglefacestoward you; the othertwo sidesface
away (seetheupperright triangleof Figure2.27). If theapex falls outsidethis sector, thentwo sidesof the
trianglefacetowardyou(seethelower right triangleof Figure2.27).In thelattercase,thebaseedgecannot
beflipped,becauseits containingquadrilateralis notstrictly convex.

Returningto thethree-dimensionalcase,imagineyourselfasa vertex thathasjust beeninsertedinside
a tetrahedron,splitting it into four tetrahedra.As you look around,you seethe four facesof the original
tetrahedron,andtheneighbortetrahedrabehindthesefaces(which areanalogousto theshadedtrianglesin
Figure2.27).

Foreachneighbortetrahedron,therearethreepossibilities.Thetetrahedronmighthaveonefacedirected
toward you andthreeaway (Figure2.28, left), in which casea 2-3 flip is possible.If performed,this flip
deletesthevisibleface,revealingthethreebackfaces,andcreatesanew edgeextendingfrom thenew vertex
(your viewpoint) to thenewly revealedvertex in theback. Theflip alsocreatesthreenew faces,extending
from thenew vertex to thethreenewly revealededges.

If thetetrahedronhastwo facesdirectedtowardyou(Figure2.28,center),andneitherfaceis obscuredby
aninterposingtetrahedron,a 3-2 flip is possible.If performed,this flip deletesbothvisible faces,revealing
thetwo backfaces.A new faceis created,extendingfrom thenew vertex to thenewly revealededge.

If thetetrahedronhasthreefacesdirectedtowardyou(Figure2.28,right), noflip is possible.

I have omittedthedegeneratecasein which you find yourselfpreciselycoplanarwith onefaceof the
tetrahedron,with oneotherfacedirectedtowardyouandtwo directedaway. Thiscircumstancewouldappear
similar to theupperleft imageof Figure2.28,but with d directlybehindtheedgeehf . If thenew vertex falls
within thecircumcircleof theface a?ehfKd , then e�f�bgd is no longerDelaunay, andtheaforementioned4-4 flip
maybeused,thuseliminatingbothtetrahedraadjoining a?e�f�d .

Eachflip uncoverstwo to four new faces,possiblyleadingto additionalflips.

This discussionof incrementalinsertionalgorithmsin two andthreedimensionshasassumedthat all
new verticesfall within the existing triangulation. What if a vertex falls outsidethe convex hull of the
previousvertices?Onesolutionis to handlethiscircumstanceasaspecialcase.New trianglesor tetrahedra
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Figure2.28: Three orientations of a tetrahedron as viewed from a newly inserted vertex t . Left: One face
of tetrahedron i�j l]n is directed toward t . If i�j l;n is no longer Delaunay, a 2-3 flip deletes the face

k i
j l ,
replacing the tetrahedra i�j l]n and i�j l t with i�j n t , j l]n t , and

l i n t . Center: Two faces of tetrahedron &.pPuwv
are directed toward t . If neither face is obscured by another tetrahedron, and &.pPu�v is no longer Delaunay,
a 3-2 flip deletes the edge &Ku and faces

k &;uwp ,
k &Kuwv , and

k &Ku�t , replacing the tetrahedra &.pPuwv , &.pPu�t , anduwv�&2t with pPuwv�t and vP&.pxt . Right: Three faces of a tetrahedron are directed toward t . No flip is possible.

arecreatedto connectthenew vertex to all theedgesor facesof theconvex hull visible from that vertex.
Then,flipping may proceedasusual. An alternative solutionthat simplifiesprogrammingis to bootstrap
incrementalinsertionwith a very large triangularor tetrahedralboundingbox that containsall the input
vertices.After all verticeshave beeninserted,theboundingbox is removedasa postprocessingstep.The
problemwith this approachis thatonemustbecarefulto choosetheverticesof theboundingbox so that
they donotcausetrianglesor tetrahedrato bemissingfrom thefinal Delaunaytriangulation.

Assumingthat onehasfound the triangleor tetrahedronin which a new vertex is to be inserted,the
amountof work requiredto insertthevertex is proportionalto thenumberof flips, which is typically small.
Pathologicalcasescanoccur in which a singlevertex insertioncauses=?>@< A flips in two dimensions,or
=?>@< , A in three;but suchcasesariserarelyin meshgeneration,andit is commonto observe thattheaverage
numberof flips perinsertionis asmallconstant.

In two dimensions,this observation is givensomesupportby a simpletheoreticalresult. Supposeone
wishesto construct,usingLawson’salgorithm,theDelaunaytriangulationof asetof verticesthatis entirely
known at theoutset.If theinputverticesareinsertedin a randomorder, chosenuniformly from all possible
permutations,thentheexpectednumberof edgeflips pervertex insertionis boundedbelow three.

Thiselegantresultseemsto originatewith Chew [20], albeitin theslightly simplercontext of Delaunay
triangulationsof convex polygons.ThisresultwasprovenmoregenerallybyGuibas,Knuth,andSharir[46],
albeitwith amuchmorecomplicatedproof thanChew’s. Theresultis basedon theobservationthatwhena
vertex is inserted,eachedgeflip increasesby onethedegreeof thenew vertex. Hence,if theinsertionof a
vertex causesfour edgeflips, therewill besevenedgesincidentto thatvertex. (Thefirst threeedgesconnect
thenew vertex to theverticesof the trianglein which it falls, andthe latter four arecreatedthroughedge
flips.)

Here,the techniqueof backward analysisis applied. The mainprincipleof backward analysisis that
after an algorithmterminates,one imaginesreversingtime andexamining the algorithm’s behavior as it
runsbackwardto its startingstate.In thecaseof Lawson’salgorithm,onebeginswith acompleteDelaunay
triangulationof all theinputvertices,andremovesonevertex ata time.



DelaunayTriangulationsandTetrahedralizations 31

Figure2.29:The algorithm of Guibas, Knuth, and Sharir maintains a mapping between uninserted vertices
(open circles) and triangles. The bounding box vertices and the edges incident to them are not shown.

Thepower of backwardanalysisstemsfrom thefact thata uniformly chosenrandompermutationread
backward is still a uniformly chosenrandompermutation.Hence,onemayimaginethat triangulationver-
ticesarebeingrandomlyselected,oneat a time from a uniform distribution, for removal from the trian-
gulation. With time runningbackward, theamountof time spentremoving a vertex from thetriangulation
is proportionalto the degreeof the vertex. Becausethe averagedegreeof verticesin a planargraphis
boundedbelow six, theexpectednumberof edgeflips observedwhena randomlychosenvertex is removed
is boundedbelow three.

Hence,whenLawson’salgorithmis runningforwardin time,theexpectednumberof edgeflips required
to insertavertex is atmostthree.Unfortunately, thisresultis notstrictly applicableto mostDelaunay-based
meshgenerationalgorithms,becausetheentiresetof verticesis not known in advance,andthusthevertex
insertionordercannotberandomized.Nevertheless,theresultgivesusefulintuition for why constant-time
vertex insertionis socommonlyobservedin meshgeneration.

Unfortunately, whenfinding theDelaunaytriangulationof anarbitrarysetof vertices,edgeflips arenot
the only cost. In many circumstances,the dominantcost is the time requiredfor point location: finding
the triangleor tetrahedronin which a vertex lies, so that the vertex may be inserted. Fortunately, most
Delaunay-basedmeshgenerationalgorithmsinsertmostof their verticesin placesthat have alreadybeen
identifiedasneedingrefinement,andthusthelocationof eachnew vertex is alreadyknown. However, in a
general-purposeDelaunaytriangulator, point locationis expensive.

In two dimensions,point locationcanbe performedin expectedamortized=?>zy|{�}H< A time per vertex,
where< is thenumberof verticesin themesh.ClarksonandShor[24] werethefirst to achieve this bound,
againby insertingtheverticesin randomorder. ClarksonandShorperformpoint locationby maintaining
a conflictgraph, which is a bipartitegraphthatassociatesedgesof thetriangulationwith verticesthathave
not yet beeninserted.Specifically, the conflict graphassociateseachuninsertedvertex with the edgesof
thatvertex’s insertionpolygon(includingtriangulationedgesin the interior of the insertionpolygon).The
conflictgraphis updatedwith eachvertex insertion.

RatherthanexplaintheClarksonandShoralgorithmin detail,I presentasimplervariantdueto Guibas,
Knuth,andSharir[46]. For simplicity, assumethatalargeboundingboxis usedto containtheinputvertices.
Oneversionof thealgorithmof Guibaset al. maintainsa simplerconflict graphin which eachuninserted
vertex is associatedwith the trianglethat containsit (Figure2.29,left). If a vertex lies on anedge,either
containingtriangleis chosenarbitrarily.

Whena triangleis divided into threetriangles(Figure2.29,center)or anedgeis flipped(Figure2.29,
right), the verticesin thedeletedtriangle(s)areredistributedamongthenew trianglesasdictatedby their
positions.Whena vertex is chosenfor insertion,its containingtriangleis identifiedby usingthe conflict
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graph. The dominantcostof the algorithm is the costof redistributing uninsertedverticesto their new
containingtriangleseachtimeavertex is inserted.

AlthoughClarksonandShor[24] andGuibaset al. [46] bothprovide waysto analyzethis algorithm,
thesimplestanalysisoriginateswith KennethClarksonandis publishedin a reportby Seidel[85]. HereI
give a roughsketchof the proof, which relieson backward analysis.SupposetheDelaunaytriangulation
of < verticesis beingconstructed.Considerthe stepwhereina >�~ � � A -vertex triangulationis converted
into a ~ -vertex triangulationby insertingarandomlychosenvertex; but considerrunningthestepin reverse.
In the backward step,a randomvertex " of the ~ -vertex triangulationis chosenfor deletion. What is the
expectednumberof verticesthat are redistributed? Eachtriangleof the triangulationhasthreevertices,
so the probability that any given triangle is deletedwhen " is deletedis -� . (The probability is actually

slightly smaller, becausesometriangleshave verticesof the boundingbox, but -� is an upperbound.) If
a triangleis deleted,all verticesassignedto that triangleareredistributed. Eachof the < � ~ uninserted
verticesis assignedto exactly onetriangle;soby linearity of expectation,theexpectednumberof vertices
redistributedwhen " is deleted(or, if time is runningforward,inserted)is

-������ ���� . Hence,therunningtime

of thealgorithmis � ���� + -����P� ���� G =?>@<Cy|{�}8< A .
Thesameanalysistechniquecanbeused,albeitwith complications,to show thatincrementalDelaunay

triangulationin higherdimensionscanrun in randomized=?>@<1���K� ,2�gA time. ConsultSeidel[85] for details.

Thefirst =?>@<Cy|{�}�< A algorithmfor two-dimensionalDelaunaytriangulationwasnotanincrementalalgo-
rithm, but adivide-and-conquer algorithm.ShamosandHoey [86] developedanalgorithmfor theconstruc-
tion of aVoronoidiagram,whichmaybeeasilydualizedto form aDelaunaytriangulation.In programming
practice,this is an unnecessarilydifficult procedure,becauseforming a Delaunaytriangulationdirectly is
mucheasier, andis in facttheeasiestway to constructa Voronoidiagram.LeeandSchachter[60] werethe
first to publisha divide-and-conqueralgorithmthat follows this easierpath. The algorithmis nonetheless
intricate,andGuibasandStolfi [47] provide an importantaid to programmersby filling out many tricky
implementationdetails.Dwyer [30] offersaninterestingmodificationto divide-and-conquerDelaunaytri-
angulationthat achieves betterasymptoticperformanceon somevertex sets,and offers improved speed
in practiceaswell. Thereis alsoan =?>@<Cy�{�}�< A algorithmfor constrainedDelaunaytriangulationsdueto
Chew [18]. Divide-and-conquerDelaunaytriangulationis discussedfurtherin Section5.1.

Anotherwell-known =?>@<Cy|{�}8< A two-dimensionalDelaunaytriangulationalgorithmis Fortune’s sweep-
line algorithm[31].

2.2 Research in MeshGeneration

Thediscussionin thischapterhasheretoforebeenconcernedwith triangulationsof completevertex sets.Of
course,a meshgeneratorrarelyknows all theverticesof thefinal meshprior to triangulation,andthereal
problemof meshingis decidingwhereto placeverticesto ensurethatthemeshhaselementsof goodquality
andpropersizes.

I attempthereonly thebriefestof surveys of meshgenerationalgorithms.Detailedsurveys of themesh
generationliteraturehave beensuppliedby ThompsonandWeatherill[92] andBernandEppstein[10]. I
focusmy attentionon algorithmsthatmake useof Delaunaytriangulations,andon algorithmsthatachieve
provablebounds.I postponethreealgorithms,dueto L. Paul Chew andJim Ruppert,thatshareboththese
characteristics.They aredescribedin detailin Chapter3.

Only simplicialmeshgenerationalgorithmsarediscussedhere;algorithmsfor generatingquadrilateral,
hexahedral,or othernon-simplicialmeshesareomitted. The mostpopularapproachesto triangularand
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tetrahedralmeshgenerationcanbedivided into threeclasses:Delaunaytriangulationmethods,advancing
front methods,andmethodsbasedongrids,quadtrees,or octrees.

2.2.1 DelaunayMeshGeneration

It is difficult to tracewhofirst usedDelaunaytriangulationsfor finite elementmeshing,andequallydifficult
to tell wherethesuggestionaroseto usethe triangulationto guidevertex creation.Theseideashave been
intensively studiedin theengineeringcommunitysincethemid-1980s,andbeganto attractinterestfrom the
computationalgeometrycommunityin theearly1990s.

I will nameonly a few scatteredreferencesfrom thevoluminousliterature.Many of theearliestpapers
suggestperformingvertex placementasa separatestep,typically usingstructuredgrid techniques,prior to
Delaunaytriangulation.For instance,Cavendish,Field,andFrey [17] generategridsof verticesfrom cross-
sectionsof a three-dimensionalobject,thenform their Delaunaytetrahedralization.The ideaof usingthe
triangulationitself asa guidefor vertex placementfollowedquickly; for instance,Frey [41] removespoor
quality elementsfrom a triangulationby insertingnew verticesat their circumcenters—the centersof their
circumcircles—whilemaintainingthe Delaunaypropertyof the triangulation. This ideawent on to bear
vital theoreticalfruit, asChapters3 and4 will demonstrate.

I have mentionedthattheDelaunaytriangulationof a vertex setmaybeunsatisfactoryfor two reasons:
elementsof poorquality mayappear, andinput boundariesmay fail to appear. Both theseproblemshave
beentreatedin the literature. The former problemis typically treatedby insertingnew verticesat the
circumcenters[41] or centroids[94] of poorqualityelements.It is sometimesalsotreatedwith anadvancing
front approach,discussedbriefly in Section2.2.2.

Theproblemof therecovery of missingboundariesmaybetreatedin severalways. Theseapproaches
have in commonthat boundariesmay have to be broken up into smallerpieces.For instance,eachinput
segmentis divided into a sequenceof triangulationedgeswhich I call subsegments, with a vertex inserted
at eachdivision point. In threedimensions,eachfacetof anobjectto bemeshedis divided into triangular
faceswhich I call subfacets. Verticesof thetetrahedralizationlie at thecornersof thesesubfacets.

In the earliestpublications,boundaryintegrity was assuredsimply by spacingverticessufficiently
closely togetheron the boundaryprior to forming a triangulation[41]—surely an error-proneapproach.
A betterway to ensurethe presenceof input segmentsis to first form the triangulation,and thencheck
whetherany inputsegmentsaremissing.

Missingsegmentscanberecoveredby oneof severalmethods,whichwork in two or threedimensions.
Onemethodinsertsa new vertex (while maintainingthe Delaunaypropertyof the mesh)at the midpoint
of any missingsegment,splitting it into two subsegments[94]. Sometimes,the two subsegmentsappear
asedgesof the resultingtriangulation. If not, the subsegmentsarerecursively split in turn. This method,
sometimescalledstitching, is describedin moredetailin Section3.3.1.Althoughit is not obvioushow this
methodmight generalizeto three-dimensionalfacetrecovery, I will demonstratein Section4.2.1that this
generalizationis possibleandhassomeadvantagesover thenext methodI describe.

Anothermethod,usuallyonly usedin threedimensions,canbeappliedto recoverbothmissingsegments
andmissingfacets.Thismethodinsertsa new vertex wherever a faceor edgeof thetriangulationintersects
amissingsegmentor facet[95, 48,96,79]. Themethodis oftencoupledwith flips [43, 95], whichareused
to reducethenumberof verticesthatmustbe inserted.Thepessimisticresultson constrainedtetrahedral-
izationsin Section2.1.3imply that,in threedimensions,flips cannotalwaysachieve boundaryrecovery on
theirown; in somecases,new verticesmustinevitably beinsertedto fully recover aboundary.

Boundaryrecovery methodswill bediscussedfurtherin Sections3.3.1,4.2.1,and5.3.1.
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Figure2.30:Several stages in the progression of an advancing front algorithm.

2.2.2 AdvancingFront Methods

Advancingfront methods[62, 6, 51, 64] begin by dividing the boundariesof the meshinto edges(in two
dimensions)or triangularfaces(in three).Thesediscretizedboundariesform theinitial front. Trianglesor
tetrahedraaregeneratedone-by-one,startingfrom theboundaryedgesor faces,andwork towardthecenter
of the region beingmeshed,asillustratedin Figure2.30. The innersurfaceof theseelementscollectively
form anadvancingfront.

Advancingfront methodsrequireagooddealof second-guessing,first to ensurethattheinitial division
of the boundariesis prudent,andsecondto ensurethat whenthe advancingwalls of elementscollide at
thecenterof themesh,they aremergedtogetherin a mannerthatdoesnot compromisethequality of the
elements.In both cases,a poor choiceof elementsizesmay result in disaster, aswhena front of small
elementscollideswith a front of largeelements,makingit impossibleto fill thespacebetweenwith nicely
shapedelements.Theseproblemsaresufficiently difficult that thereare, to my knowledge,no provably
goodadvancingfront algorithms.Advancingfront methodstypically createastonishinglygoodtrianglesor
tetrahedraneartheboundariesof themesh,but aremuchlesseffective wherefrontscollide.

In threedimensions,generatingthesurfacemeshmaybea difficult problemitself. Ironically, themesh
generatordescribedby Marcum and Weatherill [63] usesa Delaunay-basedmeshgeneratorto createa
completetetrahedralization,thenthrows away the tetrahedralizationexceptfor thesurfacemesh,which is
usedto seedtheiradvancingfront algorithm.

Mavriplis [64] combinesthe Delaunaytriangulationandadvancingfront methods.The combination
makesa gooddealof sense,becausea Delaunaytriangulationin theinterior of themeshis a usefulsearch
structurefor determininghow closedifferentfronts areto eachother. (Someresearchersusebackground
grids for this task.) Conversely, the advancingfront methodmay be usedasa vertex placementmethod
for Delaunaymeshing.A sensiblestrategy might be to abandontheadvancingfront shortlybeforefronts
collide,anduseadifferentvertex placementstrategy (suchasinsertingverticesatcircumcentersor centroids
of poorqualityelements)in thecenterof themesh,wheresuchstrategiestendto bemosteffective.

Figure2.31depictsoneof the world’s mostfamousmeshes,generatedby anadvancingfront method
of Barth and Jesperson[9]. The meshis the Delaunaytriangulationof verticesplacedby a procedure
moving outward from this airfoil. Of course,theproblemsassociatedwith colliding frontsarereducedin
circumstanceslike this,whereoneis meshingtheexterior, ratherthantheinterior, of anobject.

2.2.3 Grid, Quadtree,and OctreeMethods

Thelastdecadehasseentheemergenceof meshgenerationalgorithmswith provablygoodbounds.

Baker, Grosse,andRafferty [5] gave the first algorithmto triangulatePSLGswith guaranteedupper
andlower boundson elementangle.By placinga fine uniform grid over a PSLG,warpingtheedgesof the
grid to fit the input segmentsandvertices,andtriangulatingthe warpedgrid, they areableto constructa
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Figure2.31:Mesh produced by an advancing front, moving outward from an airfoil.

(a) (b)

Figure2.32: (a) A quadtree. (b) A quadtree-based triangulation of a vertex set, with no angle smaller than� � � (courtesy Marshall Bern).

triangularmeshwhoseanglesareboundedbetween��� � and �
	 � (exceptwherethe input PSLGhasangles
smallerthan ��� � ; thesecannotbeimproved).Theelementsof themeshareof uniformsize.

To producegradedmeshes,someresearchershave turnedto quadtrees. A quadtreeis a recursive data
structureusedto efficiently manipulatemultiscalegeometricobjectsin theplane.Quadtreesrecursively par-
tition a region into axis-alignedsquares.A top-level squarecalledtheroot enclosestheentireinput PSLG.
Eachquadtreesquarecanbedividedinto four child squares,which canbedividedin turn, asillustratedin
Figure2.32(a).Octreesarethegeneralizationof quadtreesto threedimensions;eachcubein anoctreecan
besubdividedinto eightcubes.SeeSamet[84] for asurvey of quadtreedatastructures.

Meshingalgorithmsbasedonquadtreesandoctreeshavebeenusedextensively in theengineeringcom-
munity for over a decade[98, 99, 87]. Their first role in meshgenerationwith provableboundsappearsin
a paperby Bern,Eppstein,andGilbert [11]. TheBernet al. algorithmtriangulatesa polygonwith guaran-
teedboundson bothelementquality andthenumberof elementsproduced.All angles(exceptsmall input
angles)aregreaterthanroughly ��
 � � � , andthemeshis size-optimal(asdefinedin Section1.4). Theangle
boundappliesto triangulationsof polygonswith polygonalholes,but cannotbeextendedto generalPSLGs,
asSection3.6will show. Figure2.32(b)depictsameshgeneratedby onevariantof theBernetal.algorithm.
For this illustration,a setof input verticeswasspecified(with no constrainingsegments),anda meshwas
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Figure2.33:Two meshes generated by Stephen Vavasis’ QMG package, an octree-based mesh generator
with provable bounds. (Meshes courtesy Stephen Vavasis.)

generated(addinga greatmany additionalvertices)thataccommodatestheinput verticesandhasno angle
smallerthan

� 	 � . Figure3.7(top)onPage47depictsa meshof apolygonwith holes.

Thealgorithmof Bernet al. worksby constructingaquadtreethatis denseenoughto isolateeachinput
feature(vertex or segment)from otherfeatures.Next, thequadtreeis warpedto coincidewith inputvertices
andsegments.(Warpingchangestheshapeof thequadtree,but not its topology.) Finally, thesquaresare
triangulated.

NeugebauerandDiekmann[73] have improvedtheresultsof Bernet al., replacingthesquarequadtree
with a rhomboidquadtreeso that the trianglesof the final meshtendto be nearlyequilateral.Assuming
therearenosmall inputangles,polygonaldomainswith polygonalholesandisolatedinteriorpointscanbe
triangulatedwith all anglesbetween�
	 � and �
	 � .

Remarkably, provably good quadtreemeshinghas beenextendedto polyhedraof arbitrary dimen-
sionality. Mitchell andVavasis[69, 70] have developedan algorithmbasedon octrees(andtheir higher-
dimensionalbrethren)that triangulatespolyhedra,producingsize-optimalmesheswith guaranteedbounds
onelementaspectratios.Thegeneralizationto morethantwo dimensionsis quiteintricate,andthetheoreti-
calboundsonelementqualityarenotstrongenoughto beentirelysatisfyingin practice.Figure2.33depicts
two meshesgeneratedby Vavasis’QMG meshgenerator. Themeshat left is quitegood,whereasthemesh
at right containssometetrahedraof marginalquality, with many smallanglesvisibleon thesurface.

In practice,the theoreticallygoodmeshgenerationalgorithmsof Bern,Eppstein,andGilbert [11] and
Mitchell andVavasis[69] oftencreateanundesirablylargenumberof elements.Althoughbothalgorithms
aresize-optimal,the constanthiddenin the definition of size-optimalityis large, andalthoughboth algo-
rithmsrarelycreateasmany elementsastheir theoreticalworst-caseboundssuggest,they typically create
too many nonetheless.In contrast,theFinite Octreemeshgeneratorof ShephardandGeorges[87] gener-
atesfewer tetrahedra,but offers no guarantee.ShephardandGeorgeseliminatepoor elements,wherever
possible,throughmeshsmoothing,describedbelow.
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Figure2.34: A selection of topological local transformations. Each node is labeled with its degree. These
labels represent ideal cases, and are not the only cases in which these transformations would occur.

2.2.4 Smoothingand TopologicalTransformations

All the algorithmsdiscussedthusfar have thepropertythat oncethey have decidedto inserta vertex, the
vertex is rootedpermanentlyin place. In this section,I discusstechniquesthat violate this permanence.
Theseare not meshgenerationmethods;rather, they are meshimprovementprocedures,which may be
appliedto ameshgeneratedby any of themethodsdiscussedheretofore.

Smoothingis a techniquewhereinmeshverticesare moved to improve the quality of the adjoining
elements.No changesaremadeto thetopologyof themesh.Of course,verticesthatlie in meshboundaries
maybeconstrainedsothatthey canonly movewithin a segmentor facet,or they maybeunableto moveat
all.

Themostfamoussmoothingtechniqueis Laplaciansmoothing, in which a vertex is movedto thecen-
troid of the verticesto which it is connected[49], if sucha move doesnot createcollapsedor inverted
elements.Typically, a smoothingalgorithmwill run throughtheentiresetof meshverticesseveral times,
smoothingeachvertex in turn. Laplaciansmoothingis reasonablyeffective in two dimensions,but performs
poorly in three.

WereLaplaciansmoothingnot soeasyto implementandsofastto execute,it would becompletelyob-
solete.Muchbettersmoothingalgorithmsareavailable,basedonconstrainedoptimizationtechniques[75].
Thecurrentstateof theart is probablythenonsmoothoptimizationalgorithmdiscussedby Freitag,Jones,
andPlassman[38] andFreitagandOllivier-Gooch[39, 40]. Thelatterauthorsreportconsiderablesuccess
with a procedurethat maximizesthe minimum sineof the dihedralanglesof the tetrahedraadjoiningthe
vertex beingsmoothed.

Anotherapproachto meshimprovementis to usethe topological transformationsoutlinedby Canann
[14], which aresimilar to ideasproposedby Frey andField [42]. Examplesof sometransformationsare
illustratedin Figure2.34. The familiar edgeflip is included,but theothertransformationshave theeffect
of insertingor deletingavertex. An unusualaspectof Canann’s approachis thatheappliestransformations
basedon thetopology, ratherthanthegeometry, of a mesh.In two dimensions,theidealdegreeof a vertex
is presumedto be six (to echothe structureof a lattice of equilateraltriangles),andtransformationsare
appliedin anattemptto bring theverticesof themeshascloseto this idealaspossible.Canannclaimsthat
hismethodis fastbecauseit avoidsgeometriccalculationsandmakesdecisionsbasedonsimpletopological
measures.Themethodreliesuponsmoothingto iron out any geometricirregularitiesafter thetransforma-
tionsarecomplete.Theresearchis notablebecauseof theunusuallylargenumberof transformationsunder
consideration.
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Figure2.35: Tire incinerator mesh before and after mesh improvement. Shaded tetrahedra have dihedral
angles smaller than �K��� or greater than �K� � � . (Courtesy Lori Freitag and Carl Ollivier-Gooch.)

Other researchershave consideredmixing smoothingwith topologicaltransformations,but typically
consideronly a limited setof transformations,often restrictedto 2-3 and3-2 flips. For instance,Golias
andTsiboukis[45] reportobtaininggoodresultsin tetrahedralmeshimprovementby alternatingbetween
Laplaciansmoothingandflipping.

A moresophisticatedapproachis taken by FreitagandOllivier-Gooch[39, 40], who combineoptimi-
zation-basedsmoothingwith several transformations,including2-3 and3-2 flips, aswell asanothersetof
transformationsthey refer to as“edgeswapping”. Figure2.35demonstratesthe resultsobtainedby these
techniques.In thesebefore-and-afterimages,tetrahedrawith poordihedralanglesareshaded.Beforemesh
improvement,the dihedralanglesrangefrom 	 ������� to � � 
 � 
�
 � . Afterward, they rangefrom ��� ���w�
� to
� � � � 
 � � .

As Delaunaytetrahedralizationslack theoptimalitypropertiesof their two-dimensionalcounterparts,it
is naturalto askwhetheroneshouldforgo theDelaunaycriterion,andinsteaduseflips to directlymaximize
theminimumsolidangle.Joe[52] studiesthisquestionexperimentally, andconcludesthataprocedurethat
performslocal flips to locally optimizetheminimumsolid angleis notablyinferior to theDelaunaytetra-
hedralization.However, if onefirst constructstheDelaunaytetrahedralization, andthenappliesadditional
flips to locally improvetheminimumsolidangle,onedoesbetterthantheDelaunaytetrahedralizationalone.
Joe’s resultsindicatethata tetrahedralizationthat is locally optimalwith respectto solid anglemaybefar
from globally optimal. Although the Delaunaytetrahedralizationdoesnot maximizethe minimum solid
angle,it certainlyseemsto optimizesomethingusefulfor meshgeneration.MarcumandWeatherill [63]
suggestthat alternatingbetweentheDelaunaycriterionanda min-maxcriterion (minimize themaximum
dihedralangle)worksevenbetter.

Laterresearchby Joe[55] indicatesthatlocal improvementscanoftenbemadeby consideringtheeffect
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of two consecutive flips (even thoughthefirst of the two flips mayworsenelementquality). Joeidentifies
several dual transformationsthat are frequentlyeffective in practice,and several that rarely prove to be
useful.

All of thesemeshimprovementtechniquesareapplicableto meshesgeneratedby the algorithmsde-
scribedin Chapters3 and4. However, I will notexplorethemfurtherin this document.





Chapter 3

Two-DimensionalDelaunayRefinement
Algorithms for Quality MeshGeneration

Delaunayrefinementalgorithmsfor meshgenerationoperateby maintainingaDelaunayor constrainedDe-
launaytriangulation,which is refinedby insertingcarefullyplacedverticesuntil themeshmeetsconstraints
onelementqualityandsize.

Thesealgorithmsaresuccessfulbecausethey exploit several favorablecharacteristicsof Delaunaytri-
angulations.Onesuchcharacteristic,alreadymentionedin Chapter2, is Lawson’s resultthat a Delaunay
triangulationmaximizestheminimumangleamongall possibletriangulationsof a point set. Anotherfea-
ture is that insertinga vertex is a local operation,andhenceis inexpensive except in unusualcases.The
actof insertinga vertex to improve poorquality elementsin onepartof a meshwill not unnecessarilyper-
turb a distantpartof themeshthathasno badelements.Furthermore,Delaunaytriangulationshave been
extensively studied,andgoodalgorithmsareavailable.

Thegreatestadvantageof Delaunaytriangulationsis lessobvious.Thecentralquestionof any Delaunay
refinementalgorithmis “where shouldthe next vertex be inserted?” As this chapterwill demonstrate,a
reasonableansweris “as far from otherverticesaspossible.” If anew vertex is insertedtoocloseto another
vertex, theresultingsmalledgewill engenderthin triangles.

Becausea Delaunaytrianglehasno verticesin its circumcircle,a Delaunaytriangulationis an ideal
searchstructurefor findingpointsthatarefar from othervertices.(It’s nocoincidencethatthecircumcenter
of eachtriangleof aDelaunaytriangulationis avertex of thecorrespondingVoronoidiagram.)

This chapterbeginswith a review of Delaunayrefinementalgorithmsintroducedby L. Paul Chew and
Jim Ruppert.Ruppert[81] provesthathis algorithmproducesnicely graded,size-optimalmesheswith no
anglessmallerthanabout

� 	 ��� � . I show thatRuppert’s analysistechniquecanbeusedto prove thatChew’s
secondpublishedDelaunayrefinementalgorithm[21] canproducenicely gradedsize-optimalmesheswith
no anglessmallerthanabout

���������
. Chew provesthat his algorithmcanproducemesheswith no angles

smallerthan �
	 � , albeitwithout any guaranteesof gradingor size-optimality. I generalizeChew’s ideaso
that it canbeappliedto Ruppert’s algorithm(andlater to three-dimensionalDelaunayrefinement).I also
discusstheoreticalandpracticalissuesin triangulatingregionswith smallangles.Thefoundationsbuilt here
undergird thethree-dimensionalDelaunayrefinementalgorithmsexaminedin thenext chapter.
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Figure3.1: (a) Diagram for proof that
nS� �����9�����

. (b) Diagram for proof that ��� l��J� � ����� � .
3.1 A Quality Measure for Simplices

In thefinite elementcommunity, therearea wide varietyof measuresin usefor thequality of anelement,
the mostobvious beingthesmallestandlargestanglesof eachsimplex. Miller, Talmor, Teng,andWalk-
ington[66] have pointedout that themostnaturalandelegantmeasurefor analyzingDelaunayrefinement
algorithmsis the circumradius-to-shortest edge ratio of a simplex: the radiusof the circumsphereof the
simplex dividedby the lengthof theshortestedgeof thesimplex. For brevity, I will occasionallyrefer to
this ratioasthequalityof a simplex. Onewould like this ratio to beassmallaspossible.

In two dimensions,atriangle’scircumradius-to-shortestedgeratio is afunctionof its smallestangle.Let
a��D Pq have circumcenterb andcircumradius¡ , asillustratedin Figure3.1(a).Supposethelengthof edge�D 
is d , andtheangleoppositethisedgeis ¢£3¤���9q�  .

It is a well-known geometricfact that ����bF ¥3 � ¢ . SeeFigure3.1(b)for a derivation. Let ¦§3¨�© �qhb .
BecauseaªqhbK� and acqhbF  areisosceles,��qhb��H3«��

	 �N�¬� >z¢®­¯¦ A and ��qhbF �3«��

	 �N�¬� ¦ . Subtractingthe
formerfrom thelatter, ���9bL \3 � ¢ . (Thisderivationholdsevenif ¦ is negative.)

Returningto Figure3.1(a),it is apparentthat °]±³²1¢´3µdh¶h> � ¡ A . It follows that if the triangle’s shortest
edgehaslength d , then ¢ is its smallestangle. Hence,if · is an upperboundon the circumradius-to-
shortestedgeratio of all trianglesin a mesh,thenthereis no anglesmallerthan ¸
¹;º.°]±�² +,]» (andvice versa).
A triangularmeshgeneratoris wiseto make · assmallaspossible.

Unfortunately, aboundoncircumradius-to-shortestedgeratiodoesnot imply anangleboundin dimen-
sionshigherthantwo. Nevertheless,theratio is ausefulmeasurefor understandingDelaunayrefinementin
higherdimensions.

With thesefactsin mind, I shalldescribetwo-dimensionalDelaunayrefinementalgorithmsdueto Paul
Chew andJimRuppertthatactto boundthemaximumcircumradius-to-shortest edgeratio,andhencebound
theminimumangleof a triangularmesh.



Chew’sFirstDelaunayRefinementAlgorithm 43

v v

t

Figure3.2: Any triangle whose circumradius-to-shortest edge ratio is larger than some bound ¼ is split
by inserting a vertex at its circumcenter. The Delaunay property is maintained, and the triangle is thus
eliminated. Every new edge has length at least ¼ times that of shortest edge of the poor triangle.

3.2 Chew’s First DelaunayRefinementAlgorithm

PaulChew haspublishedat leasttwo Delaunayrefinementalgorithmsof greatinterest.Thefirst, described
here,producestriangulationsof uniform density[19]. Thesecond,which canproducegradedmeshes[21],
will bediscussedin Section3.4.

3.2.1 The Key IdeasBehind DelaunayRefinement

Thecentraloperationof Chew’s,Ruppert’s,andmy own Delaunayrefinementalgorithmsis theinsertionof
avertex atthecircumcenterof atriangleof poorquality. TheDelaunaypropertyis maintained,preferablyby
Lawson’salgorithmor theBowyer/Watsonalgorithmfor theincrementalupdateof Delaunaytriangulations.
Thepoortrianglecannotsurvive, becauseits circumcircleis no longerempty. For brevity, I referto theact
of insertinga vertex at a triangle’s circumcenterassplitting a triangle. The ideadatesbackat leastto the
engineeringliteratureof themid-1980s[41].

Themain insightof all theDelaunayrefinementalgorithmsis that Delaunayrefinementis guaranteed
to terminateif thenotionof “poor quality” includesonly trianglesthathave acircumradius-to-shortest edge
ratiolargerthansomeappropriatebound½ . Recallthattheonlynew edgescreatedby theDelaunayinsertion
of avertex ¾ areedgesconnectedto ¾ (seeFigure3.2).Because¾ is thecircumcenterof sometriangle ¿ , and
therewereno verticesinsidethecircumcircleof ¿ before ¾ wasinserted,no new edgecanbeshorterthan
thecircumradiusof ¿ . Because¿ hasacircumradius-to-shortestedgeratio largerthan ½ , everynew edgehas
lengthat least ½ timesthatof theshortestedgeof ¿ .

Henceforth,a trianglewhosecircumradius-to-shortest edgeratio is greaterthan ½ is saidto beskinny.
Figure3.3providesanintuitive illustrationof whyall skinny trianglesareeventuallyeliminatedbyDelaunay
refinement.Thenew verticesthatareinsertedinto a triangulation(grey dots)arespacedroughlyaccording
to the lengthof theshortestnearbyedge.Becauseskinny triangleshave relatively largecircumradii,their
circumcirclesareinevitably popped.Whenenoughverticesareintroducedthat the spacingof verticesis
somewhatuniform,largeemptycircumcirclescannotadjoinsmalledges,andnoskinny trianglescanremain
in theDelaunaytriangulation.Fortunately, thespacingof verticesdoesnot needto besouniform that the
meshis poorlygraded;this factis formalizedin Section3.3.4.
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Needles Caps

Figure3.3: Skinny triangles have circumcircles larger than their smallest edges. Each skinny triangle may
be classified as a needle, whose longest edge is much longer than its shortest edge, or a cap, which has
an angle close to À�Á�Â�Ã . (The classifications are not mutually exclusive.)

Chew’s algorithmsboth employ a boundof ½ÅÄÇÆ (though,aswe shall see,the early algorithmis
stricter).With thisbound,everynew edgecreatedis at leastaslongassomeotheredgealreadyin themesh.
This fact is sufficient to prove that Delaunayrefinementterminates.SupposethatDelaunayrefinementis
appliedto improvetheanglesof atriangulationÈ whoseshortestedgehaslength ÉËÊÍÌÏÎ . Delaunayrefinement
never introducesa shorteredge,soany two verticesareseparatedby a distanceof at least É ÊÍÌÏÎ . Hence,if
eachvertex is thecenterof a disk whoseradiusis ÉÐÊÍÌÏÎ
Ñ
Ò , all suchdiskshave disjoint interiors. Let ÓSÔzÕ\Ö
bea boundingboxof È thatis everywherea distanceof at least ÉÐÊÍÌÏÎ
Ñ
Ò from È ; all thediscsdefinedabove
areinside Ó:ÔzÕmÖ . Hence,thenumberof verticestimes ×ØÉ#ÙÊÍÌÏÎ Ñ�Ú cannotexceedthe total areaof Ó:ÔzÕ\Ö , and
terminationis inevitable.

The implication is that the augmentedtriangulationwill eventually run out of placesto put vertices,
becauseverticesmayonly beplacedat leasta distanceof ÉÐÊÍÌÏÎ away from all othervertices.At this time
(if not sooner),all triangleshave a quality of oneor smaller, andDelaunayrefinementterminates.Upon
termination,becausenotrianglehasacircumradius-to-shortest edgeratio largerthanone,themeshcontains
noanglesmallerthan Û
ÜwÝ .

Chew’s first algorithmsplitsany trianglewhosecircumradiusis greaterthan ÉÐÊÍÌÏÎ , andhencecreatesa
uniform mesh.Chew’s secondDelaunayrefinementalgorithmrelaxesthis stricture,splittingonly triangles
whosecircumradius-to-shortest edgeratios are greaterthan one, and henceproducesgradedmeshesin
practice,althoughChew suppliesno theoreticalguaranteeof goodgrading. In Section3.4.2,I will show
thatby slightly relaxingthequalitybound,aguaranteeof goodgradingcanbeobtained.

Whentheearlyalgorithmterminates,all edgelengthsareboundedbetweenÉÐÊÍÌÏÎ and Ò�ÉÐÊÍÌÏÎ . Theupper
boundfollows becauseif the lengthof a Delaunayedgeis greaterthan Ò�ÉÐÊÍÌÏÎ , thenat leastoneof the two
Delaunaytrianglesthatcontainit hasacircumradiuslargerthan ÉËÊÍÌÏÎ andis eligible for splitting.

My descriptionof Delaunayrefinementthus far hasa gapinghole: meshboundarieshave not been
accountedfor. Theflaw in theprocedureI havepresentedabove is thatthecircumcenterof askinny triangle
mightnot lie in thetriangulationat all. Figure3.4 illustratesanexamplein which thereis a skinny triangle,
but novertex canbeplacedinsideits circumcirclewithoutcreatinganedgesmallerthan ÉËÊÍÌÏÎ , whichwould
compromisetheterminationguarantee.

Theremainderof this chapter, andtheentiretyof thenext chapter, aredevotedto theproblemof mod-
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Figure3.4: The bold triangle could be eliminated by inserting a vertex in its circumcircle. However, a vertex
cannot be placed outside the triangulation, and it is forbidden to place a vertex within a distance of ÞwßWà á from
any other vertex. The forbidden region includes the shaded disks, which entirely cover the bold triangle.

ifying Delaunayrefinementso that it respectsmeshboundaries.Beforecommencingthatquest,I want to
emphasizethat the centralideaof Delaunayrefinementgeneralizeswithout changeto higherdimensions.
(For instance,Dey, Bajaj,andSugihara[28] describea straightforward generalizationof Chew’s first algo-
rithm to threedimensions.)Imaginea triangulationthathasno boundaries—perhapsit hasinfinite extent,
or perhapsit is mappedonto a manifold that is topologicallyequivalentto a torus(or higher-dimensional
generalizationthereof).Regardlessof thedimensionality, Delaunayrefinementcaneliminateall simplices
having a circumradius-to-shortest edgeratio greaterthanone,without creatingany edgesmallerthanthe
smallestedgealreadypresent.Unfortunately, boundariescomplicatemeshgenerationimmensely, andthe
difficulty of copingwith boundariesincreasesin higherdimensions.

3.2.2 MeshBoundariesin Chew’s First Algorithm

Theinput to Chew’salgorithmis a PSLGthatis presumedto besegment-bounded, meaningthattheregion
to betriangulatedis entirelyenclosedwithin segments.(Any PSLGmaybeconvertedto asegment-bounded
PSLGby any two-dimensionalconvex hull algorithm,if a convex triangulationis desired.)Untriangulated
holesin thePSLGarepermitted,but thesemustalsobeboundedby segments.A segmentmustlie anywhere
a triangulatedregionof theplanemeetsanuntriangulatedregion.

For someparameterÉ chosenby theuser, all segmentsaredividedinto subsegmentswhoselengthsare
in therangeâÏÉWãgä ÛwÉÐå . New verticesareplacedat thedivisionpoints.TheparameterÉ mustbechosensmall
enoughthat somesuchpartition is possible. Furthermore,É may be no larger thanthe smallestdistance
betweenany two verticesof theresultingpartition. (If a vertex is closeto a segment,this latter restriction
maynecessitateasmallervalueof É thanwouldbeindicatedby theinputverticesalone.)

TheconstrainedDelaunaytriangulationof thismodifiedPSLGis computed.Next, Delaunayrefinement
is applied.Circumcentersof triangleswhosecircumradiiarelargerthan É areinserted,oneata time. When
nosuchtriangleremains,thealgorithmterminates.

Becausenosubsegmenthaslengthgreaterthan ä ÛwÉ , andspecificallybecausenoboundarysubsegment
hassuchlength,thecircumcenterof any trianglewhosecircumradiusexceedsÉ falls within themesh,at a
distanceof at least ÉæÑ
Ò from any subsegment. Why? If a circumcenteris a distancelessthan ÉæÑ
Ò from a
subsegmentwhoselengthis no greaterthan ä Û�É , thenthecircumcenteris a distancelessthan É from one
of thesubsegment’s endpoints.
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Figure3.5: A mesh generated by Chew’s first Delaunay refinement algorithm. (Courtesy Paul Chew).

Figure3.6: A demonstration of the ability of the Delaunay refinement algorithm to achieve large gradations
in triangle size while constraining angles. No angles are smaller than 24 Ã .

Chew’s early algorithm handlesboundariesin a simple and elegant manner, at the cost that it only
producesmeshesof uniform density, as illustratedin Figure3.5. The remainderof this thesisexamines
Delaunayrefinementalgorithmsthatgenerategradedmeshes.

3.3 Ruppert’s DelaunayRefinementAlgorithm

Jim Ruppert’s algorithmfor two-dimensionalquality meshgeneration[82] is perhapsthefirst theoretically
guaranteedmeshingalgorithmto be truly satisfactory in practice. It extendsChew’s early algorithmby
allowing the densityof trianglesto vary quickly over short distances,as illustratedin Figure 3.6. The
numberof trianglesproducedis typically smallerthanthenumberproducedeitherby Chew’s algorithmor
theBern-Eppstein-Gilbertquadtreealgorithm[11] (discussedin Section2.2.3),asFigure3.7shows.
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Figure3.7: Meshes generated by the Bern-Eppstein-Gilbert quadtree-based algorithm (top), Chew’s first
Delaunay refinement algorithm (center), and Ruppert’s Delaunay refinement algorithm (bottom). (The first
mesh was produced by the program tripoint, courtesy Scott Mitchell.)
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Figure3.8: Segments are split recursively (while maintaining the Delaunay property) until no subsegments
are encroached.

I have alreadymentionedthatChew independentlydevelopedasimilaralgorithm[21]. It maybeworth
notingthatRuppert’searliestpublicationsof hisresults[80, 81] slightly predateChew’s. I presentRuppert’s
algorithmfirst becauseit is accompaniedby a theoreticalframework with which he proves its ability to
producemeshesthatarebothnicelygradedandsize-optimal. Sizeoptimalitymeansthat,for agivenbound
on minimum angle,the numberof elementscomposingany meshproducedby the algorithm is at most
a constantfactor larger thanthe numberin the smallestpossiblemeshthat meetsthe sameanglebound.
(Theconstantdependsonly upontheminimumallowableangle,andis too largeto beusefulasa practical
bound.)In Section3.4.2,I will discusshow to applyRuppert’s framework to Chew’s algorithm,for which
betterboundscanbederived.

3.3.1 Description of the Algorithm

Like Chew’s algorithms,Ruppert’s algorithmtakesa segment-boundedPSLGasits input. Unlike Chew’s
algorithms,Ruppert’salgorithmmaystartwith eitheraconstrainedor unconstrainedDelaunaytriangulation.
Ruppert’s presentationof thealgorithmis basedonunconstrainedtriangulations,andit is interestingto see
how thealgorithmrespondsto missingsegments,soassumethatwestartwith theDelaunaytriangulationof
theinput vertices,ignoringtheinput segments.Input segmentsthataremissingfrom thetriangulationwill
beinsertedasanaturalconsequenceof thealgorithm.

Again like Chew’s algorithms,Ruppert’s refinesthemeshby insertingadditionalvertices(usingLaw-
son’s algorithmto maintaintheDelaunayproperty)until all trianglessatisfythequality constraint.Vertex
insertionis governedby two rules.

ç The diametral circle of a subsegmentis the (unique)smallestcircle that containsthe subsegment.
A subsegmentis said to be encroached if a vertex lies strictly inside its diametralcircle, or if the
subsegmentdoesnot appearin the triangulation. (Recall that the latter casegenerallyimplies the
former, the only exceptionsbeingdegenerateexampleswhereseveral verticeslie preciselyon the
diametralcircle.) Any encroachedsubsegmentthatarisesis immediatelybisectedby insertingavertex
at its midpoint,asillustratedin Figure3.8. The two subsegmentsthat resulthave smallerdiametral
circles,andmayor maynotbeencroachedthemselves.

ç As with Chew’s algorithm,eachskinny triangle(having a circumradius-to-shortestedgeratio larger
thansomebound½ ) is normallysplit by insertingavertex at its circumcenter. TheDelaunayproperty
guaranteesthat the triangle is eliminated,as illustratedin Figure3.9. However, if the new vertex
would encroachuponany subsegment,thenit is not inserted;instead,all thesubsegmentsit would
encroachuponaresplit.
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Figure3.9: Each skinny triangle is split by inserting a vertex at its circumcenter and maintaining the Delau-
nay property.

Figure3.10:Missing segments are forced into the mesh by the same recursive splitting procedure used for
encroached subsegments that are in the mesh. In this sequence of illustrations, the thin line represents a
segment missing from the triangulation.

Figure3.11: In this example, two segments (thin lines) must be forced into a triangulation. The first is
successfully forced in with a single vertex insertion, but the attempt to force in the second eliminates a
subsegment of the first.

Encroachedsubsegmentsaregivenpriority over skinny triangles.

An implementationmay give encroachedsubsegmentsthat arenot presentin the meshpriority over
encroachedsubsegmentsthatarepresent(thoughit isn’t necessary).If thisoptionis chosen,thealgorithm’s
first actis to forceall missingsegmentsinto themesh.Eachmissingsegmentis bisectedby insertingavertex
into themeshatthemidpointof thesegment(moreaccurately, atthemidpointof theplacewherethesegment
shouldbe). After the meshis adjustedto maintainthe Delaunayproperty, the two resultingsubsegments
may appearin the mesh. If not, the procedureis repeatedrecursively for eachmissingsubsegmentuntil
theoriginal segmentis representedby a linearsequenceof edgesof themesh,asillustratedin Figure3.10.
We are assuredof eventualsuccessbecausethe Delaunaytriangulationalways connectsa vertex to its
nearestneighbor;oncethespacingof verticesalonga segmentis sufficiently small,its entirelengthwill be
represented.In theengineeringliterature,thisprocessis sometimescalledstitching.

Unfortunately, theinsertionof avertex to forceasegmentinto thetriangulationmayeliminateasubseg-
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A sample input PSLG.

Delaunay triangulation
of the input vertices.
Note that an input
segment is missing.

A vertex insertion
restores the missing
segment, but there are
encroached
subsegments.

One encroached
subsegment is
bisected.

A second encroached
subsegment is split.

The last encroached
subsegment is split.
Find a skinny triangle.

The skinny triangle’s
circumcenter is
inserted. Find another
skinny triangle.

This circumcenter
encroaches upon a
segment, and is
rejected for insertion.

Although the vertex
was rejected, the
segment it encroached
upon is still marked for
bisection.

The encroached
segment is split, and
the skinny triangle that
led to its bisection is
eliminated.

A circumcenter is
successfully inserted,
creating another
skinny triangle.

The triangle’s
circumcenter is
rejected for insertion.

The encroached
segment will be split.

The skinny triangle
was not eliminated.
Attempt to insert its
circumcenter again.

This time, its
circumcenter is
inserted successfully.
There’s only one
skinny triangle left.

The final mesh.

Figure3.12:A complete run of Ruppert’s algorithm with the quality bound ¼§èZé ê . The first two images are
the input PSLG and the (unconstrained) Delaunay triangulation of its vertices. In each image, highlighted
subsegments or triangles are about to be split, and highlighted vertices are rejected for insertion because
they encroach upon a subsegment.
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mentof someothersegment(Figure3.11).Thesubsegmentthuseliminatedis henceencroached,andmust
besplit further. To avoid eliminatingsubsegments,onecould lock subsegmentsof themeshby markingthe
edgesthatrepresentthemto indicatethatthey areconstrained.Flippingof suchconstrainededgesis forbid-
den.However, subsegmentswhosediametralcirclesarenonemptyarestill consideredencroached,andwill
still besplit eventually;hence,it makeslittle materialdifferenceto thealgorithmwhetheronechoosesto
lock subsegments.Nevertheless,lockedsubsegmentsyield fasterimplementationsandwill benecessaryfor
Chew’s secondalgorithm.Thereadermaywish to assumethatall subsegmentsbecomepermanentassoon
asthey appear, althoughit wasnotpartof Ruppert’s originalspecification.

If a subsegmentis missingfrom a Delaunaytriangulation,thenthe subsegmentis not Delaunay, and
theremustbea vertex is its diametralcircle. (Thereis a degenerateexceptionto this rule, whereinseveral
verticesfall on the diametralcircle, but this exceptionis not theoreticallyproblematic.)This observation
is importantbecauseit unifiesthe theoreticaltreatmentof missingsubsegmentsandsubsegmentsthat are
presentin themeshbut encroached.

After all encroachedsubsegmentshave beenrecursively bisected,andno subsegmentsareencroached,
all edges(includingsubsegments)of the triangulationareDelaunay. A meshproducedby Ruppert’s algo-
rithm is truly Delaunay, andnotmerelyconstrainedDelaunay.

Figure3.12 illustratesthe generationof a meshby Ruppert’s algorithmfrom start to finish. Several
characteristicsof thealgorithmareworth noting. First, if thecircumcenterof a skinny triangleis rejected
for insertion,it maystill besuccessfullyinsertedlater, afterthesubsegmentsit encroachesuponhave been
split. On theotherhand,theactof splitting thosesubsegmentsis sometimesenoughto eliminatetheskinny
triangle.Second,thesmallerfeaturesat theleft endof themeshleadto theinsertionof someverticestoward
theright, but thesizeof theelementsto theright remainslargerthanthesizeof theelementsto theleft. The
smallestanglein thefinal meshis ÒhÆ
ë�ì�Ý .

Thereis alooseendto tie up. Onemightaskwhatshouldhappenif thecircumcenterof askinny triangle
fallsoutsidethetriangulation.Fortunately, thefollowing lemmashows thatthequestionis moot.

Lemma 13 Let È bea segment-boundedDelaunaytriangulation(hence, anyedgeof È thatbelongsto only
onetriangle is a subsegment).Supposethat È hasno encroachedsubsegments.Let ¾ bethecircumcenter
of sometriangle ¿ of È . Then¾ lies in È .

Proof: Supposefor thesake of contradictionthat ¾ lies outsideÈ . Let í bethecentroidof ¿ ; í clearly lies
inside È . Becausethetriangulationis segment-bounded,theline segment íK¾ mustcrosssomesubsegmentî , asFigure3.13 illustrates. Becauseí�¾ is entirely containedin the interior of the circumcircleof ¿ , the
circumcirclemustcontainaportionof î ; but theDelaunaypropertyrequiresthatthecircumcirclebeempty,
sothecircumcirclecannotcontaintheendpointsof î .

Saythatapoint is inside î if it is on thesamesideof î as í , andoutsideî if it is on thesamesideof î as
¾ . Becausethecenter¾ of thecircumcircleof ¿ is outsideî , theportionof thecircumcirclethatliesstrictly
inside î (thebold arc in the illustration) is entirelyenclosedby thediametralcircle of î . Theverticesof ¿
lie upon ¿ ’s circumcircleandare(not strictly) inside î . Up to two of theverticesof ¿ maybetheendpoints
of î , but at leastonevertex of ¿ mustlie strictly insidethediametralcircleof î . But by assumptionÈ hasno
encroachedsubsegments;theresultfollows by contradiction. ï

Lemma13 offersanotherreasonwhy encroachedsubsegmentsaregivenpriority over skinny triangles.
Becausea circumcenteris insertedonly whenthereareno encroachedsubsegments,oneis assuredthatthe



52 JonathanRichardShewchuk

c v

s
t

inside outside

Figure3.13: If the circumcenter ð of a triangle ñ lies outside the triangulation, then some subsegment ò is
encroached.

circumcenterwill bewithin thetriangulation.Conversely, theactof splitting encroachedsubsegmentsrids
the meshof triangleswhosecircumcircleslie outsideit. The lemmaalsoexplainswhy the triangulation
shouldbecompletelyboundedby segmentsbeforeapplyingtherefinementalgorithm.

In addition to being requiredto satisfya quality criterion, trianglescanalsobe requiredto satisfya
maximumsizecriterion. If a finite elementsimulationrequiresthatelementsbesmall enoughto modela
phenomenonwithin someerrorbound,onemayspecifyanupperboundonallowabletriangleareasor edge
lengthsasa functionof locationin themesh.Trianglesthatexceedthelocalupperboundaresplit, whether
they areskinny or not. Solongasthefunctionboundingthesizesof trianglesis itself boundedeverywhere
above somepositive constant,thereis no threatto thealgorithm’s terminationguarantee.

3.3.2 Local FeatureSize

Theclaim thatRuppert’s algorithmproducesnicely gradedmeshesis basedon thefact that thespacingof
verticesatany locationin themeshis within aconstantfactorof thesparsestpossiblespacing.To formalize
theideaof “sparsestpossiblespacing,” Ruppertintroducesa functioncalledthe local feature size, which is
definedover thedomainof theinputPSLG.

GivenaPSLG ó , thelocal featuresizelfs Ô�ôWÖ atany point ô is theradiusof thesmallestdiskcenteredat
ô thatintersectstwo nonincidentverticesor segmentsof ó . Figure3.14givesexamplesof suchdisksfor a
varietyof points.

Thelocal featuresizeof apoint is proportionalto thesparsestpossiblespacingof verticesin theneigh-
borhoodof thatpoint. Thefunctionlfs Ô2õ�Ö is continuousandhasthepropertythat its directionalderivatives
areboundedin therange â�ö÷Æ
ã�Æ�å . The latterproperty, provenby thefollowing lemma,setsa boundon the
fastestpossiblegradingof elementsizesin amesh.

Lemma 14(Ruppert [82]) For anyPSLGó , andanytwopoints ø and ¾ in theplane,

lfs Ô@¾ÐÖQù lfs Ô@øWÖØú¤û ø#¾Wû�ë
Proof: Thediskhaving radiuslfs Ô@ø©Ö centeredat ø intersectstwo nonincidentfeaturesof ó . Thediskhaving
radiuslfs Ô@øWÖüú¤û øæ¾©û centeredat ¾ containstheprior disk,andthusalsointersectsthesametwo nonincident
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Figure3.14:The radius of each disk illustrated is the local feature size of the point at its center.

featuresof ó . Hence,thelargestdisk centeredat ¾ thatcontainstwo nonincidentfeaturesof ó hasradius
no largerthanlfs Ô@øWÖØú¤û øæ¾©û . ï

This lemmageneralizeswithout changeto higherdimensions,so long asthequestion“Which pairsof
pointsaresaidto lie on nonincidentfeatures?”hasa consistentanswerthat is independentof ø and ¾ . In
essence,the proof reliesonly on the triangleinequality: if ø is within a distanceof lfs Ô@ø©Ö of eachof two
nonincidentfeatures,then ¾ is within adistanceof lfs Ô@øWÖØú¤û ø#¾Wû of eachof thosesametwo features.

3.3.3 Proof of Termination

In this sectionandthe next, I presenttwo proofsof the terminationof Ruppert’s algorithm. The first is
similar to the proof that Chew’s early algorithmterminates,and is includedfor its intuitive value. The
secondis taken from Ruppert,but is rewritten in a somewhatdifferentform to bring out featuresthatwill
figureprominentlyin my own extensions.Thesecondproofshows thatthealgorithmproducesmeshesthat
arenicelygradedandsize-optimal.

Both proofsrequirethat ½þýÿä Ò , andany two incidentsegments(segmentsthatshareanendpoint)in
theinputPSLGmustbeseparatedby anangleof �
ÜwÝ or greater. (Ruppertasksfor anglesof at least�
ÜwÝ , but
animprovementto theoriginalproof is madehere.)For thesecondproof, theseinequalitiesmustbestrict.

With eachvertex ¾ , associateaninsertionradius ��� , equalto thelengthof theshortestedgeconnectedto
¾ immediatelyafter ¾ is introducedinto thetriangulation.Considerwhatthismeansin threedifferentcases.

ç If ¾ is aninputvertex, then ��� is theEuclideandistancebetween¾ andtheinputvertex nearest¾ ; see
Figure3.15(a).

ç If ¾ is avertex insertedat themidpointof anencroachedsubsegment,then ��� is thedistancebetween
¾ andthenearestencroachingmeshvertex; seeFigure3.15(b).If thereis noencroachingvertex in the
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Figure3.15: The insertion radius of a vertex ð is the distance to the nearest vertex when ð first appears
in the mesh. (a) If ð is an input vertex, ��� is the distance to the nearest other input vertex. (b) If ð is the
midpoint of a subsegment encroached upon by a vertex of the mesh, ��� is the distance to that vertex. (c)
If ð is the midpoint of a subsegment encroached upon only by a vertex that was rejected for insertion, ���
is the radius of the subsegment’s diametral circle. (d) If ð is the circumcenter of a skinny triangle, � � is the
radius of the circumcircle.

mesh(sometriangle’s circumcenterwasconsideredfor insertionbut rejectedasencroaching),then ���
is theradiusof thediametralcircleof theencroachedsubsegment,andhencethelengthof eachof the
two subsegmentsthusproduced;seeFigure3.15(c).

ç If ¾ is a vertex insertedat the circumcenterof a skinny triangle,then ��� is the circumradiusof the
triangle;seeFigure3.15(d).

Eachvertex ¾ , includingany vertex that is consideredfor insertionbut not actuallyinsertedbecauseit
encroachesupona subsegment,hasa parent vertex ô Ô@¾hÖ , unless¾ is an input vertex. Intuitively, for any
non-inputvertex ¾ , ô Ô@¾hÖ is thevertex thatis “responsible”for theinsertionof ¾ . Theparentô Ô@¾ÐÖ is defined
asfollows.

ç If ¾ is aninputvertex, it hasnoparent.

ç If ¾ is a vertex insertedat the midpoint of an encroachedsubsegment,then ô Ô@¾hÖ is the vertex that
encroachesuponthatsubsegment.(Notethat ô�Ô@¾hÖ might not beinsertedinto themeshasa result.)If
thereareseveralsuchvertices,choosetheonenearest¾ .

ç If ¾ is a vertex inserted(or rejectedfor insertion)at thecircumcenterof a skinny triangle,then ô Ô@¾ÐÖ
is the mostrecentlyinsertedendpointof the shortestedgeof that triangle. If both endpointsof the
shortestedgeareinputvertices,chooseonearbitrarily.

Eachinput vertex is the root of a treeof vertices. However, we arenot interestedin thesetreesasa
whole; only in theancestorsof any givenvertex, which form a sortof historyof theeventsleadingto the
insertionof thatvertex. Figure3.16illustratestheparentsof all verticesinsertedor consideredfor insertion
duringthesampleexecutionof Ruppert’s algorithmin Figure3.12.

Working with thesedefinitions,onecanshow why Ruppert’s algorithmterminates.Thekey insight is
thatno descendantof a meshvertex hasan insertionradiussmallerthanthevertex’s own insertionradius.
Certainly, noedgewill everappearthatis shorterthanthesmallestfeaturein theinputPSLG.To provethese
facts,considertherelationshipbetweenavertex’s insertionradiusandtheinsertionradiusof its parent.
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Figure3.16: Trees of vertices for the example of Figure 3.12. Arrows are directed from parents to their
children. Children include all inserted vertices and one rejected vertex.

Lemma 15 Let ¾ bea vertex of themesh,and let ô¬Ä ô Ô@¾ÐÖ be its parent, if oneexists. Theneither � � ý
lfs Ô@¾ÐÖ , or ���Cý
	��
� , where

ç 	 Ä4½ if ¾ is thecircumcenterof a skinnytriangle,

ç 	 Ä �� Ù if ¾ is the midpointof an encroached subsegmentand ô is the circumcenterof a skinny
triangle,

ç 	ÿÄ �Ù�������� if ¾ and ô lie on incidentsegmentsseparatedby an angleof � (with ô encroaching upon
thesubsegmentwhosemidpointis ¾ ), where Ú�� Ý ù������
Ü Ý , and

ç 	 Ä�� �"!#� if ¾ and ô lie on incidentsegmentsseparatedbyanangleof �¬ù Ú�� Ý .
Proof: If ¾ is aninput vertex, thereis anotherinput vertex a distanceof ��� from ¾ , so lfs Ô@¾ÐÖJù$��� , andthe
theoremholds.

If ¾ is insertedat the circumcenterof a skinny triangle,thenits parentô Äÿô Ô@¾hÖ is the mostrecently
insertedendpointof theshortestedgeof thetriangle;seeFigure3.17(a).Hence,the lengthof theshortest
edgeof thetriangleis at least�
� . Becausethetriangleis skinny, its circumradius-to-shortest edgeratio is at
least½ , soits circumradiusis � � ý ½%� � .

If ¾ is insertedat the midpoint of an encroachedsubsegment î , therearefour casesto consider. The
first two areall thatis neededto prove terminationof Ruppert’s algorithmif noanglessmallerthan �
Ü Ý are
presentin theinput. Thelasttwo casesconsidertheeffectsof acuteangles.
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Figure 3.17: The relationship between the insertion radii of a child and its parent. (a) When a skinny
triangle is split, the child’s insertion radius is at least ¼ times larger than that of its parent. (b) When
a subsegment is encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius
may be (arbitrarily close to) a factor of é ê smaller than the parent’s, as this worst-case example shows.
(c, d) When a subsegment is encroached upon by the midpoint of an incident subsegment, the relationship
depends upon the angle & separating the two segments.

ç If theparentô is aninputvertex, or wasinsertedonasegmentnot incidentto thesegmentcontainingî , thenlfs Ô@¾ÐÖQù'��� .
ç If ô is acircumcenterthatwasconsideredfor insertionbut rejectedbecauseit encroachesupon î , then
ô lies strictly insidethe diametralcircle of î . By the Delaunayproperty, the circumcirclecentered
at ô containsno vertices,so its radiusis limited by thenearestendpointof î . Hence,� �)(+*-,� Ù ; see
Figure3.17(b)for anexamplewheretherelationis nearlyequality.

ç If ¾ and ô lie on incidentsegmentsseparatedby an angle � where Ú���Ý£ù.�/�0�
ÜwÝ , the vertex 1
(for “apex”) wherethe two segmentsmeetobviously cannotlie insidethediametralcircle of î ; see
Figure3.17(c).Becauseî is encroacheduponby ô , ô liesinsideits diametralcircle. (If î is notpresent
in the triangulation,ô might lie on its diametralcircle in a degeneratecase.)To find theworst-case
valueof *32* , , imaginethat �
� and � arefixed;then ���÷Ä û ¾�ô�û is minimizedby makingthesubsegmentî asshortaspossible,subjectto the constraintthat ô cannotfall outsideits diametralcircle. The
minimum is achieved when û î ûHÄ Ò4��� ; if î wereshorter, its diametralcircle would not contain ô .
Basictrigonometryshows that û î ûwÄ´Ò4� � ý *�,������� .

ç If ¾ andô lie on incidentsegmentsseparatedby anangle� where�¬ù Ú�� Ý , then * 2* , is minimizednot
whenô lies on thediametralcircle,but when ¾ is theorthogonalprojectionof ô onto î , asillustrated
in Figure3.17(d).Hence,���÷ý��
�5� �"!#� . ï

Thelemmajustprovenplaceslimits onhow quickly theinsertionradiuscandecreaseasonewalksdown
a treefrom aninput vertex to a descendant.If theinsertionradiuscannotdecreaseat all, Ruppert’s method
is easilyguaranteedto terminate. Figure3.18 expressesthis notion asa dataflow graph: labeledarrows
indicatehow a vertex canleadto the insertionof a new vertex whoseinsertionradiusis somefactortimes
thatof its parent.If this graphcontainsno cycle whoseproductis lessthanone,terminationis guaranteed.
If somecyclehasaproductsmallerthanone,thenasequenceof ever-smalleredgesmightbeproduced.The
graphmakesclearwhy thequalitybound½ mustbeat least ä Ò , andwhy theminimumanglebetweeninput
segmentsmustbeat least �
ÜwÝ . Thefollowing theoremformalizesthis idea.
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Figure3.18: Dataflow diagram illustrating the worst-case relation between a vertex’s insertion radius and
the insertion radii of the children it begets. If no cycles have a product smaller than one, Ruppert’s Delau-
nay refinement algorithm will terminate. Input vertices are omitted from the diagram because they cannot
contribute to cycles.

Theorem 16 Let lfs ÊÍÌÏÎ betheshortestdistancebetweentwo nonincidententities(verticesor segments)of
theinputPSLG� .

Supposethatanytwo incidentsegmentsareseparatedbyanangleof at least �
Ü Ý , anda triangle is con-
sideredto beskinnyif its circumradius-to-shortestedge ratio is larger than ½ ý ä Ò . Ruppert’s algorithm
will terminate, with no triangulationedge shorterthan lfs ÊÍÌÏÎ .
Proof: Supposefor thesake of contradictionthat thealgorithmintroducesanedgeshorterthanlfs ÊÍÌÏÎ into
themesh.Let ; bethefirst suchedgeintroduced.Clearly, theendpointsof ; cannotbothbeinput vertices,
norcanthey lie onnonincidentsegments.Let ¾ bethemostrecentlyinsertedendpointof ; .

By assumption,no edgeshorterthanlfs ÊÍÌÏÎ existedbefore ¾ wasinserted.Hence,for any ancestor1 of
¾ , �=<?ý lfs ÊÍÌÏÎ . Let ô¬Ä¤ô Ô@¾hÖ be theparentof ¾ , andlet >®Ä¤ô Ô�ô©Ö be thegrandparentof ¾ (if oneexists).
Considerthefollowing cases.

ç If ¾ is thecircumcenterof a skinny triangle,thenby Lemma15, ���Cý ½%�
� ý´ä Ò4�
� .

ç If ¾ is themidpointof anencroachedsubsegmentandô is thecircumcenterof a skinny triangle,then
by Lemma15, ���Cý �� Ù �
� ý@?� Ù ��AMý���A . (Recallthat ô is not insertedinto themesh.)

ç If ¾ andô lie on incidentsegments,thenby Lemma15, ���Cý * ,Ù������=� . Because�¬ý��
ÜwÝ , �=�Cý'�
� .B
Equivalently, lfs CED F%G�H#IKJML lfs NPORQ , where O is chosenfrom amongthe input vertices. The proof that both definitionsare

equivalentis omitted,but it relieson therecognitionthatif two pointslying onnonincidentsegmentsareseparatedby adistanceS ,
thenat leastoneof theendpointsof oneof thetwo segmentsis separatedfrom theothersegmentby a distanceof S or less.Note
thatlfs CED F is nota lowerboundfor lfs NUT Q over theentiredomain;for instance,asegmentmayhave lengthlfs CED F , in whichcasethe
local featuresizeat its midpointis lfs CED F�V�W .
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In all threecases,�
�cýX�M< for someancestor1 of ô in themesh.It follows that �
�cý lfs ÊÍÌÏÎ , contradicting
the assumptionthat ; haslengthlessthan lfs ÊÍÌÏÎ . It also follows that no edgeshorterthan lfs ÊÍÌÏÎ is ever
introduced,andthealgorithmmustterminate. ï

Ruppert’salgorithmterminatesonly whenall trianglesin themeshhaveacircumradius-to-shortest edge
ratio of ½ or better;hence,at termination,thereareno anglessmallerthan ¸
¹;ºY� �Z! �Ù ? . If ½ Ä ä Ò , the
smallestvaluefor which terminationis guaranteed,no angleis smallerthan Ò
Ühë\[
Ý . Later, I will describe
severalmodificationsto thealgorithmthatimprove thisbound.

3.3.4 Proof of GoodGrading and Size-Optimality

Theorem16guaranteesthatnoedgeof thefinalmeshissmallerthanlfs ÊÍÌÏÎ . Thisguaranteemaybesatisfying
for auserwhodesiresauniformmesh,but is notsatisfyingfor auserwhorequiresaspatiallygradedmesh.
Whatfollows is a proof thateachedgeof theoutputmeshhaslengthproportionalto thelocal featuresizes
of its endpoints.Hence,a small local featuresizein onepartof a meshdoesnot unreasonablyreducethe
edgelengthsat other, distantpartsof themesh.Trianglesizesvary quickly over shortdistanceswheresuch
variationis desirableto helpreducethenumberof trianglesin themesh.

Lemma15 wasconcernedwith the relationshipbetweenthe insertionradii of a child and its parent;

the next lemmais concernedwith the relationshipbetweenlfs ] ��^*32 and lfs ] �=^*-, . For any vertex ¾ , define_ �SÄ lfs ] ��^*`2 . Think of
_ � astheone-dimensionaldensityof verticesnear¾ when ¾ is inserted,weightedby

thelocal featuresize.Ideally, onewould like this ratio to beassmallaspossible.Notethat
_ � ù Æ for any

inputvertex, but
_ � tendsto belargerfor avertex insertedlater.

Lemma 17 Let ¾ bea vertex with parent ô£Ä4ô Ô@¾ÐÖ . Supposethat ��� ýa	b�
� (following Lemma15). Then_ �Cù ÆQúdc ,e .

Proof: By Lemma14, lfs Ô@¾hÖQù lfs Ô�ô©Ö©ú4û ¾�ô�û . Theinsertionradius� � is usually û ¾�ô�û by definition,exceptin
thecasewhereô is rejectedfor insertion,in whichcase��� ( û ¾�ô�û . Hence,wehave

lfs Ô@¾ÐÖ ù lfs Ô�ô©Öüú����
Ä _ � � � ú�� �
ù

_ �	 ���Qúf���wë
Theresultfollows by dividing bothsidesby �=� . ï

Lemma17 generalizesto any dimension(assumingthat somevaluefor 	 canbe proven), becauseit
reliesonly uponLemma14. Ruppert’s first mainresultfollows.

Lemma 18(Ruppert [82]) Supposethequalitybound½ is strictly larger than ä Ò , andthesmallestangle
betweentwo incidentsegmentsin the input PSLGis strictly greaterthan �
Ü Ý . There exist fixedconstants_%g ýµÆ and

_ih ýµÆ such that, for anyvertex ¾ inserted(or considered for insertionandrejected)at the
circumcenterof a skinnytriangle,

_ �÷ù _%g
, andfor anyvertex ¾ insertedat themidpointof anencroached

subsegment,
_ �Cù _ih

. Hence, theinsertionradiusof everyvertex is proportionalto its local feature size.
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Proof: Considerany non-inputvertex ¾ with parentôcÄZô Ô@¾hÖ . If ô is aninputvertex, then
_ �÷Ä lfs ] �M^*�, ù Æ .

Otherwise,assumefor the sake of induction that the lemmais true for ô , so that
_ � ù _%g

if ô is a
circumcenter, and

_ �\ù _ih
if ô is amidpoint.Hence,

_ �\ù�j ¸4kml _%g ã _ihon
.

First, suppose¾ is insertedor consideredfor insertionat the circumcenterof a skinny triangle. By
Lemma15, ��� ý ½%�
� . Thus,by Lemma17,

_ � ù ÆJú Êqp3rYs cutwv cyxRz? ë It follows that onecanprove that_ �Cù _%g
if

_%g
is chosensothat _%g ý ÆHú j ¸4kml _%g ã _ih{n

½ ë (3.1)

Second,suppose¾ is insertedat themidpointof asubsegment î . If its parentô is aninputvertex or lies
onasegmentnot incidentto î , thenlfs Ô@¾hÖQù'�=� , andthetheoremholds.If ô is thecircumcenterof askinny
triangle(rejectedfor insertionbecauseit encroachesupon î ), ���®ý *�,� Ù by Lemma15, so by Lemma17,_ �Cù ÆQú§ä Ò _%g

.

Alternatively, if ô , like ¾ , is a subsegmentmidpoint,and ô and ¾ lie on incidentsegments,then ���¥ý* ,Ù|�}����� by Lemma15, andthusby Lemma17,
_ �Zù ÆSú¤Ò _ih º�~|�w� . It follows that onecanprove that_ �Cù _ih

if
_ih

is chosensothat _ih ý Æ8ú ä Ò _%g ã and (3.2)_ih ý Æ8ú Ò _ih º�~|�w�Hë (3.3)

If thequality bound ½ is strictly larger than ä Ò , conditions3.1and3.2aresimultaneouslysatisfiedby
choosing _%g Ä ½´ú´Æ

½ ö ä Ò ã
_ih Ä ÔLÆHú§ä ÒwÖ2½

½ ö ä Ò ë
If thesmallestinputangle��ÊÍÌÏÎ is strictly greaterthan �
ÜwÝ , conditions3.3and3.1aresatisfiedby choosing_ h Ä Æ

ÆYö¬Ò�º�~|�m��ÊÍÌÏÎ ã _ g ÄÿÆ8ú
_ih
½ ë

Oneof thesechoiceswill dominate,dependingon the valuesof ½ and ��ÊÍÌÏÎ . However, if ½ ( ä Ò and� ÊÍÌÏÎ�( �
ÜwÝ , therearevaluesof
_ g

and
_ h

thatsatisfythelemma. ï
Note that as ½ approachesä Ò or � approaches�
Ü Ý , _%g

and
_ih

approachinfinity. In practice,the
algorithmis betterbehaved thanthe theoreticalboundsuggests;the vertex spacingapproacheszeroonly
after ½ dropsbelow one.

Theorem 19(Ruppert [82]) For anyvertex ¾ of theoutputmesh,thedistanceto its nearestneighbor� is

at least lfs ] ��^cux�� � .
Proof: Inequality3.2 indicatesthat

_ih ( _%g
, soLemma18shows that lfs ] ��^* 2 ù _ih

for any vertex ¾ . If ¾
wasaddedafter � , thenthedistancebetweenthetwo verticesis at least� � ý lfs ] ��^cux , andthetheoremholds.
If � wasaddedafter ¾ , applythelemmato � , yielding

û ¾��\ûhý'�=� ý lfs Ô��MÖ_ih ë



60 JonathanRichardShewchuk

By Lemma14, lfs Ô��MÖØú¤û ¾�� ûhý lfs Ô@¾hÖ , so

û ¾�� ûhý lfs Ô@¾hÖ ö4û ¾�� û_ih ë

It follows that û ¾�� û�ý lfs ] ��^cyx�� � . ï
Togiveaspecificexample,considertriangulatingaPSLG(having noacuteinputangles)sothatnoangle

of theoutputmeshis smallerthan Æ���Ý ; hence½ ëÄ Æ
ëK��Û . For this choiceof ½ ,
_%g ëÄX��ëK�R� and

_ih ëÄX��ë ÜÐÆ .
Hence,the spacingof verticesis at worst aboutten timessmallerthanthe local featuresize. Away from
boundaries,thespacingof verticesis atworst ��ëK�R� [58] timessmallerthanthelocal featuresize.

Figure 3.19 shows the algorithm’s performancefor a variety of anglebounds. Ruppert’s algorithm
typically terminatesfor angleboundsmuch higher than the theoreticallyguaranteedÒ
Ühë\[ , and typically
exhibitsmuchbettervertex spacingthantheprovableworst-caseboundsimply.

Ruppert[82] usesTheorem19 to prove thesize-optimalityof themesheshis algorithmgenerates,and
his resulthasbeenimprovedby ScottMitchell. Mitchell’s theoremis statedbelow, but theproof,which is
ratherinvolved,is omitted.Thecardinality of a triangulationis thenumberof trianglesin thetriangulation.

Theorem 20(Mitchell [68]) Let lfs
g Ô�ôWÖ be the local feature sizeat ô with respectto a triangulation È

(treating È asa PSLG),whereaslfs Ô�ô©Ö remainsthe local feature sizeat ô with respectto the input PSLG.
Supposea triangulation È with smallestangle � hasthepropertythat there is someconstant� � ýµÆ such
that for everypoint ô , � � lfs g Ô�ô©ÖNý lfs Ô�ô©Ö . Thenthecardinality of È is lessthan � Ù timesthecardinality of
anyothertriangulationof theinputPSLGwith smallestangle � , where � Ù ÄX�?Ô-� Ù� Ñ4�PÖ . ï

Theorem19 canbeusedto show thatthepreconditionof Theorem20 is satisfiedby meshesgenerated
by Ruppert’s algorithm.Hence,a meshgeneratedby Ruppert’s algorithmhascardinalitywithin a constant
factorof thebestpossiblemeshsatisfyingtheanglebound.

3.4 Chew’s SecondDelaunayRefinementAlgorithm and Diametral Lenses

This sectionpresentstwo algorithmsthat offer an improved guaranteeof goodgradingandthat perform
slightly betterin practice:Chew’s secondDelaunayrefinementalgorithm[21], anda variantof Ruppert’s
algorithmthat replacesdiametralcircleswith narrower entitiescalleddiametrallenses. I will show that
thetwo algorithmsareequivalent,andexhibit goodgradingandsize-optimalityfor anglesboundsof up to
ÒR��ëK��Ý . Chew shows thathis algorithmterminatesfor anangleboundof up to Û
ÜwÝ , albeitwith no guarantee
of goodgrading.Themeansby whichheobtainsthisboundis discussedin Section3.5.2.NotethatChew’s
paperalsodiscussestriangularmeshingof curvedsurfacesin threedimensions,but I considerthealgorithm
only in its planarcontext.

3.4.1 Description of the Algorithm

Chew’s algorithmbegins with the constrainedDelaunaytriangulationof a segment-boundedPSLG,and
usesDelaunayrefinementwith locked subsegmentsanda quality boundof ½ Ä Æ , but thereis no ideaof
encroacheddiametralcircles.However, it mayarisethataskinny triangle ¿ cannotbesplit because¿ andits
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Lake SuperiorPSLG. Triangulatedwith nominimumangle.

Triangulatedwith ��Ý minimumangle. Triangulatedwith Æ���Ý minimumangle.

Triangulatedwith ÒR� Ý minimumangle. Triangulatedwith ÛxÚÐë�Ò Ý minimumangle.

Figure3.19:Meshes generated with Ruppert’s algorithm for several different quality bounds. The algorithm
does not terminate for angle bounds of ����� �xÃ or higher on this PSLG.

circumcenterí lie on oppositesidesof a subsegment î (possiblywith í outsidethetriangulation).Becauseî is locked, insertinga vertex at í will not remove ¿ from the mesh. Instead,í is rejectedfor insertion,
andall free vertices(but not input verticesor verticesthat lie on segments)that lie in the interior of the
diametralcircle of î andarevisible from the midpointof î aredeleted.Then,a new vertex is insertedat
themidpointof î . TheDelaunaypropertyis maintainedthroughoutall deletionsandinsertions,exceptthat
lockedsubsegmentsarenotflipped.Figure3.20illustratesa subsegmentsplit in Chew’salgorithm.

If severalsubsegmentslie between¿ and í , only thesubsegmentvisible from theinteriorof ¿ is split.

I claim thatChew’s algorithmis roughlyequivalent(enoughfor thepurposesof analysis)to a variant
of Ruppert’s algorithm in which diametralcirclesare replacedwith diametral lenses, illustratedin Fig-
ure3.21(a).Thediametrallensof a subsegment î is theintersectionof two diskswhosecenterslie oneach
other’s boundaries,andwhoseboundariesintersectat theendpointsof î . It follows that thedefiningdisks
haveradiusÒËû î ûÏÑ�ä Û , andtheircenterslie onthebisectorof î atadistanceof û î ûÏÑ�ä Û from î . Thesubsegmentî is split if thereis avertex, or anattemptto insertavertex, in or ontheboundaryof its diametrallens,unless
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Figure3.20: At left, a skinny triangle and its circumcenter lie on opposite sides of a subsegment. At right,
all vertices in the subsegment’s diametral circle have been deleted, and a new vertex has been inserted at
the subsegment’s midpoint.
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Figure3.21:(a) A hybrid Chew/Ruppert algorithm uses diametral lenses. Only vertices in the shaded region
encroach upon this subsegment. Note the equilateral triangles; a circumcenter at the lowest point of the
lens arises from any triangle whose vertices all lie on the upper lens’s boundary. (b, c) If a skinny triangle
and its circumcenter lie on opposite sides of a subsegment, then either the circumcenter or a vertex of the
triangle lies within the subsegment’s diametral lens.

anothersubsegmentobstructsthe line of sightbetweenthe encroachingvertex andthemidpointof î . As
in Chew’s algorithm,subsegmentsarelocked,andall visible freeverticesaredeletedfrom a subsegment’s
diametralcirclebeforethesubsegmentis bisected.

Why are thesealgorithmsequivalent? Let ¿ be a skinny triangle whosecircumcenterí lies on the
oppositesideof a subsegment î . Lemma13 shows that somevertex ø of the skinny triangle lies inside
thediametralcircle of î , on thecircumcircleof ¿ . Therearetwo possibilities:either í encroachesupon î
(Figure3.21(b)),or ø encroachesupon î (Figure3.21(c)).Hence,themodifiedRuppertalgorithmwill split
any subsegmentChew’salgorithmwouldsplit.

Conversely, if a vertex lies in or on theboundaryof thediametrallensof î , thenthetrianglecontainingî (on the sameside of î as the encroachingvertex) is skinny, and its circumcenteris on the other side
of î . Hence,Chew’s algorithm will split any subsegment the modified Ruppertalgorithm would split.
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Figure3.22: (a) Example where a subsegment is encroached upon by a vertex in its diametral lens. In the
worst case, � � è������
�M�R� . (b) Example where a subsegment is encroached because a skinny triangle and
its circumcenter lie on opposite sides of the subsegment.

(Technically, this is notquitetrue;Chew’salgorithmmightdeclineto split asubsegmentfor whicha vertex
liespreciselyat theintersectionof thesubsegment’s bisectorandtheboundaryof its diametrallens,thereby
forming a triangle with two anglesof precisely Û
Ü Ý . This differencedoesnot affect the analysisof the
algorithms.)

The modifiedRuppertalgorithmhasa small speedadvantagebecauseit avoids insertingmany of the
verticesthatwouldbedeletedlaterin Chew’salgorithm.

Comparedto diametralcircles,diametrallenseshave thedisadvantagethatthefinal meshis notguaran-
teedto beDelaunay, but they have two advantages.First, many subsegmentsplitsareavoidedthatwould
otherwisehave occurred. Hence,the final meshmay have fewer triangles. Second,whena subsegment
split doesoccur, theparentvertex ô ÄTô Ô@¾ÐÖ cannotbetoo neara poleof thediametralcircle, andtheratio
between�=� and �
� is betterbounded.WhereasLemma15 could only guaranteethat ���¥ý *�,� Ù , diametral
lensesmake abetterboundpossible.

3.4.2 Proof of GoodGrading and Size-Optimality

I generalizelensesto allow the angle � that definesthe shapeof a lens, illustratedin Figure3.22(a),to
assumevaluesotherthan Û
Ü Ý . Thelensangle � is independentof theanglebound ¸
¹;ºY� �Z!��Ù ? ; for instance,
Ruppert’s unmodifiedalgorithmhas �®Ä¨Ú���Ý . Thereis little sense,though,in making � smallerthanthe
anglebound,becausereducing� below ¸
¹;ºY� �"! �Ù ? will only allow theinsertionof moreverticesthatwill be
deleted.If ���«Û
ÜwÝ , thereis theproblemthat a skinny triangleandits circumcirclemight lie on opposite
sidesof asubsegmentwithoutany vertex falling in its lens,asillustratedin Figure3.22(b).In thiscase,one
mustuseChew’s formulationof thealgorithm,so that thesubsegmentis properlyconsideredencroached;
but diametrallensesmaybeemployedaswell, becausethey save time in thecaseswherea vertex doesfall
inside.

It is this mixed formulationI envision for the proof that follows. I show that Chew’s algorithmwith�÷Ä4¸
¹;ºY�
�"!��Ù ? exhibitsguaranteedgradingfor ½ ( � �
Ù

ëÄÿÆ
ë�Æ�Ò , giving anangleboundof upto ¸
¹KºY� �"!��� � ëÄ
ÒR��ëK�R��Ý . (AlthoughI shallnotgivedetails,if �÷Ä´Û
ÜwÝ , onemayproveguaranteedgradingonly for ½ ( Ù� � ëÄ
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Figure3.23: (a) Figure for the case where exactly one vertex is in the semicircle. (b) Figure for the case
where more than one vertex is in the semicircle.

Æ
ë�Æ�� , giving anangleboundof up to ¸
¹;ºY� �"! � �� ëÄ´ÒR��ëK�R� Ý .)
Theproof requiresanadjustmentof thedefinitionof “insertionradius” to accommodatethenecessary

useof constrainedDelaunaytriangulations.Theinsertionradius�=� of thecircumcenterí of askinny triangle
¿ is now definedto betheradiusof ¿ ’s circumcircle,whetheror not thecircumcirclecontainsany vertices.
Recallthat by the previous definition, �=� wasthe lengthof the longestedgethat would adjoin í if í were
inserted.Theonly circumstancein which thesedefinitionsdiffer is when ¿ and í lie on oppositesidesof a
subsegment,andotherverticeslie in ¿ ’s circumcircle.Theseverticesdo no harmbecauseí is not actually
inserted;í only actsasa placeholderrelatingtheinsertionradii of its parentô andits child. Thechangein
definitionis necessary, becauseotherwisetheinequality �=�Yý ½%�
� , provenin Lemma15, is invalidated.

Lemma 21 Let � betheanglethatdefinestheshapeof each diametral lens,asillustratedin Figure3.22(a),
where � satisfieş
¹;ºY� �Z!/�Ù ? ù
��ùTÚ�� Ý . Let î bea subsegmentencroacheduponby thecircumcenterí of a
skinnytriangle ¿ . Supposethat all verticesin thediametral circle of î are deleted(exceptthosenot visible
fromthemidpointof î ), anda vertex ¾ is insertedat themidpointof î . Thenthere is somevertex ô , rejected
for insertionin or deletedfromthediametral circle of î , such that ���÷ý'�
�Íº�~|�w� .

Proof: Becauseall verticesvisible from ¾ aredeletedfrom insidethediametralcircle of î , �=� is equalto
theradiusof thatdiametralcircle. (Verticesnotvisible from ¾ cannotaffect ¾ ’s insertionradius,becausean
edgecannotconnectthemto ¾ .)

If thecircumcenterí lies in (or on theboundaryof) thediametrallensof î , thenthemaximumpossible
valueof �=� occurswith í simultaneouslyontheboundaryof thelensandonthebisectorof î , asillustratedin
Figure3.22(a).Thecircumcirclecenteredat í cancontainnoverticesonor above î , soits radiusis limited
by thenearestendpointof î . Hence,���Cý'�=�Ðº�~|�m� ; definetheparentof ¾ to be í .

Thecasejust describedis sufficient to prove thelemmaif ��ý Û
ÜwÝ . However, if ��� Û
ÜwÝ , then í might
not fall in thelens;rather, î might beencroachedbecause¿ and í lie onoppositesidesof î , asillustratedin
Figure3.22(b).Assumewithout lossof generalitythat ¿ lies above î , with í below. By Lemma13,at least
onevertex of ¿ liesstrictly insidetheupperhalf of thediametralcircleof î . Therearetwo cases,depending
on thenumberof verticesin theinteriorof thissemicircle.

If theuppersemicirclecontainsonly onevertex ø , then ¿ is definedby ø and î . Because¿ is skinny and�¥ý ¸
¹KºY� �"! �Ù ? , ø mustlie in theshadedregion of Figure3.23(a),andtherefore���?ý�����º�~|�w� . Definethe
parentof ¾ to be ø .

If the uppersemicirclecontainsmore thanonevertex, considerFigure3.23(b), in which the shaded
region representspointswithin a distanceof �=� from a subsegmentendpoint. If somevertex ø lies in the
shadedregion,then ��� ù���� ; definetheparentof ¾ to be ø . If novertex lies in theshadedregion,thenthere



Chew’sSecondDelaunayRefinementAlgorithm andDiametralLenses 65

areat leasttwo verticesin thewhite region of theuppersemicircle.Let ø bethemostrecentlyinsertedof
thesevertices. The vertex ø is no further than �=� from any othervertex in the white region, so ���¬ù���� ;
definetheparentof ¾ to be ø . ï

Lemma21extendsthedefinitionof parenttoaccommodateanew typeof encroachment.If asubsegment
is encroachedbecausea triangleandits circumcenterlie on oppositesidesof thesubsegment,althoughno
vertex encroachesuponthesubsegment’s diametrallens,thentheparentof thenewly insertedmidpoint is
definedto bea vertex in theupperhalf of thesubsegment’s diametralcircle. It is importantthattheparent
is insidethediametralcircle of î , becauseLemma17, which boundsthedensityof verticesneara vertex,
relieson theassumptionthat û ô#¾©û�ù�� � .

Whatif thediametralcircleof î containsavertex ø thatis visible from ¾ but notdeleted?Either ø is an
inputvertex, or ø liesonasegment.Theanalysisof Lemma21doesnotapply, because��� is (atmost) û øæ¾©û ,
which is smallerthanthediametralradiusof î . In this case,ø and ¾ lie on nonincidentinput features,so��� ý lfs Ô@¾hÖ ; this caseis alreadycoveredby theanalysisof Lemma15. Choosetheinput vertex or segment
vertex closestto ¾ to betheparentof ¾ .

Do the differencesbetweenChew’s algorithmandRuppert’s original algorithminvalidateany of the
assumptionsusedin Section3.3 to prove termination? None of the boundsproven in Theorem16 and
Lemma18 is invalidated. Whena vertex is deletedfrom a Delaunaytriangulation,no vertex finds itself
adjoininga shorteredgethantheshortestedgeit adjoinedbeforethedeletion. (This fact follows because
a constrainedDelaunaytriangulationconnectsevery vertex to its nearestvisible neighbor.) Hence,each
vertex’s insertionradiusstill servesasa lower boundon the lengthsof all edgesthatconnectthevertex to
verticesolderthanitself, andthereforeTheorem16andLemma18arestill true.

Theonly partof theterminationproof thatdoesnotapplyto Chew’ssecondalgorithmis theassumption
thatevery operationinsertsa new vertex. If verticescanbedeleted,arewe surethat thealgorithmtermi-
nates?Observe thatvertex deletionsonly occurwhena subsegmentis split, andverticesarenever deleted
from subsegments.Theorem16setsa lower boundon thelengthof eachsubsegment,soonly a finite num-
ber of subsegmentsplits canoccur. After the last subsegmentsplit, no morevertex deletionsoccur, and
terminationmaybeprovenin theusualmanner.

Theconsequenceof theboundprovenby Lemma21 is illustratedin thedataflow graphof Figure3.24.
Recall that terminationis guaranteedif no cycle hasa productlessthanone. Hence,a conditionof ter-
minationis that ½¬º�~|�w�¬ý Æ . The bestboundthat satisfiesthis criterion,aswell asthe requirementthat� ý ¸
¹;ºY�
�"!��Ù ? , is ½ Ä � �

Ù
ëÄ Æ
ë�Æ�Ò , whichcorrespondsto anangleboundof ¸
¹;ºY� �"!.�� � ëÄ¤ÒR��ëK��Ý .

Theorem 22 Supposethequality bound ½ is strictly larger than
� �
Ù , and thesmallestanglebetweentwo

incidentsegmentsin the input PSLGis strictly greaterthan �
Ü Ý . There exist fixedconstants
_%g ý Æ and_ih ý Æ such that, for anyvertex ¾ inserted(or considered for insertionandrejected)at thecircumcenter

of a skinnytriangle,
_ �Cù _%g

, andfor anyvertex ¾ insertedat themidpointof anencroachedsubsegment,_ �Cù _ih
.

Proof: Essentiallythesameastheproof of Lemma18,exceptthatLemma21 makesit possibleto replace
Condition3.2with _ih ý Æ8ú

_%g
º�~|�w�

ý Æ8ú Ò
½ _ g
ä Úw½ Ù ö Æ (3.4)
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Figure3.24:Dataflow diagram for Chew’s algorithm (with a variable angle condition).

If thequalitybound ½ is strictly largerthan
� �
Ù , Conditions3.1and3.4aresimultaneouslysatisfiedby

choosing _%g Ä
¥ ÆHú¦�?#§ ä Úw½ Ù ö Æ
ä Úw½ Ù ö ÆYöZÒ ã _ih Ä ä Úw½ Ù ö Æ8ú Ò
½

ä Úw½ Ù ö§ÆYöZÒ ë_%g
and

_ih
mustalsosatisfytheconditionsspecifiedin Lemma18 relatedto theanglesbetweenseg-

ments.If ½ ( � �
Ù and ��ÊÍÌÏÎ ( �
ÜwÝ , therearevaluesof

_%g
and

_ih
thatsatisfythetheorem. ï

Theorem19,whichboundstheedgelengthsof themesh,generalizesdirectlyto coverChew’salgorithm,
sowemaycomparethisanalysiswith thatof Ruppert’s algorithm.As in Section3.3,considertriangulating
a PSLG (having no acuteinput angles)so that no angleof the outputmeshis smallerthan Æ�� Ý ; hence
½ ëÄ Æ
ëK��Û . For this choiceof ½ ,

_%g ëÄ´Û�ë�Ò|[ and
_ih ëÄ´ÚÐë�ÛR� , comparedto thecorrespondingvaluesof ��ëK�R�

and ��ë ÜÐÆ for Ruppert’s algorithm.Hence,thespacingof verticesis at worsta little morethanfive timesthe
local featuresize,andalittle morethanfour timesthelocal featuresizeawayfrom boundaries.Becausethe
worst-casenumberof trianglesis proportionalto thesquareof

_ h
, Chew’salgorithmis size-optimalwith a

constantof optimalityalmostfour timesbetterthanRuppert’s algorithm.Of course,worst-casebehavior is
never seenis practice,andtheobserveddifferencebetweenthetwo algorithmsis lessdramatic.

3.5 Impr ovements

Here,I describeseveralmodificationsto theDelaunayrefinementalgorithmsthatimprove thequalityof the
elementsof a mesh.Thefirst modificationimprovesthequality of trianglesaway from theboundaryof the
mesh;thesecond,whichgeneralizesanideaof Chew, improvesthequalityof triangleseverywhere.
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3.5.1 Impr oving the Quality Bound in the Interior of the Mesh

The first improvementariseseasily from the discussionin Section3.3.3. So long asno cycle having a
productlessthanoneappearsin the insertionradiusdataflow graph(Figure3.18or 3.24), terminationis
assured.Thebarrierto reducingthequalitybound½ below

� �
Ù is thefactthat,whenanencroachedsegment

is split, the child’s insertionradiusmay be a factorof
� �
Ù smallerthan its parent’s. However, not every

segmentbisectionis aworst-caseexample,andit is easyto explicitly measuretheinsertionradii of aparent
andits potentialprogeny beforedecidingto takeaction.Onecantake advantageof thesefactswith any one
of thefollowing strategies.

ç Useaqualityboundof ½ Ä Æ for trianglesthatarenot in contactwith segmentinteriors,andaquality
boundof ½¨Ä«ä Ò (for diametralcircles)or ½¨Ä � �

Ù (for diametrallenses)for any trianglehaving a
vertex thatlies in theinteriorof asegment.

ç Attemptto insertthecircumcenterof any trianglewhosecircumradius-to-shortestedgeratio is larger
thanone. If any subsegmentswould be encroached,the circumcenteris rejectedasusual,but the
encroachedsubsegmentsaresplit only if the triangle’s circumradius-to-shortestedgeratio is greater
than ä Ò (for diametralcircles)or

� �
Ù (for diametrallenses).

ç Attemptto insertthecircumcenterof any trianglewhosecircumradius-to-shortestedgeratio is larger
thanone. If any subsegmentswould beencroached,thecircumcenteris rejectedasusual,andeach
encroachedsubsegmentis checked to determinethe insertionradiusof thenew vertex thatmight be
insertedat its midpoint. The only midpointsinsertedarethosewhoseinsertionradii areat leastas
largeasthelengthof theshortestedgeof theskinny triangle.

The first strategy is easilyunderstoodfrom Figure3.25. Becausesegmentverticesmay have smaller
insertionradii thanfreevertices,segmentverticesareonly allowed to fatherfreeverticeswhoseinsertion
radii arelarger thantheir own by a factorof ä Ò or

� �
Ù , asappropriate.Hence,no diminishingcyclesare

possible.

The other two strategieswork for an even morestraightforward reason:all vertices(except rejected
vertices)areexpresslyforbiddenfrom creatingdescendantshaving insertionradii smallerthantheir own.
Thethird strategy is moreaggressive thanthesecond,asit alwayschoosesto inserta vertex if thesecond
strategy woulddoso.

Thefirst strategy differsfrom theothertwo in its tendency to spacesegmentverticesmorecloselythan
freevertices.Theothertwo strategiestendto spacesegmentverticesandfreeverticesequally, at thecost
of spacingthe lattermoredenselythannecessary. Thefirst strategy interruptsthepropagationof reduced
insertionradii from segmentverticesto the free vertices,whereasthe other two interrupt the processby
which free verticescreatesegmentverticeswith smallerinsertionradii. The effect of the first strategy is
easilystated:upontermination,all anglesarebetterthan Ò
Ühë\[
Ý or ÒR��ëK��Ý , andall triangleswhoseverticesdo
not lie in segmentinteriorshaveanglesof Û
ÜwÝ or better. For theothertwo strategies,thedelineationbetween
ÒR��ëK� Ý trianglesand Û
Ü Ý trianglesis notsoclear, althoughtheformeronly occurnearboundaries.

None of thesestrategies compromisesgoodgradingor size-optimality, althoughthe boundsmay be
weaker. Assumethat a quality bound ½ is appliedto all triangles,anda strongerquality bound ½b¨ ( Æ
appliesin theinteriorof themesh.ThenEquation3.1is accompaniedby theequation_%g ý Æ8ú

_%g
½b¨ ã



68 JonathanRichardShewchuk

Circumcenters

Triangle

Midpoints

Segment

6

6 6

6

8 �Ù��������8 Ù� � or 8 �� Ù

8ª©8 � �
Ù or 8�« ¬

Figure3.25: This dataflow diagram demonstrates how a simple modification to Ruppert’s or Chew’s algo-
rithm can improve the quality of elements away from mesh boundaries.

whichholdstruewhen _ g ý ½b¨
½b¨Yö Æ ë

If this boundis stricterthantheboundsalreadygiven in theproof of Lemma18 (for diametralcircles)
or 22 (for diametrallenses),then

_ih
mustalsobe recalculatedusingEquation3.2. Furthermore,if the

secondor third strategy is used,then
_%g

increasesincreasedto match
_ih

(Condition3.2no longerholds.)
However, if ½ ( ä Ò (for Ruppert’s algorithm)or ½ ( � �

Ù (for Chew’s), ½b¨ ( Æ , and �üÊÍÌÏÎ ( �
Ü Ý , there
arevaluesof

_%g
and

_ih
thatsatisfythelemma.

3.5.2 Range-RestrictedSegmentSplitting

In this section,I suggestanotheralgorithmicchangethatgeneralizesanideaof Chew [21]. BothRuppert’s
andChew’salgorithmsmaybemodifiedto makeit possibleto applyaqualityboundof ½ÿÄ Æ to all triangles
of the mesh,althoughthereis no accompanying guaranteeof good grading. I shall considerRuppert’s
algorithmfirst, thenChew’s.

Observe thattheonly mechanismby whichavertex canhaveachild with asmallerinsertionradiusthan
its own is by encroachingupona subsegment. Furthermore,an encroachingcircumcenter¾ cannothave
a child whoseinsertionradiusis smallerthan ���xÑ�ä Ò , andhenceit cannotcausethesplitting of a segment
whoselengthis lessthan ä Ò�� � . On theotherhand,if ¾ causesthebisectionof a segmentwhoselengthis
Ò4��� or greater, thechild thatresultswill haveaninsertionradiusof at least��� . I concludethatavertex ¾ can
only producea child whoseinsertionradiusis lessthan ��� if a segmentis presentwhoselengthis between
ä Ò4��� and Ò4��� . If nosuchsegmentexists,thecycleof diminishingedgelengthsis broken.

Thusthemotivationfor range-restrictedsegmentsplitting. Whenever possible,the lengthof eachsub-
segmentis restrictedto therangeí.Ò4­ , where í¯®TÔLÆ
ãgä Òxå and ° is an integer. This restrictionis illustrated
in Figure3.26,whereindarkenedboxeson thenumberline representlegal subsegmentlengths.Theposi-
tive integersarepartitionedinto contiguoussets,eachhaving a geometricwidth of ä Ò , andalternatesets
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2 2 21 2 41
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Figure3.26:Legal subsegment lengths are of the form ±Kê�² , where ±´³)µ�ÀM¶Lé ê�· and ¸ is an integer.

aremadeillegal. With this choiceof partition, the bisectionof any legal subsegmentwill producelegal
subsegments.

Of course,input segmentsmight not have legal lengths. However, whenan encroachedsegmentof
illegal lengthis split, ratherthanplacea new vertex at its midpoint,onemayplacethe vertex so that the
resultingsubsegmentsfall within thelegal range.

How doesthis restrictionhelp? A vertex whoseinsertionradiusis greaterthan Ò4­ for someinteger °
cannothave a descendantwhoseinsertionradiusis Ò4­ or smallerunlessa subsegmenthaving illegal length
is split. However, eachillegal subsegmentcanbe split only once,yielding subsegmentsof legal length;
hence,thefuel for diminishingedgelengthsis in limited supply.

An illegal segmentof theform í.Ò4­ , where í¹® Ô9ä Òhã;Ò�å and ° is an integer, is split into subsegmentsof
lengthsí � Ò ­ and í Ù Ò ­ asfollows.

ç If íº®ZÔ9ä ÒÐã �Ù å , then í � Ä � Ù� and í Ù Ä4íQö í � .
ç If íº®ZÔ �Ù ã Ù � � ÙÙ å , then í � Ä Æ ú¼» and í Ù Ä4í8ö®í � . (Here, » is aninfinitesimalvalueusedbecauseÆ is

technicallynot in thelegal range.In practice,»QÄ4Ü is recommended.)

ç If íº®ZÔ Ù � � ÙÙ ã;Ò�å , then í � Ä � ÙÙ and í Ù Ä4íYöZí � .
Themostunbalancedsplit occursif íNÄ �

Ù . Then,theratiobetweení � and í is
� Ù½ ëÄ4Ühë�Ò�ÛR�|[ .

I shall show formally that Delaunayrefinementwith range-restrictedsegmentsplitting terminatesfor
any quality bound ½þý«Æ . Definethe insertionradiusfloor ��¾� of a vertex ¾ to bethelargestpower of two
thatis strictly lessthanthevertex’s insertionradius��� .
Lemma 23 Let lfs ÊÍÌÏÎ be the shortestdistancebetweentwo nonincidententities(verticesor segments)of
theinputPSLG.Supposethata triangle is consideredto beskinnyif its circumradius-to-shortest edge ratio
is larger than ½ ý Æ . Supposealsothat theinput PSLGhasno anglessmallerthan �
ÜwÝ . Let ¾ bea vertex
of themesh,andlet ôcÄZô Ô@¾hÖ beits parent,if oneexists.Theneither � ¾� ý lfs ÊÍÌÏÎ
Ñ�� , or � ¾� ý'� ¾� .

Proof: If ¾ is aninputvertex, thenlfs ÊÍÌÏÎ÷ù lfs Ô@¾hÖQù'�=�Cù§Ò4��¾� , andthetheoremholds.

If ¾ is insertedat thecircumcenterof a skinny triangle,thenby Lemma15, ��� ý§½%�
� . Because½ ý Æ ,
it follows that ��¾� ý'��¾� .

If ¾ is insertedat themidpointof anencroachedsubsegment î , therearethreecasesto consider.

ç If theparentô is aninputvertex, or wasinsertedonasegmentnot incidentto thesegmentcontainingî , thenlfs ÊÍÌÏÎ ù lfs Ô@¾hÖ1ù'� � ù§Ò4��¾� .
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ç If ¾ andô lie onincidentsegmentsseparatedby anangle� where�
Ü Ý ù������
Ü Ý , thenby Lemma15,�=�Cý *�,Ù|�}���=� ý'�
� . Therefore,��¾� ý'��¾� .

ç If ô is a circumcenterthat wasconsideredfor insertionbut rejectedbecauseit encroachesupon î ,
therearetwo subcasesto consider.¿ If î haslegal length ígÒ ­ , where íª®¯ÔLÆ
ãgä Òxå and ° is aninteger, then î is preciselybisected.By

Lemma15, ���\ý *-,� Ù . However, ��� Ä í.Ò4­�À � is in a legal range,so ��¾� ýÁ��¾� . If �4¾� weresmaller

than ��¾� , then �=� would lie in theillegal rangeÔ *3Â,� Ù ã���¾� å .¿ If î hasillegal length í.Ò ­ , whereíb®ZÔ9ä Ò�ã;Ò�å and ° is aninteger, thenthemostunbalancedsplit

possibleoccursif í Ä �
Ù , in which caseí � Ä � Ù� . Becauseî hasillegal length,it mustbean

inputsegment,andits endpointsareinputvertices,solfs ÊÍÌÏÎ is nogreaterthan í.Ò ­ . Theinsertion
radius�=� is equalto í � Ò4­ . Becauseí � Ò4­ is in a legal range,��¾� ý *`2� Ù . Hence,

lfs ÊÍÌÏÎ� ¾� ù ä Ò lfs ÊÍÌÏÎ���
ù ä Ò í.Ò4­í � Ò ­ù ��ã

andthetheoremholds. ï

Theorem 24 Supposethat any two incident segmentsare separated by an angle of at least �
ÜwÝ , and a
triangle is consideredto beskinnyif its circumradius-to-shortest edge ratio is larger than ½ ý Æ . Ruppert’s
algorithm with range-restrictedsegmentsplitting will terminate, with no triangulation edge shorter than
lfs ÊÍÌÏÎ Ñ�� .

Proof: By Lemma23,theinsertionradiusfloor � ¾� of everyvertex ¾ iseithergreaterthanorequalto lfs ÊÍÌÏÎxÑ�� ,
or greaterthanor equalto theinsertionradiusfloor of somepreexistingvertex. Becauseavertex’s insertion
radiusfloor is a lower boundon its insertionradius,no edgesmallerthanlfs ÊÍÌÏÎ
Ñ�� is ever introducedinto
themesh,andthealgorithmmustterminate. ï

The boundcanbe improved to lfs ÊÍÌÏÎ
Ñ�Ú . The boundof lfs ÊÍÌÏÎ�Ñ�� resultsbecausea segmentof length
lfs ÊÍÌÏÎ may undergo a worst-caseunbalancedsegmentsplit. To prevent this, definethe legal rangesto be
of theform í.Ò4­ where í¹®Tâ lfs ÊÍÌÏÎ ãgä Ò lfs ÊÍÌÏÎ å , insteadof í¹®§ÔLÆ
ãgä Ò�å . With this choiceof legal range,only
segmentslongerthan ä Ò lfs ÊÍÌÏÎ undergo an unbalancedsplit, andonly segmentsof lengthat least

�
Ù lfs ÊÍÌÏÎundergo a worst-caseunbalancedsplit. To implementthis modification,the initial triangulationmustbe

scannedto determinethevalueof lfs ÊÍÌÏÎ .
I recommendtwo changesto range-restrictedsegmentsplittingfor practicalimplementation.First,legal

lengthsmaybedefinedby theclosedrangeâ Æ
ãgä Ò�å ratherthan ÔLÆ
ãgä Ò�å . Theoretically, thiscanbejustifiedby
thefact thata vertex insertedat themidpointof a segmentbecauseof anencroachingcircumcenterhasan
insertionradiusstrictly greaterthan �� Ù timesits parent’s. In practice,floating-pointroundoff errorrenders
suchquibblesmeaningless,but thechoiceof thislegalrangeis justifiedbecausethereis alwayssome“slack”
in themesh;not every insertedvertex hasthe smallestpossibleinsertionradiusrelative to its parent. If a
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Figure3.27: An example demonstrating a modification to the method of splitting certain illegal segments.
The original method (left) splits an illegal segment of length ÀM� �4Ã=Ã into legal subsegments of lengths Ä ÅÆ
and À=� �MÃ=Ã´Ç�Ä ÅÆ . The modified method (right) splits it into an illegal subsegment of length Â|� Ã=Ã=Ã and a legal
subsegment of length Â�� È . If the illegal subsegment is split in turn, both of its subsegments are legal, and
neither is shorter than the smaller subsegment of the original method.

closedlegal rangeis used,redefinethe insertionradiusfloor �4¾� to be the largestpower of two that is less
thanor equalto ��� , ratherthanstrictly lessthan ��� .

Thesecondchangemodifiestherule for valuesof í in therange Ô9ä Ò�ã � Ù å . In this case,chooseí � ÄÉ�Ùand í Ù Ä´í�ö¥í � . For thischoice,í Ù is nota legal length,but if theillegalsubsegmentof length í Ù Ò4­ is itself
split, two legal subsegmentsresult,andthesmalleronehaslength

� Ù� Ò4­ . Thissubsegmentis noworsethan
thesmallersubsegmentof theoriginalscheme,asFigure3.27illustrates.If by goodfortunethesubsegment
having length í Ù Ò ­ is notsplit, thecreationof anunnecessarilysmallfeatureis avoided.

Theorem24holdsevenif thetwo practicalchangesdiscussedabove areused,with smallmodifications
to theproof.

I turnnow to Chew’salgorithm.Anotheradvantageof diametrallensesoverdiametralcirclesis thatthey
make it possibleto usenarrower illegal ranges.An encroachingcircumcenter¾ cannothave a child whose
insertionradiusis smallerthan ���üº�~|�m� , sothewidth of eachillegal rangeneedonly be ��}����Ê . For instance,
if �cÄµÛ
ÜwÝ , onemayuseillegal rangeshaving a geometricwidth of Ù� � ëÄ Æ
ë�Æ�� insteadof ä Ò ëÄ Æ
ëÏÚËÆ . In

thiscase,illegal segmentlengthsareof theform í.Ò ­ , whereíb®ZÔ9ä Û�ã;ÒwÖ , and ° is aninteger.

Becausethelegal rangecanbemadewider, andtheillegal rangenarrower, thanwhendiametralcircles
areused,splitting an illegal segmentto yield legal segmentsis easier. Chew handlesillegal segmentsby
trisectingthem;onecandobetterby splittingtheminto two pieces,justunevenlyenoughto ensurethatboth
subsegmentlengthsarelegal. Thefollowing recipeis suggested.

ç If íº®ZÔ9ä ÛÐã�ÆHú � �
Ù å , then í � Ä Æ and í Ù Ä4íQö í � .

ç If íº®ZÔLÆHú � �
Ù ã;ÒwÖ , then í � Ä � �

Ù and í Ù Ä4íQö í � .
Themostunbalancedsplit occursif í is infinitesimallylargerthan ä Û . In thiscase,theratiobetweení Ù and
í is approximatelyÆ1ö �� � ëÄ4ÜhëÏÚ�Ò�ÒR� , which isn’t muchworsethanbisection.

For comparison,I shalldescribehow Chew [21] guaranteesthathis algorithmterminatesfor anangle
boundof Û
ÜwÝ . Chew employsrange-restrictedsegmentsplitting,but usesonlyonerangeinsteadof aninfinite
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(a) (b) (c)

Figure3.28:(a) A PSLG with a tiny segment at the bottom tip. (b) With a minimum angle of ��ê�Ã ( ¼ �è Â|� Ã��M� ),
Ruppert’s algorithm creates a well-graded mesh, despite the lack of theoretical guarantees. (c) With a
minimum angle of �M�|�ËÈ�Ã ( ¼ �è£Â�� Ã�Â=Ì ), grading is poor.

sequenceof ranges.For anappropriatevalue É (seeChew for details,but onecoulduseÉ?Ä lfs ÊÍÌÏÎ Ñ
Ò ), Chew
declarestherange Ô9ä Û�ÉWã;Ò�É�Ö invalid; subsegmentswith lengthsbetweenÒPä Û�É and Ú�É aretrisectedrather
thanbisected.Hence,noedgesmallerthan É ever appears.

Therearetwo disadvantagesof usingasingleillegalrange,ratherthananinfinite seriesof illegalranges.
Thefirst is theinconvenienceof computingÉ in advance.Thesecondandmorefundamentalproblemis that
if smallanglesarepresentin theinputPSLG,edgessmallerthan É mayariseanyway; seeSection3.7for a
discussionof theproblemandits cures.

It doesnotappearto bepossibleto prove thatDelaunayrefinementwith range-restrictedsegmentsplit-
ting producesgradedor size-optimalmesheswith circumradius-to-shortestedgeratiosthatareverycloseto
one.Thedifficulty is that if a meshcontainsa long segmentwith a small featuresizeat oneend,thesmall
featuresizemight beexpectedto propagatealongthewholelengthof thesegment.A smallsubsegmentat
oneendof thesegmentmight indirectly causeits neighboringsubsegmentto besplit until theneighboris
thesamesize. Theneighboringsubsegmentmight thencauseits neighborto besplit, andsoon down the
lengthof thesegment.

As Figure3.28demonstrates,however, evenif diametralcirclesareused,achainreactionsevereenough
to compromisethegradingof themeshonly seemsto occurin practiceif thequalityboundis lessthanabout
ÜhëK��Ò (correspondingto anangleof aboutÛ�Û�Ý )!

Themeshesin thisfigureweregeneratedwithoutrange-restrictedsegmentsplitting,whichis usefulasa
theoreticalconstructbut unnecessaryin practice.As I havementionedbefore,thereis agooddealof slackin
theinequalitiesthatunderlytheproofof termination,becausenewly insertedverticesrarelyhaveworst-case
insertionradii. As a resultof this slack,any Delaunayrefinementalgorithmthat handlesboundariesin a
reasonablewayseemsto achieveangleboundshigherthan Û
ÜwÝ . An examinationof range-restrictedsegment
splitting revealswhy we shouldexpectthis to be true: an ever-diminishingsequenceof edgesis possible
only throughanendlesschainreactionof alternatingsplitsof segmentsof legalandillegal length,andonly
if the sequenceof vertex insertionsencounterslittle slackon its infinite journey. Suchan occurrenceis
improbable.

The improvementsdescribedthus far are improvementsto the circumradius-to-shortest edgeratio of
the trianglesof a mesh;however, they have not reducedthe minimum permissibleanglebetweeninput
segments.Thenext two sectionsconsidertheproblemof dealingwith anglessmallerthan �
ÜwÝ . Thefirst of
thesetwo sectionssetslimits onwhatis possible,andshows thatwecannotbeoverly ambitious.
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Figure3.29: In any triangulation with no angles smaller than ��Â�Ã , the ratio Í�ÎYÏ cannot exceed ê4Ð .
3.6 A NegativeResulton Quality Triangulations of PSLGsThat HaveSmall

Angles

For any anglebound � ( Ü , thereexists a PSLG Ñ suchthat it is not possibleto triangulateÑ without
creatinga new corner(not presentin Ñ ) whoseangleis smallerthan � . This statementappliesto any
triangulationalgorithm,andnot just thosediscussedin this thesis.Here,I discusswhy this is true.

Theresultholdsfor certainPSLGsthathaveananglemuchsmallerthan � . Of course,onemustrespect
thePSLG;small input anglescannotberemoved. However, onewould like to believe that it is possibleto
triangulateaPSLGwithoutcreatingany smallanglesthataren’t alreadypresentin theinput. Unfortunately,
noalgorithmcanmake thisguaranteefor all PSLGs.

Thereasoningbehindtheresultis asfollows. Supposeasegmentin aconformingtriangulationhasbeen
split into two subsegmentsof lengths1 and Ò , asillustratedin Figure3.29. Mitchell [68] provesthat if the
triangulationhasno anglessmallerthan � , thentheratio Ò.Ñ41 hasanupperboundof Ô Ò�º�~|�{�PÖ �}Ó�Ô Õ
Ö Ê . (This
boundis tight if Æ�ì
ÜwÝ�Ñ4� is aninteger; Figure3.29offersanexamplewheretheboundis obtained.)Hence
any boundon thesmallestangleof a triangulationimposesa limit on thegradationof trianglesizesalonga
segment(or anywherein themesh).

A problemcanariseif asmallangle× occursattheintersectionvertex Ø of two segmentsof aPSLG,and
oneof thesesegmentsis separatedby a muchlargeranglefrom a third segmentincidentat Ø . Figure3.30
(top) illustratesthis circumstance.Assumethat the middle segmentof the threeis split by a vertex ô ,
which maybepresentin the input or maybeinsertedto helpachieve theangleconstraintelsewherein the
triangulation.Theinsertionof ô forcesthenarrow region betweenthefirst two segmentsto betriangulated
(Figure3.30,center),which maynecessitatethe insertionof a new vertex Ù on thesegmentcontainingô .
Let 1 Ä û ômÙËû and Ò÷Äþû ØKô�û asillustrated. If theangleboundis respected,the length 1 cannotbe large; the
ratio 1hÑ�Ò is boundedbelow �
�"!Ú×� �Z!Ú�fÛ º�~|��ÔU�Jú'×©Öüú � �"!ØÔU�Jú�×WÖÜ ¸R!Ú� Ý ë

If theregion above thenarrow region is partof theinterior of thePSLG,thefaneffect demonstratedin
Figure3.29maynecessitatethe insertionof anothervertex � betweenØ and ô (Figure3.30,bottom); this
circumstanceis unavoidableif theproductof theboundson Ò.Ñ41 and 1hÑ�Ò givenabove is lessthanone.For an
angleconstraintof �÷Ä´Û
ÜwÝ , thisconditionoccurswhen × is aboutsix tenthsof adegree.Unfortunately, the
new vertex � createsthesameconditionsasthevertex ô , but is closerto Ø ; theprocesswill cascade,eternally
necessitatingsmallerandsmallertrianglesto satisfytheangleconstraint.No algorithmcanproduceafinite
triangulationof suchaPSLGwithoutviolating theangleconstraint.

This boundis probablynot strict. It would not besurprisingif a Û
ÜwÝ angleboundis not obtainableby
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Figure3.30:Top: A difficult PSLG with a small interior angle Þ . Center: The vertex ß and the angle constraint
necessitate the insertion of the vertex à . Bottom: The vertex à and the angle constraint necessitate the
insertion of the vertex � . The process repeats eternally.

any algorithmfor ×®Ä Æ�Ý , andDelaunayrefinementoftenfails in practiceto achieve a Û
ÜwÝ angleboundfor×cÄ$� Ý .
Oddly, it appearsto bestraightforwardto triangulatethisPSLGusinganinfinite numberof well-shaped

triangles.A vertex at theapex of a small anglecanbeshieldedwith a thin strip of well-shapedtriangles,
asFigure3.31illustrates.(This ideais relatedto Ruppert’s techniqueof usingshieldedges[82]. However,
Ruppertmistakenly claimsthat the region concealedbehindshieldedgesalwayshasa finite good-quality
triangulation.)The strip is narrow enoughto admita quality triangulationat thesmallestinput angle. Its
shapeis chosensothat theanglesit formswith thesegmentsoutsidetheshieldareobtuse,andtheregion
outsidetheshieldcanbetriangulatedby Delaunayrefinement.Theregioninsidetheshieldis triangulatedby
aninfinite sequenceof similarstrips,with eachsuccessive stripsmallerthanthepreviousstripby aconstant
factorcloseto one.
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Figure3.31: How to create a quality triangulation of infinite cardinality around the apex of a very small
angle. The method employs a thin strip of well-shaped triangles about the vertex (left). Ever-smaller copies
of the strip fill the gap between the vertex and the outer strip (right).
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Figure3.32: A problem caused by a small input angle. Vertex ð encroaches upon ÏMá , which is split at â .
Vertex â encroaches upon Ïxð , which is split at ¸ . Vertex ¸ encroaches upon ÏMâ , and so on.

3.7 Practical Handling of Small Input Angles

A practicalmeshgeneratorshouldnot respondto smallinputanglesby failing to terminate,evenif theonly
alternative is to leave badanglesbehind. The resultof the previous sectionquashesall hopeof finding a
magicpill thatwill make it possibleto triangulateany PSLGwithout introducingadditionalsmallangles.
The Delaunayrefinementalgorithmsdiscussedthusfar will fail to terminateon PSLGslike that of Fig-
ure3.30.Of course,Delaunayrefinementalgorithmsshouldbemodifiedsothatthey donot try to split any
skinny trianglethatbearsasmallinputangle.However, eventhischangedoesnothelpwith thebadPSLGs
describedin the previous section,becausesuchPSLGsalwayshave a small anglethat is removable,but
anothersmallangleinvariablytakesits place.How canonedetectthiscircumstance,andensuretermination
of thealgorithmwithoutunnecessarilyleaving many badanglesbehind?

Figure3.32demonstratesoneof thedifficultiescausedby small input angles.If two incidentsegments
have unmatchedlengths,a endlesscycle of mutualencroachmentmayproduceever-smallersubsegments
incidentto theapex of thesmallangle.For diametralspheres,thisphenomenonis only observedwith angles
smallerthan Ú���Ý ; for diametrallenses,only with anglessmallerthanroughly Ò�Ò�ë�ÒxÚ�Ý .

To solve this problem,Ruppert[82] suggests“modified segmentsplitting using concentriccircular
shells”. Imaginethat eachinput vertex is encircledby concentriccircleswhoseradii areall the powers
of two, asillustratedin Figure3.33.Whenanencroachedsubsegmenthasanendpointthatis aninputvertex
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New vertex

Midpoint

Figure3.33: If an encroached subsegment has a shared input vertex for an endpoint, the subsegment is
split at its intersection with a circular shell whose radius is a power of two.

short edge leads to another subsegment split

long subsegment

short edge

Figure3.34: The short edge opposite a small angle can cause other short edges to be created as the
algorithm attempts to remove skinny triangles. If the small insertion radii propagate around an endpoint and
cause the supporting subsegments to be split, a shorter edge is created, and the cycle may repeat.

sharedwith anothersegment,thesubsegmentis split notat its midpoint,but at oneof thecircularshells,so
thatoneof resultingsubsegmentshasa power-of-two length.Theshell thatgivesthebestbalancedsplit is
chosen;in theworstcase,thesmallerresultingsubsegmentis one-thirdthelengthof thesplit subsegment.If
bothendpointsaresharedinputvertices,chooseoneendpoint’s shellsarbitrarily. Range-restrictedsegment
splitting may optionally be usedon all subsegmentsnot subjectto concentricshell splitting. Eachinput
segmentmayundergo up to threeunbalancedsplits: two thatcreatepower-of-two subsegmentsat theends
of thesegment,andoneto split anillegal subsegmentlying betweenthesetwo. All othersubsegmentsplits
arebisections.

Concentricshellsegmentsplittingpreventstherunawaycycleof ever-smallersubsegmentsportrayedin
Figure3.32,becauseincidentsubsegmentsof equallengthdo not encroachuponeachother. Again, it is
importantto modify the algorithmso that it doesnot attemptto split a skinny trianglethat bearsa small
inputangle,andcannotbeimproved.

Modified segmentsplitting usingconcentriccircularshellsis generallyeffective in practicefor PSLGs
thathavesmallanglesgreaterthan Æ.ÜwÝ , andoftenfor smallerangles.It is alwayseffective for polygonswith
holes(for reasonsto bediscussedshortly).As theprevioussectionhints,difficultiesareonly likely to occur
whena small angleis adjacentto a muchlarger angle. The negative resultof the previous sectionarises
not becausesubsegmentmidpointscancauseincidentsubsegmentsto be split, but becausethe free edge
oppositeasmallangleis shorterthanthesubsegmentswhoseendpointsdefineit, asFigure3.34illustrates.

The two subsegmentsof Figure 3.34 are coupled,in the sensethat if one is bisectedthen so is the
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Figure3.35: Concentric shell segment splitting ensures that polygons (with holes) can be triangulated,
because it causes small angles to be clipped off. This sequence of illustrations demonstrate that if a clipped
triangle’s interior edge is flipped, a smaller clipped triangle will result.

other, becausethe midpoint of oneencroachesuponthe other. This holds true for any two segmentsof

equallengthseparatedby lessthan �
ÜwÝ , if diametralcirclesareused,or ¸
¹;º Ü ¸R!�ã � �� ö§Û
ÜwÝ ëÄþÛxÚÐë�ÛxÚ�Ý , if
diametrallensesareused.Eachtimesuchadualbisectionoccurs,anew edgeis createdthatis smallerthan
thesubsegmentsproducedby thebisection;the freeedgecanbearbitrarily small if theangleis arbitrarily
small. Oneof the endpointsof the free edgehasa small insertionradius,thoughthat endpoint’s parent
(typically the otherendpoint)might have a large insertionradius. Hence,a small anglefunctionsasan
“insertion radiusreducer”. The new small edgewill likely engenderothersmall edgesas the algorithm
attemptsto removeskinny triangles.If smallinsertionradii propagatearoundanendpointof thesmalledge,
theincidentsubsegmentsmaybesplit again,commencinganinfinite sequenceof smallerandsmalleredges.

If thePSLGis apolygon(possiblywith polygonalholes),smallinsertionradii cannotpropagatearound
the small edge,becausethe small edgepartitionsthe polygoninto a skinny triangle(which thealgorithm
doesnot attemptto split) andeverythingelse.Thesmalledgeis itself flippedor penetratedonly if thereis
anevensmallerfeatureelsewherein themesh.If thesmalledgeis thusremoved,thealgorithmwill attempt
to fix thetwo skinny trianglesthatresult,therebycausingthesubsegmentsto besplit again,thuscreatinga
new smalleredge(Figure3.35).

For generalPSLGs,how mayonediagnoseandcurediminishingcyclesof edges?A sure-fireway to
guaranteeterminationwashintedat in Section3.5.1:never inserta vertex whoseinsertionradiusis smaller
than the insertionradiusof its most recentlyinsertedancestor(its parentif the parentwas inserted;its
grandparentif theparentwasrejected),unlesstheparentis aninputvertex or liesonanonincidentsegment.

This restrictionis undesirablyconservative for two reasons.First, if aDelaunaytriangulationis desired,
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Figure3.36: The simplest method of ensuring termination when small input angles are present has unde-
sirable properties, including the production of large angles and many small angles.

aa
a

(a) (b)

Figure3.37: (a) Example of a subsegment cluster. If all the subsegments of a cluster have power-of-two
lengths, then they all have the same length and are effectively split as a unit because of mutual encroach-
ment. (b) Several independent subsegment clusters may share the same apex.

therestrictionmight preventus from obtainingone,becausesegmentsmaybe left encroached.A second,
morepervasive problemis demonstratedin Figure3.36. Two subsegmentsareseparatedby a small input
angle,andoneof the two is bisected.The othersubsegmentis encroached,but is not bisectedbecausea
smalledgewould becreated.Oneunfortunateresultis that the trianglebearingthesmall input anglealso
bearsa large angleof almost Æ�ì
Ü Ý . Recallthat large anglescanbeworsethansmall angles,becausethey
jeopardizeconvergenceandinterpolationaccuracy in a way thatsmallanglesdo not. Anotherunfortunate
result is that many skinny trianglesmay form. The trianglesin the figure cannotbe improved without
splitting theuppersubsegment.

As analternative, I suggestthefollowing scheme.

The Quitter: A Delaunayrefinementalgorithmthatknows whento giveup. Guaranteedto terminate.

The Quitter is basedon Delaunayrefinementwith concentriccircularshells;range-restrictedsegment
splitting is optional. Whena subsegment î is encroacheduponby thecircumcenterof a skinny triangle,a
decisionis madewhetherto split it with a vertex ¾ , or to leave it whole. (In eithercase,thecircumcenteris
rejectedfor insertion.)Thedecisionprocessis somewhatelaborate.

If neitherendpointof î bearsa small input angle(lessthan �
ÜwÝ ), or if both endpointsdo, then î is
split. Otherwise,let 1 be the apex of thesmall angle. Definethesubsegmentclusterof î to be the setof
subsegmentsincidentto 1 thatareseparatedfrom î , or from someothermemberof thesubsegmentcluster
of î , by lessthan �
Ü Ý . If diametralcirclesareused,onceall the subsegmentsof a clusterhave beensplit
to power-of-two lengths,they mustall be thesamelengthto avoid encroachinguponeachother. If oneis
bisected,theothersfollow suit, asillustratedin Figure3.37(a).If ¾ is insertedit is calleda trigger vertex,
becauseit maytriggerthesplittingof all thesubsegmentsin acluster.

If diametrallensesareused,it is no longer true that all the subsegmentsin a clustersplit asa unit.
However, clustersarestill definedby a �
ÜwÝ angle,becausediametrallensesdo not diminishtheproblemof
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smalledgesappearingoppositea clusterapex.

Thedefinitionof subsegmentclusterdoesnot imply thatall subsegmentsincidentto aninputvertex are
partof thesamecluster. For instance,Figure3.37(b)shows two independentsubsegmentclusterssharing
oneapex, separatedfrom eachotherby anglesof at least �
ÜwÝ .

To decidewhether î shouldbe split, the Quitter determinesthe insertionradius � A of ¾ ’s grandparent> (which is theparentof theencroachingcircumcenter),andtheminimuminsertionradius ��ÊÍÌÏÎ of all the
midpointvertices(including ¾ ) thatwill beintroducedinto thesubsegmentclusterof î if all thesubsegments
in theclusterhaving length û î û or greateraresplit. If all thesubsegmentsin theclusterhave thesamelength,
then ��ÊÍÌÏÎ dependsuponthesmallestanglein thesubsegmentcluster.

Thevertex ¾ is inserted,splitting î , only if oneor moreof thefollowing threeconditionshold.

ç If ��ÊÍÌÏÎ ý'��A , then ¾ is inserted.

ç If oneof thesegmentsin thesubsegmentclusterof î hasa lengththatis notapower of two, then ¾ is
inserted.

ç If noancestorof ¾ alsolies in theinterior of thesegmentcontainingî , then ¾ is inserted.(Endpoints
of thesegmentareexempt.)

End of description of the Quitter.

If thereareno input anglessmallerthan �
ÜwÝ , theQuitteractsno differently from Ruppert’s or Chew’s
algorithmby thefollowing reasoning.Any encroachedsubsegment î is theonly subsegmentin its cluster,
and � ÊÍÌÏÎ Ä.� � . If î is preciselybisected,Theorem16 statesthat the first condition( � ÊÍÌÏÎ ýä� A ) always
holds. If thelengthof î is not a power of two, î maybesplit unevenly, andhencethecondition ��ÊÍÌÏÎ\ý$��A
maynotbetrue,but thesecondconditionabove ensuresthatsuchsplitsarenotprevented.

Ontheotherhand,if smallanglesarepresent,andthefirst conditionfails for someencroachedsegment,
thethird conditionidentifiessituationsin whichthemeshcanbeimprovedwithoutthreateningtheguarantee
of termination.This rule attemptsto distinguishbetweenthecasewherea segmentis encroachedbecause
of smallinput features,andthecasewhereasegmentis encroachedbecauseit bearsasmallangle.

Theorem 25 TheQuitteralwaysterminates.

Proof sketch: Supposefor thesake of contradictionthattheQuitterfails to terminate.Thentheremustbe
aninfinite sequenceof verticeså with thepropertythateachvertex of å (exceptthefirst) is thechild of its
predecessor, andfor any positive realvalue æ , somevertex in å hasinsertionradiussmallerthan æ . (If there
is nosuchsequenceof descendants,thenthereis a lowerboundon thelengthof anedge,andthealgorithm
mustterminate.)

Saythata vertex ¾ hasthediminishingpropertyif its insertionradiusfloor ��¾� is lessthanthatof all its
ancestors.Thesequenceå containsaninfinite numberof verticesthathave thediminishingproperty.

Thanksto Lemma23,if avertex ¾ hasaninsertionradiusfloor smallerthanthatof all its ancestors,then
¾ musthave beeninsertedin asubsegment î underoneof thefollowing conditions:

ç î bearsasmallinputangle,andthelengthof î is notapower of two.

ç î is of illegal length.
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ç î is encroacheduponby aninputvertex or avertex lying onasegmentnot incidentto î .
ç î is encroacheduponby avertex ô thatliesonansegmentincidentto î atananglelessthan �
ÜwÝ .
Only a finite numberof verticescanbeinsertedunderthefirst threeconditions.Thefirst conditioncan

occurtwice for eachinput segment(oncefor eachend),andthesecondconditioncanoccuroncefor each
inputsegment.Any subsegmentshorterthanlfs ÊÍÌÏÎ cannotbeencroacheduponby anonincidentfeature,so
only a finite numberof vertex insertionsof the third typearepossibleaswell. Hence,å mustcontainan
infinite numberof verticesinsertedunderthefourthcondition.

However, å cannothave arbitrarily long runsof suchvertices,becausepower-of-two segmentsplitting
preventsa clusterof incidentsegmentsfrom engagingin a chainreactionof ever-diminishingmutualen-
croachment.Specifically, let Ò ­ bethe largestpower of two lessthanor equalto the lengthof theshortest
subsegmentin thecluster. No subsegmentof theclustercanbesplit to a lengthshorterthan Ò4­�À � through
themechanismof encroachmentalone.Theedgesoppositetheapex of theclustermaybemuchshorterthan
Ò4­�À � , but someothermechanismis neededto explain how thesequenceå cancontaininsertionradii even
shorterthantheseedges.Theonly suchmechanismthatcanbeemployedaninfinite numberof timesis the
attemptedsplittingof askinny triangle.Hence,å mustcontainaninfinite numberof triggervertices.

Oneof therulesis thata triggervertex mayonly be insertedif it hasno ancestorin the interior of the
samesegment. Hence, å mayonly containonetriggervertex for eachinput segment. It follows that the
numberof triggerverticesin å is finite, acontradiction. ï

TheQuittereliminatesall encroachedsubsegments,so if diametralcirclesareused,thereis no danger
thatasegmentwill fail to appearin thefinal mesh(if subsegmentsarenot locked),or thatthefinal meshwill
notbeDelaunay(if subsegmentsarelocked).Becausesubsegmentsarenot encroached,ananglenear Æ�ì
ÜwÝ
cannotappearimmediatelyoppositeasubsegment(asin Figure3.36),althoughlargeanglescanappearnear
subsegmentclusters.TheQuitteroffersno guaranteeson quality whensmall input anglesarepresent,but
skinny trianglesin thefinal meshoccuronly nearinputangleslessthan �
Ü Ý .

The Quitterhasthe unfortunatecharacteristicthat it demandsmorememorythanwould otherwisebe
necessary, becauseeachvertex of themeshmuststoreits insertionradiusandapointerto its parent(or, if its
parentwasrejected,its grandparent).Hence,I suggestpossiblemodificationsto avoid theserequirements.

TheQuitterneedsto know theinsertionradiusof a vertex only whena triggervertex ¾ is beingconsid-
eredfor insertion. It is straightforward to computethe insertionradii of ¾ andthe otherverticesthat will
be insertedinto the cluster. However, the insertionradiusof the grandparentof the triggervertex is used
for comparison,andmaynot bedirectly computablefrom themesh,becauseotherverticesmayhave been
insertednear> since> wasinserted.Nevertheless,it is reasonableto approximate��A by usingthelength æ
of theshortestedgeof theskinny trianglewhosecircumcenteris ¾ ’s parent,illustratedin Figure3.38. The
length æ is anupperboundon �=A , soits usewill not jeopardizetheQuitter’s terminationguarantee;themod-
ified algorithmis strictly moreconservative in its decisionof whetherto insert ¾ . With this modification,
thereis noneedto storetheinsertionradii of verticesfor lateruse.

Theonly apparentway to avoid storinga pointerfrom eachvertex to its nearestinsertedancestoris to
eliminatetheconditionthatatriggervertex maybeinsertedif noneof its ancestorslies in thesamesegment.
The possibledisadvantageis that a small nearbyinput featuremight fail to causethe segmentto be split
eventhoughit oughtto have theprivilege,andthusskinny triangleswill unnecessarilyremainin themesh.
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Figure3.38:The length ç of the shortest edge of a skinny triangle is an upper bound on the insertion radiusè
é of the most recently inserted endpoint of that edge.

3.8 Conclusions

Theintuition governingDelaunayrefinementcomesfrom anunderstandingof therelationshipbetweenthe
insertionradii of parentsandtheirchildren.Hence,I usedataflow graphssuchasFigure3.18to demonstrate
theserelationships.This mannerof thinking bringsclarity to ideasthatotherwisemight behiddenwithin
proofs.For instance,Figure3.18providesanimmediateexplanationfor why Ruppert’s algorithmachieves
an angleboundof up to ê�ë¢ì\í�î (which correspondsto a circumradius-to-shortest edgeratio of ï ê ). The
sameideascanbe found in Ruppert’s original paper, but aresomewhatobscuredby themathematics.By
bringing the intuition to the forefront, andby explicitly graphingthe relationshipsbetweenthe insertion
radii of relatedvertices,I have found a variety of improvementsto Delaunayrefinementandits analysis,
whichhave beendiscussedin detailin thischapterandarelistedagainhere.ð Theminimumangleseparatingtwo input segmentscanberelaxed from the ñ�ë|î boundspecifiedby

Ruppertto a ò�ë î bound.Thisobservationcomesfrom thedataflow graphof Figure3.18.ð My new analysisof Chew’salgorithmarosefrom my attemptsto understandtherelationshipbetween
segmentmidpointsandtheirparents,which is reflectedin thedataflow graphof Figure3.24.ð Thedataflow graphsfor Ruppert’s andChew’s algorithmssparked my recognitionof the fact that a
betterqualityboundcanbeappliedin theinteriorof themesh,asillustratedin Figure3.25.ð The ideaof range-restrictedsegmentsplitting arosefrom my attemptsto find ways to weaken the
spiralof diminishinginsertionradii. (Only laterdid I realizethatChew haddevelopeda very similar
idea.)ð My methodfor handlingsmall input anglesworksby preventingverticesfrom having childrenthat
mightcontributeto asequenceof verticeswith endlesslydiminishinginsertionradii.

Hence,this mannerof approachingDelaunayrefinementhasshown greatfecundity. Simpleasthese
dataflow graphsare,they haveprovidedthecluesthathelpedto unearthmostof thenew resultsin thisthesis,
andin Chapter4 they will provethemselvesinvaluablein studyingtetrahedralDelaunayrefinement,in which
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the relationshipsbetweenthe insertionradii of differenttypesof verticesbecomeevenmorecomplicated.
Mostof theimprovementsin thelist above will repeatthemselvesin thethree-dimensionalsetting.

At this writing, I have not yet implementeddiametrallenses.I expect themto outperformdiametral
circlesin circumstancesin which long segmentsarepresent,becausediametrallensesarelessproneto be
split. On theotherhand,diametralcirclesanddiametrallenseswill exhibit little or no differencefor many
inputswhoseboundariesarecomposedof many tiny segments,suchasFigure3.7(bottom).

My negative resultonquality triangulationscomesasasurprise,asresearchersin meshgenerationhave
beenlaboringfor sometime underfalseassumptionsaboutwhat is possiblein triangularmeshgeneration.
A few havemistakenlyclaimedthatthey couldprovidetriangulationsof arbitraryPSLGswith nonew small
angles. Fortunately, a recognitionof the fundamentaldifficulty of triangulatingPSLGswith tiny angles
makesit easierto formulateastrategy for handlingthem.Onceonerealizesthatthebestonecanhopefor is
to minimizetheunavoidabledamagethatsmallinputanglescancause,it becomesrelatively easyto develop
a methodthatpreventsverticeshaving smallerandsmallerinsertionradii from beinginserted.Themethod
I have suggestedis somewhatmoreelaboratethanwhat is necessaryto guaranteetermination,but is likely
to rewardtheextraeffort with bettertriangulations.



Chapter 4

Thr ee-DimensionalDelaunayRefinement
Algorithms

Herein,I build uponthe framework of RuppertandChew to designa Delaunayrefinementalgorithmfor
tetrahedralmeshes.The generalizationto threedimensionsis relatively straightforward, albeit not with-
out complications.The basicoperationis still the Delaunayinsertionof verticesat the circumcentersof
simplices,andtheresultis still ameshwhoseelementshave boundedcircumradius-to-shortest edgeratios.

Unfortunately, unlike the two-dimensionalcase,sucha meshis not necessarilyadequatefor theneeds
of finite elementmethods.Thereasonis theexistenceof a typeof tetrahedroncalleda sliver or kite. The
canonicalsliver is formedby arrangingfour vertices,equallyspaced,aroundtheequatorof a sphere,then
perturbingoneof the verticesslightly off the equator, as illustratedin Figure4.1. As is apparentin the
figure,asliver canhave anadmirablecircumradius-to-shortest edgeratio (aslow as óô õ !) yetbeconsidered
awful by mostothermeasures,becauseits volumeandits shortestaltitudecanbearbitrarily closeto zero.
Slivershave no two-dimensionalanalogue;any trianglewith a smallcircumradius-to-shortest edgeratio is
considered“well-shaped”by theusualstandardsof finite elementmethods.

Sliversoftensurvive Delaunay-basedtetrahedralmeshgenerationmethodsbecausetheir smallcircum-
radii minimizethelikelihoodof verticesbeinginsertedin their circumspheres(Figure4.2). A perfectlyflat
sliver whoseedgelengthsarelfs öø÷Ëù abouttheequatorand ï ê lfs öø÷Ëù acrossthediagonalsis guaranteedto
survive any Delaunayrefinementmethodthatdoesnot introduceedgessmallerthanlfs öø÷Ëù , becauseevery

Figure4.1: A sliver tetrahedron.
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Needles Caps Slivers

Figure4.2: In three dimensions, skinny tetrahedra known as needles and caps have circumspheres signifi-
cantly larger than their shortest edge, and are thus eliminated when additional vertices are inserted, spaced
to match the shortest edge. A sliver can have a circumradius smaller than its shortest edge, and can easily
survive in a Delaunay tetrahedralization of uniformly spaced vertices.

point in theinterior of its circumsphereis a distancelessthanlfs öø÷Ëù from oneof its vertices;no vertex can
beinsertedinsidethesphere.

Despitethisproblem,Delaunayrefinementmethodsarevaluablefor generatingthree-dimensionalmesh-
es.Theworstsliverscanoftenberemovedby Delaunayrefinement,evenif thereis notheoreticalguarantee.
Mesheswith boundson thecircumradius-to-shortest edgeratiosof their tetrahedraareanexcellentstarting
point for meshsmoothingandoptimizationmethodsdesignedto remove sliversandimprove the quality
of anexisting mesh(seeSection2.2.4). Evenif sliversarenot removed,Delaunayrefinementtetrahedral-
izationsaresometimesadequatefor suchnumericaltechniquesasthecontrolvolumemethod[66], which
operatesupontheVoronoidiagramratherthantheDelaunaytetrahedralization.TheVoronoidualof a tetra-
hedralizationwith boundedcircumradius-to-shortest edgeratioshasnicely roundedcells,evenif sliversare
presentin thetetrahedralizationitself.

In this chapter, I presenta three-dimensionalgeneralizationof Ruppert’s algorithmthatgeneratestetra-
hedralizationswhosetetrahedrahave circumradius-to-shortest edgeratiosno greaterthanthebound úüûï ê ìûþý�ìËÿ ý . If ú is relaxed to begreaterthantwo, thengoodgradingcanalsobeproven. I enhancethe
algorithmwith a structuresimilar to diametrallenses,andtherebyachieve a tetrahedronquality boundofúäû õô � ìû�ý�ì"ý � , or a well-gradedmeshfor any tetrahedronquality boundthatsatisfiesú�� õ ô õô � ìû ý�ìKò�� .
Size-optimality, however, cannotbeproven.
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(a) (b)

Figure4.3: (a) Any facet of a PLC may contain holes, slits, and vertices; these may support intersections
with other polytopes or allow a user of the finite element method to apply boundary conditions. (b) When
a PLC is tetrahedralized, each facet of the PLC is partitioned into triangular subfacets, which respect the
holes, slits, and vertices.

4.1 Preliminaries

4.1.1 PiecewiseLinear Complexesand Local FeatureSize

Beforedefininga three-dimensionalDelaunayrefinementalgorithm,it is necessaryto definetheinputupon
which the algorithmwill operate.I usea generalizationof a planarstraightline graphcalleda piecewise
linear complex (PLC); seeMiller, Talmor, Teng,Walkington,andWang[67] for a similar definition that
generalizesto any numberof dimensions.

In threedimensions,a PLC is a setof vertices,segments,andfacets.Verticesandsegmentsareno dif-
ferentthanin thetwo-dimensionalcase,exceptthatthey areembeddedin three-dimensionalspace.Facets,
however, canbequitecomplicatedin shape.A facetis aplanarboundary, suchastherectangularandnearly-
rectangularfacetsthatdefinetheobjectdepictedin Figure4.3(a).As thefigureillustrates,a facetmayhave
any numberof sides,maybenonconvex, andmayhave holes,slits, or verticesin its interior. However, an
immutablerequirementis thata facetmustbeplanar.

A piecewiselinearcomplex � is requiredto have thefollowing properties.ð For any facetin � , everyedgeandvertex of thefacetmustappearasasegmentor vertex of � . Hence,
all facetsaresegment-bounded.ð � containsbothendpointsof eachsegmentof � .ð � is closedunderintersection.Hence,if two facetsof � intersectata line segment,thatline segment
mustberepresentedby asegmentof � . If asegmentor facetof � intersectsanothersegmentor facet
of � atasinglepoint, thatpointmustberepresentedby avertex in � .ð If a segmentof � intersectsa facetof � at morethana finite numberof points,thenthe segment
mustbeentirelycontainedin thefacet.This rule ensuresthat facets“line up” with their boundaries.
A facetcannotbeboundedby asegmentthatextendsbeyondtheboundaryof thefacet.

Theprocessof tetrahedralmeshgenerationnecessarilydivideseachfacetinto triangularfaces,asillus-
tratedin Figure4.3(b).Justastheedgesthatcomposeasegmentarecalledsubsegments,thetriangularfaces
thatcomposea facetarecalledsubfacets. All of thetriangularfacesvisible in Figure4.3(b)aresubfacets,
but mostof thefacesin theinteriorof thetetrahedralizationarenot.
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Figure4.4: Two incident facets separated by a dihedral angle of nearly 180 � . What is the local feature size
at 	 ?

Recall that any vertex insertedinto a segmentremainstherepermanently. Whenexaminingthe algo-
rithmsdiscussedin this chapter, keepin mind thatverticesinsertedinto facetsarealsopermanent,but the
edgesthatpartitionafacetinto subfacetsarenotpermanent,arenot treatedlikesubsegments,andarealways
subjectto flipping accordingto theDelaunaycriterion.

Many approachesto tetrahedralmeshgenerationpermanentlytriangulatethe input facetsasa separate
stepprior to tetrahedralizingthe interior of a solid. Theproblemwith this approachis that theseindepen-
dent facettriangulationsmay not be ideal for forming a goodtetrahedralizationwhenothersurfacesare
taken into account. For instance,a featurethat lies neara facet(but not necessarilyin the planeof the
facet)may necessitatethe useof smallersubfacetsnearthat feature. The algorithmsof this chapteruse
analternative approach,whereinfacettriangulationsarerefinedin conjunctionwith thetetrahedralization.
Eachfacet’s triangulationcanchangein responseto attemptsto improve the tetrahedraof the mesh.The
tetrahedralizationprocessis notbeholdento poordecisionsmadeearlier.

Becausetheshapeof a facetis versatile,thedefinitionof local featuresizedoesnotgeneralizestraight-
forwardly. Figure4.4demonstratesthedifficulty. Two facets
 and � areincidentatasegment� , separated
by a dihedralangleof almost ý�ì�ë|î . Thefacetsarenot convex, andthey maypassarbitrarily closeto each
otherin a region far from � . What is the local featuresizeat thepoint 
 ? Because
 and � areincident,
a ball large enoughto intersecttwo nonincidentfeaturesmusthave diameteraslarge asthe width of the
prongs. However, the sizeof tetrahedranear 
 is determinedby the distanceseparating
 and � , which
couldbearbitrarily small. Thestraightforwardgeneralizationof local featuresizedoesnot accountfor this
peccadilloof nonconvex facets.

To develop a moreappropriatemetric, I definea facetregion to be any region of a facetvisible from
a singlepoint on its boundary. (Visibility is definedsolelyby andwithin the facetin question.)Two facet
regionson two different facetsaresaid to be incident if they aredefinedby the samepoint. Figure4.5
illustratestwo incidentfacetregions,andthepoint thatdefinesthem. Two points,onelying in 
 andone
lying in � , aresaidto lie in incidentfacetregionsif thereis any point on thesharedboundaryof 
 and �
thatis visible from bothpoints.They aresaidto lie in nonincidentfacetregionsif nosuchpointexists.(For
higher-dimensionalmeshgeneration,thisdefinitionextendsunchangedto polytopesof higherdimension.)

Similarly, if asegment � is incidentto a facet 
 at asinglevertex � , then � is saidto beincidentto the
facetregion of 
 visible from � . If a vertex � is incidentto a facet 
 , then � is saidto be incidentto the
facetregionof 
 visible from � .

Givenapiecewiselinearcomplex � , I definethelocal featuresizelfs ��
�� atapoint 
 to betheradiusof
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Figure4.5: Shaded areas are two incident facet regions. Both regions are visible from the indicated point.
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Figure4.6: Two incident facets separated by a dihedral angle of nearly 180 � . The definition of local feature
size should not approach zero near � , but it is nonetheless difficult to mesh the region between � and �
near � .
thesmallestball centeredat 
 that intersectstwo pointsthat lie on nonincidentvertices,segments,or facet
regionsof � . (To be rigorous,lfs ��
�� is sometimesthe radiusof the largestball thatdoesn’t intersecttwo
suchpoints.)

Unfortunately, carefulspecificationof which portionsof facetsareincidentdoesn’t solve all theprob-
lemsattributableto nonconvex facets.Figure4.6demonstratesanotherdifficulty. Again, two facets
 and� areincidentatasegment� , separatedby adihedralangleslightly lessthan ý�ì�ë î . Oneendpoint� of � is a
reflex vertex of 
 . Theincidentfacetregionsdefinedby thevertex � havethesameproblemweencountered
in Figure4.4: thelocal featuresizeatpoint 
 maybemuchlargerthanthedistancebetweenfacets
 and �
atpoint 
 .

In this case,however, the problemis unavoidable. Supposeonechoosesa definition of local feature
sizethatreflectsthedistancebetween
 and � at 
 . As 
 movestoward � , its local featuresizeapproaches
zero,suggestingthat infinitesimallysmall tetrahedraareneededto meshtheregion near � . Intuitively and
practically, ausefuldefinitionof local featuresizemusthave apositive lower bound.

Themismatchbetweenthedefinitionof local featuresizeproposedhereandthesmalldistancebetween
 and � at 
 reflectsa fundamentaldifficulty in meshingthe facetsof Figure4.6—adifficulty that is not
presentin Figure4.4. In Figure4.6, it is not possibleto meshthe region between
 and � at � without
resortingto poorly shapedtetrahedra.The facetsof Figure4.4 canbe meshedentirely with well-shaped
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Figure4.7: In a sufficiently small neighborhood around any vertex, a PLC looks like a set of rays emitted
from that vertex.

tetrahedra.My three-dimensionalDelaunayrefinementalgorithmoutlaws inputslikeFigure4.6,at leastfor
thepurposesof analysis.

Therearetwo reasonswhy it makessenseto usevisibility to defineincidentfeatures.First, if a point
 is not visible from a boundarypoint � of the samefacet,theremustbe an edge,not incidentto � , that
separates� from 
 . Second,if onestudiesa sufficiently smallneighborhoodarounda vertex, any facetor
segmentincidentto the vertex appearsto be a union of raysemanatingfrom that vertex, asillustratedin
Figure4.7. Hence,thelocal featuresizedoesnot approachzeroanywhere.Incidentally, examinationof an
arbitrarilysmallneighborhoodaroundeachvertex is sufficient to diagnoseproblemslike thatin Figure4.6,
becausetheonly input featuresthat threatenthe terminationof Delaunayrefinementarethosethatpersist
nomatterhow smallthetetrahedrabecome.

Lemma14,whichstatesthatlfs ������� lfs ������� � �!��� for any twopoints� and� , appliesto thisdefinitionof
localfeaturesizejustasit appliesin two dimensions.Theonlyprerequisitefor thecorrectnessof Lemma14,
besidesthetriangleinequality, is thattherebeaconsistentdefinitionof whichpairsof pointslie in incident
regions,andwhichdonot.

4.1.2 Orthogonal Projections

Frequentlyin thischapter, I will usethenotionof theorthogonalprojectionof ageometricentityontoa line
or plane.Givena facetor subfacet 
 anda point 
 , theorthogonalprojectionproj"#��
�� of 
 onto 
 is the
point that is coplanarwith 
 andsatisfiesthe requirementthat the line 
%$ proj" ��
��'& is orthogonalto 
 , as
illustratedin Figure4.8.Theprojectionexistswhetheror not it falls in 
 .

Similarly, theorthogonalprojectionproj()��
�� of 
 ontoa segmentor subsegment � is thepoint that is
collinearwith � andsatisfiestherequirementthatthedirectionof projectionis orthogonalto � .

Setsof points,aswell aspoints,may be projected. If 
 and � are facets,thenproj" �*�+� is the set,
proj" ��
��.-/
102�43 .
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F S

Figure4.8: The orthogonal projections of points and sets of points onto facets and segments.

4.2 Generalizationof Ruppert’s Algorithm to Thr eeDimensions

In this section,I describea three-dimensionalDelaunayrefinementalgorithmthat produceswell-graded
tetrahedralmeshesfor any circumradius-to-shortest edgeratioboundgreaterthantwo. Improvementsto the
algorithmaremadein later sections.Miller, Talmor, Teng,Walkington,andWang[67] have developeda
relatedalgorithm,whichwill bediscussedin somedetailin Section4.5.

4.2.1 Description of the Algorithm

Three-dimensionalDelaunayrefinementtakesa facet-boundedPLC asits input. Tetrahedralizedandunte-
trahedralizedregionsof spacemustbeseparatedby facetssothat,in thefinal mesh,any triangularfacenot
sharedby two tetrahedrais a subfacet. Thealgorithmbeginswith anunconstrainedDelaunaytetrahedral-
ization of the input vertices,momentarilyignoring the input segmentsandfacets.As in two dimensions,
the tetrahedralizationis thenrefinedby insertingadditionalverticesinto the mesh,usingan incremental
Delaunaytetrahedralizationmethodsuchasthe Bowyer/Watsonmethod[12, 93] or an edge/faceflipping
method[52, 78], until all segmentsandfacetsarepresentandall constraintson tetrahedronqualityaremet.
Vertex insertionis governedby threerules.

ð Thediametral sphere of a subsegmentis the(unique)smallestspherethatcontainsthesubsegment.
As in the two-dimensionalalgorithm,a subsegmentis encroachedif a vertex lies strictly insideits
diametralsphere,or if the subsegmentdoesnot appearin the tetrahedralization.Any encroached
subsegmentthatarisesis immediatelysplit by insertingavertex at its midpoint.SeeFigure4.9(a).ð Theequatorialsphere of a triangularsubfacetis the(unique)smallestspherethatpassesthroughthe
threeverticesof thesubfacet. (Theequatorof anequatorialsphereis thecircle definedby thesame
threevertices.)A subfacetis encroachedif a vertex lies strictly insideits equatorialsphere,or if the
subfacetis expectedto appearin the tetrahedralizationbut doesnot. (More on this shortly.) Each
encroachedsubfacetis normally split by insertinga vertex at its circumcenter. However, if a new
vertex would encroachuponany subsegment,it is not inserted;instead,all thesubsegmentsit would
encroachuponaresplit. SeeFigure4.9(b).ð A tetrahedronis saidto beskinnyif its circumradius-to-shortest edgeratio is larger thansomeboundú . (By thisdefinition,notall sliversareconsideredskinny.) Eachskinny tetrahedronis normallysplit
by insertingavertex at its circumcenter, thuseliminatingthetetrahedron;seeFigure4.9(c).However,
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(a) (b) (c)

Figure4.9: Three operations for three-dimensional Delaunay refinement. (a) Splitting an encroached sub-
segment. Dotted arcs indicate where diametral spheres intersect faces. The subsegment and the en-
croaching vertex could each be on the surface or in the interior of the mesh. (b) Splitting an encroached
subfacet. The triangular faces shown are subfacets of a larger facet, with tetrahedra (not shown) atop them.
A vertex in the equatorial sphere of a subfacet causes a vertex to be inserted at its circumcenter. Afterward,
all equatorial spheres (included the two illustrated) are empty. (c) Splitting a bad tetrahedron. A vertex is
inserted at its circumcenter.

if a new vertex would encroachuponany subsegmentor subfacet,thenit is not inserted;instead,all
the subsegmentsit would encroachuponaresplit. If the skinny tetrahedronis not eliminatedasa
result,thenall thesubfacetsits circumcenterwould encroachuponaresplit. (A subtlepoint is that,
if thetetrahedronis eliminatedby subsegmentsplitting, thealgorithmshouldnot split any subfacets
that appearduring subsegmentsplitting, or the boundsproven in the next sectionwill not be valid.
Lazyprogrammersbeware.)

Encroachedsubsegmentsaregivenpriority over encroachedsubfacets,which have priority over skinny
tetrahedra.

Thefirst obviouscomplicationis that if a facetis missingfrom themesh,it is difficult to saywhat its
subfacetsare.With segmentsthereis nosuchproblem;if asegmentis missingfrom themesh,anda vertex
is insertedat its midpoint,oneknows unambiguouslywherethetwo resultingsubsegmentsshouldbe. It is
lessclearhow to identify subfacetsthatdonotyetexist.

Thesolutionis straightforward. For eachfacet,it is necessaryto maintaina triangulationof its vertices,
independentfromthetetrahedralizationin whichwehopeits subfacetswill eventuallyappear. By comparing
thetrianglesof a facet’s triangulationagainstthefacesof thetetrahedralization,onecanidentify subfacets
thatneedhelpin forcing theirway into themesh.For eachtriangularsubfacetin a facettriangulation,look
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Facet Triangulation

MeshPLC

Figure4.10: The top illustrations depict a rectangular facet and its triangulation. The bottom illustrations
depict the facet’s position as an interior boundary of a PLC, and its progress as it is inserted into the tetra-
hedralization. Most of the vertices and tetrahedra of the mesh are omitted for clarity. The facet triangulation
and the tetrahedralization are maintained separately. Shaded triangular subfacets in the facet triangulation
(top center) are missing from the tetrahedralization (bottom center). The bold dashed line (bottom cen-
ter) represents a tetrahedralization edge that passes through the facet. Missing subfacets are forced into
the mesh by inserting vertices at their circumcenters (right, top and bottom). Each of these vertices is
independently inserted into both the triangulation and the tetrahedralization.

for a matchingfacein the tetrahedralization;if the latter is missing,inserta vertex at thecircumcenterof
thesubfacet(subjectto rejectionif subsegmentsareencroached),asillustratedin Figure4.10. Thevertex
is insertedinto both the tetrahedralizationandthe facettriangulation.Similarly, midpointsof encroached
subsegmentsareinsertedinto thetetrahedralizationandinto eachcontainingfacettriangulation.

In essence,Ruppert’s algorithmusesthesameprocedureto recover segments.However, theprocessof
forminga “one-dimensionaltriangulation”is sosimplethatit passesunnoticed.

Whichverticesof thetetrahedralizationneedto beconsideredin a facettriangulation?It is a fact,albeit
somewhat nonintuitive, that if a facetappearsin a Delaunaytetrahedralizationasa union of faces,then
the triangulationof the facetis determinedsolely by the verticesof the tetrahedralizationthat lie in the
planeof thefacet. If a vertex lies closeto a facet,but not in thesameplane,it maycausea subfacetto be
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Figure4.11: If a tetrahedron is Delaunay, the circumcircle of each of its faces is empty, because each face’s
circumcircle is a cross-section of the tetrahedron’s circumsphere.

missing(asin Figure4.10),but it cannotaffect the shapeof the triangulationif all subfacetsarepresent.
Why? Supposea subfacetof a facetappearsin thetetrahedralization.Thenthesubfacetmustbea faceof
a Delaunaytetrahedron.The subfacet’s circumcircleis empty, becauseits circumcircleis a cross-section
of the tetrahedron’s emptycircumsphere,as illustratedin Figure4.11. Therefore,if a facetappearsin a
Delaunaytetrahedralization, it appearsasa Delaunaytriangulation.BecausetheDelaunaytriangulationis
unique(exceptin nondegeneratecases),verticesthatdo not lie in theplaneof the facethave no effect on
how thefacetis triangulated.

Hence,eachseparatelymaintainedfacettriangulationneedonly considerverticeslying in theplaneof
thefacet.Furthermore,becauseeachfacetis segment-bounded,andsegmentsarerecovered(in thetetrahe-
dralization)beforefacets,eachfacettriangulationcansafelyignoreverticesthat lie outsidethefacet(even
in thesameplane).Therequirementssetforth in Section4.1.1ensurethatall of theverticesandsegmentsof
afacetmustbeexplicitly identifiedin theinputPLC.Theonly additionalverticesto beconsideredarethose
thatwereinsertedonsegmentsto forcesegmentsandotherfacetsinto themesh.Thealgorithmmaintainsa
list of theverticesoneachsegment,readyto becalleduponwhena facettriangulationis initially formed.

Unfortunately, if a facettriangulationis notuniquebecauseof cocircularitydegeneracies,thenthefore-
going statementaboutextraplanarverticeshaving no effect on the triangulationdoesnot apply. To be
specific,supposea facet triangulationhas four or more cocircularvertices,which are triangulatedone
way, whereasthe tetrahedralizationcontainsa setof facesthat triangulatethe sameverticeswith a dif-
ferent(but alsoDelaunay)setof triangles,as illustratedin Figure4.12. (If exact arithmeticis not used,
nearly-degeneratecasesmay teamup with floating-pointroundoff error to make this circumstancemore
common.)An aggressive implementationmight identify thesecasesandcorrectthe facettriangulationso
thatit matchesthetetrahedralization(it is notalwayspossibleto forcethetetrahedralizationto matchthetri-
angulation).However, insertinga new vertex at thecenterof thecollective circumcircleis alwaysavailable
asa lazyalternative.

To appreciatewhy I shouldchoosethis ratherunusualmethodof forcing facetsinto the mesh,it is
worthcomparingit with themostpopularmethod[48, 96, 79]. In many tetrahedralmeshgenerators,facets
are insertedby identifying pointswherethe edgesof the tetrahedralizationintersecta missingfacet,and
insertingverticesat thesepoints. The perils of sodoing areillustratedin Figure4.13. In the illustration,
a vertex is insertedwherea tetrahedralizationedge(bold dashedline) intersectsthe facet. Unfortunately,
theedgeintersectsthe facetnearoneof the boundingsegmentsof the facet,andthenew vertex createsa
featurethatmaybearbitrarily small. Afterward, theonly alternativesareto refinethe tetrahedranearthe
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Figure4.12:A facet triangulation and a tetrahedralization may disagree due to cocircular vertices. This oc-
currence may be diagnosed and fixed as shown here, or a new vertex may be inserted at the circumcenter,
removing the degeneracy.

Figure4.13: One may force a facet into a tetrahedralization by inserting vertices at the intersections of the
facet with edges of the tetrahedralization, but this method might create arbitrarily small features by placing
vertices close to segments.
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Figure4.14: The relationship between the insertion radii of the circumcenter of an encroached subfacet
and the encroaching vertex. Crosses identify the location of an encroaching vertex having maximum dis-
tance from the nearest subfacet vertex. (a) If the encroached subfacet contains its own circumcenter, the
encroaching vertex is no further from the nearest vertex of the subfacet than 5 6 times the circumradius of
the subfacet. (b) If the encroached subfacet does not contain its own circumcenter, the encroaching vertex
may be further away.

new vertex to a smallsize,or to move or remove thevertex. Somemeshgeneratorscopewith this problem
by smoothingtheverticesoneachfacetafterthefacetis competelyinserted.

My facetinsertionmethoddoesnot insertsuchverticesatall. A vertex consideredfor insertionsoclose
to a segmentis rejected,anda subsegmentis split instead.This would not necessarilybetrueif edge-facet
intersectionswere consideredfor insertion,becausesuchan intersectionmay be neara vertex lying on
the segment,andthusfail to encroachuponany subsegments. Subfacetcircumcentersarebetterchoices
becausethey arefar from thenearestvertices,andcannotcreatea new small featurewithout encroaching
uponasubsegment.

Anotheradvantageof my facetinsertionmethodis that if a subfacetis missingfrom the mesh,there
must be a vertex inside its equatorialsphere,or in a degeneratecase,several verticeson its equatorial
sphere.Hence,for thepurposesof analysis,missingsubfacetsmaybetreatedidentically to facetsthatare
presentbut encroached.As in thetwo-dimensionalcase,thesameis truefor missingsubsegments.

I shallpassimplementationdifficultiesasideto analyzethealgorithm. In analysis,however, subfacets
presentanothercomplication. It would be nice to prove, in the mannerof Lemma15, that whenever an
encroachedsubfacetis split at its circumcenter, theinsertionradiusof thenewly insertedvertex is noworse
than ï ê timessmallerthantheinsertionradiusof its parent.Unfortunately, this is not truefor thealgorithm
describedabove.

Considerthetwoexamplesof Figure4.14.If asubfacetthatcontainsits owncircumcenterisencroached,
then the distancebetweenthe encroachingvertex andthe nearestvertex of the subfacetis no morethanï ê timesthecircumradiusof thesubfacet. This distanceis maximizedif theencroachingvertex lies at a
poleof theequatorialsphere(wherethepolesarethetwo pointsof thespherefurthestfrom its equator),as
illustratedin Figure4.14(a).However, if asubfacetthatdoesnotcontainits own circumcenteris encroached,
thedistanceis maximizedif theencroachingvertex lies on theequator, equidistantfrom thetwo verticesof
thelongestedgeof thesubfacet,asin Figure4.14(b).Evenif theencroachingvertex is well away from the
equator, its distancefrom thenearestvertex of thesubfacetcanstill be larger than ï ê timesthe radiusof
theequatorialsphere.(I have confirmedthroughmy implementationthatsuchcasesdoarisein practice.)
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Figure4.15: An encroached subfacet 7 that contains neither its own circumcenter � nor the projection of
the encroaching vertex 	 onto the plane containing 7 .

Ratherthansettlefor a looserguaranteeon quality, onecanmake a smallchangeto thealgorithmthat
will yield a ï ê bound. Let 8 beanencroachedsubfacetthat doesnot containits own circumcenter� , as
illustratedin Figure4.15.Let 9 and: beverticesof 8 , with 9;: theedgethatseparates8 from � . Let 
 bethe
vertex thatencroachesupon 8 ; 
 will betheparentof � if thealgorithmattemptsto insert � .

Let 
 be the facet that contains 8 . Let proj" ��
�� be the orthogonalprojectionof 
 onto the plane
containing
 (andhence8 ). If proj" ��
�� lies on thesamesideof 9;: as 8 (or on 9;: ), thereis noproblem;the
ratio <>=<@? cannotbegreaterthan ï ê . However, if proj" ��
�� lies on the samesideof 9�: as � (asillustrated),
thereis nosuchguarantee.

In the lattercase,however, onecanshow (with thefollowing lemma)that thereis someothersubfacetA of 
 thatis encroachedby 
 andcontainsproj" ��
�� . (Therearetwo suchsubfacetsif proj" ��
�� falls onan
edge.)Onecanachieve thedesiredboundby modifying thealgorithmto split A first anddelaythesplitting
of 8 indefinitely.

Lemma 26(Projection Lemma) Let 8 bea subfacetof theDelaunaytriangulatedfacet 
 . Supposethat8 is encroachedby somevertex 
 strictly insidetheequatorialsphere of 8 , but 
 doesnot encroach upon
anysubsegmentof 
 . Thenproj"B��
�� falls within the facet 
 , and 
 encroachesupona subfacetof 
 that
containsproj" ��
�� .
Proof: First, I prove thatproj"#��
�� falls inside 
 , usingsimilar reasoningto thatemployed in Lemma13.
Supposefor thesake of contradictionthatproj" ��
�� falls outsidethefacet 
 . Let C be thecentroidof 8 ; C
clearly lies inside 
 . Becauseall facetsaresegment-bounded,the line segmentconnectingC to proj" ��
��
mustintersectsomesubsegment D . Let E betheplanethatcontainsD andis orthogonalto 
 , asillustrated
in Figure4.16(a).

Because8 is a Delaunaysubfacetof 
 , its circumcircle(in theplaneof 
 ) containsno verticesof 
 .
However, its equatorialspheremaycontainvertices—including
 —and 8 might not appearin thetetrahe-
dralization.

It is apparentthat
 andproj" ��
�� lie onthesamesideof E , astheprojectionis definedorthogonallyto 
 .
Saythatapoint is inside E if it is on thesamesideof E as C , andoutsideE if it is on thesamesideas
 and
proj" ��
�� . Becausethecircumcenterof 8 lies in 
 (Lemma13), andthecircumcircleof 8 cannotenclose
theendpointsof D ( 8 is Delaunayin 
 ), theportionof 8 ’s equatorialsphereoutsideE lies entirely inside
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Figure4.16:Two properties of encroached Delaunay subfacets. (a) If a vertex 	 encroaches upon a Delau-
nay subfacet 7 of a facet � , but its projection into the plane containing � falls outside � , then 	 encroaches
upon some subsegment F of � as well. (b) If a vertex 	 encroaches upon a subfacet 7 of a Delaunay trian-
gulated facet � , but does not encroach upon any subsegment of � , then 	 encroaches upon the subfacet(s)G of � that contains projHJIK	�L .
thediametralsphereof D (asthefiguredemonstrates).Because
 is strictly insidetheequatorialsphereof8 , 
 alsolies strictly within thediametralsphereof D , contradictingtheassumptionthat 
 encroachesupon
nosubsegmentof 
 .

It follows thatproj" ��
�� mustbecontainedin somesubfacetA of 
 . (Thecontainmentis notnecessarily
strict;proj" ��
�� mayfall onanedgeinterior to 
 , andbecontainedin two subfacets.)To completetheproof
of the lemma,I shall show that 
 encroachesupon A . If 8�û A the resultfollows immediately, soassume
that 8NMû A .

Again, let C bethecentroidof 8 . Theline segmentconnectingC to proj" ��
�� mustintersectsomeedgeO of thesubfacet A , asillustratedin Figure4.16(b).Let P betheplanethatcontainsO andis orthogonalto
 . Saythat a point is on the A -side if it is on the samesideof P as A . Becausethe triangulationof 
 is
Delaunay, theportionof 8 ’s equatorialsphereon the A -sideis entirelyenclosedby theequatorialsphereofA . Thepoint 
 lies on the A -sideor in P (becauseproj"B��
�� is containedin A ), and 
 lies strictly within the
equatorialsphereof 8 , so it mustalsolie strictly within theequatorialsphereof A , andhenceencroaches
upon A . Q

Thereis onecasenotcoveredby theProjectionLemma.If 8 is missing,theclosestencroachingvertex �
might lie preciselyon theequatorialsphereof 8 , andalsolie preciselyon thediametralsphereof D , thereby
failing to encroachD . In this case,however, thecircumcenterof 8 preciselycoincideswith themidpointofD . Hence,thealgorithm’s behavior will benodifferentthanif D wereencroachedby � .

Oneway to interprettheProjectionLemmais to imaginethat the facet 
 is orthogonallyextendedto
infinity, sothateachsubfacetof 
 definesaninfinitely long triangularprism(Figure4.17).Eachsubfacet’s
equatorialspheredominatesits prism,in thesensethat thespherecontainsany point in theprismthat lies
within theequatorialsphereof any othersubfacetof 
 . If a vertex 
 encroachesuponany subfacetof 
 ,
then
 encroachesuponthesubfacetin whoseprism 
 is contained.If 
 encroachesuponsomesubfacetof
 but is containedin noneof theprisms,then
 alsoencroachesuponsomeboundarysubsegmentof 
 .

In the latter case,any boundarysubsegmentsencroacheduponby 
 aresplit until noneremains.The
ProjectionLemmaguaranteesthatany subfacetsof 
 encroacheduponby 
 areeliminatedin theprocess.
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Figure4.17: Each subfacet’s equatorial sphere dominates the triangular prism defined by extending the
subfacet orthogonally.

On the otherhand,if the vertex 
 is containedin the prism of a subfacet A , andno subsegmentsare
encroached,thensplitting A is a goodchoice. Several new subfacetswill appear, at leastone of which
containsproj" ��
�� ; if this subfacet is encroached,then it is split as well, and so forth until the subfacet
containingproj" ��
�� is not encroached.The ProjectionLemmaguaranteesthat any othersubfacetsof 

encroacheduponby 
 (thosethatdonotcontainproj"���
�� ) areeliminatedin theprocess.

4.2.2 Proof of Termination

The proof of terminationfor the three-dimensionalcaseis similar to that of the two-dimensionalcase.
Assumethat in the input PLC, any two incidentsegmentsareseparatedby an angleof ò�ë|î or greater. If
a segmentmeetsa facetat onevertex, andtheprojectionof thesegmentonto thefacet(usinga projection
directionorthogonalto the facet)intersectsthe interior of the facet,thentheangleseparatingthesegment
from thefacetmustbegreaterthan RTSKº.ºVUXWüóõ ô õ ìû òRñ ìY� î . If theprojectionof thesegmentdoesnot intersect
theinteriorof thefacet,theProjectionLemmaimpliesthatnovertex on thesegmentcanencroachuponany
subfacetof thefacetwithout alsoencroachingupona boundarysegmentof thefacet,sothe ò�ë î separation
betweensegmentsis sufficient to ensuretermination.

The condition for two incident facetsis morecomplicated. If both facetsareconvex and meetat a
segment,thenit is sufficient for thefacetsto beseparatedby a dihedralangleof ñ�ë î or greater. In general,
thetwo facetsmustsatisfythefollowing projectioncondition.

For any vertex � wheretwo facets
 and � meet,let visZ[�\
]� be the facetregion of 
 visible from � ,
anddefinevisZ^�*�+� likewise. By definition,visZ[�\
]� andvisZ[�*�]� areincidentfacetregions.No pointof the
orthogonalprojectionof visZ^�\
]� onto � mayfall in the interior of visZ[�*�+� . Anotherway to word it is to
saythatvisZ �\
]� is disjoint from theinteriorof theprismformedby projectingvisZ �*�]� orthogonally(recall
Figure4.17). Formally, for any point � on 
`_a� , theprojectionconditionrequiresthatprojb#� visZ[�\
]�c�%_
interior� visZ[�*�+�c� ûed . This condition is equivalent to the conversecondition, in which 
 and � trade
places.
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Thepayoff of this restrictionis that,by Lemma26,no vertex in visZ^�\
]� mayencroachupona subfacet
containedentirely in visZ^�*�+� without alsoencroachingupona subsegmentof � or a subfacetof � not
entirely in visZ^�*�+� . Theconverseis alsotrue. Thepurposeof this conditionis to preventany vertex from
splittinga subfacetin anincidentfacetregion. Otherwise,subfacetsmight besplit to arbitrarilysmallsizes
throughmutualencroachmentin regionsarbitrarilycloseto � .

Theprojectionconditionjust definedis alwayssatisfiedby two facetsseparatedby a dihedralangleof
exactly ñ�ë|î . It is alsosatisfiedby facetsseparatedby a dihedralanglegreaterthan ñ�ë|î if the facetsmeet
eachotheronly atsegmentswhoseendpointsarenotreflex verticesof eitherfacet.(RecallFigure4.6,which
depictstwo facetsthat areseparatedby a dihedralanglegreaterthan ñ�ë|î but fail the projectioncondition
because� is a reflex vertex of 
 .)

Thefollowing lemma,whichextendsLemma15to threedimensions,is truefor theDelaunayrefinement
algorithmdescribedheretofore,if oneis carefulnever to split anencroachedsubfacet8 thatcontainsneither
its own circumcenternor the projectionprojfg��
�� of the encroachingvertex 
 . (Even more liberally, an
implementationcaneasilymeasuretheinsertionradii of theparentandits potentialprogeny, andmaysplit8 if thelatteris no lessthan óô õ timestheformer.)

Theinsertionradiusis definedasbefore: h/Z is thelengthof theshortestedgeincidentto � immediately
after � is inserted.Theparentof a vertex is definedasbefore,with the following amendments.If � is the
circumcenterof a skinny tetrahedron,its parent
%����� is themostrecentlyinsertedendpointof theshortest
edgeof that tetrahedron.If � is the circumcenterof anencroachedsubfacet,its parentis the encroaching
vertex closestto � (whetherthatvertex is insertedor rejected).

Lemma 27 Let � bea vertex of themesh,and let 
�ûi
%���j� be its parent, if oneexists. Theneither h/Zlk
lfs ���j� , or h/Zmkonphrq , whereð n û�ú if � is thecircumcenterof a skinnytetrahedron,ð n û óô õ if � is the midpointof an encroached subsegmentor the circumcenterof an encroached

subfacet,and 
 is rejectedfor insertion,ð n û óõts*ucv/w if � and 
 lie on incidentsegmentsseparatedby an angleof x , or if � lies in theinterior
of a facetincidentto a segmentcontaining
 at anangle x , where ÿ � îy�zx|{�ñ�ë|î ,ð n û}W�~��#x if � and 
 arepositionedasin thepreviouscase, but with xN�'ÿ � î , andð n û v ÷Ëù wô õ if � and 
 lie within facetregionsthatare incidentat a segment� , if proj(���
�� lieswithin �
(this caseis includedonly to demonstratewhyit shouldbeavoided),

or � and 
 lie within incidentfacetregionsthatdonotmeetat a segment� for which proj()��
�� lieswithin � .
For thiscase(which shouldalsobeavoided),I offer noanalysis.

If onethinks of a subsegment’s midpoint asits circumcenter, onecanseethis lemmaashaving a hi-
erarchicalform: if thecircumcenterof a simplex encroachesupona lower-dimensionalsimplex, thenthe
circumcenteris rejectedfor insertion,andthecircumcenterof thelower-dimensionalsimplex hasaninser-
tion radiusup to ï ê timessmallerthanthatof therejectedcircumcenter. If thecircumcenterof a simplex
encroachesuponanothersimplex having equalor higherdimension,thenthecircumcenterof thelatterhas
aninsertionradiusthatdependsin parton theanglebetweenthetwo simplices.I expectthis framework to
generalizeto higherdimensions,andwill elaboratein Section4.7.
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Proof of Lemma 27: If � is an input vertex, the circumcenterof a tetrahedron,or the midpoint of an
encroachedsubsegment,thenit maybetreatedexactlyasin Lemma15. Onecasefrom thatlemmais worth
briefly revisiting to show thatnothingessentialhaschanged.

If � is insertedat themidpointof anencroachedsubsegmentD , andits parent
)ûN
%����� is acircumcenter
(of a tetrahedronor subfacet)thatwasconsideredfor insertionbut rejectedbecauseit encroachesupon D ,
then 
 lies strictly insidethe diametralsphereof D . Becausethe circumsphere/circumcircle centeredat 

containsno vertices,andin particulardoesnot containtheendpointsof D , h/Z�� < =ô õ ; seeFigure4.18(a)for
anexamplewheretherelationis nearlyequality. Notethatthechangefrom circles(in thetwo-dimensional
analysis)to spheresmakes little difference.Perhapsthe clearestway to seethis is to observe that if one
takes a two-dimensionalcross-sectionthat passesthrough D and 
 , the cross-sectionis indistinguishable
from thetwo-dimensionalcase.(Thesameargumentcanbemadefor thecasewhere
 and � lie on incident
segments.)

Only thecircumstancewhere � is thecircumcenterof anencroachedsubfacet 8 remains.Let 
 bethe
facetthatcontains8 . Therearefour casesto consider.ð If theparent
 is an input vertex, or lies in a segmentor facetregion not incidentto any facetregion

containing� , thenlfs ���j�B��h Z .ð If 
 is a tetrahedroncircumcenterthatwasconsideredfor insertionbut rejectedbecauseit encroaches
upon 8 , then
 lies strictly insidetheequatorialsphereof 8 . Becausethetetrahedralizationis Delau-
nay, thecircumspherecenteredat 
 containsno vertices,soits radiusis limited by thenearestvertex
of 8 . By assumption,8 containseitherits own circumcenteror projf���
�� . In the formercase, < ?<*= is
minimizedwhen
 is at thepoleof 8 ’sequatorialsphere,asillustratedin Figure4.18(b).In thelatter
case, < ?<>= is minimizedwhenprojfj��
�� is the intersectionof 8 ’s longestedgeandthe bisectorof its

second-longestedge,asillustratedin Figure4.18(c).In eithercase,h�Zm�e<>=ô õ .ð If 
 wasinsertedonasegmentthatis incidentto 
 atonevertex � , separatedby anangleof xNk'ÿ � î
(Figure4.18(d)),thesharedvertex � cannotlie insidetheequatorialsphereof 8 becausethefacet 

is Delaunay. (This is trueeven if 8 doesnot appearin the tetrahedralization.) Becausethesegment
andfacetareseparatedby anangleof x , theangle �g
!�[� is at least x . Because8 is encroachedupon
by 
 , 
 lies insideits equatorialsphere.(If 8 is not presentin the tetrahedralization,
 might lie on
its equatorialspherein a degeneratecase.) Analogouslyto the caseof two incidentsegments(see
Lemma15), if x�kÁÿ � î , then <@?< = is minimizedwhentheradiusof theequatorialsphereis h Z û�� �/
�� ,
and
 liesonthesphere.(If theequatorialspherewereany smaller, it couldnotcontain
 .) Therefore,h�Zmk < =õXs'ucv�w . If x|��ÿ � î , then <@?<>= is minimizedwhen �¯û projf ��
�� ; therefore,h�Z+k�hrq�W�~��#x .ð If 
 and � lie within two facetregions that are incidentat a segment � , the analysisis lessopti-
mistic than the previous casebecausethere is no vertex that serves the function that � serves in
Figure4.18(d). As Figure4.19shows, theequatorialspherecenteredat � is not constrainedby the
segment � (althoughit is constrainedby theverticeson � ).

To find the minimum possiblevalueof < ?<>= , considerthe point proj()��
�� , which (by assumption)lies
on somesubsegment D of thesegment � . Let � be thedistancefrom 
 to proj()��
�� . Because
 does
notencroachupon D (otherwise,thealgorithmwouldsplit D in preferenceto 8 ), thesmallestpossible
valueof �< = is óô õ .

In theabsenceof any constraints,h�Z û�� ��
�� is minimizedwhen ��û proj" ��
�� , with theline segment��
 orthogonalto 
 . With this choiceof � , theangle �g
%$ 
gh���: ( ��
��'&�� is preciselythedihedralangle x
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Figure4.18:The relationship between the insertion radii of a child and its parent. (a) When a subsegment
is encroached upon by a circumcenter, the child’s insertion radius may be arbitrarily close to a factor of 5 6
smaller than its parent’s. (b) When a subfacet that contains its own circumcenter is encroached upon by
the circumcenter of a skinny tetrahedron, the child’s insertion radius may be arbitrarily close to a factor of5 6 smaller than its parent’s. (c) A bound better than 5 6 applies to a subfacet that does not contain its own
circumcenter, but does contain the projection of the encroaching vertex. (d) When a subfacet is encroached
upon by the midpoint of a subsegment, and the corresponding facet and segment are incident at one vertex,
the analysis differs little from the case of two incident segments.

separatingthetwo facets.Hence,theminimumvalueof <�?� is W�~��#x . Combiningthis with theresult
of the previous paragraph,< ?<*= k v ÷Ëù wô õ . Note that,unlike the casewherea segmentmeetsa facetor
anothersegment,theworstcaseis notachievedwith 
 ontheequatorialsphereof 8 for any angleless
than ñ�ë|î . Q

Lemma27 providesthe informationoneneedsto ensurethat Delaunayrefinementwill terminate.As
with thetwo dimensionalalgorithms,thekey is to preventany cycle whereinmeshverticesbegetchainsof
descendantswith ever-smallerinsertionradii (Figure4.20).

Meshverticesaredividedinto four classes:input vertices(which cannotcontribute to cycles),vertices
insertedinto segments,verticesinsertedinto facetinteriors,andfree verticesinsertedat circumcentersof
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Figure4.19: When two incident facet regions are separated by an angle less than ��� � , and a subfacet of
one is encroached upon by a vertex in the interior of the other, the child’s insertion radius è�� may be smaller
than its parent’s insertion radius èc� . Hence, a ��� � minimum separation is imposed.

Circumcenters

Subfacet

Circumcenters

Tetrahedron

�

�

�
� �

�

�

�

�

�
� óõts*ucv/w� óô õ

���

� óô õ

Midpoints

Subsegment

� óõts*ucv/w

� óô õ

Figure4.20: Dataflow diagram illustrating the worst-case relation between a vertex’s insertion radius and
the insertion radii of the children it begets. If no cycle has a product smaller than one, the three dimensional
Delaunay refinement algorithm will terminate.
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tetrahedra.As we have seen,free verticescanfatherfacetverticeswhoseinsertionradii aresmallerby a
factorof ï ê , andthesefacetverticesin turncanfathersegmentverticeswhoseinsertionradii aresmallerby
anotherfactorof ï ê . Hence,to avoid spirallinginto theabyss,it is importantthatsegmentverticescanonly
fatherfreeverticeswhoseinsertionradii areat leasttwiceaslarge.Thisconstraintfixesthebestguaranteed
circumradius-to-shortestedgeratioat ú ûÁê .

Theneedto preventdiminishingcyclesalsoengenderstherequirementthat incidentsegmentsbesep-
aratedby anglesof ò�ë î or more,just asit did in the two-dimensionalcase.A segmentincidentto a facet
mustbeseparatedby anangleof at least RTS;º.ºVUXW óõ ô õ ìû�òRñ ìY�Rî sothatif a vertex on thesegmentencroaches

uponasubfacetof thefacet,thechild thatresultswill haveaninsertionradiusat least ï ê largerthanthatof
its parent.(Recallfrom Lemma27 that h/Zmk <>=õXs*ucv/w .)

Theorem 28 Let lfs öø÷Ëù be the shortestdistancebetweentwo nonincidententities(vertices,segments,or
facets)of theinput PLC.Supposethat anytwo incidentsegmentsare separatedbyan angleof at least ò�ë|î ,
any two incidentfacetregionssatisfytheprojectioncondition,andanysegmentincidentto a facetat one
vertex is separatedfromit byanangleof at least RTS;º.ºVUXW óõ ô õ or satisfiestheprojectioncondition.

Supposea tetrahedron is consideredto beskinnyif its circumradius-to-shortestedgeratio is larger thanú�küê . The three-dimensionalDelaunayrefinementalgorithm describedabove will terminate, with no
tetrahedralizationedge shorterthan lfs öø÷Ëù .
Proof: Supposefor thesake of contradictionthat thealgorithmintroducesoneor moreedgesshorterthan
lfs öø÷Ëù into the mesh. Let O be the first suchedgeintroduced.Clearly, the endpointsof O cannotboth be
inputvertices,norcanthey lie onnonincidentsegmentsor facetregions.Let � bethemostrecentlyinserted
endpointof O .

By assumption,no edgeshorterthanlfs öø÷Ëù existedbefore � wasinserted.Hence,for any ancestor� of� , h��4k lfs öø÷Ëù . Let 
 û�
%����� betheparentof � , let A û�
%��
�� bethegrandparentof � (if oneexists),andlet  û�
%� A � bethegreat-grandparentof � (if oneexists). Becauseof theprojectioncondition, � and
 cannot
lie on incidentfacetregions.Considerthefollowing cases.ð If � is thecircumcenterof a skinny tetrahedron,thenby Lemma27, h/Zmk�ú]h�q]k
ê¡hrq .ð If � is themidpointof anencroachedsubsegmentor thecircumcenterof anencroachedsubfacet,and
 is thecircumcenterof askinny tetrahedron,thenby Lemma27, h/Zmk óô õ h�q¢k¤£ô õ h/¥pk$ï ê¡h/¥ .ð If � is themidpointof anencroachedsubsegment,
 is thecircumcenterof anencroachedsubfacet,

andA is thecircumcenterof askinny tetrahedron,thenbyLemma27, h/Z]k óô õ hrq4käóõ h/¥pk�£ õ h�¦¢k�h�¦ .ð If � and
 lie on incidentsegments,thenby Lemma27, h/Zmk < =õts*ucv�w . BecausexNk�ò�ë î , h�Zmk�hrq .ð If � is thecircumcenterof anencroachedsubfacetand
 liesonasegmentincident(atasinglevertex)
to thefacetcontaining� , thenby Lemma27, h�Zmk < =õXs'ucv/w . BecausexNkzRTS;º.ºVUXW óõ ô õ , h/Zmk$ï ê¡h�q .ð If � is themidpointof anencroachedsubsegment,
 is the(rejected)circumcenterof anencroached
subfacet,and A lies on a segment incident (at a single vertex) to the facetcontaining
 , then by
Lemma27, h Z k óô õ h q k óõ ô õts*ucv/w h ¥ . Becausex|k�RTS;º.ºVUXW óõ ô õ , h Z k�h ¥ .
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ð If � is themidpointof anencroachedsubsegment,and
 hasbeeninsertedon a nonincidentsegment
or facetregion, thenby thedefinitionof parent,
g� is theshortestedgeintroducedby theinsertionof� . Because
 and � lie on nonincidententities,
 and � areseparatedby a distanceof at leastlfs öø÷Ëù ,
contradictingtheassumptionthat O haslengthlessthanlfs öø÷Ëù .

In thefirst six cases,hrq¢k�h�� for someancestor� of 
 in themesh.It follows that hrq¢k lfs öø÷Ëù , contradicting
theassumptionthat O haslengthlessthanlfs öø÷Ëù . Becausenoedgeshorterthanlfs öø÷Ëù is ever introduced,the
algorithmmustterminate. Q
4.2.3 Proof of GoodGrading

As with the two-dimensionalalgorithm,a strongerterminationproof is possible,showing that all edges
in thefinal meshareproportionalin lengthto the local featuresizesof their endpoints,andthusensuring
nicely gradedmeshes.Theproof makesuseof Lemma17, which generalizesunchangedto threeor more
dimensions.Recall that the lemmastatesthat if h Z k§nyh q for somevertex � with parent
 , then their

lfs-weightedvertex densitiesarerelatedby theformula ¨¢Zbû lfs © Z�ª<�? � ý.�¬« =­ .

Lemma 29 Supposethe quality bound ú is strictly larger than ê , and all anglesbetweensegmentsand
facetssatisfytheconditionslistedin Theorem28,with all inequalitiesreplacedbystrict inequalities.

There exist fixedconstants̈4®¯küý , ¨ " küý , and ¨ ( küý such that, for any vertex � inserted(or
rejected)at thecircumcenterof a skinnytetrahedron, ¨¢Z°�±¨4® ; for anyvertex � inserted(or rejected)at
thecircumcenterof anencroachedsubfacet,̈¢Z4��¨ " ; andfor anyvertex � insertedat themidpointof an
encroachedsubsegment,̈¢Z �±¨ ( . Hence, the insertionradiusof everyvertex is proportional to its local
feature size.

Proof: Considerany non-inputvertex � with parent
 û|
%����� . If 
 is aninputvertex, then ¨ q û lfs © q²ª< = �Xý .
Otherwise,assumefor thesakeof inductionthatthelemmais truefor 
 . Hence,̈ q �z³�R¡´ , ¨ ®¶µ ¨ " µ ¨ ( 3 .

First, suppose� is insertedor consideredfor insertionat thecircumcenterof a skinny tetrahedron.By
Lemma27, h/Z¢k$ú4hrq . Therefore,by Lemma17, ¨¢Z·�dý�� ö¹¸�º�» «½¼g¾ «½¿À¾ «%Á�Â£ ì It follows thatonecanprove
that ¨¢Z+��¨4® if ¨4® is chosensothat

¨4®ÃkXý.� ³�R¡´ , ¨4® µ ¨ " µ ¨ ( 3ú ì (4.1)

Second,suppose� is insertedor consideredfor insertionatthecircumcenterof asubfacet8 . If its parent
 is an input vertex or lies on a segmentor facetregion not incidentto the facetregion containing� , then
lfs ���j�y�ih Z , andthetheoremholds. If 
 is thecircumcenterof a skinny tetrahedron(rejectedfor insertion
becauseit encroachesupon 8 ), h/Zmke<*=ô õ by Lemma27,soby Lemma17, ¨¢Z+�Xý¶�
ï êT¨4® .

Alternatively, if 
 lies on a segmentincidentto thefacetcontaining8 , then h Z k < =õXs*ucv²w by Lemma27,
andthusby Lemma17, ¨¢Z]�Xý.��êT¨ ( ºVUXWgx . It follows thatonecanprove that ¨¢Z+�z¨ " if ¨ " is chosen
sothat

¨ " k ý.� ï êT¨4® µ and (4.2)¨ " k ý.��êT¨ ( ºVUXWgx ì (4.3)
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Third, suppose� is insertedat themidpointof a subsegment D . If its parent
 is an input vertex or lies
on a segmentor facetregion not incidentto thesegmentcontainingD , thenlfs ���j�¢�Äh/Z , andthe theorem
holds.If 
 is thecircumcenterof askinny tetrahedronor encroachedsubfacet(rejectedfor insertionbecause
it encroachesupon D ), h/Zmk < =ô õ by Lemma27,soby Lemma17, ¨¢Z+�Xý.��ï ê�³ÅR¡´ , ¨4® µ ¨ " 3 .

Alternatively, if 
 and� lie onincidentsegments,thenh/Z]k <>=õts'ucv/w byLemma27,andthusbyLemma17,¨¢Zm�XýB��êT¨ ( ºVUXW�x . It follows thatonecanprove that ¨¢Z]�z¨ ( if ¨ ( is chosensothat

¨ ( k ýB� ï êJ³�R¡´ , ¨4® µ ¨ " 3 and (4.4)¨ ( k ýB��êT¨ ( ºVUXWgx ì (4.5)

If thequality bound ú is strictly larger than ê , conditions4.1,4.2,and4.4aresimultaneouslysatisfied
by choosing

¨4®�û ú`��ýB��ï êú±Æ�ê µ ¨ " û � ý.��ï êX�3úÇ�
ï êúÈÆ¼ê µ ¨ ( û �>�É��ï êX�3úú±Æ�ê ì
If thesmallestanglex " ( betweenany facetandany segmentis strictly greaterthanRTSKº.ºVUXW¦óõ ô õ ìû$òRñ ìY� î ,

conditions4.3and4.4maybesatisfiedby choosing

¨ " û ý.��ê�ºVUXWgx " (ýÊÆ¼ê�ï êÍºVUXW!x " ( µ ¨ ( û ý.��ï êý�Æ¼ê�ï êÍºVUXW!x " ( µ
if thesevaluesexceedthosespecifiedabove. In this case,adjust ¨4® upward if necessaryaccordingto
condition4.1.

If thesmallestangle x (t( betweentwo segmentsis strictly greaterthan ò�ë|î , condition4.5maybesatis-
fiedby choosing ¨ ( û ýý#Æ�ê�ºVUXWgx (t( µ
if this valueexceedsthosespecifiedabove. In this case,adjust ¨4® and ¨ " upward if necessaryaccording
to conditions4.1and4.2. Q

Note thatas ú approachesê , x (t( approachesò�ë|î , or x " ( approachesRTS;º.ºVUXW óõ ô õ , thevaluesof ¨4® ,¨ " , and ¨ ( approachinfinity.

Theorem 30 For anyvertex � of theoutputmesh,thedistanceto its nearestneighboris at least lfs © Z�ª«½ÁTË ó .
Proof: Inequality4.4 indicatesthat ¨ ( is larger than ¨4® and ¨ " . Theremainderof theproof is identical
to thatof Theorem19. Q

To provide an example,supposeú û0ê ì � andthe input PLC hasno acuteangles. Then ¨4® ìû0ñ ìYÌ ,¨ " ìû ý�ÿEìKñ , and ¨ ( ìû$êRê ì"ý . Hence,thespacingof verticesis atworstaboutê�� timessmallerthanthelocal
featuresize.

As Figure4.21shows, thealgorithmperformsmuchbetterin practice.Theupperleft meshis theinitial
tetrahedralizationafterall segmentsandfacetsareinsertedandunwantedtetrahedrahavebeenremovedfrom
the holes. (Somesubsegmentsremainencroachedbecauseduring the segmentandfacetinsertionstages,
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Initial tetrahedralizationaftersegmentandfacet
insertion.54vertices,114tetrahedra.

ú û ý�ìËÿ , Í=öø÷Ëù�û � ìËÿ�ê î , ÍMö¹¸�ºbû ý=í ý�ìYÌ|í î ,  öø÷Ëù ûdý�ìKê � , 110vertices,211tetrahedra.

úaû ý�ìKê , Í=öø÷Ëùbû$ê ì ëEý�î , ÍMö¹¸�ººû ý=í � ìYÌRñRî ,  öø÷Ëù�û$ë¢ì � , 468vertices,1206tetrahedra.
ú û ý�ì"ý , Í=öø÷Ëù�û�ë¢ìKòRñRî , ÍMö¹¸�ºbû ý=íTÌ ìYÌ��Rî ,  öø÷Ëùbû$ë¢ìY�Rò , 1135vertices,3752tetrahedra.

úaû ý�ì ë � , Í öø÷Ëù û ý�ì ëEý î , Í ö¹¸�º û ý=íTÌ ìKê¢ý î ,  öø÷Ëù�û$ë¢ìKê4ÿ , 2997vertices,11717tetrahedra.
ú û ý�ì ë�ÿ , Í öø÷Ëù û ý�ì ëEý î , Í ö¹¸�º û ý=íTÌ ìKê¢ý î ,  öø÷Ëùbû$ë¢ì"ý/� , 5884vertices,25575tetrahedra.

Figure4.21: Several meshes of a Î��pÏÐÎ��pÏÐÎ�� PLC generated with different bounds ( Ñ ) on quality. Below
each mesh is listed the smallest dihedral angle ÒVÓ�Ô Õ , the largest dihedral angle ÒVÓ�Ö'× , and the shortest edge
length ØXÓ�Ô Õ . The algorithm does not terminate on this PLC for a bound of ÑzÙ�Î�Ú ��Û .
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Figure4.22:At left, a mesh of a truncated cube. At right, a cross-section through a diagonal of the top face.

Figure4.23:A counterexample demonstrating that the three-dimensional Delaunay refinement algorithm is
not size-optimal.

my implementationonly splitsanencroachedsubsegmentif it is missingor it is partof thefacetcurrently
beinginserted.)After all encroachedsubsegmentsandsubfacetshave beensplit (upperright), the largest
circumradius-to-shortestedgeratio is alreadylessthan ý�ìËÿ , which is muchbetterthantheprovenboundofê . The shortestedgelengthis ý�ìKê � , andlfs öø÷Ëù û ý , so the spectreof edgelengthsê�� timessmallerthan
thelocal featuresizehasnotmaterialized.As thequalityboundú decreases,thenumberof elementsin the
final meshincreasesgracefullyuntil ú dropsbelow ý�ì ë � . At úaû ý�ì ëX� , thealgorithmfails to terminate.

Not surprisingly, the objectdepictedis slightly harderto tetrahedralizeif the unwantedtetrahedraare
not removedfrom theholesbeforerefining.At úaû ý�ì ë|ò , thealgorithmfails to terminate.

Figure4.22offersa demonstrationof thegradingof a tetrahedralizationgeneratedby Delaunayrefine-
ment. A cubehasbeentruncatedat onecorner, cuttingoff a portionwhosewidth is one-millionththatof
thecube.Althoughthismeshsatisfiesaqualityboundof ú ûdý�ìKê , goodgradingis verymuchin evidence.

Unfortunately, the proof of goodgradingdoesnot yield a size-optimalityproof as it did in the two-
dimensionalcase. Gary Miller and Dafna Talmor (private communication)have pointedout the coun-
terexampledepictedin Figure4.23. Insidethis PLC, two segmentspassvery closeto eachotherwithout
intersecting.The PLC might reasonablybe tetrahedralizedwith a few dozentetrahedrahaving bounded
circumradius-to-shortest edgeratios, if thesetetrahedrainclude a sliver tetrahedronwhosefour vertices
aretheendpointsof the two internalsegments.However, thebestmy Delaunayrefinementalgorithmcan
promiseis to fill theregionwith tetrahedrawhoseedgelengthsareproportionalto thedistancebetweenthe
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two segments.Becausethisdistancemaybearbitrarilysmall,thealgorithmis notsize-optimal.

4.3 DelaunayRefinementwith Equatorial Lenses

In thissection,I improve theDelaunayrefinementalgorithmby replacingequatorialsphereswith equatorial
lenses,whicharesimilar to theChew-inspireddiametrallensesintroducedin Section3.4.Thismodification
ensuresthatthealgorithmterminatesandproduceswell-gradedmeshesfor any boundon circumradius-to-
shortestedgeratiogreaterthan

õ ô õô � ìû ý�ìKò�� , whichis asignificantimprovementover theboundof two given
for Delaunayrefinementwith equatorialspheres.

4.3.1 Description of the Algorithm

My lens-basedalgorithmbeginswith theDelaunaytetrahedralizationof afacet-boundedPLC,andperforms
Delaunayrefinementwith locked subsegmentsandsubfacets. A constrainedDelaunaytetrahedralization
would be ideal if onecould be generated,but this is not generallypossible,so the algorithmattemptsto
recover all missingsegmentsfirst, andthenall missingfacets,locking eachsubsegmentandsubfacetas
soonasit appears.

Justas in the three-dimensionalgeneralizationof Ruppert’s algorithm,subsegmentsareprotectedby
diametralspheres.Missing subfacetsareprotectedby equatorialspheres,but any subfacetthat is present
in the tetrahedralizationis protectedonly by an equatoriallens,illustratedin Figure4.24. The equatorial
lensof asubfacet 8 is theintersectionof two ballswhosecenterslie oneachother’s boundaries,andwhose
boundariesintersectat thecircumcircleof 8 . If h f is thecircumradiusof 8 , thedefiningballshave radiusê¡h ftÜ ï � , andtheir centerslie on the line orthogonalto 8 throughits circumcenter, a distanceof h fXÜ ï �
from 8 . An equatoriallensis the revolution of a diametrallensaboutits shorteraxis. Unlike in the two-
dimensionalcase,it doesnotseemto bepossibleto achievearesultanalogousto Lemma21for a lensangle
smallerthan ��ë î , soI shallusea lensangleof ��ë î throughout.

The subfacet 8 is consideredfor splitting if thereis a vertex, or an attemptto inserta vertex, inside
or on the boundaryof its equatoriallens,unlessanothersubfacetobstructsthe line of sight betweenthe
encroachingvertex andthecircumcenterof 8 . (Throughoutthissection,visibility is deemedto beobstructed
only by interposingsubfacets,and only if they are presentin the mesh,and thus locked.) As usual,if
the circumcenterof 8 encroachesupon any subsegments,the encroachedsubsegmentsare split instead.
However, if 8 is split, all freevertices(but not input verticesor verticesthat lie on segmentsor facets)that
lie in theinteriorof theequatorialsphereof 8 andarevisible from thecircumcenterof 8 aredeleted.Then,
a new vertex is insertedat the circumcenterof 8 , asillustratedin Figure4.25. The Delaunaypropertyis
maintainedthroughout,exceptthatlockedsubfacetsarenotflipped.Hence,thefinal meshis notguaranteed
to betruly Delaunay, but is effectively constrainedDelaunay.

As in two dimensions,the advantageof lensesis that whena vertex � with parent
 is insertedat the
centerof a lens,its insertionradiusis boundedby theinequality h/Z·kÇhrqÍºVUXWÀ��ë|îªû ô �õ h�q . As in thethree-
dimensionalgeneralizationof Ruppert’salgorithm,theboundis only ensuredif thealgorithmrefusesto split
any subfacetthat containsneitherits own circumcenternor the orthogonalprojectionof the encroaching
vertex.

Hereanew problemarises.Supposeafacet
 containsasubfacet8 whoseequatoriallensis encroached
uponby avertex 
 , but 8 containsneitherits own circumcenternorproj" ��
�� . Let A bethesubfacetof 
 that
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Figure4.24: The equatorial lens (shaded) of a triangular subfacet is the intersection of two identical balls
whose boundaries meet at the subfacet’s circumcircle. Each ball’s center lies on the surface of the other
ball.

Figure4.25: At left, the circumcenter of the bold tetrahedron encroaches upon the equatorial lens of the
bold subfacet. At right, all vertices in the subfacet’s equatorial sphere have been deleted, and a new vertex
has been inserted at the subfacet’s circumcenter.
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containsproj" ��
�� . Onewould like to have aguarantee,similar to theProjectionLemma,thattheequatorial
lensof A is encroacheduponby 
 . Unfortunately, thereis nosuchguarantee.

Fortunately, thenext sectionwill show that the inequality h/Z°k ô �õ h�q holdsif � is thecircumcenterofA , evenif A is not encroached.Hence,therule governingsubfacetencroachmentremainsunchanged:if an
encroachedsubfacetcontainsneitherits own circumcenternor theorthogonalprojectionof theencroaching
vertex, thenthesubfacetcontainingtheorthogonalprojectionis split instead.

Theguaranteesofferedby theProjectionLemmaarejust asusefulfor understandingDelaunayrefine-
mentwith equatoriallensesasthey werewith equatorialspheres.Suppose
 encroachesupontheequatorial
lensof 8 . Becausethe equatoriallensof 8 is containedin the equatorialsphereof 8 , 
 encroachesupon8 ’sequatorialsphereaswell. Becausethemodifiedalgorithmstill usesdiametralspheresto protectsubseg-
ments,theProjectionLemmaimpliesthateither
 encroachesuponasubsegment,or proj" ��
�� lieswithin 
 .
In theformercase,theencroachedsubsegmentis split insteadof 8 ; in thelattercase,theProjectionLemma
guaranteesthatsomesubfacetof 
 containsproj"#��
�� . Furthermore,theProjectionLemmaguaranteesthat
if onerepeatedlysplitsthesubfacetcontainingproj" ��
�� , 
 will eventuallycontainnosubfacetswhoseequa-
torial spheresareencroached,andthusalsoguaranteesthat 
 will eventuallycontainno subfacetswhose
equatoriallensesareencroached.

4.3.2 Proof of Termination and GoodGrading

The three-dimensionalDelaunayrefinementalgorithmwith equatoriallenses,like Chew’s algorithm,re-
quiresfor its analysisthattheinsertionradiush�Ý of thecircumcenterC of askinny tetrahedronÞ beredefined
to betheradiusof Þ ’scircumsphere.A vertex ß maylie in Þ ’scircumsphere,but only if thereis somelocked
subfacet 8 separatingß from Þ . Either C lies on thesamesideof 8 as Þ , andthusnever interactswith ß , orC lies on thesamesideof 8 as ß , but is not insertedbecauseit encroachesupon 8 . Eitherway, C doesnot
participatein anedgeshorterthan h Ý . Doesthenotionof separationbecomeambiguousneartheboundaries
of afacet?No,becausefacetsaresegment-bounded,andall subsegmentsareprotectedbydiametralspheres.

Whena subfacet 8 is encroached,but no subsegmentis encroached,thealgorithmmaychooseto split
thesubfacet A thatcontainsproj"#��
�� . Thefollowing lemmashows that this choiceproducesa new vertex
whoseinsertionradiusis notmuchsmallerthanthatof its parent.

Lemma 31 Let 8 bea subfacetof a facet 
 . Let 
 bea tetrahedron circumcenterthatencroachesuponthe
equatoriallensof 8 , andwhoseprojectionproj" ��
�� falls in somesubfacetA of 
 (where A mayor maynot
be 8 ). Supposethat all verticesin theequatorialsphere of A are deleted(exceptthosenot visiblefromthe
circumcenterof A ), anda vertex � is insertedat thecircumcenterof A . Thenh Z k ô �õ h q .
Proof: Becauseall verticesvisible from � aredeletedfrom the equatorialsphereof A , h/Z is equalto the
radiusof thatequatorialsphere.(Verticesnot visible from � cannotaffect � ’s insertionradius,becausean
edgecannotconnectthemto � .)

Without lossof generality, definea coordinatesystemorientedsothat 
 lies in the à - á plane,proj" ��
��
hasthesameá -coordinateasthecircumcenterC of 8 (for instance,bothmight lie on the à -axis),and 
 is
above 
 , asillustratedin Figure4.26.

Let â bethelowerof thetwo ballsthatdefinetheequatoriallensof 8 . Let n bethecenterof â , andletã
betheradiusof â . Theline segment npC is alignedwith the ä -axisandhaslength å õ . Theline segment
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Figure4.26:Three views of an encroached equatorial lens.

C�$ proj" ��
��'& is alignedwith the à -axis;let æ beits length.Theline segment
%$ proj" ��
��'& is orthogonalto 
 ,
andthusalignedwith the ä -axis;let

 
(for “height”) beits length,asFigure4.26(b)illustrates.

Draw a chordof thecircumcircleof 8 whosemidpointis proj" ��
�� . As Figure4.26(c)shows, thechord
is orthogonalto theline segment C�$ proj" ��
��'& , andthusalignedwith the á -axis. Let êT� bethelengthof the
chord,sothatproj"���
�� bisectsthechordinto two line segmentsof length � .

The significanceof � is that it is a lower boundon h/Z , where � is the circumcenterof the subfacet A .
Why? Recall that A containsproj" ��
�� . However, because
 is Delaunay, noneof the verticesof A can
lie insidethecircumcircleof 8 . Thecircumcircleof A mustbe large enoughthat it cansatisfyboth these
constraints;thesmallestpossiblesuchcircumcircleis outlinedin bold in Figure4.26(c),andhasradius� .

As Figure4.26(b)makes apparent,the à -coordinateof 
 differs from that of n by æ , and their ä -
coordinatesdiffer by å õ �   . Because
 encroachesuponthe equatoriallensof 8 , 
 lies insideor on the
boundaryof â . Hence,by Pythagoras’Law,

æ õ � ç ã ê �  �è
õ � ã õ ì

Expandinggives æ õ � ç ã ê è
õ � ã   �   õ � ã õ ì (4.6)
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Figure4.27:Because é lies in the diametral lens, its height above the plane cannot be more than êë ì times
the circumradius of the triangle that contains projíJîYé^ï .

Eachendpointof thechordin Figure4.26(c)lieson theboundaryof ð , soby Pythagoras’Law,

ñóò¶ô�õtò¶ô÷ö)ø ù#ú ò#û ø ò²ü (4.7)

SubtractingEquation4.7from Inequality4.6gives

ømý ô ý òyþzõ[òTü
As Figure4.26(b)shows, it is alwaystruethat ý þ ÿ ò , becausetheequatoriallensof

�
doesnot extend

furtherthan ÿ ò from theplanecontaining� . Recallthat õ is a lowerboundon ��� . Combiningthesebounds,

� ò��� õtò � ømý ô ý ò �	� ý òTü
Let 
 bethevertex of � nearestproj��
���� , asillustratedin Figure4.27. Becauseproj��
���� lies within �

andthecircumradiusof � is � � , the length � 
�� proj� 
�������� is at most � � . Thevertex � is thecircumcenterof
a constrainedDelaunaytetrahedron;becausethecircumsphereof this tetrahedroncontainsno vertex of � ,
��� canbeno greaterthanthedistance� ��
�� . This distancecanbecomputedby Pythagoras’Law, because

�� proj��
������ is orthogonalto ��� proj��
������ (theformerliesin � , whereasthelatteris orthogonalto � ). Hence,

� ò� þ � 
�� proj� 
�������� ò ô � ��� proj� 
�� ����� òþ � ò� ô ý òþ !
� �
ò� ü

Therefore, ��� þ ù
" � ���$#

andtheresultfollows. %
Lemma31 is only applicableif all theverticesin theequatorialsphereof � thatarevisible from & are

deleted.If somesuchvertex ' is not deleted,then ' is aninput vertex or lies on a subsegmentor subfacet.
The vertices ' and & cannotlie on incident features,becauseof the (*),+ minimum anglebetweeninput
entitiesandthe projectionconditionbetweeninput facets. (The edgeof a lensrisesfrom the planeat an
angleof (*) + .) Hence,the local featuresizeat & is at most � '�& � , and � � � lfs 
-&.� , asLemma27 indicates.
Choosetheinputvertex, segmentvertex, or facetvertex closestto & to betheparentof & .

Verticesareonly deletedwhena subfacetis split, andverticesarenever deletedfrom subfacets.Theo-
rem28 setsa lower boundon the lengthof eachfacetedge,soonly a finite numberof subfacetsplitscan
occur. After thelastsubfacetsplit, nomorevertex deletionsoccur, soterminationis ensuredby Theorem28.
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Theorem 32 Supposethequalitybound/ is strictly larger than ò10 ò0 2 , andall anglesbetweensegmentsand
facetssatisfytheconditionslistedin Theorem28,with all inequalitiesreplacedbystrict inequalities.

There exist fixedconstants3�4 �65 , 3 � �65 , and 387 �65 such that, for any vertex & inserted(or
rejected)at thecircumcenterof a skinnytetrahedron, 39� þ 3 4 ; for anyvertex & inserted(or rejected)at
thecircumcenterof anencroachedsubfacet,39� þ 3 � ; andfor anyvertex & insertedat themidpointof an
encroachedsubsegment,39� þ 3 7 .

Proof: Essentiallythesameastheproof of Lemma29,exceptthatLemma31 makesit possibleto replace
Condition4.2with

3 � �:5 ô ù
" � 3 4 (4.8)

If thequalitybound/ is strictly largerthan ò 0 ò2 , Conditions4.1,4.4,and4.8aresimultaneouslysatisfied
by choosing

3 4
û " � / ô " � ô " (" � /<;

ù " ù # 3 � û 

ù ô " � ��/ ô ù" � /=;

ù " ù # 3 7
û 
 " � ô " ( ô ù " ù ��/" � /:;

ù " ù ü
3 4 , 3 � , and 3 7 mustalsosatisfytheconditionsspecifiedin Lemma29 regardingtheanglesbetween

segmentsandfacetsandbetweensegments.If /?> ò10 ò2 , @ � 7 >BA*CEDFDHG,I6Jò10 ò , and @ 7$7 >B(*),+ , thereare
valuesof 3�4 , 3 � , and 387 thatsatisfythetheorem. %

To compareequatoriallenseswith equatorialspheres,consideragaintetrahedralizinga PLC with no
acuteangles,applyinga quality boundof /

û ù üLK . Using equatoriallenses,3 4 üû K^ü�M , 3 � üû M[üLK , and
3 7 üû 5N5 ü�M . Comparewith the correspondingvalues O üLP , 5 ! ü O , and

ù�ù ü 5 derived for equatorialspheres
at theendof Section4.2.3. Hence,theworst-casevertex spacingfor Delaunayrefinementwith equatorial
lensesis a factorof 5 üLP betterthanwith equatorialspheres.Becausethenumberof tetrahedrais inversely
proportionalto thecubeof vertex spacing,equatoriallensesimprove theworst-casecardinalityof themesh
by a factorof aboutsix.

Equatoriallenseshave anotheradvantage.With someeffort, it is possibleto show that if thedihedral
angleseparatingtwo incident facetregions is (*) + or more,a vertex in onefacetregion cannotencroach
upona subfacetof the otherwithout encroachingupona subsegmentof the other. (Detailsareomitted.)
However, becauseequatorialspheresmustbeusedfor missingsubfacets,this factdoesnot leadto asnicea
boundonedgelengthsasonemighthope.GivenaPLCwhoseincidentfacetsareseparatedby at least(*) + ,
it is possibleto show thatDelaunayrefinementwill terminateif facetsarerecoveredoneat a time, but as
Lemma27indicates,eachsuccessively recoveredfacetmayhavesmalleredgesthanthepreviously inserted
facetif it is encroacheduponby verticesof theprevious facet.Thelengthof theshortestedgein thefinal
meshmaybeexponentiallysmall,wheretheexponentis proportionalto thenumberof facets.Section5.3.1
suggestsa facetrecovery methodthatmightpartlyamelioratethisproblem.

4.3.3 Diametral Lemons?

Thesuccessof diametrallensesin two dimensions,andequatoriallensesin three,naturallyleadsoneto ask
whetherit mightbepossibleto furtherimprove thequalityboundby replacingdiametralsphereswith some
smallerstructure.Theobviouschoice,depictedin Figure4.28,is therevolutionof adiametrallensaboutits
longeraxis,yieldingapointedprolatespheroidI call adiametral lemon.
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Figure4.28: The diametral lemon of a subsegment is the revolution of a diametral lens about the subseg-
ment.
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Figure4.29:An example demonstrating that diametral lemons don’t seem to improve the quality bound. In
this illustration, the diametral lemon of Q is contained in the equatorial lens of R .

Alas, diametrallemonsarelemonsindeed,becausethey do not seemto improve the worst-caseratio
of

" ù
betweenthe insertionradii of a facetvertex anda subsegmentvertex it spawns. An examplethat

demonstratesthisfailureis illustratedin Figure4.29.A subfacet
�

meetsanothersubfacet� atasubsegmentS . The circumcenterof
�

coincideswith the midpoint of S . The equatoriallensof
�

extendsbeyond the
diametrallemonof S , andoddly,

�
canbeencroacheduponby avertex thatliesoutsidethefacetcontaining�

, but doesnotencroachupon S .
Supposethatthesubfacet� is encroacheduponby thecircumcenterof someskinny tetrahedron,and � ’s

circumcenter� is consideredfor insertion.If � encroachesupon
�

,
�

is consideredfor splitting. However,
thecircumcenterof

�
encroachesupon S , so S is split at its midpoint & . But neither� nor theapex of

�
lie

in thediametrallemonof S , or particularlycloseto & ; in theworstcase,the insertionradiusof & might be" ù
smallerthanthatof either� or theapex of

�
.

Couldwesimplyinsert� , declinetosplit S , andleavetheequatoriallensof
�

encroached?Unfortunately,�
and� might togetherform a skinny tetrahedron,which mustberemoved,andsplitting S maybethebest

way to accomplishtheremoval. Thereis no guaranteethatthecircumcenterof this tetrahedronis near
�

orS , andtheusualanalysistechniquesdonotseemto apply.

Diametrallemonshave anotherfundamentalproblem. Onepurposeof any protective region, be it a
sphere,alens,or alemon,is to handlethecasewhereaskinny tetrahedroncannotbeeliminatedby inserting
a vertex at its circumcenter, becausea locked subsegmentor subfacetpreventsthe tetrahedronfrom being
eliminated.It is this requirementthatdictatesthe � ),+ anglethatdefinestheshapeof anequatoriallens.

ConsiderFigure4.30.At left, thereappearsa tetrahedronT whoseverticeslie on theillustratedsphere,
which is the circumsphereof T . Thoughnoneof the verticesof T lies in or on the diametrallemonof the
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Figure4.30: A diametral lemon fails to ensure that a locked subsegment will not stand between a tetrahe-
dron and its circumcenter, whereas a diametral sphere succeeds.

subsegment S , severaledgesof T passthroughthelemon,above thesegment S . ThecircumcenterU of T lies
outsidethelemonaswell, below thesegment S . If avertex is insertedat U , T will not beeliminatedbecauseS is lockedandstandsbetweenT andits circumcenter.

At right, the lemon hasbeenreplacedwith a diametralsphere. An equatorhasbeendrawn on the
diametralsphere,orientedsothat it will appearcircularwhenviewedfrom thecircumcenterU depicted.If
thediametralsphereof S is empty, theverticesthat lie on any emptycircumspherecenteredat U cannotlie
above this equator. Hence,any Delaunaytetrahedronwhosecircumcenteris U lies below thesubsegment,
andthesubsegmentwill not prevent thetetrahedronfrom beingeliminatedif a vertex is insertedat U . The
diametralsphereappearsto bethesmallestprotectingshapethatcanmake thisguarantee.

4.4 Impr ovements

Theimprovementsto two-dimensionalDelaunayrefinementdescribedin Section3.5applyin threedimen-
sionsaswell. They arebriefly revisitedhere.

4.4.1 Impr oving the Quality Bound in the Interior of the Mesh

Any of the following threestrategiesmaybe usedto improve the quality of mostof the tetrahedraof the
meshwithout jeopardizingtheterminationguarantee.

V Usea quality boundof / û 5 for tetrahedrathatarenot in contactwith facetor segmentinteriors,
a quality boundof / û " ù

(for equatorialspheres)or / û ò0 2 (for equatoriallenses)for any
tetrahedronthat is not in contactwith a segmentinterior but hasa vertex that lies in the interior of
a facet,anda quality boundof / û ù

(for equatorialspheres)or / û ò10 ò0 2 (for equatoriallenses)
for any tetrahedronhaving a vertex that lies in the interior of a segment. The flow diagramfor this
strategy (with equatoriallenses)appearsasFigure4.31.
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Figure4.31: Dataflow diagram for three-dimensional Delaunay refinement with equatorial lenses and im-
proved quality away from the boundaries.

V Attempt to insert the circumcenterof any tetrahedronwhosecircumradius-to-shortest edgeratio is
largerthanone.If any subsegmentswouldbeencroached,thecircumcenteris rejectedasusual,but the
encroachedsubsegmentsaresplit only if the triangle’s circumradius-to-shortestedgeratio is greater
than

" ù
. If any subfacetswould beencroached,they aresplit only if thetriangle’s circumradius-to-

shortestedgeratio is greaterthan
ù

(for equatorialspheres)or ò10 ò0 2 (for equatoriallenses).

V Attempt to insert the circumcenterof any tetrahedronwhosecircumradius-to-shortest edgeratio is
larger thanone. If any subsegmentsor subfacetswould beencroached,thecircumcenteris rejected
asusual.Eachencroachedsubsegmentis checkedto determinetheinsertionradiusof thenew vertex
that might be insertedat its midpoint. Eachencroachedsubfacetis checked to determinewhether
its circumcenterwould encroachuponany subsegments,andif so, what the insertionradiusof the
new verticesat their midpointswould be. If a subfacet’s circumcenterdoesnot encroachuponany
subsegments,the insertionradiusof thesubfacet’s circumcenteris determined.The only midpoints
andcircumcentersinsertedarethosewhoseinsertionradii areat leastas large asthe lengthof the
shortestedgeof theskinny tetrahedron.

As in the two-dimensionalcase,the secondand third strategies tendto result in a denserspacingof
verticesin theinteriorof themeshthanthefirst strategy. Also asin thetwo-dimensionalcase,goodgrading
is maintainedif thequality bound /cb in the interior of themeshis greaterthanone. ThenEquation4.1 is
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accompaniedby theequation

3�4 � /cb
/cb�; 5 #

which is familiar from Section3.5.1.

Unlike in the two-dimensionalcase,this improvementis not renderedunnecessaryby range-restricted
segmentsplitting (discussedbelow). The two improvementscombinedoffer even betterboundsin the
interior of themesh.It is possibleto applya quality boundof / û 5 to tetrahedrathatarenot in contact
with facetor segmentinteriors,anda quality boundof /

û " ù
(for equatorialspheres)or /

û ò0 2 (for
equatoriallenses)to all tetrahedra.

4.4.2 Range-RestrictedSegmentSplitting

As in two dimensions,thequality boundof tetrahedramaybeimprovedby range-restrictedsegmentsplit-
ting, at thecostof sacrificinggoodgradingin theory, if not in practice.Terminationis provenbelow for a
boundof / û " ù

(if equatorialspheresareused)or / û ò0 2 (if equatoriallensesareused).Furthermore,
theconstrainton theangleseparatingasegmentfrom a facetmayberelaxedfrom (NO ü � + to (*) + .

In threedimensions,the illegal rangemusthave a geometricwidth of
" ù

whetheroneusesequatorial
spheresor equatoriallenses,becausediametralspheresarealwaysused.Hence,subsegmentsarerestricted
to thelegal rangeU

ùed
, where U�fg
 5 # "

ù
� and h is aninteger. Segmentsof illegal lengtharesplit unevenly

asdescribedin Section3.5.2.

To prove that theprocedureterminates,I requirea slightly differentdefinitionof insertionradiusfloor
thanI usedfor thetwo-dimensionalproof. If & is aninputvertex or liesonasubsegmentor subfacet,thenits
insertionradiusfloor �*i� is still definedto bethelargestpowerof two strictly lessthanits insertionradius��� .
However, if & is a freevertex insertedor rejectedfor insertionat thecircumcenterof a skinny tetrahedron,
then �*i� is definedto bethe largestpower of two strictly lessthan j�k0 ò (for equatorialspheres)or 0 2ò � � (for
equatoriallenses).This changein the definition accountsfor the casewherea tetrahedroncircumcenter
encroachesuponasubfacet,andunavoidablyengendersa child with smallerinsertionradius.

Lemma 33 Let lfs lnmpo betheshortestdistancebetweentwononincidententities(vertices,segments,or facet
regions)of theinputPLC.Supposethatanytwoincidentsegmentsareseparatedbyanangleof at least (*),+ ,
any two incidentfacetregionssatisfytheprojectioncondition,andanysegmentincidentto a facetat one
vertex is separatedfromit byanangleof at least (*),+ or satisfiestheprojectioncondition.

Supposethat a triangle is considered to be skinnyif its circumradius-to-shortest edge ratio is larger
than / � " ù

if equatorialspheresare used,or / � ò0 2 if equatoriallensesare used.Let & bea vertex of

themesh,andlet � û ��
-&.� beits parent,if oneexists.Theneither �*i�q� lfs lnmpoer*( , or �*i�q� �*i� .
Proof: If & is aninputvertex, or if & liesonasegmentor facetandits parent� is aninputvertex or liesona
nonincidentsegmentor facetregion, thenlfs lnmpo þ lfs 
-&s� þ ��� þ ù � i� , andthetheoremholds.

If & is insertedat thecircumcenterof askinny tetrahedron,thenby Lemma15, ��� � /��E�9>t/��*i� . Recall

that � i� is the largestpower of two strictly lessthan j�k0 ò (for equatorialspheres)or 0 2ò �u� (for equatorial

lenses).Because/ is chosento cancelout thecoefficient thatbiases� i� , it follows that � i�a� � i� .
If & is insertedat thecircumcenterof anencroachedsubfacet

�
, thecasewhere� is an input vertex or

lies on a nonincidentfeaturehasbeenconsideredabove, and� cannotlie on anincidentfacet,sothereare
two casesleft.
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V If � lies on an incidentsegmentseparatedfrom the facetcontaining
�

by anangle @ , where (*),+ þ
@wvxO*) + , thenby Lemma27, �u� � j\yò$Z\[^]�_ � ��� . Therefore,�*i�a� �*i� .

V If � is thecircumcenterof a skinny tetrahedron,rejectedfor insertionbecauseit encroachesupon
�

,
thenby Lemma27, ��� � j y0 ò if equatorialspheresareused,or by Lemma31, ��� � 0 2ò �E� if equatorial

lensesareused.It follows that � i�z� � i� , becausethecoefficient thatbiasesthe insertionradiusfloor
of � is sochosen.

If & is insertedat themidpointof anencroachedsubsegment,thentheanalysispresentedin Lemma23
for thetwo-dimensionalcaseapplieswithoutchange. %

Theorem 34 Supposethat theconditionson thequality boundandtheanglesbetweeninput entitiesspec-
ified in Lemma33 hold. TheDelaunayrefinementalgorithmsdescribedin this chapter, augmentedwith
range-restrictedsegmentsplitting, will terminatewith no tetrahedralizationedge shorterthan lfs lnmpo*r*( .

Proof: By Lemma33,theinsertionradiusfloor �*i� of everyvertex & iseithergreaterthanorequalto lfs lnmpo r*( ,
or greaterthanor equalto theinsertionradiusfloor of somepreexistingvertex. Becauseavertex’s insertion
radiusfloor is a lower boundon its insertionradius,no edgesmallerthanlfs lnmpo r*( is ever introducedinto
themesh,andthealgorithmmustterminate. %

The boundcanbe improved to lfs lnmpo r ! in the samemannerdescribedfollowing Theorem24. I rec-
ommendbothof thepracticalmodificationsto range-restrictedsegmentsplittingdescribedin Section3.5.2:
usetheclosedlegal range � 5 # "

ù
� , andusea splitting procedurethatoccasionallytakestwo splitsto getrid

of anillegal subsegment.

4.5 Comparison with the Delaunay Meshing Algorithm of Miller , Talmor,
Teng,Walkington, and Wang

The general-dimensionalmeshgenerationalgorithmof Miller, Talmor, Teng,Walkington,andWang[67]
bearsmany similarities to the presentresearch,and as I shall demonstrate,achieves theoreticalbounds
similar to thoseproven in Section4.2.3for Delaunayrefinementwith equatorialspheres.TheMiller et al.
algorithmdiffers from ordinaryDelaunayrefinementin that it begins by decidingwhat vertex spacingis
neededto meeta desiredboundon circumradius-to-shortest edgeratio,andthengeneratesa setof vertices
to match.

Thealgorithmreliesupona spacingfunction
� 
-&s� definedover thedomainto bemeshed.Imaginethat

eachvertex & of themeshis thecenterof a ball of radius
� 
-&s� . No two ballsareallowed to overlap. This

rule implies that any edge&$
 haslengthat least
� 
-&.� ô � 
-
c� . Hence,the spacingfunction setsa lower

boundon thedistancebetweenverticesthroughoutthemesh.

To achievegoodboundsonthecircumradius-to-shortest edgeratiosof thetetrahedraof themesh,Miller
et al. form a maximalsphere-packing, which is a set of verticeshaving the propertythat no additional
vertex may be addedwithout creatingoverlappingballs. Maximality ensuresthat tetrahedrawith large
circumradiicannotexist; recall that Chew’s first Delaunayrefinementalgorithmusesmaximality (with a
constantspacingfunction)to eliminatetriangleshaving anglessmallerthan � ) + . Thesphere-packingis also
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subjectto therestrictionthatverticesmaynot lie insidetheprotectivesphere of a subsegmentor subfacet,
muchlike the diametralandequatorialspheresof Delaunayrefinement.True maximality is troublesome
to achieve, andMiller et al. suggestrelaxed forms of maximality that do not compromisethe tetrahedron
quality bounds;for instance,circumcenter-maximality, in which no vertex maybeinsertedat a tetrahedron
circumcenterwithoutcreatingoverlappingballs,is sufficient.

The advantageof generatinga meshfrom a spacingfunction is that the completevertex set can be
generatedprior to andindependentlyfrom thetetrahedralization,muchlike theearliestDelaunaymeshing
algorithmsin the engineeringliterature. As a result, it is relatively easyto parallelizethe Miller et al.
algorithm,whereasDelaunayrefinementalgorithmsaredifficult to parallelizebecauseof synchronization
concernswhenmultiple processorsaresimultaneouslychangingthe topologyof the mesh. Miller et al.
createamaximalsphere-packingoneachsegment,thenoneachfacet,andfinally in theinteriorof themesh.
Eachsegmentmaybepackedindependently, andoncethesegmentsarefinished,somayeachfacet.Finally,
three-dimensionalregionsarepacked.Evenwithin asingleregionor facet,maximalsphere-packingis easier
to parallelizethanDelaunayrefinement.After spherepackingis complete,theverticesaretetrahedralized,
perhapswith astandardparallelconvex hull algorithm.

Thekey innovationof thealgorithmover earlieralgorithmsthatgeneratea completevertex setbefore
triangulationis theuseof thelocal featuresizeto determinevertex spacing.Provableboundsontetrahedron
quality may be obtainedby choosingthe spacingfunction

� 
-&s� û|{
lfs 
-&s� for a sufficiently small value

of
{

. The function lfs 
�}�� may be computedwith the help of octrees. Miller et al. show that, for this
spacingfunction, the three-dimensionalversionof their algorithmachievescircumradius-to-shortest edge
ratiosboundedbelow

/ û ù
5 ;	
 MÊô ù " ù � { ü

To comparethisboundwith theresultsof Section4.2.3,I mustreviseTheorem19sothattheminimum
lengthof anedgeis expressedin termsof bothof theedge’s endpoints.

Theorem 35 For the Delaunayrefinementalgorithmsdiscussedin this chapter, any edge &~
 of the final

meshhaslengthat least lfs � �E��� lfs ��� �ò1��� � J .

Proof: Lemma29andTheorem32show (eachfor adifferentvalueof 3 7 ) that lfs � �E�
j�k

þ 3 7 for any vertex
& . Assumewithoutlossof generalitythat 
 wasaddedafter & , andthusthedistancebetweenthetwo vertices

is at least� � � lfs ��� ���� . It follows that

� &$
�� � � � � lfs 
-
�� ô lfs 
-
��ù
3 7

ü
By Lemma14, lfs 
-
�� ô � &~
9� � lfs 
-&s� , so

� &~
9� � lfs 
-
c� ô lfs 
-&s��;�� &$
9�ù
3 7

ü
It follows that � &~
9� � lfs � �E��� lfs ��� �ò1��� � J . %

Basedonthevalueof 387 calculatedin Lemma29,Delaunayrefinementwith equatorialspheresensures
thatedgelengthsareboundedby theinequality

� &~
9� � /<;
ù


 MÊô ù " ù ��/=;
ù � lfs 
-&s� ô lfs 
-
c��� ü
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In a meshproducedby thealgorithmof Miller et al., no edge&$
 is shorterthan
� 
-&.� ô � 
-
�� . If

� 
���� û{
lfs 
�� � , edgelengthsareboundedby theinequality

� &~
9� � /<;
ù


 M�ô ù " ù ��/ � lfs 
-&.� ô lfs 
-
���� ü
It is not surprisingthat theseboundsarequitesimilar, asthealgorithmsarebaseduponsimilar ideas,

andareultimatelysubjectto thesameimperativesof mathematicallaw. I do not know to whatdifference
betweenthealgorithmsoneshouldattributetheslightly betterboundfor Delaunayrefinement,norwhether
it marksa real differencebetweenthe algorithmsor is an artifact of the different methodsof analysis.
However, thereis no doubtaboutthesourceof theadditionalimprovementoneobtainsby usingequatorial
lensesinsteadof equatorialspheres.Takingthevaluefor 3 7 from Theorem32,Delaunayrefinementwith
equatoriallensesproducesa tetrahedralizationwhoseedgelengthsareboundedby theinequality

� &~
9� �
" � /<;

ù " ù

 � " � ô ù " ( ô !

" ù ��/=;
ù " ù � lfs 
-&s� ô lfs 
-
c��� ü

Edgelengthsin theMiller etal. algorithmandin Delaunayrefinementwith equatorialspheresdecrease
to zeroas the quality boundapproachestwo, whereasas I have alreadydiscussed,Delaunayrefinement
with equatoriallensesproduceswell-gradedmeshesfor quality boundsaslow as 5 ü ( � . If range-restricted
segmentsplitting is used,thequalityboundmaybefurtherreducedto 5 ü 5 K , althoughI canno longerprove
thatthefinal meshis notuniform.

The real differencebetweenthe algorithms,however, is onenot exposedby mathematics.Delaunay
refinementis lazy, in thesensethat it insertsa vertex only if a skinny simplex is present.TheMiller et al.
algorithmisnotlazyatall; it isblind to themeshthatwouldbeformedby theverticesit creates.However, by
creatinga maximalsphere-packingit insertsenoughverticesto ensurethatskinny simplicessimply cannot
survive.

How muchdoesmaximalitycost?Figure4.32,reprintedfrom Ruppert’s original paper, givesussome
idea. The figure chartsthe progressof the smallestangle in a triangularmeshduring a typical run of
Ruppert’s algorithm.(Duringthis run,nospecificangleboundwasapplied;rather, thealgorithmrepeatedly
splits the worst trianglein the mesh,even if it is nicely shaped.)The analysispresentedin Section3.3.4
implies that eventually, the curve shouldnever drop below

ù
) ü�M + . It is not clearhow long the algorithm

would have to run beforereachingthis hallowed state,but it is clearthat the algorithmarrivesat a mesh
satisfyinga

ù
),+ , or even � ),+ , angleboundlongbefore.A maximalsphere-packingalgorithmguaranteedto

obtaina
ù
) + angleboundproducesa meshat thehigh endof thecurve, wherethecurve cannotdip belowù

) + again.Hence,it generatesmany moreelementsthana lazyalgorithm.

For a moredirectexample,returnto Figure4.21in Section4.2.3. In theory, to obtaina quality bound
of / û ù üLK , onemight have to tolerateedgelengthsmorethantwentytimessmallerthanthe local feature
size;in practice,thenumberappearsto becloserto two. Lazinessappearto buy youathousand-foldsmaller
mesh.

Is it possibleto simultaneouslyobtainthebenefitsof Delaunayrefinementandthe parallelizabilityof
Miller etal.?

Thebenefitsof equatoriallensescanperhapsberealizedin theMiller etal. algorithm.It seemsstraight-
forward to form a sphere-packingin which subfacetsareprotectedwith lenses,ratherthanspheres.The
stickingpoint is tetrahedralizingtheverticesof thesphere/lenspacking.Lensesdo not guaranteea Delau-
naymesh,andthe improvedboundsthataccompany themarea directbenefitof relaxingthe requirement
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Figure4.32:Progress of the minimum angle of a triangulation during a run of Ruppert’s algorithm. (Courtesy
Jim Ruppert.)

thatmeshesbeDelaunay. As Section2.1.3demonstrates,a generalalgorithmfor constructingconstrained
Delaunaytetrahedralizationsis not going to appear. Doesa maximal sphere/lenspackinghave special
propertiesthat guaranteethat a constrainedDelaunaytetrahedralizationcanbe formed? If so, is therean
algorithmfor generatingsuchtetrahedralizations?I will notpursuethequestionhere.

It alsoseemsstraightforward to userestrictedsubsegmentlengthswhengeneratinga sphere-packing
of a segment,but the only obvious way to reapthe improved boundsproven in Section4.4.2is to put all
thesubsegmentsof themeshinto thesamerange,sothattheshortestandlongestsubsegmentsof themesh
differ in lengthby a factorno greaterthan

" ù
. While Delaunayrefinementwith range-restrictedsegment

splittingmightobtainthesameunfortunateresultin theworstcase,it rarelyhappensin practicebecauseof
thealgorithm’s laziness.

And whatof laziness?For ameshgenerationalgorithmto insertverticeslazily, it mustbeableto exam-
ine thequalityof thesimplicesof thecurrentmesh.Unfortunately, this impliesmaintaininga triangulation,
which would seemto rule out theeasyparallelizationthatMiller et al. offer. Onehopesfor, but doesnot
expectto see,an elegantresolutionto this dilemma. A suggestionis to usethe Miller et al. algorithmto
generatean initial meshwith coarservertex spacingthanthe theorysuggests,thenrefineit to remove the
few poorqualityelementsthatappear. Evenif thelatterstepis sequential,it maybeshortenoughthatmost
of thespeedbenefitsof parallelizationarerealized.

4.6 Sliver Removal by DelaunayRefinement

AlthoughI haveprovennotheoreticalguaranteesaboutDelaunayrefinement’sability to removesliver tetra-
hedra,it is nonethelessnaturalto wonderwhetherDelaunayrefinementmightbeeffective in practice.If one
insertsavertex at thecircumcenterof eachsliver tetrahedron,will thealgorithmfail to terminate?

As Figure4.33demonstrates,Delaunayrefinementcansucceedfor usefuldihedralanglebounds.Each
of themeshesillustratedwasgeneratedby applyinga circumradius-to-shortest edgeratio bound / , anda
dihedralanglebound � lnmpo . Not surprisingly, asthebound / wasstrengthened,thebound � lnmpo hadto be
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/ û 5 ü ! , � lnmpo û ù � ü ù + , � l���� û 5 ! ( ü ù + ,ý lnmpo û ) ü ! M , 505vertices,1331tetrahedra.
/ û 5 ü ù , � lnmpo û 5 ON+ , � l����

û
5 K 5 ü�M + ,ý lnmpo û ) ü 5 P ( , 1937vertices,7303tetrahedra.

/ û 5 ü 5 , �ulnmpo û 5 ! + , ��l����
û
5 KNP^ü O + ,ý lnmpo û ) ü 5 ù K , 4539vertices,19048tetrahedra.

/ û 5 ü ),( , ��lnmpo û 5N5 + , ��l����
û
5 ( � ü ( + ,ý lnmpo û ) ü 5N5 O , 6514vertices,28543tetrahedra.

Figure 4.33: Meshes created by Delaunay refinement using equatorial spheres and bounds on both
circumradius-to-shortest edge ratio � and smallest dihedral angle �H� � � . Also listed for each mesh is its
largest dihedral angle � � ��� and its shortest edge length � � � � . The best lower bound on dihedral angles
obtained for this PLC is ���$  ��¡ . Compare with Figure 4.21 on Page 105.

weakened,or the algorithmdid not terminate. For eachmeshillustrated,raisingthe bound ��lnmpo by one
degreecausesthealgorithmto fail to halt. It is not necessaryto usea circumradius-to-shortest edgeratio
boundat all. However, even if dihedralanglesarethesolecriterionfor judgingtetrahedronquaity, I have
goodreasonto believe thatsmallermeshesareachievedif poortetrahedraareorderedsothatthosewith the
largestcircumradius-to-shortest edgeratiosaresplit earliest.SeeSection5.3.3for furtherdiscussion.

Chew [22] offershintsasto why goodresultsareobtained.A slivercanalwaysbeeliminatedby splitting
it, but how canoneavoid creatingnew sliversin theprocess?Chew observesthatanewly insertedvertex can
only takepartin asliver if it is positionedbadlyrelative to atriangularfacealreadyin themesh.Figure4.34
illustratesthesetof badpositions.At left, asideview of theplanecontainingafaceof thetetrahedralization
is drawn. A tetrahedronformedby thefaceandanew vertex canhaveasmalldihedralangleonly if thenew
vertex lieswithin theslabdepicted;this slabis thesetof all pointswithin acertaindistancefrom theplane.
Late in the Delaunayrefinementprocess,sucha tetrahedroncanonly ariseif its circumradius-to-shortest
edgeratio is small, which implies that it must lie in the region coloredblack in Figure4.34 (left). This
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Figure4.34:Left: A side view of the plane containing a triangular face. In conjunction with this face, a newly
inserted vertex can form a sliver with both a small dihedral angle and a small circumradius-to-shortest edge
ratio only if it is inserted in the disallowed region (black). Right: An oblique view of the disallowed region of
a triangular face.

disallowedregion, depictedat right, is shapedlike a ring with anhourglasscross-section.

Chew shows that if the slabassociatedwith eachfaceis sufficiently thin, a randomizedDelaunayre-
finementalgorithmcanavoid ever placinga vertex in the disallowed region of any face. The key ideais
thateachnew vertex is not insertedpreciselyat a circumcenter;rather, a candidatevertex is generatedat a
randomlychosenlocationin theinnerhalf of thecircumsphere’s radius.If thecandidatevertex lies in some
face’s disallowedregion, thecandidateis rejectedandanew onegeneratedin its stead.

Thealgorithmwill eventuallygeneratea successfulcandidate,becausethenumberof nearbytriangular
facesis bounded,and the volumeof eachdisallowed region is small. If the sumof the volumesof the
disallowed regionsis lessthanthevolumeof theregion in which candidateverticesaregenerated,a good
candidatewill eventuallybefound.To ensurethatthisconditionis met,theslabsaremadevery thin.

Chew derivesanexplicit boundon theworst-casetetrahedronaspectratio, which is too small to serve
asa practicalguarantee.However, thereis undoubtedlya greatdealof slackin thederivation. Evenif the
slabsaremadethick enoughto offer ausefulboundontheminimumdihedralangle,thesmallvolumeof the
disallowedregion suggeststhatthepracticalprospectsaregood.My non-randomizedDelaunayrefinement
algorithmseemsto verify this intuition. I have not yet testedwhetherrandomizationis helpful in practice.
Although randomizationmay reducethe frequency with which sliversaregenerated,the act of inserting
verticesoff-centerin circumspheresweakenstheboundoncircumradius-to-shortest edgeratio.

Unfortunately, my practicalsuccessin removing sliversis probablyduein partto thesevererestrictions
on inputangleI have imposeduponDelaunayrefinement.Practitionersreportthatthey have themostdiffi-
culty removing sliversattheboundaryof amesh,especiallynearsmallangles.Figure2.35onPage38offers
a demonstrationof this observation. Meshimprovementtechniquessuchasoptimization-basedsmoothing
andtopologicaltransformations,discussedin Section2.2.4,canlikely remove someof the imperfections
thatcannotberemoveddirectlyby Delaunayrefinement.
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4.7 Generalizationto Higher Dimensions

I do not intend to carry out a full analysisof higher-dimensionalDelaunayrefinementalgorithmshere.
However, I suspectthatthereareno furtherbarriersto fully generalizingthemethod.

Themostimportantresultto generalizeis theProjectionLemma(Lemma26),whichI haveeveryreason
to believe holdstruefor higherdimensionalfacets.TheProjectionLemmais critical becauseit specifiesa
conditionunderwhich incidentconstrainedpolytopescanbeguaranteednot to encroachuponeachother.
Specifically, if the lower-dimensionalboundarypolytopesof a constrainedfacetarenot encroached,then
thesubfacetsof thatfacetcanonly beencroacheduponby verticesin thefacet’s orthogonalprojection.

Additionally, theProjectionLemmamakesit possibleto chooseanencroachedsimplex to split so that
the insertionradiusof thenewly insertedvertex is no worsethan

" ù
timessmallerthanthatof its parent,

regardlessof thedimensionalityof thesimplicesunderconsiderationfor splitting. Hence,in õ dimensions

oneexpectsto achieve a quality bound /¢> " ùN£F¤ J with goodgradingby usingthe straightforward gen-

eralizationof Ruppert’s algorithm,and /
û " ù £H¤ ò

(without a guaranteeof goodgrading)with theuseof
range-restrictedsegmentsplitting. I amalsooptimisticthatlenses,ratherthanspheres,canbeusedto protect
subfacetsof dimensionõ ; 5 , althoughspheresmustbeusedto protectlower-dimensionalsubfacets.If so,

onemayachieve a quality bound /¥> 0 ò^¦0 2 with a guaranteeof goodgrading,and(for õ �:� ) /
û 0 ò§¦1¨ª©0 2

without.

If onebelieves that the ProjectionLemmageneralizesto higherdimensions,thenLemma27, Theo-
rem 28, Lemma29, andTheorem30 seemto generalizein straightforward ways. The mostcomplicated
piecesof Lemma27 arethosedealingwith acuteanglesbetweensimplices. Without someadditionalal-
gorithmic insight, acuteanglesprobablycannotbe toleratedbetweensimplicesof dimensionhigherthan
one.An acuteanglebetweena segment( 5 -simplex) andanothersimplex of dimension« maybepermitted
for any « , but theanglemustbelarger than A*C�DFDHG,I J0 ò�¬§­s© . If range-restrictedsegmentsplitting is used,this

anglemayberelaxedto A*C�DFDHG,I?J0 ò ¬ for « �
ù
.

Of course,this discussionbegsthequestionof whetheranyonewould wantsuchanalgorithm.A four-
dimensionalmeshgeneratormightfind usein space-timefinite elementmethods,wheretime is represented
asa fourth spatialdimension. This might be an ideal applicationfor Delaunayrefinementmethods,be-
causefor someproblems,no additionalsmallangleswill ensuefrom considerationof thetime dimension.
Commonly, the region to be meshedis nothingmorecomplicatedthanan unchangingthree-dimensional
objectextrudedorthogonallyin the time dimension. In this case,the reasonto createa four-dimensional
meshis sothatonemayadjustthedensityof nodesthroughtimein orderto tracktime-dependentmultiscale
phenomena,suchasturbulentfluid flow.

4.8 Conclusions

Delaunayrefinementis aneffective techniquefor three-dimensionalmeshgeneration.Its theoreticalguaran-
teesonelementqualityandmeshgradingmake it attractive. Takenat facevalue,however, theseguarantees
arenot wholly satisfying.Thereis no guaranteethatsliverscanbeeliminated.Althoughtheconstant387
derived in Section4.3.2givesus confidencethat edgesizescannotbecomesmallerthanone twelfth the
local featuresizewhenapplyinga qualityboundof / û ù üLK , this boundmayseeminsufficiently strongfor
practicalpurposes,especiallywhenonerecallsthatthenumberof elementsis inverselyproportionalto the
cubeof theedgelength.
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Fortunately, Delaunayrefinementfalls into theclassof algorithmsthatusuallyoutperformtheir worst-
casebounds.Theprooftechniquesusedto analyzeDelaunayrefinementfail to take into accountagreatdeal
of “slack” in themesh;therelationshipbetweentheinsertionradii of aparentandits child is usuallylooser
thanin theworstcase.Thisslackaccumulatesasonetracesasequenceof descendantsfrom aninputvertex.
Onecanapplya tighterboundon circumradius-to-shortestedgeratio thanthe theorysuggestsis possible,
or evenapplyboundsondihedralangles,andstill produceasmall,nicelygradedmesh.

Despitethis pleasantgapbetweentheoryandpractice,thetheoryis helpful for suggestinginnovations
thatarelikely to bearfruit in practice,suchasequatoriallenses.

The main outstandingproblemin three-dimensionalDelaunayrefinementis the questionof how to
handlesmall input angles.Is therea methodaseffective astheQuitter, presentedin Section3.7?Modified
segmentsplitting usingconcentricsphericalshellsis probablyasgoodan idea in threedimensionsas in
two, but it only beginsto addressthepossibleproblems.Whataboutfacetsseparatedby smallangles?How
cantheir verticesbekept from encroachinguponeachother’s subfacets?Onesuggestionis to modify the
methodof subfacetsplitting. If two subfacetsmeetat a subsegment,separatedby a smallangle,andoneof
thesubfacetsis encroached,perhapsit shouldbesplit in sucha way thatanequilateraltriangleis formed
at the subsegment. In this manner, subfacetsseparatedby small anglesarepreventedfrom engagingin a
diminishingspiralof mutualencroachment,just assubsegmentsarepreventedfrom doingsoby modified
segmentsplitting. This ideaholdspromise,but falls shortof a completesolutionto the problemof small
angles.

In two dimensions,thereis a sure-firesolution: never inserta vertex whoseinsertionradiusis smaller
than the insertionradiusof its most recentlyinsertedancestor. An impedimentto using this strategy in
threedimensions,besidestheawful elementsit produces,is that boundaryrecovery may fail if a missing
subsegmentor subfacetis not split becauseof this rule. This problemis surmountedin two dimensionsby
theconstrainedDelaunaytriangulation,but thisoptionis notavailablein three.Section5.3.1suggestsaway
to garnersomeof theadvantagesof constrainedtriangulation,but offersnoguarantees.

Nevertheless,if segmentsandfacetsareinsertedin sequence,andthesubsegmentsandsubfacetsof each
arelockedassoonasthey arerecovered,thenthey will all berecoveredeventually. As I mentionedat the
endof Section4.3.2,the lengthof the shortestedgein the final meshmay beexponentiallysmall,where
theexponentis proportionalto thenumberof facets.After theboundarieshave beencompletelyrecovered,
thesure-firesolutioncanbeapplied.Hence,it is alwayspossibleto ensurethatthree-dimensionalDelaunay
refinementterminates,althoughtheelementsmightbepoorin qualityandmuchsmallerthandesired.



Chapter 5

Implementation

Triangle is a C programfor two-dimensionalmeshgenerationandconstructionof Delaunaytriangulations,
constrainedDelaunaytriangulations,andVoronoidiagrams.Pyramid is a C programfor three-dimensional
meshgenerationandDelaunaytetrahedralization. Theseprogramsare implementationsof the Delaunay
refinementalgorithmsdiscussedin thepreviouschapters.TriangleandPyramidarefast,memory-efficient,
androbust. TrianglecomputesDelaunaytriangulationsandconstrainedDelaunaytriangulationsexactly;
PyramidcomputesDelaunaytetrahedralizationsexactly.

Featuresof bothprogramsincludeuser-specifiedconstraintsonelementqualityandsize,user-specified
holesandconcavities, theability to refinepreexisting triangulations,andtheeconomicaluseof exactarith-
metic to improve robustness.This chapterdiscussesmany of thekey implementationdecisions,including
thechoiceof triangulationalgorithmsanddatastructures,thestepstaken to createandrefinea mesh,and
otherissues.Theuseof exactarithmeticto ensurethecorrectnessof Delaunaytriangulationsandtetrahe-
dralizations,andto improve therobustnessof bothmeshgenerators,is discussedat lengthin Chapter6.

Many of the implementationdecisionsin a complex programlike a meshgeneratordependuponhow
onewishesto tradeoff speedandmemoryuse.TriangleandPyramidaredesignedto supportlargescientific
computingprojects,in which the sizesof the meshesthat can be producedare limited by the available
memory, andnotby theamountof time theprogramcanrun. Therefore,many of thedecisionsdescribedin
thischapteraremotivatedby thedesireto makespaceefficiency apriority, withoutundulysacrificingspeed.
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Delaunaytriangulationtimings(seconds)
Numberof points 10,000 100,000 1,000,000

Pointdistribution Uniform Boundary Tilted Uniform Boundary Tilted Uniform Boundary Tilted
Algorithm Random of Circle Grid Random of Circle Grid Random of Circle Grid
Div&Conq,alternatingcuts

robust 0.33 0.57 0.72 4.5 5.3 5.5 58 61 58
non-robust 0.30 0.27 0.27 4.0 4.0 3.5 53 56 44

Div&Conq,verticalcuts
robust 0.47 1.06 0.96 6.2 9.0 7.6 79 98 85
non-robust 0.36 0.17 failed 5.0 2.1 4.2 64 26 failed

Sweepline
non-robust 0.78 0.62 0.71 10.8 8.6 10.5 147 119 139

Incremental
robust 1.15 3.88 2.79 24.0 112.7 101.3 545 1523 2138
non-robust 0.99 2.74 failed 21.3 94.3 failed 486 1327 failed

Table5.1: Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha processor, not including I/O.
Robust and non-robust versions of the Delaunay algorithms were used to triangulate points chosen from
one of three different distributions: uniformly distributed random points in a square, random approximately
cocircular points, and a tilted square grid.

5.1 Triangulation Algorithms

5.1.1 Comparisonof ThreeDelaunayTriangulation Algorithms

A meshgeneratorrestsontheefficiency of its triangulationalgorithmsanddatastructures,soI discussthese
first.

Therearemany Delaunaytriangulationalgorithms,someof which aresurveyedandevaluatedby For-
tune[33] andSuandDrysdale[91, 90]. Their resultsindicatea roughparity in speed,to within a factorof
two, amongthe incrementalinsertionalgorithmof Lawson[59], thedivide-and-conquer algorithmof Lee
andSchachter[60], andtheplane-sweepalgorithmof Fortune[31]; however, theimplementationsthey study
werewrittenbydifferentpeople.I believethatTriangleis thefirst instancein whichall threealgorithmshave
beenimplementedwith thesamedatastructuresandfloating-pointtests,by onepersonwho gave roughly
equalattentionto optimizingeach.(Somedetailsof how theseimplementationswereoptimizedappearin
Section5.1.2.)

Table 5.1 comparesthe algorithms,including versionsthat useexact arithmetic (seeChapter6) to
achieverobustness,andversionsthatuseapproximatearithmeticandarehencefasterbut mayfail or produce
incorrectoutput.(Therobustandnon-robustversionsareotherwiseidentical.)As SuandDrysdale[91] also
found,thedivide-and-conqueralgorithmis fastest,with thesweeplinealgorithmsecond.The incremental
algorithmperformspoorly, spendingmostof its time in point location.(SuandDrysdaleproduceda better
incrementalinsertionimplementationby usingbucketing to performpoint location,but it still ranksthird.
Triangledoesnotusebucketingbecauseit is easilydefeated,asdiscussedin Section5.1.2.)Theagreement
betweenmy resultsandthoseof SuandDrysdalelendssupportto their rankingof algorithms.

An importantoptimizationto thedivide-and-conquer algorithm,adaptedfrom Dwyer[30], is to partition
theverticeswith alternatinghorizontalandverticalcuts(LeeandSchachter’s algorithmusesonly vertical
cuts). Alternatingcutsspeedthealgorithmand,whenexactarithmeticis disabled,reduceits likelihoodof
failure.Onemillion pointscanbetriangulatedcorrectlyin aminuteona fastworkstation.

All threetriangulationalgorithmsareimplementedsoasto eliminateduplicateinputpoints;if notelimi-
nated,duplicatescancausecatastrophicfailures.Thesweeplinealgorithmcaneasilydetectduplicatepoints
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asthey areremoved from the event queue(by comparingeachwith the previous point removed from the
queue),andthe incrementalinsertionalgorithmcandetecta duplicatepoint after point location. My im-
plementationof thedivide-and-conqueralgorithmbeginsby sortingthepointsby their h -coordinates,after
which duplicatescan be detectedand removed. This sortingstepis a necessarypart of the divide-and-
conqueralgorithmwith vertical cuts,but not of the variantwith alternatingcuts (which mustperforma
sequenceof median-findingoperations,alternatelyby h and ® -coordinates).Hence,thetimingsin Table5.1
for divide-and-conquertriangulationwith alternatingcutscouldbeimprovedslightly if onecouldguarantee
thatnoduplicateinputpointswouldoccur;theinitial sortingstepwouldbeunnecessary.

5.1.2 TechnicalImplementation Notes

Thissectionpresentstechnicaldetailsof my Delaunaytriangulationimplementationsthatareimportantfor
anyonewhowishesto evaluatetheusefulnessof my evaluations,or to modify thecode.

The sweeplineand incrementalDelaunaytriangulationimplementationscomparedby Su and Drys-
dale[91] eachusesomevariantof uniformbucketingto locatepoints.Bucketingyieldsfastimplementations
on uniform point sets,but is easilydefeated;a small,denseclusterof pointsin a large,sparselypopulated
region may all fall into a singlebucket. I have not usedbucketing in Triangle,preferringalgorithmsthat
exhibit goodperformancewith any distribution of input points. As a result,Trianglemay be slower than
necessarywhentriangulatinguniformly distributed point sets,but will not exhibit asymptoticallyslower
runningtimesondifficult inputs.

Fortune’s sweeplinealgorithm usestwo nontrivial datastructuresin addition to the triangulation: a
priority queueto storeevents,and a balancedtree datastructureto storethe sequenceof edgeson the
boundaryof the mesh. Fortune’s own implementation,available from Netlib, usesbucketing to perform
boththesefunctions;hence,an ¯°
-±q²³GN´µ±�� runningtime is not guaranteed,andSuandDrysdale[91] found
thattheoriginalimplementationexhibits ¯°
-± 21¶ ò � performanceonuniformrandompointsets.By modifying
Fortune’scodeto useaheapto storeevents,they obtained̄°
-±q²³GN´µ±�� runningtimeonuniformly distributed
pointsets,andbetterperformancefor pointsetshaving morethanabout50,000points.However, they found
thatbucketingoutperformsaheaponsmallerpoint sets.

Triangle’s implementationusesa heapaswell, andalsousesa splaytree[88] to storemeshboundary
edges,sothatan ¯°
-±q²³GN´µ±�� runningtime is attained,regardlessof thedistribution of points.Not all bound-
aryedgesarestoredin thesplaytree;whenanew edgeis created,it is insertedinto thetreewith probability
) ü 5 . (Thevalue ) ü 5 waschosenempirically to minimize the triangulationtime for uniform randompoint
sets.) At any time, the splaytreecontainsa randomsampleof roughly onetenthof the boundaryedges.
Whenthesweeplinesweepspastan input point, thepoint mustbe locatedrelative to theboundaryedges;
this point locationinvolvesa searchin the splaytree,followed by a searchon the boundaryof the trian-
gulationitself. By keepingthesplaytreesmall, this schemeimprovesthespeedandmemoryuseof point
locationwithout changingthe asymptoticperformance.This is an exampleof how randomizationcanbe
usedto reducetheconstants,ratherthantheasymptoticbehavior, associatedwith ageometricalgorithm.

A splaytreeadjustsitself so that frequentlyaccesseditemsarenearthetop of thetree. Hence,a point
setorganizedso thatmany new verticesappearat roughly thesamelocationon theboundaryof themesh
is likely to be triangulatedquickly. This effect partly explainswhy Triangle’s sweeplineimplementation
triangulatespointson theboundaryof a circlemorequickly thantheotherpoint sets,eventhoughthereare
many moreboundaryedgesin thecocircularpointsetandthesplaytreegrowsto bemuchlarger(containing
¯°
-±�� boundaryedgesinsteadof ¯°
 " ±�� ). For this reason,I believe that splay treesarebettersuitedto
sweeplineDelaunaytriangulationthanotherbalancedtreealgorithms,suchasred-blacktrees.
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Triangle’s incrementalinsertionalgorithmfor Delaunaytriangulationusesthe point locationmethod
proposedby Mücke, Saias,and Zhu [72]. Their jump-and-walkmethodchoosesa randomsampleof
¯°
-± J ¶§2 � verticesfrom themesh(where± is thenumberof nodescurrently in themesh),determineswhich
of theseverticesis closestto thequerypoint,andwalksthroughthemeshfrom thechosenvertex towardthe
querypointuntil thetrianglecontainingthatpoint is found.Mückeetal. show thattheresultingincremental
algorithmtakesexpected̄°
-± · ¶§2 � time on uniform randompoint sets. Table5.1 appearsto confirm this
analysis.Triangleusesa samplesizeof ) ü ! K ± J ¶§2 ; thecoefficient waschosenempirically to minimize the
triangulationtimefor uniformrandompointsets.Trianglealsochecksthepreviouslyinsertedpoint,because
in many practicalpointsets,any two consecutive pointshave ahigh likelihoodof beingneareachother.

I have not implementedthe ¯°
-±q²³GN´µ±�� point locationschemesuggestedby Guibas,Knuth, andSharir
[46], althoughit promisesto outperformthemethodof Mücke et al. Evenwith asymptoticallybetterpoint
location,the incrementalinsertionalgorithmseemsunlikely to surpasstheperformanceof thedivide-and-
conqueralgorithm.

5.2 Data Structures

5.2.1 Data Structuresfor Triangulation in Two Dimensions

Shouldonechooseadatastructurethatusesarecordto representeachedge,or onethatusesarecordto rep-
resenteachtriangle?Trianglewasoriginally writtenusingGuibasandStolfi’squad-edge datastructure[47]
(without theFlip operator),thenrewritten usinga triangle-baseddatastructure.Thequad-edgedatastruc-
ture is popularbecauseit is elegant,becauseit simultaneouslyrepresentsa graphandits geometricdual
(suchasa DelaunaytriangulationandthecorrespondingVoronoidiagram),andbecauseGuibasandStolfi
give detailedpseudocodefor implementingthe divide-and-conquer andincrementalDelaunayalgorithms
usingquad-edges.

Despitethefundamentaldifferencesbetweenthedatastructures,thequad-edge-basedandtriangle-based
implementationsof Trianglearebothfaithful to theDelaunaytriangulationalgorithmspresentedby Guibas
andStolfi [47] (I did not implementaquad-edgesweeplinealgorithm),andhenceoffer a fair comparisonof
thedatastructures.Perhapsthemostusefulobservation of this chapterfor practitionersis that thedivide-
and-conqueralgorithm,the incrementalalgorithm,andRuppert’s Delaunayrefinementalgorithmwereall
spedby a factorof two by thetriangulardatastructure.(However, it is worth notingthat thecodedevoted
specificallyto triangulationis roughly twice as long for the triangulardatastructure.) A differenceso
pronounceddemandsexplanation.

First,considerthedifferentstoragedemandsof eachdatastructure,illustratedin Figure5.1.Eachquad-
edgerecordcontainsfour pointersto neighboringquad-edges,andtwo pointersto vertices(theendpoints
of the edge). Eachtrianglerecordcontainsthreepointersto neighboringtriangles,andthreepointersto
vertices.Hence,bothstructurescontainsix pointers.A triangulationcontainsroughlythreeedgesfor every
two triangles.Hence,thetriangulardatastructureis morespace-efficient.

It is difficult to ascertainwhy thetriangulardatastructureis superiorin time aswell asspace,but one
canmake educatedinferences.Whena programmakesstructuralchangesto a triangulation,theamountof
timeuseddependsin partonthenumberof pointersthathave to bereadandwritten. Thisamountis smaller
for thetriangulardatastructure;moreof theconnectivity informationis implicit in eachtriangle.Cacheing
is improved by the fact that fewer structuresare accessed.(For large triangulations,any two adjoining
quad-edgesor trianglesareunlikely to lie in thesamecacheline.)
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Figure5.1: A triangulation (top) and its corresponding representations with quad-edge (left) and triangular
(right) data structures. Each quad-edge and each triangle contains six pointers.

Both thequad-edgeandtriangledatastructuresmuststorenotonly pointersto their neighbors,but also
theorientationsof their neighbors,to make clearhow they areconnected.For instance,eachpointerfrom
a triangle to a neighboringtrianglehasan associatedorientation(a numberbetweenzeroand two) that
indicateswhich edgeof theneighboringtriangleis contacted.An importantspaceoptimizationis to store
theorientationof eachquad-edgeor trianglein thebottomtwo bitsof thecorrespondingpointer. Thus,each
recordmustbealignedon a four-byteboundary. This spaceoptimizationis probablya speedoptimization
as well, as memorytraffic in modernmachinesis becomingmore and more expensive comparedto bit
operations.

Becausethe triangle-baseddivide-and-conquer algorithmproved to be fastest,it is worth exploring in
somedepth. At first glance,thealgorithmanddatastructureseemincompatible.Thedivide-and-conquer
algorithmrecursively halvestheinputverticesuntil they arepartitionedinto subsetsof two or threevertices
each. Eachsubsetis easily triangulated(yielding an edge,two collinear edges,or a triangle), and the
triangulationsaremergedtogetherto form largerones.But how doesonerepresentanedgeor a sequence
of collinearedgeswith a triangulardatastructure?If oneusesa degeneratetriangleto representanisolated
edge,theresultingcodeis clumsybecauseof theneedto handlespecialcases.Onemightpartitiontheinput
into subsetsof threeto fivevertices,but thisdoesnothelpif thepointsin a subsetarecollinear.

To preserve theeleganceof GuibasandStolfi’s presentationof thedivide-and-conqueralgorithm,each
triangulationis surroundedwith a layerof “ghost” triangles,onetriangleperconvex hull edge.Theghost
trianglesareconnectedto eachotherin aring abouta“vertex at infinity” (really justanull pointer).A single
edgeis representedby two ghosttriangles,asillustratedin Figure5.2.

Ghosttrianglesareusefulfor efficiently traversingtheconvex hull edgesduringthemergestep.Some
are transformedinto real trianglesduring this step; two triangulationsare sewn togetherby fitting their
ghosttrianglestogetherlike theteethof two gears.(Someedgeflips arealsoneeded.SeeFigure5.3.)Each
mergestepcreatesonly two new triangles;oneat thebottomandoneat the top of theseam.After all the
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Figure5.2: How the triangle-based divide-and-conquer algorithm represents an isolated edge (left) and
an isolated triangle (right). Dashed lines represent ghost triangles. White vertices all represent the same
“vertex at infinity”; only black vertices have coordinates.

Figure5.3: Halfway through a merge step of the divide-and-conquer algorithm. Dashed lines represent
ghost triangles and triangles displaced by edge flips. The dotted triangle at bottom center is a newly created
ghost triangle. Shaded triangles are not Delaunay and will be displaced by edge flips.

mergestepsaredone,theghosttrianglesareremovedandthetriangulationis passedon to thenext stageof
meshing.

Ghosttrianglesareespeciallyusefulfor reducingtheamountof special-casecode.Forexample,consider
performinganedgeflip betweentwo trianglesthat lie at theboundaryof themesh.Thetwo trianglesmust
bedetachedfrom their neighbors,rotateda quarterturn,andreattached.Oneof thetasksperformedduring
reattachmentis adjustingthe pointersof eachof the four neighboringtriangles. Without ghosttriangles,
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someof theneighborsmight benull pointers,andconditionalcodeis requiredto checkeach.With ghost
triangles,the conditionalsarenot required.Although this mayseemlike a trivial concern,thenumberof
similar casesin which ghosttrianglessimplifiedtheimplementationof Trianglewaslargeenoughto make
it worthyof note.

Preciselythe samedatastructure,ghosttrianglesandall, is usedin the sweeplineimplementationto
representthe growing triangulation. Ghosttrianglesare handyfor representingthe danglingedgesthat
appearon theadvancingfront of thetriangulation,andfor navigatingalongthefront duringpoint location.
Detailsareomitted.

5.2.2 Data Structuresfor MeshGeneration in Two Dimensions

Augmentationsto thequad-edgeandtriangledatastructuresarenecessaryto supporttheconstrainedtrian-
gulationsneededfor meshgeneration.As Section3.3mentioned,Delaunayrefinementcanbeimplemented
with or without locked edges.As a practicalmatter, though,subsegmentsneedto be flaggedso that en-
croachedsubsegmentscanbequickly detected.Hence,thereis nothingto loseby lockingsubsegments,and
aspeedimprovementwill result,becauseunnecessaryedgeflips arenotperformed.

Otheraugmentationsareneededtoo. Additional informationmaybeassociatedwith eachsubsegment,
vertex, and elementof the mesh. Commonly, subsegmentsand verticesmust carry markers to identify
which segmentsthey lie upon,so that the correctboundaryconditionsmay be appliedto themin a finite
elementsimulationor othernumericalPDEsolver. If a smoothingalgorithmis implemented,it will need
to know which subsegmentsareconnectedtogetherinto a singlesegment,so that verticesmaybemoved
alongthe lengthof the segment. If curved segmentsaresupported,informationaboutthe curvatureof a
subsegmentis neededwhenever that subsegmentis split. (At the time of this writing, Trianglesupports
markersfor boundaryconditionsandstoressubsegmentconnectivity. Smoothingandcurved surfacesare
not implemented.)

Eachtriangleof the meshmay needto carry associatedattributessuchas its maximumpermissible
triangleareaor physicalconstantsneededfor afinite elementsimulation.Verticesmightalsohave physical
constantsassociatedwith them. It is alsouseful for a meshgeneratorto be able to tag eachelementto
identify theregion of themeshin which theelementfalls. Triangle,for instance,allows theuserto specify
segment-boundedregionsof themeshwhoseelementsshouldbetaggedwith specifiednumericalmarkers.

While eachelementof themeshmayhave associatedattributes,theonly edgesthatgenerallyhave any
specialinformationassociatedwith themaresubsegments.Hence,it is easierto augmentthetriangulardata
structureto includesubsegmentattributes,usingaseparatedatastructurethatrepresentsasubsegment,than
to augmentthequad-edgedatastructureto includeelementattributes.

I modify the triangulardatastructureto meetthe requirementsdescribedabove by augmentingeach
trianglewith threeextrapointers(onefor eachedge),whichareusuallynull but maypoint to asubsegment
datastructure(Figure 5.4). In large mesheswherethe numberof trianglesis determinedprimarily by
areaconstraintsandnot by the input geometry, only a minority of edgesaresubsegments,so thememory
occupiedby subsegmentsis small. However, the memoryoccupiedby trianglesis increasedby one-half.
In thespecialcasewhereinformationis associatedwith subsegmentsbut not with elements,theadditional
threepointersin eachtriangleeliminatethespaceadvantageof thetriangulardatastructurerelative to quad-
edges,but not its speedadvantage.Triangleusesthe longernine-pointerrecordonly if subsegmentsare
present;six-pointertrianglesareusedfor unconstrainedDelaunaytriangulation.

In large meshes,mostof the pointersfrom trianglesto subsegmentsarenull, so eachtrianglerecord
canbe reducedto seven pointersby usingjust a singlesubsegmentpointer. In a trianglethat contactsno
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Figure5.4: Shaded boxes represent subsegments, which may be linked together into segments. Each
triangle has three additional pointers that reference adjoining subsegments.

subsegment,this pointeris null. In a trianglethatcontactsoneor moresubsegments,this pointerpointsto
a separaterecordcontainingthreepointersto subsegments.The numberof thesespecialrecordsis small,
so they increasethespacerequirementsonly modestly. I have not implementedthis spaceoptimizationin
Triangle.

A moreaggressiveoptimizationwouldbeto usetheoriginalsix-pointertriangles,but eachof atriangle’s
threepointersto neighborscanpoint to eithera triangleor a subsegment.A one-bittag(possiblyhiddenin
thelower bits of eachpointer)would distinguishbetweenthetwo. This spaceoptimizationwould increase
theamountof conditionalcodeexecuted;it is notclearhow badits effecton runningtimewouldbe.

To save spaceandtime,TriangleandPyramiddonotmaintainpointersfrom meshverticesto any other
structure.Variablesin eachprogramoftendenotea vertex not by pointingdirectly to thevertex, but rather
by pointingto anelementthatcontainsthevertex. Hence,meshstructuresconnectedto thevertex maybe
identified.

5.2.3 Data Structuresfor ThreeDimensions

Thereareat leastthreechoicesof datastructureto representa tetrahedralization.Onecouldusea recordto
representeachtetrahedron,arecordto representeachface,or arecordto representeachpairingof afaceand
anedge(hence,threerecordspertriangularface).Thelaststructure,proposedby Dobkin andLaszlo[29],
is themostgeneral,andcanbeusedto representarbitraryspatialsubdivisions. However, a tetrahedralizer
doesnotneedthisgenerality, andmemoryconsiderationseasilyruleoutall but thefirst option.

Consider, for instance,the minimummemoryrequirementsfor a tetrahedron-basedDelaunaytetrahe-
dralizer, andfor a face-basedtetrahedralizer. In theformercase,illustratedin Figure5.5(a),therecordthat
representsa tetrahedronmusthave eightpointers:four for its vertices,andfour for the adjoiningtetrahe-
dra. In thelattercase,illustratedin Figure5.5(b),therecordthatrepresentsa triangularfacemusthave six
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(a) (b) (c)

Figure5.5: (a) Tetrahedron-based data structure. (b) Face-based data structure. (c) A doubly linked list of
faces about an edge.

pointers,andideally hasnine: threefor its vertices,andthreeor six thatpoint to adjacenttriangularfaces.
Thechoiceof threeor six dependson whetheronewishesto have a singly-linked or doubly-linked list of
facesabouteachedgeof thetetrahedralization;thelatteris illustratedin Figure5.5(c).A singly-linked list
of facesis slower to traverse,andmorecumbersometo program.

Thereareroughly two facesstoredfor eachtetrahedron,becauseeachtetrahedronhasfour faces,and
eachface(excepton exterior boundaries)is sharedby two tetrahedra.Hence,thecostof a face-baseddata
structureis twelve or eighteenpointerspertetrahedron,which markedly exceedsthememoryrequirements
of thetetrahedron-baseddatastructure.

For meshgeneration,as opposedto Delaunaytetrahedralization,the datastructuresmustbe able to
representconstrainedsubfacetsandsubsegments,andbeableto associateattributeswith subfacets,subseg-
ments,elements,andvertices.As in thetwo-dimensionalcase,suchattributesmightbeassociatedwith each
elementof themesh,but theonly edgesandfacesthatgenerallycarrysuchinformationaresubsegmentsand
subfacets.Hence,thetetrahedron-baseddatastructureis moreutilitarian thattheface-baseddatastructure.
Thetetrahedraldatastructurealmostcertainlyresultsin afasterimplementation,if thetwo-dimensionalDe-
launayimplementationsareany indication.I havenotattemptedimplementingtetrahedralizationalgorithms
with any otherdatastructure.

Theremainderof this sectionis devotedto a discussionof how thetetrahedron-baseddatastructureis
modifiedin Pyramidto accommodatesubfacetsandsubsegments.Justasthetriangulardatastructureuses
threeadditionalpointersto attachsubsegments,the tetrahedraldatastructureusesfour additionalpointers
to attachsubfacets.As in the two-dimensionalcase,if themeshis large, thedatastructuresthat represent
subfacetsandsubsegmentsoccupy only a small portionof memory, andthe four pointersfrom a tetrahe-
dron to adjoiningsubfacetscanbe reducedto one,or even zero. Hence,a tetrahedralrecordconsistsof
eightpointersif only Delaunaytetrahedralizationis performed,or eight,nine,or twelve pointersfor mesh
generation.(Pyramidcurrentlyusestwelve pointersin thelattercase.)

The datastructurethat representsa subfacetcontainsthreepointersto its vertices,threepointersto
adjoiningsubfacets,andtwo pointersto adjoiningtetrahedra.Thethreepointersto adjoiningsubfacetsare
usedonly to indicatecoplanarneighborsin a commonfacet.Thesepointersareimportantto theDelaunay
refinementalgorithm,becausethey indicatethat the sharededgecan be flipped to satisfy the Delaunay
criterionwhena vertex is insertedin thefacet.Figure5.6 illustratestwo subfacets,connectedat a flippable
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Figure5.6: The records representing subfacets (shaded) have pointers to adjoining tetrahedra, subfacets,
and vertices. Subfacets are directly linked to each other only if they are part of the same facet, and the
edge they share is flippable.

(a) (b)

Figure5.7: (a) Tetrahedra and subsegments are only connected via subfacets. (b) Each subsegment has
a full complement of wings, which are subfacets that anchor it to adjoining tetrahedra.

edgeandsandwichedbetweentetrahedra,thattogetherform a quadrilateralfacet.Figure4.10in Chapter4
illustratesacircumstancein whichsuchedgeflips occur.

Eachsubfacetalsohasthreepointersto adjoiningsubsegments. To save space,thereareno pointers
directlyconnectingtetrahedraandadjoiningsubsegments;connectionsbetweentetrahedraandsubsegments
areentirelymediatedthroughsubfacets,asillustratedin Figure5.7(a).Becauseasubsegmentmaybeshared
by any numberof subfacetsandtetrahedra,eachsubsegmenthasa pointerto only oneadjoiningsubfacet
(chosenarbitrarily); theothersmustbe found throughthe connectivity of the mesh.To ensurethat every
subsegmentincidentto atetrahedronmaybefound,eachsubsegmenthasafull complementof wings, which
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Figure5.8: Subsegments are represented by degenerate subfacets. A chain of linked subsegments form
a segment. Open circles represent null vertices. The pointers directed upward in the illustration point to
adjoining subfacets, which may or may not be solid. Different subsegments of this segment may even point
to subfacets of different facets.

aresubfacetsthat link a subsegmentto its adjoiningtetrahedra,asillustratedin Figure5.7(b). Someor all
of thesesubfacetsmaybenonsolidsubfacets, which arenot “real” subfacets,but arepresentsolelyfor the
purposeof connectingtetrahedrato subsegments.Only solidsubfacets, whichlie within facets,arelockedin
place.Thefacesoccupiedby nonsolidsubfacetsareeligiblefor flipping accordingto theDelaunaycriterion.

It hasproven to be quite convenientto representsubsegmentswith the samedatastructureusedfor
subfacets,in a mannerillustratedin Figure5.8. A subfacetrecordusedto representa subsegmenthasone
null vertex oppositeits “real” edge.A subsegmentis similar to a ghosttriangle: it is connectedat its “real”
edgeto anadjoiningtriangularsubfacet,andit is linkedto neighboringsubsegments(of thesamesegment)
at its “f ake” edges.Thedecisionto representsubsegmentswith thesamedatastructureusedfor subfacets
haseliminatedtheneedfor muchspecial-casecodethatPyramidwouldotherwiseincorporate.

5.3 Implementing DelaunayRefinementAlgorithms

This sectiondescribesDelaunayrefinementas it is implementedin Triangle and Pyramid. Figures5.9
through5.13illustratetheprocessof meshingaPSLGthatrepresentsanelectricguitar.

Thefirst stageof bothTriangleandPyramidis to find theDelaunaytriangulationor tetrahedralization
of the input vertices,as in Figure 5.10. In general,someof the input segmentsand facetsare missing
from thetriangulation;thesecondstageis to recover them.Figure5.11illustratestheconstrainedDelaunay
triangulationof theinputPSLG.

Thethird stageof thealgorithm,which divergesfrom Ruppert[82], is to remove trianglesor tetrahedra
fromconcavitiesandholes(Figure5.12).Thefourthstageof thealgorithmis to applyaDelaunayrefinement
algorithmto themesh,asdescribedin Chapters3 and4. Figure5.13illustratesafinalmeshhaving noangles
smallerthan

ù
) + .

Thelastthreestagesaredescribedin thefollowing sections.

5.3.1 Segmentand FacetRecovery

Although the theoreticaltreatmentof encroachedsubsegmentsandsubfacetsis no differentfor thosethat
aremissingandthosethat arepresentin the mesh,they aretreatedvery differently in practice. Whereas
missingsegmentsandfacetsrequirethemaintenanceof a separatetriangulationof eachsegmentandfacet
(which is almosttrivial for segments),subsegmentsandsubfacetsthatarepresentin themeshdo not, and
theirencroachmentcanbedetectedmuchmoreeasily. Furthermore,missingsubsegmentsandsubfacetscan
sometimesbe recoveredwithout insertinga new vertex. For reasonsto be statedshortly, this solutionis
oftenpreferable.
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Figure5.9: Electric guitar PSLG.

Figure5.10: Delaunay triangulation of vertices of PSLG. The triangulation does not conform to all of the
input segments.

Figure5.11:Constrained Delaunay triangulation of PSLG.

Figure5.12:Triangles are removed from concavities and holes.

Figure5.13:Conforming Delaunay triangulation with �u¸�¡ minimum angle.
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Trianglecanforcethemeshto conformto theinputsegmentsin oneof two ways,selectableby theuser.
Thefirst wasdescribedin Section3.3;any segmentthatfails to appearin themeshis recursively dividedby
insertingverticesalongits length,usingLawson’s incrementalinsertionalgorithmto maintaintheDelaunay
property, until theentiresegmentis representedasa unionof edgesof themesh.Subsegmentsarelocked
asthey appear. Inputsegmentsthatarenotmissingfrom theinitial triangulationmustalsobeidentifiedand
locked.

Thesecondchoiceis to simply usea constrainedDelaunaytriangulation,asFigure5.11demonstrates.
Eachsegmentis insertedby deletingthetrianglesit overlaps,andtheregion on eachsideof thesegmentis
Delaunaytriangulatedanew (recallFigure2.16onPage21). No new verticesareinserted.Triangleusesthe
constrainedDelaunaytriangulationby default.

Incrementalinsertionof segmentsis not anoptimalmethodof constructinga constrainedDelaunaytri-
angulation;I couldhave chosentheoptimal ¯°
-±q²³GN´�±�� divide-and-conquermethodof Chew [18] instead.
However, practicalinputsareusuallycomposedmainlyof short,easilyinsertedsegments.AlthoughChew’s
algorithmis optimal, it carriesa larger constantoverheadthanpurelyDelaunaydivide-and-conquertrian-
gulation,andwould likely beslower on mostpracticalinputs. I have not implementedChew’s constrained
Delaunaytriangulationalgorithm,andhencecannottestthis notion,but I doubttheeffort would beworth
theends.

Although the definition of “PSLG” normally disallows segmentintersections(exceptat segmentend-
points),Trianglecandetectsegmentintersectionsandinsertverticesappropriately. WhenTriangleis finding
anddeletingthetrianglesthatoverlapa missingsegment,it detectsany subsegmentsthatcrossthemissing
segment,andsplitseachsuchsubsegmentby insertinga new vertex at theintersectionpoint. Trianglealso
noticesif amissingsegmentpassesthroughanexistingvertex, andrecursively insertsthetwo subsegments
yieldedby splitting the segmentat the intersectingvertex. However, if a segmentpassesvery closeto an
existingvertex, but doesnotmeetit precisely(asdeterminedby theexactpredicatesdescribedin Chapter6),
a very small featureis formed;hence,usersshouldbewary of placingverticesin segmentinteriorsin the
hopesthat Trianglewill deemthemcollinear. Instead,input segmentsshouldbe split into smallerinput
segmentsat theverticesthey areintendedto intersect.

Pyramid,unfortunately, doesnot have thechoiceof forming a constrainedDelaunaytetrahedralization,
becauseconstrainedDelaunaytetrahedralizationsdonotalwaysexist. However, subsegmentsandsubfacets
cansometimesbeintroducedinto themeshnotby vertex insertion,but by theuseof appropriateedgeflips.
For instance,a 2-3 flip might be usedto restorea missingsubsegment,and a 3-2 flip might be usedto
restorea missingsubfacet.More generally, amissingsubsegmentor subfacetmight berestoredby a clever
sequenceof flips. However, recall from Chapter2 that a tetrahedralizationthat conformsto the missing
subsegmentsandsubfacetsdoesnotnecessarilyexist,andtheNP-hardnessresultof RuppertandSeidel[83]
suggeststhatit mightnotbefeasibleto determinewhethersucha tetrahedralizationexists.Hence,onemust
rely on heuristicswhenattemptingto recover subsegmentsandsubfacetswithout insertingnew vertices.
Onemustresortto insertinganew vertex, in themannerdescribedin Section4.2,if theheuristicsfail.

Onemightask,why go to suchtroubleto avoid insertingnew verticeswhenrecoveringmissingsubseg-
mentsandsubfacets?After all, if asubsegmentor subfacetis missing,theremustbeavertex in its protecting
sphere(exceptin raredegeneratecases),andthesubsegmentor subfacetwill besplit anyway. Therearetwo
answers.First,whenasubsegment(in two dimensions)or subfacet(in three)hasbeenrecovered,its protect-
ing diametralcircle or equatorialspherecanbereplacedwith a diametrallensor equatoriallens,possibly
avertinga vertex insertion.Second,overrefinementdueto smallexternalfeatures,asdescribedin thenext
section,maybereducedor averted.
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5.3.2 Concavities and Holes

In bothTriangleandPyramid,usersmaycreateholesin their meshesby specifyingholepointswherean
“element-eatingvirus” is plantedandspreadby depth-firstsearchuntil its advanceis haltedby segments(in
two dimensions)or facets(in three). This simplemechanismsavesboth the userandthe implementation
from a commonoutlook of solid modelingwhereinone must defineorientedcurves whoseinsidesare
clearlydistinguishablefrom their outsides.Exteriorboundaries(which separatea triangulatedregion from
an untriangulatedregion, and include boundariesof holes)and interior boundaries(which separatetwo
triangulatedregions)aretreatedin aunifiedmanner.

If the region beingmeshedis not convex, concavities arerecognizedfrom unlocked edges(in two di-
mensions)or faces(in threedimensions)on theboundaryof themesh,andthesameelement-eatingvirus is
usedto hollow themout (recallFigure5.12). Theusermayselectanoptionthatcausestheconvex hull of
the input to beautomaticallyprotectedwith subsegmentsor subfacets.If this option is chosen,theuseris
relievedof theresponsibilityof providing a segment-boundedor facet-boundedinput. Concavities canstill
becreatedby specifyingappropriateholepointsjust insidetheconvex hull, but segmentsor facetsmustbe
usedto demarcatetheinternalboundaryof theconcavity.

TriangleandPyramidremove extraneouselementsfrom holesandconcavities beforethe refinement
stage. This presentsno problemfor the refinementalgorithms. The main concernis that generalpoint
locationis difficult in a nonconvex triangulation. Fortunately, the mostgeneralform of point locationis
not neededfor Delaunayrefinement.Point locationis usedonly to find the circumcenterof an element,
which maybeaccomplishedby walking from thecentroidof theelementtoward thecircumcenter. If the
pathis blocked by a subsegmentor subfacet,the culprit is marked asencroached,andthe searchmaybe
abandoned.(Recallthatthis is preciselyhow Chew’ssecondDelaunayrefinementalgorithm[21] decidesto
split asegment.)Becausethemeshis segment-bounded(in two dimensions)or facet-bounded(in three),the
searchmusteithersucceedor befoiled by anencroachedentity. Moreover, in two dimensions,if diametral
circles(ratherthanlenses)areused,Lemma13 guaranteesthatany circumcenterconsideredfor insertion
falls insidethemesh,althoughroundoff errormightperturbit to justoutsidethemesh.Theanalogousresult
canbeprovenin threedimensions.

An advantageof removing elementsbeforerefinementis that computationis not wastedrefining ele-
mentsthatwill eventuallybedeleted.A moreimportantadvantageis illustratedin Figure5.14.If extraneous
elementsremainduringtherefinementstage,overrefinementcanoccurif verysmallfeaturesoutsidetheob-
ject beingmeshedcausethecreationof smallelementsinsidethemesh.Ruppert[82] suggestssolvingthis
problemby usingtheconstrainedDelaunaytriangulationandignoring interactionsthat take placeoutside
theregionbeingtriangulated.Early removal of trianglesprovidesanearlyeffortlessway to accomplishthis
effect. Subsegmentsandsubfacetsthatwouldnormallybeconsideredencroachedareignored(Figure5.14,
right), becauseencroachedsubsegmentsarediagnosedby noticingthatthey occuroppositeanobtuseangle
in a triangle.(Seethenext sectionfor details.)

This advantagecanbecastinto a formal framework by redefiningthenotionof local featuresize. Let
thegeodesicdistancebetweentwo pointsbethelengthof theshortestpathbetweenthemthatdoesnotpass
throughanuntriangulatedregionof theplane.In otherwords,any geodesicpathmustgo aroundholesand
concavities. GivenaPSLG¹ andapoint � in thetriangulatedregionof ¹ , definethelocalfeaturesizelfs 
����
to bethesmallestvaluesuchthatthereexist two points ' and & thatlie onnonincidentverticesor segments
of ¹ , andeachof ' and & is within a geodesicdistanceof lfs 
���� from � . This is essentiallythe same
asthe definition of local featuresizegiven in Section3.3.2,exceptthat Euclideandistancesarereplaced
with geodesicdistances.All of the proofs in Chapter3 can be madeto work with geodesicdistances,
becauseLemma14dependsonly uponthetriangleinequality, whichholdsfor geodesicdistancesaswell as
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Figure5.14: Two variations of Ruppert’s Delaunay refinement algorithm with a 20 ¡ minimum angle. Left:
Mesh created using segment recovery by recursive splitting and late removal of triangles. This illustration
shows exterior triangles, just prior to their removal, to show why overrefinement occurs. Right: Mesh created
using the constrained Delaunay triangulation and early removal of triangles.

Euclideandistances,andbecausea child andits parentarenever separatedby anuntriangulatedregion of
theplane. This changecanyield improvedboundson edgelengthsin someregionsof themesh,because
smallexterior featuresareno longertakeninto accountin thedefinitionof local featuresize.

Theseobservationsaboutgeodesicdistancecanalsobeappliedto surfacemeshing,whereinonemeshes
two-dimensionalplanarsurfacesembeddedin threedimensions.Thesesurfacesmay meetat sharedseg-
ments,so thatsmall featuresizesin onesurfacemaypropagateinto another. Again, thegeodesicdistance
betweentwo pointsis thelengthof theshortestpathbetweenthemthatdoesnotpassthroughanuntriangu-
latedregion. Hence,thepathis restrictedto lie in theinputsurfaces.Two-dimensionalDelaunayrefinement
algorithmsmaybeappliedin thiscontext with virtually nochange.

The problemof overrefinementdue to small external featuresis not solved for tetrahedralmeshing,
however. ConstrainedDelaunaytetrahedralizations arenot anoption,andthevertex insertionmethodfor
recovering segmentsandfacetscanoverrefine.However, if missingsubsegmentsandsubfacetsaregiven
priority overotherencroachedsubsegmentsandsubfacets;if they arerecoveredwith asfew vertex insertions
aspossible(usingheuristicmethodsbasedon flips, asdescribedin theprevious section);andif holesare
emptiedimmediatelyafterall missingsubsegmentsandsubfacetsarerecovered,muchor all of thepotential
overrefinementcanbeavoided.However, I canoffer noguarantee.

Anothersourceof spurioussmallfeaturesis theconvex hull of theinput,whichappearsastheboundary
edgesor facesof the initial triangulation.To give a two-dimensionalexample,if an input vertex lies just
insidetheconvex hull, andthenearestconvex hull edgeis treatedasasubsegment,thenthelocalfeaturesize
nearthevertex maybeartificially reducedto anarbitrarily small length. In threedimensions,this problem
maybecausednot only by verticesjust insidetheconvex hull, but alsoby segmentsthatpassnearconvex
hull edges.Thesemayarise,for instance,whenthe input is a pre-triangulatedsurfacemeshwith exterior
dihedralanglesthatareslightly lessthan 5 P ) + , just shortof convexity. Whenthe input is tetrahedralized,
sliver tetrahedramayfill thesecrevices.

Hence,it is importantthat convex hull edgesandfacesarenot treatedassubsegmentsandsubfacets,
except for thoseedgesandfacesspecificallyidentifiedby the userassuch. However, if the meshis not
segment-boundedor facet-bounded,it is notclearhow to treatexteriorskinny trianglesor tetrahedrawhose
circumcentersfall outsidethemesh.Theremoval of elementsfrom concavities yieldsa segment-bounded
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(a) (b)

Figure5.15: (a) Constrained Delaunay triangulation of the guitar PSLG and its convex hull. (b) Close-up of
a small angle formed at the bottom of PSLG because of the convex hull.

or facet-boundedmesh,sothatDelaunayrefinementmayproceed.

Small anglespresentanothermotivation for removing elementsfrom holesand concavities prior to
applyingtheDelaunayrefinementalgorithm. If a smallangleis presentwithin a holeor concavity (rather
thanin thetriangulatedportionof thePSLG),thesmallanglehasnoeffectonthemeshingprocess.However,
if themeshwererefinedprior to thecarvingof concavities andholes,unnecessarilysmallelementsmight
beproduced,or therefinementstagemight fail to terminate.Thisproblemcanappearwith dastardlystealth
whenmeshingcertainnonconvex objectsthatdonotappearto havesmallangles.A verysmallanglemaybe
unexpectedlyformedbetweenadefiningsegmentof theobjectandanedgeof theconvex hull, asillustrated
in Figure5.15.Theuser, unawareof theeffectof theconvex hull edge,wouldbemystifiedwhy theDelaunay
refinementalgorithmfailsto terminateonwhatappearsto beaneasyPSLG.(In fact,this is how thenegative
resultof Section3.6 first becameevident to me.) Early removal of elementsfrom concavities evadesthis
problem.

In TriangleandPyramid,thesamesegment-boundedor facet-boundeddepth-firstsearchusedto demar-
cateholesandconcavities is alsousedto tagtheelementsof selectedregionsof themeshwith markersthat
indicatewhichregion they lie in.

5.3.3 DelaunayRefinement

Therefinementstageis illustratedonatwo-dimensionalPSLGin Figure5.16.As wasnotedin theprevious
section,holesandinteriorboundariesareeasilyaccommodatedby theDelaunayrefinementalgorithm.

Trianglemaintainsa queueof encroachedsubsegmentsanda queueof skinny triangles,eachof which
areinitialized at the beginning of the refinementstageandmaintainedthroughout;every vertex insertion
mayaddnew membersto eitherqueue.Pyramidmaintainsqueuesof encroachedsubsegments,encroached
subfacets,andskinny tetrahedra.Thequeuesof encroachedsubsegmentsandsubfacetsrarelycontainmore
thana few items,exceptat thebeginningof therefinementstage,whenthey maycontainmany.

Eachqueueis initializedby traversingalist of all subsegments,subfacets,triangles,or tetrahedrapresent
in the mesh. Detectionof encroachedsubsegmentsand subfacetsis a local operation. For instance,a
subsegmentmaybetestedfor encroachmentby inspectingonly thoseverticesthatappeardirectly opposite
thesubsegmentin a triangle(a triangularfacein threedimensions).

To seewhy this factis true,considerFigure5.17(a).Bothof thevertices( & and 
 ) oppositethesegmentS lie outsidethediametralcircleof S . Becausethemeshis constrainedDelaunay, eachtriangle’scircumcircle
is empty(onits sideof S ), andthereforethediametralcircleof S is empty. As Figure5.17(b)shows,thesame
argumentis trueof diametrallenses,becausea diametrallensis definedby circulararcspassingthrougha
segment’s endpoints.
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Figure 5.16: Demonstration of the refinement stage. The first two images are the input PSLG and its
constrained Delaunay triangulation. In each image, highlighted segments or triangles are about to be split,
and highlighted vertices are rejected for insertion. Note that the algorithm easily accommodates interior
boundaries and holes.
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Figure5.17: (a) If the apices (here, º and » ) of the triangles that contain a subsegment Q are outside the
diametral circle of Q , then no vertex lies in the diametral circle of Q , because the triangles are Delaunay. (b)
The same statement is true for the diametral lens of Q .
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Thesameargumentsapplyin threedimensionsto diametralspheres,equatorialspheres,andequatorial
lenses.In eachcase,a subsegmentor subfacetmaybequickly testedfor encroachmentby testingonly the
tetrahedrathatcontainthesubsegmentor subfacetin question.

After the queuesare initialized, the Delaunayrefinementprocessmay causeothersubsegmentsand
subfacetsto becomeencroached.The mostobvious way to test whethera new vertex encroachesupon
somesubsegmentor subfacetis to insertit into thetriangulation,thentesteachof theedgesandfacesthat
appearoppositethevertex in sometriangle,tetrahedron,or triangularface. If a subsegmentor subfacetis
encroached,it is insertedinto the appropriatequeue,andthenew vertex mayhave to bedeletedfrom the
mesh.Thedecisionto acceptor rejectavertex dependson thetypeof vertex beinginserted.

V Subsegmentmidpoints:Thesearenever rejected.

V Subfacetcircumcenters: Accordingto thedescriptionof three-dimensionalDelaunayrefinementgiven
in Chapter4, thesearerejectedif they encroachupona subsegment.However, to obtainthebounds
proven in Chapter4, it is only necessaryto rejecta subfacetcircumcenterif it encroachesupona
subsegmentof thesamefacet.This factreducestheamountof testingthatmustbedone.

V Circumcenters of skinnytrianglesandtetrahedra: Thesearerejectedif they encroachuponany sub-
segmentor subfacet.

Thetestfor subsegments,if they areprotectedby diametralcirclesor spheres,is quitesimple.Let T be
a triangleformedby a subsegment S anda vertex & oppositeit. If theangleat & is greaterthan O*) + , then
& encroachesupon S ; this test reducesto a dot product. The testsfor encroachmentof diametrallenses,
equatorialspheres,andequatoriallensesaremorecomplicated.

I turn from thetopic of detectingencroachmentto thetopic of managingthequeueof skinny elements
(whichalsoholdselementsthataretoolarge,asdictatedby boundsspecifiedby theuser).Eachtimeavertex
is insertedor deleted,eachnew triangleor tetrahedronthatappearsis tested,andis insertedinto thequeueif
its quality is toopoor, or its areaor volumetoolarge.Thenumberof trianglesor tetrahedrain thefinal mesh
is determinedin partby theorderin whichskinny elementsaresplit, especiallywhenastrongqualitybound
is used.Figure5.18demonstrateshow sensitive Ruppert’s algorithmis to theorder. For thisexamplewith a
�N� + minimumangle,a heapof skinny trianglesindexedby their smallestangleconfersa 35%reductionin
meshsizeover a first-in first-outqueue.(This differenceis typical for stronganglebounds,but thankfully
seemsto disappearfor small anglebounds.) The discrepancy probablyoccursbecausecircumcentersof
very skinny trianglesare likely to eliminatemore skinny trianglesthan circumcentersof mildly skinny
triangles.Unfortunately, aheapis slow for largemeshes,especiallywhensmallareaconstraintsforceall of
theelementsinto theheap.Delaunayrefinementusuallytakes ¯°
-±�� time in practice,but theuseof a heap
increasesthecomplexity to ¯°
-±q²³GN´�±�� .

The solutionusedin Triangle and Pyramid,chosenexperimentally, is to use64 FIFO queues,each
representinga different interval of circumradius-to-shortest edgeratios. Oddly, it is counterproductive in
practiceto orderwell-shapedelements,soonequeueis usedfor well-shapedbut too-largeelementswhose
qualityratiosareall roughlysmallerthan ) üLP (in Triangle,correspondingto anangleof about� O + ) or one(in
Pyramid).Elementswith largerquality ratiosarepartitionedamongtheremainingqueues.Whena skinny
elementis chosenfor splitting, it is takenfrom the“worst” nonemptyqueue.A queueof nonemptyqueues
is maintainedsothataskinny elementmaybechosenquickly. Thismethodyieldsmeshescomparablewith
thosegeneratedusinga heap,but is only slightly slower thanusingasinglequeue.
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Figure5.18: Two meshes with a 33 ¡ minimum angle. The left mesh, with 290 triangles, was formed by
always splitting the worst existing triangle. The right mesh, with 450 triangles, was formed by using a
first-come first-split queue of skinny triangles.

During the refinementphase,Triangle generatesabout22,800new verticesper secondon a DEC
3000/700.Pyramidgeneratesa moremodest800 verticesper second.Verticesareinsertedusinga flip-
basedincrementalDelaunayalgorithm,but in Triangleareinsertedmuchmorequickly thanTable5.1would
suggestbecausea triangle’s circumcentercanbelocatedquickly by startingthesearchat thetriangle.

5.4 Conclusions

TriangleandPyramidwereoriginally designedandimplementedto meettheneedsof theQuakeproject[7]
at Carnegie Mellon University, a multidisciplinaryeffort to studyearthquake-inducedgroundmotionin the
Los Angelesbasin.Sucha studyis necessarilyof largemagnitude,andexertsa greatdealof stresson the
softwareinfrastructurethatsupportsit. TriangleandPyramidhaverisento thechallenge,generatingmeshes
of upto 77million tetrahedralelements.As well asusingTrianglewithin theQuakeproject,I havereleased
it for publicuse,andexpectto releasePyramidin asimilarmannerwithin thenext year.

In thetwo yearssinceTrianglewasreleasedto thepublic,I have heardfrom researchersanddevelopers
who areusingTrianglefor a surprisingvariety of applications.Triangleseemsto be particularlypopular



144 JonathanRichardShewchuk

for triangulatingsurvey and map data; for maintainingterrain databases,especiallyfor usein real-time
simulations;andfor discontinuitymeshingfor global illumination methodssuchasradiosity. I have also
heardfrom individualsusingTrianglefor moresurprisingapplications,suchasstereovision,interpolationof
speechsignals,computingtheorientationof text images,modelingreflectionsof high frequency radiofrom
structuresin cities,modelingthedensityof starsin thesky, the triangulationof virtual worlds for a video
game,andecologicalresearchculminatingin a paperby N. V. Joshi,entitled“The SpatialOrganizationof
PlantCommunitiesin aDeciduousForest.”

Of course,Trianglehasalsobeenusedby many researchersfor numericalsimulation. Applications
includeelectricalcurrentpropagationin themyocardium,simulationof surgeryon a modelof thehuman
cornea,transportprocessesin estuariesandcoastalwaters,tomographicmodelsof theseismicstructurebe-
neathEurasia,Schr̈odinger’s equationin quantumconfinedstructures,two-and-a-half-dimensional waveg-
uideproblems,electrostaticandmagnetostaticmodelingof complex multielectrodesystems,controlvolume
FEM for fluid flow andheattransfer, andsurfacemeshingfor BEM on integratedcircuits.

Theseexamplesrepresentonly a selectedfew of the applicationsthat peoplehave written to tell me
about,which in turn surelyrepresentonly a fractionof thepeoplewho areusingTriangle.Severalcompa-
nieshavealsopurchasedlicensesto useTrianglein theircommercialproducts,for purposesincludingbeam
elementvisualization,thermalanalysis,interpolationbetweengridsfor anoceanfloor database,visualiza-
tion of miningdata,andcartoonanimation.

Theupshotis thattherehaslongbeenanunansweredneedfor robustmeshgenerationin agreatvariety
of applicationdomains.Althoughtherewastriangularmeshingsoftwareavailablefreelyon thenetprior to
Triangle,many of my usersreportthatnonehadthecombinationof flexibility, robustness,andeaseof use
of Triangle.



Chapter 6

AdaptivePrecisionFloating-Point
Arithmetic and FastRobust Geometric
Predicates

Fromthebeginningof theimplementationof Triangle,andwell into thedevelopmentof Pyramid,floating-
point roundoff problemsplaguedme. Eachprogramwouldsometimescrash,sometimesfind itself stuckin
anendlessloop, andsometimesproducegarbledoutput. At first I believed that I would beableto fix the
problemsbyunderstandinghow thealgorithmswentwrongwhenroundoff errorproducedincorrectanswers,
andwriting special-casecodeto handleeachpotentialproblem.Someof therobustnessproblemsyielded
to this approach,but othersdid not. Fortunately, StevenFortuneof AT&T Bell Laboratoriesconvincedme,
in a few brief but well-wordedemail messages(andin several longerandequallywell-wordedtechnical
papers),to choosethealternative pathto robustness,which led to theresearchdescribedin thischapter. For
reasonsthatwill becomeapparent,exactarithmeticis thebetterapproachto solvingmany, if not all, of the
robustnessworriesassociatedwith triangulation.

Herein,I make threecontributionsto geometricrobustness,thefirst two of which I hopewill find appli-
cationelsewherein numericalanalysis.Thefirst is to offer fastsoftware-level algorithmsfor exactaddition
andmultiplication of arbitraryprecisionfloating-pointvalues. The secondis to proposea techniquefor
adaptive precisionarithmeticthatcanoftenspeedthesealgorithmswhenonewishesto performmultipreci-
sioncalculationsthatdonotalwaysrequireexactarithmetic,but mustsatisfysomeerrorbound.Thethird is
to provideapracticaldemonstrationof thesetechniques,in theform of implementationsof severalcommon
geometriccalculationswhoserequireddegreeof accuracy dependson their inputs.Theserobustgeometric
predicatesareadaptive; their runningtimedependson thedegreeof uncertaintyof theresult,andis usually
small.

Thesealgorithmswork oncomputerswhosefloating-pointarithmeticusesradixtwo andexactrounding,
includingmachinescomplyingwith the IEEE 754standard.The inputsto thepredicatesmaybearbitrary
singleor doubleprecisionfloating-pointnumbers.C codeis publicly availablefor the2D and3D orientation
andincircle tests,andis usedvery successfullyin bothTriangleandPyramid.Timingsof theimplementa-
tionsdemonstratetheireffectiveness.

145
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6.1 Intr oduction

Softwarelibrariesfor arbitraryprecisionfloating-pointarithmeticcanbeusedto accuratelyperformmany
error-proneor ill-conditionedcomputationsthatwouldbeinfeasibleusingonly hardware-supportedapprox-
imatearithmetic. Someof thesecomputationshave accuracy requirementsthatvary with their input. For
instance,considerthe problemof finding the centerof a circle, given threepoints that lie on the circle.
Normally, hardwareprecisionarithmeticwill suffice,but if theinputpointsarenearlycollinear, theproblem
is ill-conditionedandtheapproximatecalculationmayyield awildly inaccurateresultor adivisionby zero.
Alternatively, anexactarithmeticlibrary canbeusedandwill yield a correctresult,but exactarithmeticis
slow; onewould ratheruseit only whenonereallyneedsto.

Thischapterpresentstwo techniquesfor writing fastimplementationsof extendedprecisioncalculations
like these,anddemonstratesthemwith implementationsof four commonlyusedgeometricpredicates.The
first techniqueis a suiteof algorithms,severalof themnew, for performingarbitraryprecisionarithmetic.
The methodhasits greatestadvantagein computationsthat processvaluesof extendedbut small preci-
sion (several hundredor thousandbits), andseemsideal for computationalgeometryandsomenumerical
methods,wheremuchbenefitcanbe realizedfrom a modestincreasein precision.The secondtechnique
is a way to modify thesealgorithmsso that they computetheir resultadaptively; they arequick in most
circumstances,but arestill slow whentheir resultsareproneto have high relative error. A third subjectof
thischapteris ademonstrationof thesetechniqueswith implementationsandperformancemeasurementsof
four commonlyusedgeometricpredicates.An elaborationof eachof thesethreetopicsfollows.

Methodsof simulatingexactarithmeticin softwarecanbeclassifiedby several characteristics.Some
exactarithmeticlibrariesoperateon integersor fixed-pointnumbers,while othersoperateon floating-point
numbers.To representa number, theformerlibrariesstorea significandof arbitrarylength;thelatterstore
an exponentaswell. Somelibrariesusethe hardware’s integer arithmeticunits, whereasothersusethe
floating-pointunits.Oddly, thedecisionto useintegersor floating-pointnumbersinternallyis orthogonalto
thetypeof numberbeingrepresented.It wasoncethenormto useintegerarithmeticto build extendedpreci-
sionfloating-pointlibraries,especiallywhenfloating-pointhardwarewasuncommonanddifferedbetween
computermodels. Timeshave changed,andmodernarchitecturesarehighly optimizedfor floating-point
performance;on many processors,floating-pointarithmeticis fasterthaninteger arithmetic. The trendis
reversingfor software librariesaswell, andthereareseveral proposalsto usefloating-pointarithmeticto
performextended-precisionintegercalculations.FortuneandVanWyk [37, 36], Clarkson[23], andAvnaim,
Boissonnat,Devillers, Preparata,andYvinec [2] have describedalgorithmsof this kind, designedto attack
the samecomputationalgeometryrobustnessproblemsconsideredlater in this chapter. Thesealgorithms
aresurveyedin Section6.2.

Anotherdifferentiatingfeatureof multiprecisionlibrariesis whetherthey usemultipleexponents.Most
arbitraryprecisionlibrariesstorenumbersin amultiple-digitformat,consistingof asequenceof digits(usu-
ally of largeradix,like

ù 2cò ) coupledwith asingleexponent.A freelyavailableexampleof themultiple-digit
approachis Bailey’s MPFUN package[4], a sophisticatedportablemultiprecisionlibrary that usesdigits
of machine-dependentradix (usually

ù ò · ) storedassingleprecisionfloating-pointvalues.An alternative is
themultiple-componentformat,whereina numberis expressedasa sumof ordinaryfloating-pointwords,
eachwith its own significandandexponent[76, 26, 61]. This approachhastheadvantagethattheresultof
anadditionlike

ù 2^¼^¼ ô ù ¤ 2^¼^¼ (whichmaywell arisein calculationslike thegeometricpredicatesdiscussed
in Section6.5.1)canbe storedin two wordsof memory, whereasthe multiple-digit approachwill useat
least601bits to storethesum,andincur a correspondingspeedpenaltywhenperformingarithmeticwith
it. On the otherhand,the multiple-digit approachcanmorecompactlyrepresentmostnumbers,because
only oneexponentis stored.(MPFUN sacrificesthis compactnessto take advantageof floating-pointhard-
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ware;theexponentof eachdigit is unused.)More pertinentis thedifferencein speed,discussedbriefly in
Section6.3.1.

The algorithmsdescribedhereinusefloating-pointhardware to performextendedprecisionfloating-
pointarithmetic,usingthemultiple-componentapproach.Thesealgorithms,describedin Section6.3,work
undertheassumptionthathardwarearithmeticis performedin radix two with exactrounding.Thisassump-
tion holdson processorscompliantwith theIEEE 754floating-pointstandard.Proofsof thecorrectnessof
all algorithmsaregiven.

The methodshereinareclosely relatedto, andoccasionallytaken directly from, methodsdeveloped
by Priest[76, 77], but arefaster. The improvementin speedarisespartly becausePriest’s algorithmsrun
on a wide variety of floating-pointarchitectures,with different radicesand roundingbehavior, whereas
mine are limited to andoptimizedfor radix two with exact rounding. This specializationis justified by
the wide acceptanceof the IEEE 754 standard.My algorithmsalsobenefitfrom a relaxationof Priest’s
normalizationrequirement,whichis lessstrict thanthenormalizationrequiredby multiple-digitalgorithms,
but is nonethelesstime-consumingto enforce.

I demonstratethesemethodswith publicly availablecodethatperformsthetwo-dimensionalandthree-
dimensionalorientationandincircletests,calculationsthatcommonlyarisein computationalgeometry. The
orientationtestdetermineswhethera point lies to the left of, to the right of, or on a line or plane; it is
an importantpredicateusedin many (perhapsmost)geometricalgorithms. The incircle testdetermines
whetherapoint lies inside,outside,or onacircleor sphere,andis usedfor Delaunaytriangulation.Inexact
versionsof thesetestsare vulnerableto roundoff error, and the wrong answersthey producecan cause
geometricalgorithmsto hang,crash,or produceincorrectoutput.Althoughexactarithmeticbanishesthese
difficulties, it is commonto hearreportsof implementationsbeing slowed by factorsof ten or more as
a consequence[56, 36]. For thesereasons,computationalgeometryis an importantarenafor evaluating
extendedprecisionarithmeticschemes.

The orientationandincircle testsevaluatethe sign of a matrix determinant.It is significantthat only
thesign,andnot themagnitude,of thedeterminantis needed.FortuneandVanWyk [36] take advantageof
this factby usingafloating-pointfilter: thedeterminantis first evaluatedapproximately, andonly if forward
error analysisindicatesthat the sign of the approximateresult cannotbe trusteddoesone usean exact
test. I carrytheir suggestionto its logical extremeby computinga sequenceof successively moreaccurate
approximationsto the determinant,stoppingonly when the accuracy of the sign is assured.To reduce
computationtime,approximationsreusea previous,lessaccuratecomputationwhenit is economicalto do
so. Proceduresthusdesignedareadaptive; they refinetheir resultsuntil they arecertainof thecorrectness
of their answer. The techniqueis not limited to computationalgeometry, nor is it limited to finding signs
of expressions;it canbe employed in any calculationwherethe requireddegreeof accuracy varies. This
adaptive approachis describedin Section6.4, and its applicationto the orientationand incircle testsis
describedin Section6.5.

Readerswho wish to usethesepredicatesin their own applicationsareencouragedto downloadthem
andtry themout. However, be certainto readSection6.6, which covers two importantissuesthat must
be consideredto ensurethe correctnessof the implementation:your processor’s floating-pointbehavior
andyour compiler’s optimizationbehavior. Furthermore,be awarethat exact arithmeticis not a panacea
for all robustnesswoes;its usesandlimitations arediscussedin Section6.2. Exactarithmeticcanmake
robust many algorithmsthat take geometricinput andreturnpurely combinatorialoutput; for instance,a
fully robust convex hull implementationcanbe producedwith recourseonly to an exact orientationtest.
However, in algorithmsthatconstructnew geometricobjects,exactarithmeticis sometimesconstrainedby
its costandits inability to representarbitraryirrationalnumbers.
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A few words are appropriateto describesomeof the motivation for pursuingrobust predicatesfor
floating-point,ratherthan integer, operands.Onemight argue that real-valuedinput to a geometricpro-
gramcanbescaledandapproximatedin integer form. Indeed,therearefew geometricproblemsthattruly
requirethe rangeof magnitudethatfloating-pointstorageprovides,andinteger formatshada clearspeed
advantageover floating-pointformatsfor small-scaleexactcomputationprior to thepresentresearch.The
bestargumentfor exactfloating-pointlibrariesin computationalgeometry, besidesconvenience,is thefact
that many existing geometricprogramsalreadyusefloating-pointnumbersinternally, and it is easierto
replacetheir geometricpredicateswith robust floating-pointversionsthanto retrofit the programsto use
integersthroughout.Onlinealgorithmspresentanotherargument,becausethey arenot alwayscompatible
with thescaled-inputapproach.Onecannotalwaysknow in advancewhatresolutionwill berequired,and
repeatedrescalingsmay be necessaryto supportan internal integer format whenthe inputsare real and
unpredictable.In any case,I hopethatthis researchwill make it easierfor programmersto choosebetween
integerandfloating-pointarithmeticasthey prefer.

6.2 RelatedWork in Robust Computational Geometry

Mostgeometricalgorithmsarenotoriginally designedfor robustnessatall; they arebasedon therealRAM
model, in which quantitiesareallowed to bearbitraryrealnumbers,andall arithmeticis exact. Thereare
severalwaysageometricalgorithmthatis correctwithin therealRAM modelcangowrongin anencounter
with roundoff error. Theoutputmight be incorrect,but becorrectfor someperturbationof its input. The
resultmight beusableyet not bevalid for any imaginableinput. Or, theprogrammaysimply crashor fail
to producea result.To reflectthesepossibilities,geometricalgorithmsaredividedinto severalclasseswith
varyingamountsof robustness:exact algorithms, which arealwayscorrect;robust algorithms, which are
alwayscorrectfor someperturbationof the input; stablealgorithms, for which the perturbationis small;
quasi-robust algorithms, whoseresultsmight begeometricallyinconsistent,but neverthelesssatisfysome
weakenedconsistency criterion; and fragile algorithms, which arenot guaranteedto produceany usable
outputat all. The next several pagesaredevotedto a discussionof representative researchin eachclass,
andof thecircumstancesin whichexactarithmeticandothertechniquesareor arenotapplicable.For more
extensive surveys of geometricrobustness,seeFortune[34] andHoffmann[50].

Exact algorithms. A geometricalgorithmis exact if it is guaranteedto produceacorrectresultwhengiven
anexact input. (Of course,theinput to a geometricalgorithmmayonly beanapproximationof somereal-
world configuration,but thisdifficulty is ignoredhere.)Exactalgorithmsuseexactarithmeticin someform,
whetherin theform of amultiprecisionlibrary or in amoredisguisedform.

Thereareseveralexactarithmeticschemesdesignedspecificallyfor computationalgeometry;mostare
methodsfor exactly evaluatingthesignof a determinant,andhencecanbeusedto performtheorientation
andincircle tests. Clarkson[23] proposesanalgorithmfor usingfloating-pointarithmeticto evaluatethe
signof thedeterminantof a smallmatrix of integers. A variantof themodifiedGram-Schmidtprocedure
is usedto improve the conditioningof the matrix, so that the determinantcansubsequentlybe evaluated
safelyby Gaussianelimination.The53 bits of significandavailablein IEEE doubleprecisionnumbersare
sufficient to operateon 5 )°½ 5 ) matricesof 32-bit integers.Clarkson’s algorithmis naturallyadaptive; its
runningtime is smallfor matriceswhosedeterminantsarenotnearzeroJ .
© Themethodpresentedin Clarkson’s paperdoesnot work correctlyif thedeterminantis exactly zero,but Clarkson(personal

communication)notesthat it is easily fixed. “By keepingtrack of the scalingdoneby the algorithm, an upperboundcanbe
maintainedfor themagnitudeof thedeterminantof thematrix. Whenthatupperbounddropsbelow one,thedeterminantmustbe
zero,sincethematrixentriesareintegers,andthealgorithmcanstop.”
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Recently, Avnaim,Boissonnat,Devillers, Preparata,andYvinec [2] proposedanalgorithmto evaluate
signsof determinantsof

ù
½
ù

and � ½ � matricesof � -bit integersusingonly � and 
�� ô 5 � -bit arithmetic,
respectively. Surprisingly, this is sufficient evento implementthe inspheretest(which is normallywritten
asa ! ½ ! or K ½ K determinant),but with a handicapin bit complexity; 53-bit doubleprecisionarithmetic
is sufficient to correctlyperformtheinspheretestonpointshaving 24-bit integercoordinates.

FortuneandVanWyk [37, 36] proposea moregeneralapproach(not specificto determinants,or even
to predicates)that representsintegersusing a standardmultiple-digit techniquewith digits of radix

ù ò^2
storedas doubleprecisionfloating-pointvalues. (53-bit doubleprecisionsignificandsmake it possible
to add several productsof 23-bit integersbeforeit becomesnecessaryto normalize.) Ratherthanusea
general-purposearbitrary precisionlibrary, they have developedLN, an expressioncompiler that writes
codeto evaluatea specificexpressionexactly. Thesizeof theoperandsis arbitrary, but is fixedwhenLN
is run; anexpressioncanbeusedto generateseveral functions,eachfor argumentsof differentbit lengths.
Becausethe expressionand the bit lengthsof all operandsare fixed in advance,LN can tune the exact
arithmeticaggressively, eliminatingloops,functioncalls,andmemorymanagement.Therunningtime of
a functionproducedby LN dependson the bit complexity of the inputs. FortuneandVan Wyk reportan
order-of-magnitudespeedimprovementover theuseof multiprecisionlibraries(for equalbit complexity).
Furthermore,LN gainsanotherspeedimprovementby installingfloating-pointfilterswherever appropriate,
calculatingerrorboundsautomatically.

Karasick,Lieber, andNackman[56] reporttheirexperiencesoptimizingamethodfor determinantevalu-
ationusingrationalinputs.Theirapproachreducesthebit complexity of theinputsby performingarithmetic
on intervals (with low precisionbounds)ratherthanexact values. The determinantthusevaluatedis also
an interval; if it containszero,the precisionis increasedandthe determinantreevaluated.The procedure
is repeateduntil the interval doesnot containzero(or containsonly zero),andthe resultis certain. Their
approachis thusadaptive,althoughit doesnotappearto usetheresultsof oneiterationto speedthenext.

Becausethe ClarksonandAvnaim et al. algorithmsareeffectively restrictedto low precisioninteger
coordinates,I do not comparetheir performancewith that of my algorithms,thoughtheirsmay be faster.
Floating-pointinputsaremoredifficult to work with thaninteger inputs,partly becauseof thepotentialfor
thebit complexity of intermediatevaluesto grow morequickly. (TheKarasicket al. algorithmalsosuffers
this difficulty, andis probablynot competitive with theothertechniquesdiscussedhere,althoughit maybe
thebestexistingalternative for algorithmsthatrequirerationalnumbers,suchasthosecomputingexactline
intersections.)Whenit is necessaryfor analgorithmto usefloating-pointcoordinates,theaforementioned
methodsarenot currentlyan option (althoughit might be possibleto adaptthemusingthe techniquesof
Section6.3). I amnot awareof any prior literatureon exactdeterminantevaluationthatconsidersfloating-
point operands,exceptfor onelimited example:Ottmann,Thiemt,andUllrich [74] advocatetheuseof an
accuratescalarproductoperation,ideally implementedin hardware(thoughthesoftware-level distillation
algorithmdescribedin Section6.3.8mayalsobeused),asawayto evaluatesomepredicatessuchasthe2D
orientationtest.

Exactdeterminantalgorithmsdonotsatisfytheneedsof all applications.A programthatcomputesline
intersectionsrequiresrationalarithmetic;anexactnumeratorandexactdenominatormustbestored.If the
intersectionsmaythemselvesbecomeendpointsof linesthatgeneratemoreintersections,thenintersections
of greaterandgreaterbit complexity maybegenerated.Evenexact rationalarithmeticis not sufficient for
all applications;a solid modeler, for instance,might needto determinethe verticesof the intersectionof
two independentsolidsthathave beenrotatedthrougharbitraryangles.Yet exactfloating-pointarithmetic
can’t even copewith rotatinga square! K + in the plane,becauseirrational vertex coordinatesresult. The
problemof constructedirrationalvalueshasbeenpartly attackedby the implementationof “real” numbers
in theLEDA library of algorithms[13]. Valuesderivedfrom squareroots(andotherarithmeticoperations)



150 JonathanRichardShewchuk

are storedin symbolic form when necessary. Comparisonswith suchnumbersare resolved with great
numericalcare,albeitsometimesat greatcost;separationboundsarecomputedwherenecessaryto ensure
thatthesignof anexpressionis determinedaccurately. Floating-pointfiltersandanotherform of adaptivity
(approximatinga resultrepeatedly, doublingtheprecisioneachtime)areusedaswell.

For theremainderof this discussion,considerationis restrictedto algorithmswhoseinput is geometric
(e.g. coordinatesare specified)but whoseoutput is purely combinatorial,suchas the constructionof a
convex hull or anarrangementof hyperplanes.

Robust algorithms. Therearealgorithmsthatcanbemadecorrectwith straightforward implementations
of exactarithmetic,but suffer anunacceptablelossof speed.An alternative is to relax the requirementof
a correctsolution,andinsteadaccepta solutionthat is “close enough”in somesensethat dependsupon
the application. Without exact arithmetic,an algorithm must somehow find a way to producesensible
outputdespitethefactthatgeometrictestsoccasionallytell it lies. No generaltechniqueshaveemergedyet,
althoughbandageshave appearedfor specificalgorithms,usuallyensuringrobustnessor quasi-robustness
throughpainstakingdesignanderror analysis.The lack of generalityof thesetechniquesis not the only
limitation of therelaxedapproachto robustness;thereis amorefundamentaldifficulty thatdeservescareful
discussion.

WhendisasterstrikesandarealRAM-correctalgorithmimplementedin floating-pointarithmeticfailsto
produceameaningfulresult,it is oftenbecausethealgorithmhasperformedtestswhoseresultsaremutually
contradictory. Figure6.1 shows an error that arosein the triangulationmerging subroutineof Triangle’s
divide-and-conquerDelaunaytriangulationimplementation.Thegeometricallynonsensicaltriangulationin
theillustrationwasproduced.

On closeinspectionwith a debugger, I found that the failure wascausedby a single incorrectresult
of the incircle test. At thebottomof Figure6.1 appearfour nearlycollinearpointswhosedeviation from
collinearity hasbeengreatlyexaggeratedfor clarity. The points ¾ , ¿ , U , and õ had beensortedby their
h -coordinates,and ¿ hadbeencorrectlyestablished(by orientationtests)to lie below theline ¾~U andabove
the line ¾ õ . In principle,a programcoulddeducefrom thesefactsthat ¾ cannotfall insidethecircle õ UF¿ .
Unfortunately, theincircle testincorrectlydeclaredthat ¾ lay inside,therebyleadingto theinvalid result.

It is significantthattheincircle testwasnot justwrongabouttheseparticularpoints;it wasinconsistent
with the “known combinatorialfacts.” A correctalgorithm(that computesa purely combinatorialresult)
will produceameaningfulresultif its testresultsarewrongbut areconsistentwith eachother, becausethere
existsan input for which thosetestresultsarecorrect.Following Fortune[32], analgorithmis robust if it
alwaysproducesthe correctoutputunderthe real RAM model,andunderapproximatearithmeticalways
producesanoutputthatis consistentwith somehypotheticalinput thatis a perturbationof thetrueinput; it
is stableif this perturbationis small. Typically, boundson theperturbationareprovenby backward error
analysis.Usingonly approximatearithmetic,Fortunegivesanalgorithmthatcomputesaplanarconvex hull
thatis correctfor pointsthathavebeenperturbedby arelativeerrorof atmost ¯°
ÁÀÂ� (whereÀ is themachine
epsilon,definedin Section6.4.2),andanalgorithmthatmaintainsatriangulationthatcanbemadeplanarby
perturbingeachvertex by a relative errorof at most ¯°
-± ò ÀE� , where± is thenumberof vertices.If it seems
surprisingthata “stable” algorithmcannotkeepa triangulationplanar, considertheproblemof insertinga
new vertex socloseto anexisting edgethat it is difficult to discernwhich sideof theedgethevertex falls
on. Only exactarithmeticcanpreventthepossibilityof creatingan“inverted”triangle.

Onemight wonderif my triangulationprogramcanbemaderobust by avoiding any testwhoseresult
canbeinferredfrom previoustests.Fortune[32] explainsthat

[a]n algorithmis parsimoniousif it neverperformsatestwhoseoutcomehasalreadybeendeter-
minedastheformalconsequenceof previoustests.A parsimoniousalgorithmis clearlyrobust,
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Figure6.1: Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff
error. Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that
the point Ã lay between the lines ÄeÅ and Ä*Æ , but an incorrect incircle test claimed that Ä lay inside the circleÆeÅ�Ã .

sinceany paththroughthealgorithmmustcorrespondto somegeometricinput; makinganal-
gorithmparsimoniousis themostobviouswayof makingit robust. In principleit is possibleto
make analgorithmparsimonious:sinceall primitive testsarepolynomialsignevaluations,the
questionof whetherthecurrenttestis a logicalconsequenceof previoustestscanbephrasedas
astatementof theexistentialtheoryof thereals.Thistheoryis at leastNP-hardandis decidable
in polynomialspace[15]. Unfortunately, thefull power of thetheoryseemsto benecessaryfor
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someproblems.An exampleis the line arrangementproblem: given a setof lines (specified
by realcoordinates
Ç¾È#�¿�#1U�� , so that ¾~h ô ¿E® û U ), computethecombinatorialstructureof the
resultingarrangementin theplane.It follows from recentwork of Mnev [71] thattheproblem
of decidingwhethera combinatorialarrangementis actuallyrealizablewith linesis ashardas
the existential theoryof the reals. Hencea parsimoniousalgorithmfor the line arrangement
problem. . . seemsto requirethesolutionof NP-hardproblems.

Becauseexact arithmeticdoesnot requirethe solutionof NP-hardproblems,an intermediatecourse
is possible;onecould employ parsimony whenever it is efficient to do so, andresortto exact arithmetic
otherwise.Consistency is guaranteedif exact testsareusedto bootstrapthe“parsimony engine.” I amnot
awareof any algorithmsin the literaturethat take this approach,althoughgeometricalgorithmsareoften
designedby theirauthorsto avoid themoreobviously redundanttests.

Quasi-robust algorithms. Thedifficulty of determiningwhethera line arrangementis realizablesuggests
that,without exactarithmetic,robustnessasdefinedabove maybean unattainablegoal. However, some-
timesonecansettlefor an algorithmwhoseoutputmight not be realizable. I placesuchalgorithmsin a
bag labeledwith the fuzzy term quasi-robust, which I apply to any algorithmwhoseoutput is somehow
provably distinguishablefrom nonsense.Milenkovic [65] circumventstheaforementionedNP-hardnessre-
sultwhile usingapproximatearithmeticby constructingpseudo-linearrangements;a pseudo-lineis acurve
constrainedto lie very closeto anactualline. Fortune[35] presentsa 2D Delaunaytriangulationalgorithm
thatconstructs,usingapproximatearithmetic,a triangulationthatis nearlyDelaunayin awell-definedsense
usingthe pseudo-line-like notionof pseudocircles.Unfortunately, thealgorithm’s runningtime is ¯°
-± ò � ,
which comparespoorly with the ¯°
-±q²ÉGN´�±�� time of optimal algorithms. Milenkovic’s andFortune’s al-
gorithmsarebothquasi-stable, having smallerrorbounds.Milenkovic’s algorithmcanbethoughtof asa
quasi-robustalgorithmfor line arrangements,or asa robustalgorithmfor pseudo-linearrangements.

Barber[8] pioneeredanapproachin whichuncertainty, includingtheimprecisionof inputdata,is apart
of eachgeometricentity. Boxesarestructuresthat specifythe locationandthe uncertaintyin locationof
a vertex, edge,facet,or othergeometricstructure.Boxesmayariseeitherasinput or asalgorithmiccon-
structions;any uncertaintyresultingfrom roundoff erroris incorporatedinto their shapesandsizes.Barber
presentsalgorithmsfor solving thepoint-in-polygonproblemandfor constructingconvex hulls in any di-
mension.For thepoint-in-polygonproblem,“can’t tell” is a valid answerif theuncertaintyinherentin the
input or introducedby roundoff errorpreventsa suredetermination.Thesalientfeatureof Barber’s Quick-
hull convex hull algorithmis that it mergeshull facetsthat cannotbe guaranteed(througherror analysis)
to beclearly locally convex. Theboxcomplex producedby thealgorithmis guaranteedto containthetrue
convex hull, boundingit, if possible,bothfrom within andwithout.

The degreeof robustnessrequiredof an algorithmis typically determinedby how its output is used.
For instance,many point locationalgorithmscanfail whengivena non-planartriangulation.For this very
reason,my triangulatorcrashedafterproducingtheflawedtriangulationin Figure6.1.

The readershouldtake threelessonsfrom this section.First, problemsdueto roundoff canbesevere
anddifficult to solve. Second,evenif theinputsareimpreciseandtheuserisn’t picky abouttheaccuracy of
theoutput,internalconsistency maystill benecessaryif any outputis to beproducedatall; exactarithmetic
mayberequiredevenwhenexactresultsaren’t. Third, neitherexactarithmeticnor clever handlingof tests
thattell falsehoodsis auniversalbalm.However, exactarithmeticis attractivewhenit is applicable,because
it canbeemployedby näıve programdeveloperswithout thetime-consumingneedfor carefulanalysisof a
particularalgorithm’sbehavior whenfacedwith imprecision.(I occasionallyhearof implementationswhere
morethanhalf the developers’time is spentsolving problemsof roundoff erroranddegeneracy.) Hence,
efforts to improve thespeedof exactarithmeticin computationalgeometryarewell justified.
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6.3 Arbitrary PrecisionFloating-Point Arithmetic

6.3.1 Background

Mostmodernprocessorssupportfloating-pointnumbersof theform Ê significandË°Ì exponent. Thesignif-
icandis a Í -bit binarynumberof the form Î�ÏLÎHÎÂÎ�ÏFÏFÏ , whereeach Î denotesa singlebit; oneadditionalbit
representsthesign. This researchdoesnot addressissuesof overflow andunderflow, soI allow theexpo-
nentto beaninteger in therange Ð�ÑÓÒ	ÔEÒÖÕ . (Fortunately, many applicationshave inputswhoseexponents
fall within a circumscribedrange.The four predicatesimplementedfor this chapterwill not overflow nor
underflow if their inputshaveexponentsin therangeÐ�Ña×HØ$ÌªÔ�Ì*Ù.×ÂÕ andIEEE754doubleprecisionarithmetic
is used.)Floating-pointvaluesaregenerallynormalized, which meansthat if a valueis not zero,thenits
mostsignificantbit is setto one,andtheexponentadjustedaccordingly. For example,in four-bit arithmetic,
binary ×N×FÙ.× (decimal ×�Ú ) is representedas ×*ÏÉ×FÙ.×ÛËwÌ*Ü . Seethe survey by Goldberg [44] for a detailed
explanationof floating-pointstorageformats,particularlytheIEEE754standard.

ExactarithmeticoftenproducesvaluesthatrequiremorethanÍ bits to store.For thealgorithmsherein,
eacharbitraryprecisionvalueis expressedasanexpansionÝßÞ°à	ÞÈáµâäãFãFã1âåÞ Ý âåÞçæ , whereeachÞÈè is called
a componentof Þ andis representedby a floating-pointvaluewith a Í -bit significand. To imposesome
structureon expansions,they arerequiredto benonoverlappingandorderedby magnitude( Þ á largest, Þ æ
smallest).Two floating-pointvaluesÞ and é arenonoverlappingif the leastsignificantnonzerobit of Þ is
moresignificantthanthe mostsignificantnonzerobit of é , or vice versa;for instance,the binary values
×N×FÙNÙ and Ña×FÙsÏÉ× arenonoverlapping,whereas×FÙ.× and ×FÙ overlap.Ü Thenumberzerodoesnot overlapany
number. An expansionis nonoverlappingif all its componentsaremutually nonoverlapping. Note that
a numbermay be representedby many possiblenonoverlappingexpansions;consider ×N×FÙNÙzâêÑ�×FÙsÏÉ×Öà
×FÙNÙ.×ÓâëÙsÏÉ×Ûà6×FÙNÙNÙ�âê×ìâ�ÙsÏÉ× . A nonoverlappingexpansionis desirablebecauseit is easyto determine
its sign(take thesignof the largestcomponent)or to producea crudeapproximationof its value(take the
componentwith largestmagnitude).

Two floating-pointvaluesÞ and é areadjacentif they overlap,if Þ overlapsÌeé , or if ÌeÞ overlapsé . For
instance,×N×FÙNÙ is adjacentto ×N× , but ×FÙNÙNÙ is not. An expansionis nonadjacentif no two of its components
areadjacent.Surprisingly, any floating-pointvaluehasacorrespondingnonadjacentexpansion;for instance,
×N×N×N×N× mayappearatfirst not to berepresentableasanonoverlappingexpansionof one-bitcomponents,but
considertheexpansion×FÙNÙNÙNÙNÙ�â�Ñ�× . Thetrick is to usethesignbit of eachcomponentto separateit from
its largerneighbor. Wewill laterseealgorithmsin whichnonadjacentexpansionsarisenaturally.

Multiple-componentalgorithms(basedon the expansionsdefinedabove) canbe fasterthanmultiple-
digit algorithmsbecausethelatterrequireexpensivenormalizationof resultsto fixeddigit positions,whereas
multiple-componentalgorithmscanallow theboundariesbetweencomponentsto wanderfreely. Boundaries
arestill enforced,but canfall at any bit position. In addition,it usuallytakestime to convert anordinary
floating-pointnumberto theinternalformatof a multiple-digit library, whereasany ordinaryfloating-point
numberis anexpansionof lengthone.Conversionoverheadcanaccountfor asignificantpartof thecostof
smallextendedprecisioncomputations.

Thecentralconceptualdifferencebetweenstandardmultiple-digit algorithmsandthemultiple-compo-
nentalgorithmsdescribedhereinis thattheformerperformexactarithmeticby keepingthebit complexity of
operandssmallenoughto avoid roundoff error, whereasthelatterallow roundoff to occur, thenaccountfor
í
Notethat this definitionof expansionis slightly differentfrom thatusedby Priest[76]; whereasPriestrequiresthattheexpo-

nentsof any two componentsof theexpansiondiffer by at leastî , no suchrequirementis madehere.ï
Formally, ð and ñ arenonoverlappingif thereexist integersò and ó suchthat ðìô°òHõ�ö and ÷ ñ$÷uøùõEö , or ñúôûòÂõEö and ÷ ð.÷uøùõEö .
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it afterthefact. To measureroundoff quickly andcorrectly, a certainstandardof accuracy is requiredfrom
theprocessor’s floating-pointunits. Thealgorithmspresentedhereinrely on theassumptionthataddition,
subtraction,andmultiplicationareperformedwith exactrounding. Thismeansthatif theexactresultcanbe
storedin a Í -bit significand,thentheexactresultis produced;if it cannot,thenit is roundedto thenearest
Í -bit floating-pointvalue.For instance,in four-bit arithmetictheproduct ×N×N×9ËÖ×FÙ.×�àü×FÙNÙNÙ.×N× is rounded
to ×*ÏýÙNÙ.×zËäÌ*þ . If a valuefalls preciselyhalfway betweentwo consecutive Í -bit values,a tiebreakingrule
determinesthe result. Two possibilitiesarethe round-to-even rule, which specifiesthat the valueshould
beroundedto thenearestÍ -bit valuewith anevensignificand,andtheround-toward-zerorule. In four-bit
arithmetic,×FÙNÙ.×N× is roundedto ×*ÏýÙ.×FÙÓË8Ìeÿ undertheround-to-evenrule,andto ×*ÏýÙNÙ.×�Ë8Ìeÿ undertheround-
toward-zerorule. TheIEEE 754standardspecifiesround-to-even tiebreakingasa default. Throughoutthis
chapter, thesymbols� , � , and � representÍ -bit floating-pointaddition,subtraction,andmultiplicationwith
exactrounding.Dueto roundoff, theseoperatorslack severaldesirablearithmeticproperties.Associativity
is anexample;in four-bit arithmetic, �§×FÙNÙNÙ�� ÙsÏýÙ.×N×���� ÙsÏýÙ.×N×cà ×FÙNÙNÙ , but ×FÙNÙNÙ����ÇÙsÏýÙ.×N×	� ÙsÏýÙ.×N×��úà ×FÙNÙ.× .
A list of reliableidentitiesfor floating-pointarithmeticis givenby Knuth [57].

Roundoff is oftenanalyzedin termsof ulps, or “units in thelastplace.” An ulp is theeffectivemagnitude
of thelow-order(Í th) bit of a Í -bit significand.An ulp is definedrelative to aspecificfloatingpointvalue;I
shalluseulp ��
�� to denotethis quantity. For instance,in four-bit arithmetic,ulp ��Ña×N×FÙNÙ
��à × , andulp �§×��ßà
ÙsÏýÙNÙ.× .

Anotherusefulnotationis err��
	�9Î�� , whichdenotestheroundoff errorincurredby usinga Í -bit floating-
point operation� to approximatea real operation� (addition,subtraction,multiplication,or division) on
theoperands
 and Î . Notethatwhereasulp is anunsignedquantity, err is signed.For any basicoperation,
�� Î�à�
��úÎnâ err��
�� Î�� , andexactroundingguaranteesthat � err��
�� Î������ æ

Ý ulp ��
�� Î�� .
In the pagesthat follow, variouspropertiesof floating-pointarithmeticareproven,andalgorithmsfor

manipulatingexpansionsaredevelopedbasedontheseproperties.Throughout,binaryanddecimalnumbers
areintermixed; the baseshouldbe apparentfrom context. A numberis saidto be expressiblein Í bits if
it canbeexpressedwith a Í -bit significand,not countingthe signbit or the exponent. I will occasionally
refer to the magnitudeof a bit, definedrelative to a specificnumber;for instance,the magnitudeof the
secondnonzerobit of binary Ña×N×N×FÙ is four. Theremainderof thissectionis quitetechnical;thereadermay
wish to skip theproofson a first reading.Thekey new resultsareTheorems48,54,and59,which provide
algorithmsfor summingandscalingexpansions.

6.3.2 Propertiesof Binary Arithmetic

Exactroundingguaranteesthat � err��
�� Î������ æ
Ý ulp ��
�� Î�� , but onecansometimesfind a smallerboundfor

the roundoff error, asevidencedby the two lemmatabelow. The first lemmais usefulwhenoneoperand
is muchsmallerthan the other, and the secondis usefulwhenthe sum is closeto a power of two. For
Lemmata36 through40, let 
 and Î be Í -bit floating-pointnumbers.

Lemma 36 Let 
�� Î�à�
câ Î�â err��
�� Î�� . Theroundoff error � err��
�� Î���� is no larger than � 
�� or � Î�� . (An
analogousresultholdsfor subtraction.)

Proof: Assumewithout lossof generalitythat � 
������ Î�� . Thesum 
��	Î is the Í -bit floating-pointnumber
closestto 
câtÎ . But 
 is a Í -bit floating-pointnumber, so � err��
�� Î�������� Î������ 
�� . (SeeFigure6.2.)  
Corollary 37 Theroundoff error err��
�� Î�� canbeexpressedwith a Í -bit significand.
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Figure6.2: Demonstration of the first two lemmata. Vertical lines represent four-bit floating-point values.
The roundoff error is the distance between "$#&% and "$'&% . Lemma 36 states that the error cannot be larger
than ( %)( . Lemma 38(b) states that if ( "*#+%�(-,/.�0213.�465879#/:<; (for =?>A@B. and CD>/E , this means that "F#G% falls
into the darkened region), then the error is no greater than .)0 . This lemma is useful when a computed value
falls close to a power of two.

Proof: Assumewithoutlossof generalitythat � 
��H��� Î�� . Clearly, theleastsignificantnonzerobit of err��
I�9Î��
is nosmallerin magnitudethanulp �ÁÎ�� . By Lemma36, � err��
	�åÎ�������� Î�� ; hence,thesignificandof err��
J�ûÎ��
is no longerthanthatof Î . It follows thaterr��
�� Î�� is expressiblein Í bits.

Lemma 38 For anybasicfloating-pointoperation � , let 
�� Î àK
��ßÎnâ err��
�� Î�� . Then:

(a) If � err��
�� Î������xÌ è for someinteger L , then � 
M�ßÎ��N�xÌ è �ÁÌ�Oìâ�×�� .
(b) If � err��
�� Î�����PxÌ è for someinteger L , then � 
M�ßÎ��NPxÌ è �ÁÌ�O�Q æ â	×�� .

Proof:

(a) ThenumbersÌ è �ÁÌ�ON�EÔ�Ì è �ÁÌ�O�Ñ�×��EÔ�Ì è �ÁÌ�O�ÑtÌ-�EÔFÏFÏFÏeÔ1Ù areall expressiblein Í bits. Any value � 
R� Î��?S
Ì è �ÁÌ O â	×�� is within a distancelessthan Ì è from oneof thesenumbers.

(b) The numbersÌ è �ÁÌ OTQ æ �EÔ�Ì è �ÁÌ OTQ æ Ñ Ì-�EÔ�Ì è �ÁÌ O�Q æ Ñ�ØN�EÔFÏFÏFÏ�Ô1Ù areall expressiblein Í bits. Any value� 
M�úÎ����xÌ è �ÁÌ�O�Q æ â�×�� is within adistanceof Ì è from oneof thesenumbers.(SeeFigure6.2.)  
Thenext two lemmataidentify specialcasesfor whichcomputerarithmeticis exact.Thefirst showsthat

additionandsubtractionareexactif theresulthassmallermagnitudethantheoperands.

Lemma 39 Supposethat � 
qâtÎ��U�V� 
�� and � 
aâtÎ��U�V� Î�� . Then 
��gÎìàW
�âgÎ . (An analogousresultholds
for subtraction.)

Proof: Without lossof generality, assume� 
��U�V� Î�� . Clearly, theleastsignificantnonzerobit of 
qâtÎ is no
smallerin magnitudethanulp �ÁÎ�� . However, � 
 âÖÎ������ Î�� . It follows that 
ìâ Î canbeexpressedin Í bits.  

Many of thealgorithmswill rely on thefollowing lemma,whichshows thatsubtractionis exactfor two
operandswithin a factorof two of eachother:
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 à × × Ù × 
 à × Ù Ù × ËµÌ æ
Î à × Ù × Ù Î à × Ù Ù ×
�ÑÖÎ à × × 
�ÑÖÎ à × Ù Ù ×

Figure6.3: Two demonstrations of Lemma 40.

Lemma 40(Sterbenz[89]) Supposethat ÎYXwÐ�Z Ý Ô�Ì�
$Õ . Then
�� Î àK
�ÑÖÎ .

Proof: Withoutlossof generality, assume� 
������ Î�� . (Theothercaseis symmetric,because
8��Îßà Ñ ÎT�zÑY
 .)
Then Î[XÖÐ�Z Ý Ô\
$Õ . Thedifferencesatisfies� 
�ÑÖÎ����W� Î������ 
�� ; theresultfollows by Lemma39.  

Two examplesdemonstratingLemma40 appearin Figure6.3. If 
 and Î have thesameexponent,then
floating-pointsubtractionis analogousto findingthedifferencebetweentwo Í -bit integersof thesamesign,
andtheresultis expressiblein Í bits. Otherwise,theexponentsof 
 and Î differ by one,becauseÎ]X Ð Z Ý Ô�Ì�
,Õ .In this case,thedifferencehasthesmallerof thetwo exponents,andsocanbeexpressedin Í bits.

6.3.3 SimpleAddition

An importantbasicoperationin all thealgorithmsfor performingarithmeticwith expansionsis theaddition
of two Í -bit valuesto form anonoverlappingexpansion(of lengthtwo). Two suchalgorithms,dueto Dekker
andKnuth respectively, arepresented.

Theorem 41(Dekker [26]) Let 
 and Î be Í -bit floating-pointnumbers such that � 
��M�^� Î�� . Thenthe
followingalgorithmwill producea nonoverlappingexpansionÞqâ é such that 
ìâäÎ à�Þqâ é , where Þ is an
approximationto 
qâ Î and é representstheroundoff error in thecalculationof Þ .

FAST-TWO-SUM ��
ÈÔ�Î��
1 Þ`_a
�� Î
2 Î virtual _¢ÞD�b

3 éD_ Î$�tÎ virtual
4 return �-Þ�Ô^é��

Proof: Line 1 computes
�â�Î , but maybesubjectto rounding,sowe have Þ à�
�â�Î�â err��
D��Î�� . By
assumption� 
������ Î�� , so 
 and Þ musthave thesamesign(or ÞÛà�Ù ).

Line 2 computesthe quantity Î virtual, which is the valuethat was really addedto 
 in Line 1. This
subtractionis computedexactly; this factcanbeprovenby consideringtwo cases.If 
 and Î have thesame
sign,or if � Î��H�dc Z cÝ , then ÞeX Ð Z Ý Ô�Ì�
$Õ andonecanapplyLemma40(seeFigure6.4). On theotherhand,if 

and Î areoppositein signand � Î���P c Z cÝ , then Î[XÖÐ�Ñ Z Ý ÔFÑY
,Õ andonecanapplyLemma40to Line 1, showing
that Þ wascomputedexactly andthereforeÎ virtual àüÎ (seeFigure6.5). In eithercasethesubtractionis
exact,so Î virtual à	Þ Ñ/
8àëÎnâ err��
�� Î�� .

Line 3 is alsocomputedexactly. By Corollary37, ÎúÑÖÎ virtual à=Ñ err��
��tÎ�� is expressiblein Í bits.

It follows that é à Ñ err��
f�	Î�� and Þ à�
9â�Îßâ err��
f��Î�� , hence
�â�Î�à Þ°âgé . Exactrounding
guaranteesthat � é?�N� æ

Ý ulp �-Þ�� , so Þ and é arenonoverlapping.  
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 à × × × × ËúÌ Ý
Î à × Ù Ù ×
Þ à 
�� Î à × Ù Ù × ËúÌ*Ü
 à × × × × ËúÌ*Ý

Î virtual à Þf�g
 à × × Ù Ù
é à Î	� Î virtual à Ñ × ×

Figure6.4: Demonstration of FAST-TWO-SUM where " and % have the same sign. The sum of :T:�:�:<h�h and:ihTh-: is the expansion :ihTh-:<h�h�h$#j@�:T: .

 à × Ù Ù × ËµÌ æ
Î à Ñ × Ù × ×
Þ à 
�� Î à × × ×
 à × Ù Ù × ËµÌ æ

Î virtual à Þf�b
 à Ñ × Ù × ×
é à ÎJ� Î virtual à Ù

Figure6.5: Demonstration of FAST-TWO-SUM where " and % have opposite sign and ( %)(lknm o�mp .

Notethat theoutputsÞ and é do not necessarilyhave thesamesign,asFigure6.4demonstrates.Two-
term subtraction(“ FAST-TWO-DIFF” ) is implementedby the sequenceÞV_ 
&�=ÎTq�Î virtual _ 
`�:Þ9q
éR_ Î virtual � Î . Theproofof thecorrectnessof thissequenceis analogousto Theorem41.

The difficulty with using FAST-TWO-SUM is the requirementthat � 
��Y�r� Î�� . If the relative sizesof
 and Î are unknown, a comparisonis requiredto order the addendsbeforeinvoking FAST-TWO-SUM.
With most C compilersÿ , perhapsthe fastestportableway to implementthis test is with the statement
“if ((a > b) == (a > -b))”. This test takes time to execute,and the slowdown may be sur-
prisingly large becauseon modernpipelinedandsuperscalararchitectures,an if statementcoupledwith
imperfectmicroprocessorbranchpredictionmaycausea processor’s instructionpipelineto drain. This ex-
planationis speculative andmachine-dependent,but theTWO-SUM algorithmbelow, which avoidsa com-
parisonat the costof threeadditionalfloating-pointoperations,is usuallyempirically fasterþ . Of course,
FAST-TWO-SUM remainsfasterif therelative sizesof theoperandsareknown a priori, andthecomparison
canbeavoided.

Theorem 42(Knuth [57]) Let 
 and Î be Í -bit floating-pointnumbers, where Í�� Ú . Thenthe follow-
ing algorithm will producea nonoverlappingexpansionÞÛâ é such that 
zâ Îåà ÞÛâ é , where Þ is ans

Theexceptionsarethosefew thatcanidentify andoptimizethefabs() mathlibrary call.t
OnaDECAlpha-basedworkstation,usingthebundledC compilerwith optimizationlevel 3, TWO-SUM usesroughly65%as

muchtimeasFAST-TWO-SUM conditionedwith thetest“if ((a > b) == (a > -b))”. OnaSPARCstationIPX, usingthe
GNU compilerwith optimizationlevel 2, TWO-SUM usesroughly85%asmuchtime. Ontheotherhand,usingtheSPARCstation’s
bundledcompilerwith optimization(whichproducesslower codethangcc),conditionalFAST-TWO-SUM usesonly 82%asmuch
timeasTWO-SUM. Thelessonis thatfor optimalspeed,onemusttimeeachmethodwith one’s own machineandcompiler.
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 à × ×*Ï × ×
Î à × × Ù ×
Þ à 
�� Î à × Ù Ù Ù ËúÌ æ
 à × ×*Ï × ×

Î virtual à ÞD�b
 à × × Ù Ù

 virtual à ÞD�tÎ virtual à × Ù Ù

Î roundoff à Î	� Î virtual à ×
 roundoff à 
��b
 virtual à Ñ ÙsÏüÙ ×
é à 
 roundoff � Î roundoff à ÙsÏ × ×

Figure6.6: Demonstration of TWO-SUM where ( "�(�uV( %)( and ( "H(�,V( vI( . The sum of :�:�wx:�: and :�:<h-: is the
expansion :ihTh�h�h	#+h-wx:�: .
approximationto 
qâ Î and é is theroundoff error in thecalculationof Þ .

TWO-SUM ��
ÈÔ�Î��
1 Þy_a
�� Î
2 Î virtual _¢Þf�b

3 
 virtual _?Þf� Î virtual
4 Î roundoff _ Î	� Î virtual
5 
 roundoff _a
��b
 virtual
6 éR_a
 roundoff � Î roundoff
7 return �-ÞçÔ^éU�

Proof: If � 
��?�z� Î�� , thenLines1, 2, and4 correspondpreciselyto the FAST-TWO-SUM algorithm. Recall
from the proof of Theorem41 that Line 2 is calculatedexactly; it follows that Line 3 of TWO-SUM is
calculatedexactly as well, because
 virtual à{
 can be expressedexactly. Hence, 
 roundoff is zero,
é8àëÎ roundoff is computedexactly, andtheprocedureis correct.

Now, supposethat � 
��IS�� Î�� , andconsidertwo cases.If � Þ$�8S|� 
��IS}� Î�� , then Þ is computedexactly by
Lemma39. It immediatelyfollows that Î virtual à¥Î , 
 virtual à~
 , and Î roundoff , 
 roundoff , and é are
zero.

Conversely, if � Þ$����� 
�� , Lines 1 and 2 may be subjectto rounding,so Þ à�
ÛâêÎÓâ err��
`� Î�� ,
and Î virtual à Î â err��
��=Î��ßâ err�-Þ���
�� . (SeeFigure6.6.) Lines 2, 3, and 5 areanalogousto the
threelines of FAST-TWO-DIFF (with Line 5 negated),so Lines 3 and 5 are computedexactly. Hence,
 virtual à	Þ ÑÖÎ virtual àK
�Ñ err�-ÞD�b
H� , and 
 roundoff à err�-ÞR��
�� .

Because� Î��UP}� 
�� , we have � Þ	�.à�� 
��tÎ��8� ÌU� Î�� , sotheroundoff errorserr��
��gÎ�� anderr�-Þ��g
�� each
cannotbemorethanulp �ÁÎ�� , so Î virtual XÖÐ��Ý Ô�ÌNÎ�Õ (for Í+�xÚ ) andLemma40canbeappliedto show thatLine
4 is exact.Hence,Î roundoff à=Ñ err��
�� Î���Ñ err�-ÞR�b
H� . Finally, Line 6 is exactbecauseby Corollary37,
 roundoff â Î roundoff à=Ñ err��
�� Î�� is expressiblein Í bits.

It follows that é8à=Ñ err��
�� Î�� and Þ°àK
�â Înâ err��
�� Î�� , hence
qâ Î�à	Þ9â é .  
Two-termsubtraction(“ TWO-DIFF” ) is implementedby thesequenceÞg_�
���ÎTq�Î virtual _�
f�xÞ9q
 virtual _¢Þ�� Î virtual q�Î roundoff _ Î virtual � ÎTq\
 roundoff _�
���
 virtual q^éR_�
 roundoff �äÎ roundoff .
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Corollary 43 Let Þ and é bethevaluesreturnedby FAST-TWO-SUM or TWO-SUM.

(a) If � é?�N�xÌ è for someinteger L , then � Þ�âwé?�N�xÌ è �ÁÌ�O â	×�� .
(b) If � é?�NPxÌ è for someinteger L , then � Þ�âwé?�NPxÌ è �ÁÌ O�Q æ â�×�� .

Proof: é is theroundoff error Ñ err��
��tÎ�� for some
 and Î . By Theorems41 and42, 
qâtÎ àëÞzâwé . The
resultsfollow directly from Lemma38.  
Corollary 44 Let Þ and é bethevaluesreturnedby FAST-TWO-SUM or TWO-SUM. Ona machinewhose
arithmeticusesround-to-eventiebreaking, Þ and é arenonadjacent.

Proof: Exactroundingguaranteesthat éG� æ
Ý ulp �-Þ�� . If theinequalityis strict, Þ and é arenonadjacent.If

é8à æ
Ý ulp �-Þ�� , theround-to-evenruleensuresthattheleastsignificantbit of thesignificandof Þ is zero,so Þ

and é arenonadjacent.  
6.3.4 ExpansionAddition

Having establishedhow to addtwo Í -bit values,I turn to the topic of how to addtwo arbitraryprecision
valuesexpressedasexpansions.Threemethodsareavailable.EXPANSION-SUM addsan � -componentex-
pansionto an � -componentexpansionin �`���y��� time. L INEAR-EXPANSION-SUM andFAST-EXPANSION-
SUM do thesamein �`��� â���� time.

Despiteits asymptoticdisadvantage,EXPANSION-SUM canbefasterthanthelinear-time algorithmsin
caseswherethesizeof eachexpansionis smallandfixed,becauseprogramloopscanbecompletelyunrolled
andindirectionoverheadcanbeeliminated(by avoiding theuseof arrays).Thelinear-time algorithmshave
conditionalsthat make suchoptimizationsuntenable.Hence,EXPANSION-SUM and FAST-EXPANSION-
SUM arebothusedin theimplementationsof geometricpredicatesdescribedin Section6.5.

EXPANSION-SUM andL INEAR-EXPANSION-SUM both have the propertythat their outputsarenon-
overlappingif their inputs are nonoverlapping,and nonadjacentif their inputs are nonadjacent.FAST-
EXPANSION-SUM is fasterthanL INEAR-EXPANSION-SUM, performingsix floating-pointoperationsper
componentratherthannine, but hasthreedisadvantages.First, FAST-EXPANSION-SUM doesnot always
preserve eitherthenonoverlappingnor thenonadjacentproperty;instead,it preservesanintermediateprop-
erty, describedlater. Second,whereasL INEAR-EXPANSION-SUM makesnoassumptionaboutthetiebreak-
ing rule, FAST-EXPANSION-SUM is designedfor machinesthat useround-to-even tiebreaking,and can
fail on machineswith other tiebreakingrules. Third, the correctnessproof for FAST-EXPANSION-SUM

is muchmoretedious.Nevertheless,I useFAST-EXPANSION-SUM in my geometricpredicates,andrele-
gatethe slower L INEAR-EXPANSION-SUM to AppendixA. Usersof machinesthat have exact rounding
but not round-to-even tiebreakingshouldreplacecalls to FAST-EXPANSION-SUM with calls to L INEAR-
EXPANSION-SUM.

A complicatingcharacteristicof all the algorithmsfor manipulatingexpansionsis that theremay be
spuriouszerocomponentsscatteredthroughouttheoutputexpansions,evenif no zeroswerepresentin the
inputexpansions.For instance,if theexpansions×N×N×N×�âqÙsÏýÙ.×FÙ.× and ×N×FÙNÙ~â�ÙsÏÉ×N× arepassedasinputstoany of
thethreeexpansionadditionalgorithms,theoutputexpansionin four-bit arithmeticis ×N×N×FÙNÙ.âaÙ.â�Ùsâ�ÙsÏýÙNÙNÙ.× .
Onemaywant to addexpansionsthusproducedto otherexpansions;fortunately, all thealgorithmsin this
chaptercopewell with spuriouszerocomponentsin their input expansions.Unfortunately, accountingfor
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Figure6.7: Operation of GROW-EXPANSION. The expansions � and � are illustrated with their most signif-
icant components on the left. All TWO-SUM boxes in this chapter observe the convention that the larger
output ( v ) emerges from the left side of each box, and the smaller output ( � ) from the bottom or right. Each� 0 term is an approximate running total.

thesezerocomponentscouldcomplicatethecorrectnessproofssignificantly. Toavoid confusion,mostof the
proofsfor theadditionandscalingalgorithmsarewritten asif all input componentsarenonzero.Spurious
zeroscanbeintegratedinto theproofs(afterthefact)by notingthattheeffect of a zeroinput componentis
alwaysto producea zerooutputcomponentwithout changingthevalueof theaccumulator(denotedby the
variable

�
). Theeffect canbelikenedto apipelinedelay;it will becomeclearin thefirst few proofs.

Eachalgorithmhasan accompanying dataflow diagram,like Figure6.7. Readerswill find the proofs
easierto understandif they follow thediagramswhile readingthe proofs,andkeepseveral factsin mind.
First,Lemma36indicatesthatthedown arrow from any TWO-SUM boxrepresentsanumberno largerthan
either input to the box. (This is why a zero input componentyields a zerooutputcomponent.)Second,
Theorems41 and42 indicatethat thedown arrow from any TWO-SUM box representsa numbertoo small
to overlapthenumberrepresentedby theleft arrow from thebox.

I begin with analgorithmfor addingasingleÍ -bit valueto anexpansion.

Theorem 45 Let � à����è���æ � è bea nonoverlappingexpansionof � Í -bit components,andlet Î bea Í -bit
valuewhere Í+�	Ú . Supposethatthecomponents� æ Ô � Ý ÔFÏFÏFÏ�Ô � � aresortedin orderof increasingmagnitude,
exceptthatanyof the � è maybezero. Thenthefollowingalgorithmwill producea nonoverlappingexpansion�

such that
� à �e� Q æè���æ � è�à � â Î , where thecomponents

� æ�Ô � Ý ÔFÏFÏFÏ�Ô � � Q æ are alsoin order of increasing
magnitude, exceptthat any of the

� è may be zero. Furthermore, if � is nonadjacentand round-to-even
tiebreakingis used,then

�
is nonadjacent.

GROW-EXPANSION � � Ô�Î��
1

��  _ Î
2 for L¡_ × to �
3 � � è§Ô � è2�	_ TWO-SUM � � è�¢ æ�Ô � è2�
4

� � Q æ£_ � �
5 return

�� è is anapproximatesumof Î andthefirst L componentsof � ; seeFigure6.7. In animplementation,the
array

�
canbecollapsedinto asinglescalar.
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Proof: At the endof eachiterationof the for loop, the invariant
� è�â�� è¤ ��æ � ¤ à Î â�� è¤ ��æ � ¤ holds.

Certainlythis invariantholdsfor L�à�Ù afterLine 1 is executed.FromLine 3 andTheorem42,wehave that� èÈâ � ènà � è�¢ æ�â � è ; from this onecandeduceinductively thattheinvariantholdsfor all (relevantvalues
of) L . Thus,afterLine 4 is executed,�j� Q æ¤ ��æ � ¤ à¥�e�¤ ��æ � ¤ âtÎ .

For all L , the output of TWO-SUM (in Line 3) hasthe propertythat
� è and

� è do not overlap. By
Lemma36, � � è6�	�¦� � è6� , andbecause� is a nonoverlappingexpansionwhosenonzerocomponentsarear-
rangedin increasingorder,

� è cannotoverlapany of � è Q æ Ô � è Q Ý ÔFÏFÏFÏ . It follows that
� è cannotoverlapany of

the latercomponentsof
�
, becausetheseareconstructedby summing

� è with later � components.Hence,�
is nonoverlappingandincreasing(exceptingzerocomponentsof

�
). If round-to-even tiebreakingis used,

then
� è and

� è arenonadjacentfor all L (by Corollary44),soif � is nonadjacent,then
�

is nonadjacent.

If any of the � è is zero,thecorrespondingoutputcomponent
� è is alsozero,andtheaccumulatorvalue

�
is unchanged(

� è à � è�¢ æ ). (For instance,considerFigure6.7,andsupposethat � Ü is zero.Theaccumulator
value

�
Ý shiftsthroughthepipelineto become

�
Ü , anda zerois harmlesslyoutputas

�
Ü . Thesameeffect

occursin severalalgorithmsin thischapter.)  
Corollary 46 Thefirst � componentsof

�
areeach nolarger thanthecorrespondingcomponentof � . (That

is, � � æ ����� � æ ��ÔT� � Ý ����� � Ý ��ÔFÏFÏFÏuÔT� � � ����� � � � .) Furthermore, � � æ ����� Î�� .
Proof: Follows immediatelyby applicationof Lemma36 to Line 3. (Both of thesefactsareapparentin
Figure6.7. Recallthatthedown arrow from any TWO-SUM box representsa numberno larger thaneither
input to thebox.)  

If � is a long expansion,two optimizationsmight beadvantageous.The first is to usea binarysearch
to find thesmallestcomponentof � greaterthanor equalto ulp �ÁÎ�� , andstartthere. A variantof this idea,
without thesearch,is usedin thenext theorem.Thesecondoptimizationis to stopearly if theoutputof a
TWO-SUM operationis thesameasits inputs;theexpansionis alreadynonoverlapping.

A näıve way to add one expansionto anotheris to repeatedlyuseGROW-EXPANSION to add each
componentof oneexpansionto theother. Onecanimprove this ideawith asmallmodification.

Theorem 47 Let � à � �è���æ � è and §<à � áè���æ §eè be nonoverlappingexpansionsof � and �ÛÍ -bit com-
ponents,respectively, where Í�� Ú . Supposethat the componentsof both � and § are sortedin order of
increasingmagnitude, exceptthatanyof the � è or §eè maybezero. Thenthefollowingalgorithmwill produce
a nonoverlappingexpansion

�
such that

� à¥�e� Q áè���æ � è à � âb§ , where thecomponentsof
�

are in orderof
increasingmagnitude, exceptthat anyof the

� è maybezero. Furthermore, if � and § are nonadjacentand
round-to-eventiebreakingis used,then

�
is nonadjacent.

EXPANSION-SUM � � Ô6§?�
1

� _ �
2 for L$_ × to �
3 ¨ � è Ô � è Q æ ÔFÏFÏFÏuÔ � è Q � © _ GROW-EXPANSION �ª¨ � è Ô � è Q æ ÔFÏFÏFÏ�Ô � è Q � ¢ æ © Ô6§ è �
4 return

�
Proof: That � � Q áè���æ � èçà¥� �è���æ � è�â�� áè���æ §eè uponcompletioncanbeprovenby inductiononLine 3.

After setting
� _ � , EXPANSION-SUM traversestheexpansion§ from smallestto largestcomponent,

individually addingthesecomponentsto
�

usingGROW-EXPANSION (seeFigure6.8). Thetheoremwould
follow directly from Theorem45 if eachcomponent§eè wereaddedto the wholeexpansion

�
, but to save
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Figure6.8: Operation of EXPANSION-SUM.

time, only the subexpansion ¨ � è§Ô � è Q æ�ÔFÏFÏFÏ�Ô � è Q � ¢ æ © is considered.(In Figure6.8, this optimizationsaves
threeTWO-SUM operationsthatwouldotherwiseappearin thelower right cornerof thefigure.)

When §eè is considered,thecomponents§~æFÔ6§ Ý ÔFÏFÏFÏ�Ô6§eè�¢ æ havealreadybeensummedinto
�
. Accordingto

Corollary46, � � ¤ �¬�}� § ¤ � afteriteration ® of Line 3. Because§ is anincreasingnonoverlappingexpansion,
for any ®�S¯L , � ¤ cannotoverlap §eè , andfurthermore� � ¤ ��Sn� §eè\� (unless§eèçà�Ù ). Therefore,whenonesums§eè into

�
, onecanskip thefirst L�Ñ × componentsof

�
withoutsacrificingthenonoverlappingandincreasing

propertiesof
�
. Similarly, if � and § areeachnonadjacent,onecanskip the first LµÑ:× componentsof

�
withoutsacrificingthenonadjacentpropertyof

�
.

No difficulty ensuesif § è is a spuriouszerocomponent,becausezerodoesnot overlapany number.
GROW-EXPANSION will depositazeroat

� è andcontinuenormally.  
Unlike EXPANSION-SUM, FAST-EXPANSION-SUM doesnot preserve thenonoverlappingor nonadja-

centproperties,but it is guaranteedto producea stronglynonoverlappingoutputif its inputsarestrongly
nonoverlapping.An expansionis stronglynonoverlappingif no two of its componentsareoverlapping,no
componentis adjacentto two othercomponents,andany pair of adjacentcomponentshave the property
that both componentscanbe expressedwith a one-bitsignificand(that is, both arepowersof two). For
instance,×N×FÙNÙNÙ9â ×N× and ×FÙNÙNÙNÙ�â ×FÙNÙNÙ9â ×FÙ�â × areboth stronglynonoverlapping,but ×N×N×FÙNÙ8â ×N× is
not, nor is ×FÙNÙqâ ×FÙqâ:× . A characteristicof this propertyis thata zerobit mustoccurin theexpansionat
leastonceevery Í�â	× bits. For instance,in four-bit arithmetic,astronglynonoverlappingexpansionwhose
largestcomponentis ×N×N×N× canbe no greaterthan ×N×N×N×*ÏýÙ.×N×N×N×FÙ.×N×N×N×FÙ�ÏFÏ�Ï . Any nonadjacentexpansionis
stronglynonoverlapping,andany stronglynonoverlappingexpansionis nonoverlapping,but the converse
implicationsdo not apply. Recall that any floating-pointvaluehasa nonadjacentexpansion;hence,any
floating-pointvaluehasa stronglynonoverlappingexpansion.For example, ×N×N×N×*ÏÉ× may be expressedas
×FÙNÙNÙNÙÓâ�ÑìÙsÏÉ× .
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Figure6.9: Operation of FAST-EXPANSION-SUM. The

� 0 terms maintain an approximate running total.

Underthe assumptionthat all expansionsarestronglynonoverlapping,it is possibleto prove the first
key resultof this chapter: the FAST-EXPANSION-SUM algorithmdefinedbelow behavescorrectlyunder
round-to-eventiebreaking.Thealgorithmcanalsobeusedwith round-toward-zeroarithmetic,but theproof
is different.I have emphasizedround-to-evenarithmeticheredueto theIEEE754standard.

A variantof this algorithmwaspresentedby Priest[76], but it is useddifferentlyhere.Priestusesthe
algorithmto sumtwo nonoverlappingexpansions,andprovesundergeneralconditionsthatthecomponents
of the resultingexpansionoverlapby at mostonedigit (i.e. onebit in binary arithmetic). An expensive
renormalizationstepis requiredafterward to remove theoverlap. Here,by contrast,thealgorithmis used
to sumtwo stronglynonoverlappingexpansions,andtheresultis alsoastronglynonoverlappingexpansion.
Not surprisingly, theproof demandsmorestringentconditionsthanPriestrequires:binaryarithmeticwith
exactroundingandround-to-even tiebreaking,consonantwith theIEEE 754standard.No renormalization
is needed.

Theorem 48 Let � à � �è±��æ � è and § à � áè���æ §eè bestronglynonoverlappingexpansionsof � and �8Í -bit
components,respectively, where Í+�gØ . Supposethat thecomponentsof both � and § are sortedin orderof
increasingmagnitude, exceptthat anyof the � è or §eè maybezero. On a machinewhosearithmeticusesthe
round-to-evenrule, thefollowing algorithmwill producea stronglynonoverlappingexpansion

�
such that� à ��� Q áè���æ � èµà � â¯§ , where thecomponentsof

�
are alsoin order of increasingmagnitude, exceptthat

anyof the
� è maybezero.

FAST-EXPANSION-SUM � � Ô6§?�
1 Merge � and § into a singlesequence° , in orderof

nondecreasingmagnitude(possiblywith interspersedzeros)
2 � � Ý Ô � æ��	_ FAST-TWO-SUM � ° Ý Ô ° æ<�
3 for L$_ Ú to �Bâ��
4 � � è§Ô � è�¢ æ<�	_ TWO-SUM � � è�¢ æ�Ô ° è2�
5

� � Q á _ � � Q á
6 return

�� è is anapproximatesumof thefirst L componentsof ° ; seeFigure6.9.

Severallemmatawill aid theproofof Theorem48. I begin with aproof thatthesumitself is correct.
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Lemma 49(Q Invariant) At the end of each iteration of the for loop, the invariant
� è�â�� è�¢ æ¤ ��æ � ¤ à� è¤ ��æ ° ¤ holds. This assures us that after Line 5 is executed,�e� Q á¤ ��æ � ¤ à²�j� Q á¤ ��æ ° ¤ , so the algorithm

producesa correctsum.

Proof: Theinvariantclearlyholdsfor Lúà<Ì afterLine 2 is executed.For largervaluesof L , Line 4 ensures
that

� è â � è�¢ æßà � è�¢ æ�â ° è ; theinvariantfollows by induction.  
Lemma 50 Let ³° àW��´¤ ��æ ³° ¤ bea seriesformedby merging two stronglynonoverlappingexpansions,or a
subseriesthereof. Supposethat ³° ´ is thelargestcomponentandhasa nonzero bit of magnitudeÌ è or smaller
for someinteger L . Then �ª� ´¤ ��æ ³° ¤ �NSxÌ è �ÁÌ O�Q æ Ñt×�� , and �ª� ´ ¢ æ¤ ��æ ³° ¤ �NSxÌ è �ÁÌ O � .
Proof: Let ³� and ³§ betheexpansions(or subsequencesthereof)from which ³° wasformed,andassumethat
thecomponent³° ´ comesfrom theexpansion³ � . Because³° ´ is thelargestcomponentof ³� andhasanonzero
bit of magnitudeÌ è or smaller, andbecause³� is stronglynonoverlapping, � ³� � is lessthan Ì è �ÁÌ�O�Ñ æ

Ý � . (For
instance,if Í°à	Ø and L�à�Ù , then � ³ � �N�<×N×N×N×*ÏýÙ.×N×N×N×FÙ.×N×N×N×nÏFÏ�Ï .) Thesameboundappliesto theexpansion ³§ ,
so � ³° �,à�� ³� â ³§	�NSxÌ è �ÁÌ�O�Q æ Ñg×�� .

If we omit ³° ´ from thesum,therearetwo casesto consider. If ³° ´ àüÌ è , then � ³� Ñg³° ´ � is lessthan Ì è ,
and � ³§	� is lessthan Ì è �ÁÌ-� . (For instance,if Í à=Ø , L�à Ù , and ³° ´ à × , then � ³ � Ñ ³° ´ �I�:ÙsÏÉ×FÙ.×N×N×N×FÙ.×N×N×N×�Ï�ÏFÏ ,
and � ³§J�F�?×*ÏÉ×FÙ.×N×N×N×FÙ.×N×N×N×�ÏFÏ�Ï .) Conversely, if ³° ´ µà6Ì è , then � ³� ÑK³° ´ � is lessthan Ì è � æÝ � , and � ³§	� is less
than Ì è �ÁÌ�O9Ñ æ

Ý � . (For instance,if Í à Ø , L�à Ù , and ³° ´ à ×N×N×N× , then � ³� Ñ�³° ´ ��� ÙsÏýÙ.×N×N×N×FÙ.×N×N×N×�ÏFÏFÏ , and� ³§J�N�:×N×N×N×*ÏýÙ.×N×N×N×FÙ.×N×N×N×nÏFÏuÏ .) In eithercase,� ³° Ñ¶³° ´ �,à�� ³� Ñ/³° ´ â ³§J�NSxÌ è �ÁÌ�O
� .  
Lemma 51 Theexpansion

�
producedby FAST-EXPANSION-SUM is a nonoverlappingexpansionwhose

componentsare in orderof increasingmagnitude(exceptingzeros).

Proof: Supposefor thesakeof contradictionthattwo successive nonzerocomponentsof
�

overlapor occur
in orderof decreasingmagnitude.Denotethefirst suchpair produced

­ � è�¢ æ and
� è ; thenthecomponents� æ ÔFÏFÏFÏuÔ � è�¢ æ arenonoverlappingandincreasing(exceptingzeros).

Assumewithout lossof generalitythat theexponentof
� è�¢ æ is zero,so that

� è�¢ æ is of the form Ê9×*Ï·� ,
whereanasteriskrepresentsasequenceof arbitrarybits.� è and

� è�¢ æ areproducedby aTWO-SUM or FAST-TWO-SUM operation,andarethereforenonadjacent
by Corollary44 (becausetheround-to-evenrule is used).

� è is thereforeof theform Ê¯�µÙNÙ (having nobits
of magnitudesmallerthanfour). Because� � è�¢ æ �N�:× , Corollary43(a)guaranteesthat

� � è â � è3¢ æl�N�	Ì O â�×*Ï (6.1)

Becausethe offendingcomponents
� è�¢ æ and

� è arenonzeroandeitheroverlappingor of decreasing
magnitude,theremustbe at leastonenonzerobit in the significandof

� è whosemagnitudeis no greater
thanone. Onemayask,wheredoesthis offendingbit comefrom?

� è is computedby Line 4 from
� è and° è Q æ , andtheoffendingbit cannotcomefrom

� è (which is of theform Ê¸�úÙNÙ ), soit musthave comefrom° è Q æ . Hence, � ° è Q æl� hasa nonzerobit of magnitudeoneor smaller. Applying Lemma50, onefinds that� � è¤ ��æ ° ¤ �NSxÌ�O .¹
It is implicitly assumedherethat thefirst offendingpair is not separatedby interveningzeros.Theproof couldbewritten to

considerthecasewhereinterveningzerosappear, but thiswouldmake it evenmoreconvoluted.Trustme.
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� � è¤ ��æ ° è\� º � � ¤\» � ¤6» �N� ° è Q æ Ï|Ù × × × × Ù × × × × Ù × ×�ª� ¤6» » § ¤\» » �N� × × × ×*Ï Ù × × × × Ù × × × × Ù × ×�ª� è�¢ Ý¤ ��æ � ¤ �N� ÙsÏ|× × × × × × × × × × × × ×� � è�â � è�¢ æl�N� × Ù Ù Ù ÙsÏ|× × × × Ù × × × × Ù × Ù ×

Figure6.10:Demonstration (for C�>/E ) of how the Q Invariant is used in the proof that � is nonoverlapping.
The top two values, � and ¼ , are being summed to form � . Because ½ 0x587 has a nonzero bit of magnitude
no greater than : , and because ½ is formed by merging two strongly nonoverlapping expansions, the sum( � 0¾�¿ 7 ½ 0 (i#¶( � 0ÁÀ p¾�¿ 7 � ¾ ( can be no larger than illustrated in this worst-case example. As a result, ( � 0 #+� 0�ÀU7 (
cannot be large enough to have a roundoff error of : , so ( � 0�ÀU7 ( is smaller than : and cannot overlap ½ 0x587 .
(Note that ½ 0Â5I7 is not part of the sum; it appears above in a box drawn as a placeholder that bounds the
value of each expansion.)

A boundfor � è�¢ Ý¤ ��æ � ¤ canbederived by recallingthat
� è�¢ æ is of the form Ê9×*Ï·� , and

� æFÔFÏFÏFÏuÔ � è�¢ æ are

nonoverlappingandincreasing.Hence,� � è�¢ Ý¤ ��æ � ¤ �NS:× .
Rewrite theQ Invariantin theform

� è~â � è3¢ æßà � è¤ ��æ ° ¤ Ñ � è�¢ Ý¤ ��æ � ¤ . Usingtheboundsderivedabove,
weobtain � � è â � è3¢ æ �NS	Ì O â�×*Ï (6.2)

SeeFigure6.10for aconcreteexample.

Inequalities6.1and6.2cannotholdsimultaneously. Theresultfollows by contradiction.  
Proof of Theorem 48: Lemma49 ensuresthat

� à � âK§ . Lemma51 eliminatesthepossibility that the
componentsof

�
overlapor fail to occurin orderof increasingmagnitude;it remainsonly to prove that

�
is

stronglynonoverlapping.Supposethattwo successive nonzerocomponents
� è�¢ æ and

� è areadjacent.

Assumewithout lossof generalitythat theexponentof
� è�¢ æ is zero,so that

� è�¢ æ is of the form Ê9×*Ï·� .
As in theproofof Lemma51,

� è musthave theform ÊA�µÙNÙ .
Because

� è�¢ æ and
� è areadjacent,theleastsignificantnonzerobit of

� è hasmagnitudetwo; thatis,
� è is

of theform Êb��×FÙ . Againweask,wheredoesthisbit comefrom?As before,thisbit cannotcomefrom
� è ,

so it musthave comefrom ° è Q æ . Hence, � ° è Q æ � hasa nonzerobit of magnitudetwo. Applying Lemma50,
wefind that �ª� è Q æ¤ ��æ ° ¤ �NS	Ì O�Q Ý�ÑÖÌ and �ª� è¤ ��æ ° ¤ �NS	Ì O�Q æ .

Boundsfor � è�¢ æ¤ ��æ � ¤ and � è�¢ Ý¤ ��æ � ¤ canalsobederivedby recallingthat
� è�¢ æ is of theform Ê9×*Ï·� andis

thelargestcomponentof a nonoverlappingexpansion.Hence,�ª� è�¢ æ¤ ��æ � ¤ �NSxÌ , and �ª� è�¢ Ý¤ ��æ � ¤ �NS:× .
Rewriting theQ Invariantin theform

� è Q æ â � è à¥� è Q æ¤ ��æ ° ¤ Ñb� è�¢ æ¤ ��æ � ¤ , weobtain� � è Q æ�â � è\��SxÌ OTQ Ý Ï (6.3)

TheQ Invariantalsogivesustheidentity
� è.â � è�¢ æßà¥� è¤ ��æ ° ¤ Ñ�� è�¢ Ý¤ ��æ � ¤ . Hence,� � è â � è3¢ æl�NS	Ì O�Q æ â�×*Ï (6.4)

Recall that the value � � è6� is at least Ì . Considerthe possibility that � � è6� might be greaterthan Ì ; by
Corollary43(b), this canoccuronly if � � è Q æ�â � è6�9P Ì O�Q Ý�â�Ì , contradictingInequality6.3. Hence, � � è6�
mustbeexactly Ì , andis expressiblein onebit. (Figure6.11givesanexamplewherethisoccurs.)
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Figure6.11: A four-bit example where FAST-EXPANSION-SUM generates two adjacent components � p and�NÃ . The figure permits me a stab at explaining the (admittedly thin) intuition behind Theorem 48: suppose� p is of the form Ä[:TwÆÅ . Because � p is the roundoff term associated with
� Ã , � Ã must be of the form Å�h�h if

round-to-even arithmetic is used. Hence, the bit of magnitude . in �NÃ must have come from � p . This implies
that ( � p ( is no larger than :�:T:�:<h , which imposes bounds on how large ( � ÃT( and ( �FÇ ( can be (Lemma 50);
these bounds in turn imply that ( � p ( can be no larger than : , and ( �NÃ�( can be no larger than :<h . Furthermore,� Ç cannot be adjacent to �NÃ because neither

��Ç
nor ¼�Ã can have a bit of magnitude E .

Similarly, thevalue � � è�¢ æl� is at least × . Considerthepossibilitythat � � è3¢ æl� might begreaterthan × ; by
Corollary43(b),this canoccuronly if � � è.â � è�¢ æl��P	Ì OTQ æ â�× , contradictingInequality6.4. Hence,� � è�¢ æl�
mustbeexactly × , andis expressiblein onebit.

By Corollary43(a), � � è�â � è�¢ æl�9� Ì O â<× (because� � è�¢ æl� à × ). Usingthis inequality, the inequality�ª� è3¢ Ý¤ ��æ � ¤ ��S × , andtheQ Invariant,onecandeducethat �ª� è¤ ��æ ° ¤ ��PêÌ�O . Because° is formedfrom two
nonoverlappingincreasingexpansions,this inequalityimpliesthat � ° è ����Ì�O ¢ Ý �<×FÙNÙ binary(recallingthat
Í+�tØ ), andhence° è Q Ý Ô ° è Q�Ü ÔFÏFÏFÏ mustall beof theform ÊA�úÙNÙNÙ (having nobitsof magnitudesmallerthanÈ
).
� è Q æ is alsoof theform Ê+� ÙNÙNÙ , because

� è Q æ and
� è areproducedby aTWO-SUM or FAST-TWO-SUM

operation,andarethereforenonadjacentby Corollary44 (assumingtheround-to-evenrule is used).

Because
� è Q æ and ° è Q Ý Ô ° è Q�Ü ÔFÏFÏFÏ are of the form ÊÉ�qÙNÙNÙ , � è Q æ�Ô � è Q Ý ÔFÏFÏFÏ must be as well, and are

thereforenotadjacentto
� è . It follows that

�
cannotcontainthreeconsecutive adjacentcomponents.

Theseargumentsprove thatif two componentsof
�

areadjacent,bothareexpressiblein onebit, andno
othercomponentsareadjacentto them.Hence,

�
is stronglynonoverlapping.  

Theproofof Theorem48 is morecomplex thanonewould like. It is unfortunatethattheproof requires
stronglynonoverlappingexpansions;it would bemoreparsimoniousif FAST-EXPANSION-SUM produced
nonoverlappingoutputfrom nonoverlappinginput,or nonadjacentoutputfrom nonadjacentinput. Unfortu-
nately, it doesneither. For a counterexampleto theformerpossibility, consideraddingthenonoverlapping
expansion×N×N×N×FÙNÙNÙNÙ â ×N×N×N× âùÙsÏÉ×N×N×N× to itself in four-bit arithmetic.(Thisexampleproducesanoverlapping
expansionif oneusestheround-to-even rule, but not if oneusestheround-toward-zerorule.) For a coun-
terexampleto thelatterpossibility, seeFigure6.11.Onapersonalnote,it tookmequiteabit of effort to find
a propertybetweennonoverlappingandnonadjacentthatis preservedby FAST-EXPANSION-SUM. Several
conjectureswerelaboriouslyexaminedanddiscardedbeforeI converged on the stronglynonoverlapping
property. I persistedonly becausethealgorithmconsistentlyworksin practice.
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It is also unfortunatethat the proof requiresexplicit considerationof the tiebreakingrule. FAST-
EXPANSION-SUM works just aswell on a machinethat usesthe round-toward-zerorule. The conditions
underwhich it worksarealsosimpler—theoutputexpansionis guaranteedto benonoverlappingif the in-
put expansionsare. Onemight hopeto prove that FAST-EXPANSION-SUM works regardlessof rounding
mode,but this is not possible. AppendixB demonstratesthe difficulty with an exampleof how mixing
round-toward-zeroandround-to-evenarithmeticcanleadto thecreationof overlappingexpansions.

ThealgorithmsEXPANSION-SUM andFAST-EXPANSION-SUM canbemixedonly to a limited degree.
EXPANSION-SUM preservesthenonoverlappingandnonadjacentproperties,but not thestronglynonover-
lappingproperty;FAST-EXPANSION-SUM preservesonly the stronglynonoverlappingproperty. Because
nonadjacentexpansionsarestronglynonoverlapping,andstronglynonoverlappingexpansionsarenonover-
lapping,expansionsproducedexclusively by oneof thetwo algorithmscanbefedasinputto theother, but it
maybedangerousto repeatedlyswitchbackandforthbetweenthetwoalgorithms.In practice,EXPANSION-
SUM is only preferredfor producingsmallexpansions,which arenonadjacentandhencesuitableasinput
to FAST-EXPANSION-SUM.

It is usefulto considertheoperationcountsof thealgorithms.EXPANSION-SUM uses�y� TWO-SUM

operations,for a total of Êl�y� flops (floating-pointoperations).FAST-EXPANSION-SUM uses� âA� ÑgÌ
TWO-SUM operationsandoneFAST-TWO-SUM operation,for a total of Êl� â�Êl�ûÑ�Ë flops.However, the
mergestepof FAST-EXPANSION-SUM requires�äâM��Ñ8× comparisonoperationsof theform“ if � � è6�NP�� § ¤ � ”.
Empirically, eachsuchcomparisonseemsto take roughlyaslong asthreeflops;hence,a roughmeasureis
to estimatethatFAST-EXPANSION-SUM takesaslong to executeas Ël� âgËl�ÛÑg×�Ì flops.

Theseestimatescorrelatewell with themeasuredperformanceof thealgorithms. I implementedeach
procedureasafunctioncall whoseparametersarevariable-lengthexpansionsstoredasarrays,andmeasured
themonaDECAlpha-basedworkstationusingthebundledcompilerwith optimizationlevel 3. By plotting
their performanceover a varietyof expansionsizesandfitting curves,I foundthatEXPANSION-SUM runs
in ÙsÏ È Ú���� â¥����Ñ	ÙsÏÂÌ microseconds,and FAST-EXPANSION-SUM runs in ÙsÏÎÍeØ��y� â ÙsÏÎÊ microseconds.
FAST-EXPANSION-SUM is alwaysfasterexceptwhenoneof the expansionshasonly onecomponent,in
whichcaseGROW-EXPANSION shouldbeused.

As I havementioned,however, thebalanceshiftswhenexpansionlengthsaresmallandfixed.By storing
small,fixed-lengthexpansionsasscalarvariablesratherthanarrays,onecanunroll theloopsin EXPANSION-
SUM, remove arrayindexing overhead,andallow componentsto beallocatedto registersby thecompiler.
Thus,EXPANSION-SUM is attractive in thisspecialcase,andis usedto advantagein my implementationof
thegeometricpredicatesof Section6.5. NotethatFAST-EXPANSION-SUM is difficult to unroll becauseof
theconditionalsin its initial mergingstep.

On theotherhand,theuseof arraysto storeexpansions(andnon-unrolledloopsto managethem)con-
fers theadvantagethatspuriouszerocomponentscaneasilybeeliminatedfrom outputexpansions.In the
proceduresGROW-EXPANSION, EXPANSION-SUM, andFAST-EXPANSION-SUM, aswell astheprocedures
SCALE-EXPANSION andCOMPRESS in thesectionsto come,zero eliminationcanbeachievedby maintain-
ing a separateindex for the outputarray

�
andadvancingthis index only whenthe procedureproducesa

nonzerocomponentof
�
. In practice,versionsof thesealgorithmsthat eliminatezerosarealmostalways

preferableto versionsthatdon’t (exceptwhenloopunrollingconfersagreateradvantage).Zeroelimination
addsasmallamountof overheadfor testingandindexing, but thelost timeis virtually alwaysregainedwhen
furtheroperationsareperformedon theresultingshortenedexpansions.

Experiencesuggeststhat it is economicalto useunrolledversionsof EXPANSION-SUM to form expan-
sionsof upto aboutfour components,toleratinginterspersedzeros,andto useFAST-EXPANSION-SUM with
zeroeliminationwhenforming(potentially)largerexpansions.
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6.3.5 SimpleMultiplication

Thebasicmultiplicationalgorithmcomputesa nonoverlappingexpansionequalto theproductof two Í -bit
values.Themultiplicationis performedby splittingeachvalueinto two halveswith half theprecision,then
performingfour exactmultiplicationson thesefragments.Thetrick is to find a way to split a floating-point
valuein two. Thefollowing theoremwasfirst provenby Dekker [26]:

Theorem 52 Let 
 be a Í -bit floating-pointnumber, where Í�� Ú . Choosea splitting point Ï such thatO Ý �VÏ��gÍ°Ñë× . Thenthefollowing algorithmwill producea ��ÍÛÑ�Ïl� -bit value 
 hi anda nonoverlapping�ÐÏìÑg×�� -bit value 
 lo such that � 
 hi �N��� 
 lo � and 
8àK
 hi âb
 lo.

SPLIT ��
�Ô6Ï��
1 Ñ*_Ò�ÁÌ�Ó�â�×��?�b

2 
 big _�ÑJ�b

3 
 hi _aÑB�b
 big
4 
 lo _a
��b
 hi
5 return ��
 hi Ô\
 lo �

Theclaim mayseemabsurd.After all, 
 hi and 
 lo have only ÍÛÑë× bits of significandbetweenthem;
how canthey carry all the informationof a Í -bit significand?The secretis hiddenin the sign bit of 
 lo.
For instance,theseven-bitnumber ×FÙNÙ.×FÙNÙ.× canbesplit into the three-bitterms ×FÙ.×FÙNÙNÙNÙ and Ña×N×N× . This
propertyis fortunate,becauseeven if Í is odd,asit is in IEEE 754 doubleprecisionarithmetic, 
 canbe
split into two Ô O Ý-Õ -bit values.

Proof: Line 1 is equivalentto computingÌ�Ó6
��¯
 . (Clearly, Ì�Ó6
 canbeexpressedexactly, becausemulti-
plying a valueby a power of two only changesits exponent,anddoesnot changeits significand.)Line 1 is
subjectto rounding,sowehave Ñ àëÌ�Ói
câg
câ err�ÁÌ�Ó6
��b
�� .

Line 2 is alsosubjectto rounding,so 
 big à:Ì Ó 
qâ err�ÁÌ Ó 
���
H�çâ err��ÑB�g
�� . It will becomeapparent
shortly that the proof relieson showing that the exponentof 
 big is no greaterthanthe exponentof Ì�Ó6
 .
Both � err�ÁÌ Ó 
F�G
H��� and � err��Ñ��G
H��� areboundedby æ

Ý ulp ��Ñ�� , sotheexponentof 
 big canonly belargerthan
thatof Ì�Ó6
 if every bit of thesignificandof 
 is nonzeroexceptpossiblythe last (in four-bit arithmetic, 

musthave significand×N×N×FÙ or ×N×N×N× ). By manuallycheckingthebehavior of SPLIT in thesetwo cases,one
canverify thattheexponentof 
 big is never largerthanthatof Ì Ó 
 .

Thereasonthis factis usefulis because,with Line 2, it impliesthat � err��Ñ��G
����H� æ
Ý ulp �ÁÌ Ó 
�� , andsothe

errortermerr��ÑB��
�� is expressiblein Ï Ñt× bits (for Ï��	Ì ).
By Lemma40, Lines3 and4 arecalculatedexactly. It follows that 
 hi à|
�Ñ err��Ñ��¸
H� , and 
 lo à

err��ÑB��
H� ; thelatteris expressiblein Ï Ñg× bits. To show that 
 hi is expressiblein Í Ñ�Ï bits,considerthat
its leastsignificantbit cannotbe smallerthanulp ��
 big ��à Ì Ó ulp ��
H� . If 
 hi hasthe sameexponentas 
 ,
then 
 hi mustbeexpressiblein ÍûÑ�Ï bits; alternatively, if 
 hi hasanexponentonegreaterthanthatof 

(because
�Ñ err��ÑJ��
H� hasa largerexponentthan 
 ), then 
 hi is expressiblein onebit (asdemonstratedin
Figure6.12).

Finally, theexactnessof Line 4 impliesthat 
8àK
 hi âb
 lo asrequired.  
Multiplication is performedby setting ÏÛàrÖ O Ý-× , so that the Í -bit operands
 and Î areeachsplit into

two Ô O Ý Õ -bit pieces,
 hi, 
 lo, Î hi, and Î lo. The products
 hi Î hi, 
 lo Î hi, 
 hi Î lo, and 
 lo Î lo caneachbe
computedexactly by thefloating-pointunit, producingfour values.Thesecouldthenbesummedusingthe
FAST-EXPANSION-SUM procedurein Section6.3.4.However, Dekker [26] providesseveral fasterwaysto
accomplishthecomputation.Dekker attributesthefollowing methodto G. W. Veltkamp.
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 à × × × Ù ×
Ì Ü 
 à × × × Ù × ËµÌ ÜÑ à �ÁÌ*Üµâ�×��?�g
 à × Ù Ù Ù Ù ËµÌeÿ
 à × × × Ù ×
 big à ÑB�b
 à × × × Ù Ù ËµÌ*Ü

 hi à ÑB�b
 big à × Ù Ù Ù Ù ËµÌ æ


 lo à 
��b
 hi à Ñ × ×

Figure6.12:Demonstration of SPLIT splitting a five-bit number into two two-bit numbers.


 à × × × Ù × ×
Î à × × × Ù × ×
Þ à 
�� Î à × × Ù × × Ù ËµÌ

­

 hi � Î hi à × × Ù Ù Ù × ËµÌ

­�)ØlØ æ à ÞD����
 hi � Î hi � à × Ù × Ù Ù Ù ËµÌ Ü
 lo � Î hi à × Ù × Ù × Ù ËµÌ Ý�)ØlØ Ý à ��Ø�Ø æ�����
 lo � Î hi � à × Ù Ù × × Ù ËµÌ*Ý
 hi � Î lo à × Ù × Ù × Ù ËµÌ Ý�)ØlØ Ü à ��Ø�Ø Ý ����
 hi � Î lo � à Ñ × Ù Ù Ù Ù
 lo � Î lo à × Ù Ù ×
Ñ é à ��Ø�Ø Ü ����
 lo � Î lo � à Ñ × × Ù Ù ×

Figure6.13: Demonstration of TWO-PRODUCT in six-bit arithmetic where "j>�%R>Ù:T:�:<h-:�: , " hi >|% hi >:�:T:ihTh�h , and " lo >V% lo >z:�: . Note that each intermediate result is expressible in six bits. The resulting
expansion is :T:ih
:�:ih[ÚD.)Û9#�:�:ihTh-: .
Theorem 53 Let 
 and Î be Í -bit floating-pointnumbers, where Í/��Ê . Thenthefollowing algorithmwill
producea nonoverlappingexpansionÞzâgé such that 
sÎqà Þ âté , where Þ is an approximationto 
sÎ and
é representstheroundoff error in thecalculationof Þ . Furthermore, if round-to-eventiebreakingis used,Þ
and é arenonadjacent.(SeeFigure6.13.)

TWO-PRODUCT ��
�Ô�Î��
1 Þ`_a
�� Î
2 ��
 hi Ô\
 lo ��à SPLIT ��
�ÔNÖ O Ý × �3 �ÁÎ hi Ô�Î lo �µà SPLIT �ÁÎ�ÔNÖ O Ý × �4 ��Ø�Ø æÜ_¢ÞD����
 hi � Î hi �
5 ��Ø�Ø Ý _ �)ØlØ æ¡����
 lo �tÎ hi �
6 ��Ø�Ø Ü _ �)ØlØ Ý ����
 hi �tÎ lo �
7 éD_Ý��
 lo � Î lo �?� ��Ø�Ø Ü
8 return �-Þ�Ô^é��
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Proof: Line 1 is subjectto rounding,sowehave ÞÛàK
ªÎ.â err��
$�ÛÎ�� . Themultiplicationsin Lines4 through
7 areall exact,becauseeachfactorhasnomorethan Ô O Ý Õ bits; it will beproventhateachof thesubtractions
is alsoexact,andthus é8à=Ñ err��
�� Î�� .

Without lossof generality, assumethattheexponentsof 
 and Î areÍaÑ × , sothat � 
�� and � Î�� areintegers
in therangeÐpÌ�O ¢ æ Ô�Ì�OçÑ ×ÂÕ . In theproofof Theorem52it emergedthat � 
 hi � and � Î hi � areintegersin therange
ÐpÌ O ¢ æ Ô�Ì O Õ , and � 
 lo � and � Î lo � areintegersin therange Ð ÙsÔ�ÌIÞ O�ß Ýáà ¢ æ Õ . Fromtheserangesandtheassumption
that Í}�aÊ , one can derive the inequalities � 
 lo ��� æâ � 
 hi � , � Î lo ��� æâ � Î hi � , and err��
&�=Î��G�?Ì O ¢ æ �æ
Ü Ý � 
 hi Î hi � .

Intuitively, 
 hi Î hi oughtto bewithin a factorof two of 
f��Î , so thatLine 4 is computedexactly (by
Lemma40). To confirmthis hunch,notethat ÞÛà¥
ªÎ�â err��
�� Î���à�
 hi Î hi âb
 lo Î hi âg
 hi Î lo âb
 lo Î lo â
err��
*�äÎ��nàK
 hi Î hi Ê æ2ã­

ÿ � 
 hi Î hi � (usingtheinequalitiesstatedabove),which justifiestheuseof Lemma40.
BecauseLine 4 is computedwithout roundoff, ��Ø�Ø æúàK
 lo Î hi âb
 hi Î lo âg
 lo Î lo â err��
�� Î�� .

We areassuredthat Line 5 is executedwithout roundoff error if the value ��Ø�Ø æ�Ñ�
 lo Î hi àÙ
 hi Î lo â
 lo Î lo â err��
M��Î�� is expressiblein Í bits. I prove that this propertyholdsby showing that the left-hand
expressionis amultipleof Ì Þ OTß Ýáà , andtheright-handexpressionis strictly smallerthan Ì Þ ÜÐO�ß Ýáà .

Theupperboundontheabsolutevalueof theright-handexpressionfollows immediatelyfrom theupper
boundsfor 
 hi, 
 lo, Î lo, anderr��
��=Î�� . To show that the left-handexpressionis a multiple of ÌIÞ O�ß Ýáà ,
considerthat ��Ø�Ø æ mustbea multiple of Ì�O ¢ æ because
��gÎ and 
 hi Î hi have exponentsof at least ÌEÍ°Ñ Ì .
Hence,��Ø�Ø æ�Ñ/
 lo Î hi mustbea multipleof ÌIÞ O�ß Ýáà because
 lo is aninteger, and Î hi is amultipleof ÌIÞ O�ß Ýáà .
Hence,Line 5 is computedexactly, and ��Ø�Ø Ý àK
 hi Î lo âb
 lo Î lo â err��
��tÎ�� .

To show thatLine 6 is computedwithout roundoff error, notethat 
 lo Î lo is an integer no greaterthan
Ì�O ¢ æ (because
 lo and Î lo areintegersnogreaterthan Ì Þ O�ß Ýáà ¢ æ ), anderr��
Y� Î�� is anintegernogreaterthan
Ì O ¢ æ . Thus, ��Ø�Ø Ü àK
 lo Î lo â err��
�� Î�� is anintegernogreaterthan Ì O , andis expressiblein Í bits.

Finally, Line 7 is exactsimplybecauseé8à=Ñ err��
�� Î�� canbeexpressedin Í bits. Hence,
sÎ�à�Þ�âÖé .

If round-to-eventiebreakingis used,Þ and é arenonadjacentby analogyto Corollary44.  
6.3.6 ExpansionScaling

The following algorithm,which multipliesan expansionby a floating-pointvalue,is the secondkey new
resultof thischapter.

Theorem 54 Let � à�� �è���æ � è bea nonoverlappingexpansionof � Í -bit components,andlet Î bea Í -bit
valuewhere Í��<Ø . Supposethat thecomponentsof � are sortedin order of increasingmagnitude, except
that anyof the � è maybezero. Thenthe following algorithmwill producea nonoverlappingexpansion

�
such that

� à � Ý �è±��æ � è�à=Î � , where thecomponentsof
�

are alsoin order of increasingmagnitude, except
thatanyof the

� è maybezero. Furthermore, if � is nonadjacentandround-to-eventiebreakingis used,then�
is nonadjacent.
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Figure6.14:Operation of SCALE-EXPANSION.

SCALE-EXPANSION � � Ô�Î��
1 � � Ý Ô � æ �J_ TWO-PRODUCT � � æ Ô�Î��
2 for L¡_ Ì to �
3 �

ä
è Ô å è �	_ TWO-PRODUCT � � è Ô�Î��

4 � � Ý è�¢ æFÔ � Ý è�¢ Ý �	_ TWO-SUM � � Ý è�¢ Ý Ô å èÐ�
5 � � Ý è�Ô � Ý è�¢ æ��	_ FAST-TWO-SUM �

ä
èEÔ � Ý è�¢ æ<�

6
�
Ý � _ �

Ý �
7 return

�
As illustratedin Figure6.14,SCALE-EXPANSION multiplieseachcomponentof � by Î andsumsthe

results.It shouldbeapparentwhy thefinal expansion
�

is thedesiredproduct,but it is not soobviouswhy
thecomponentsof

�
areguaranteedto benonoverlappingandin increasingorder. Two lemmatawill aid the

proof.

Lemma 55 Let � è and � ¤ betwo nonoverlappingnonzero componentsof � , with L�S�® and � � è6�¬SÉ� � ¤ � . Let
ä
è bea correctlyroundedapproximationto � è Î , andlet

ä
è â å è bea two-componentexpansionexactlyequal

to � è\Î . (Such an expansionis producedby Line 3, but here is definedalsofor L à × .) Then å è is too small
in magnitudeto overlapthedouble-widthproduct � ¤ Î . Furthermore, if � è and � ¤ are nonadjacent,then å è is
notadjacentto � ¤ Î .
Proof: By scaling � and Î by appropriatepowersof Ì (therebyshifting their exponentswithout changing
theirsignificands),onemayassumewithout lossof generalitythat � ¤ and Î areintegerswith magnitudeless
than Ì�O , andthat � � è6�NS:× (andhencea radixpoint fallsbetween� ¤ and � è ).

It follows that � ¤ Î is an integer, and � � è\Î��IS<Ì O . Thelatter factandexactroundingimply that � å è\�I� æ
Ý .Hence,� ¤ Î and å è donotoverlap.

If � è and � ¤ arenonadjacent,scale� sothat � ¤ is an integerand � � èª��S æ
Ý . Then � å èª��� æ

ÿ , so � ¤ Î and å è
arenotadjacent.  
Lemma 56 For someL , let Ø bethesmallestinteger such that � � èª��S	Ìlæ (hence� è doesnotoverlap Ìlæ ). Then� � Ý è6�N�xÌ æ � Î�� , andthus � � Ý è�¢ æl���xÌ æ ¢ æ ulp �ÁÎ�� .
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Proof: The inequality � � Ý è6�	� Ìlæ-� Î�� holdsfor L�à¢× after Line 1 is executedeven if
�
Ý is roundedto a

largermagnitude,because� � æEÎ��¬SëÌ æ � Î�� , and Ì æ � Î�� is expressiblein Í bits. For largervaluesof L , thebound
is proven by induction. Assumethat ç is the smallestinteger suchthat � � è�¢ æl�]S¢Ì�è ; by the inductive
hypothesis,� � Ý è�¢ Ý �N�xÌ è � Î�� .

Because� è and � è�¢ æ arenonoverlapping, � è mustbe a multiple of Ì è . Supposethat Ø is the smallest
integersuchthat � � è6��SgÌlæ ; then � � è6�N�xÌlæ�ÑÖÌ�è .

Lines3, 4, and5 compute
�
Ý è , anapproximationof

�
Ý è�¢ Ý â � èÇÎ , andaresubjectto roundoff error in

Lines4 and5. Supposethat
�
Ý è�¢ Ý and � è Î have thesamesign, that � � Ý è�¢ Ý � hasits largestpossiblevalue

Ì�èF� Î�� , andthat � � è6� hasits largestpossiblevalue ÌlæßÑ Ì�è . For theseassignments,roundoff doesnotoccurin
Lines4 and5, and � � Ý è6�$à|� � Ý è�¢ Ý â � èÁÎ��~à:Ì æ � Î�� . Otherwise,roundoff mayoccur, but themonotonicityof
floating-pointmultiplicationandadditionensuresthat � � Ý è\� cannotbelargerthan Ìlæ
� Î�� .

Theinequality � � Ý è3¢ æl�H�xÌlæ ¢ æ ulp �ÁÎ�� is guaranteedby exactroundingbecause
�
Ý è�¢ æ is theroundoff term

associatedwith thecomputationof
�
Ý è in Line 5.  

Proof of Theorem 54: One can prove inductively that at the end of eachiterationof the for loop, the
invariant

�
Ý è�â�� Ý è�¢ æ¤ ��æ � ¤ àÒ� è¤ ��æ � ¤ Î holds. Certainly this invariant holds for L à × after Line 1 is

executed.By inductiononLines3, 4, and5, onecandeducethattheinvariantholdsfor all (relevantvalues
of) L . (The useof FAST-TWO-SUM in Line 5 will be justified shortly.) Thus, after Line 6 is executed,� Ý �¤ ��æ � ¤ àëÎ��e�¤ ��æ � ¤ .

I shall prove that thecomponentsof
�

arenonoverlappingby showing thateachtime a componentof�
is written, thatcomponentis smallerthananddoesnot overlapeithertheaccumulator

�
nor any of the

remainingproducts( � ¤ Î ); hence,thecomponentcannotoverlapany portionof their sum. Thefirst claim,
that eachcomponent

� ¤ doesnot overlapthe accumulator
� ¤ Q æ , is true because

� ¤ is the roundoff error
incurredwhile computing

� ¤ Q æ .
To show thateachcomponentof

�
is smallerthananddoesnot overlaptheremainingproducts,I shall

consider
� æ , theremainingoddcomponentsof

�
, andtheevencomponentsof

�
separately. Thecomponent� æ , computedby Line 1, doesnot overlapthe remainingproducts( � Ý Î�Ô � Ü Î�ÔFÏFÏFÏ ) by virtue of Lemma55.

Theevencomponents,which arecomputedby Line 4, do not overlaptheremainingproductsbecause,by
applicationof Lemma36 to Line 4, a component� � Ý è�¢ Ý � is no larger than � å èª� , which is boundedin turn by
Lemma55.

Oddcomponentsof
�
, computedby Line 5, do not overlaptheremainingproductsby virtue of Lemma

56, which guaranteesthat � � Ý è�¢ æl��� Ì æ ¢ æ ulp �ÁÎ�� . The remainingproductsare all multiples of Ì æ ulp �ÁÎ��
(becausetheremainingcomponentsof � aremultiplesof Ìlæ ).

If round-to-even tiebreakingis used,theoutputof eachTWO-SUM, FAST-TWO-SUM, andTWO-PRO-
DUCT statementis nonadjacent.If � is nonadjacentaswell, theargumentsaboveareeasilymodifiedto show
that

�
is nonadjacent.

Theuseof FAST-TWO-SUM in Line 5 is justifiedbecause�
ä
è\�?�é� � Ý è�¢ æl� (exceptif

ä
è à Ù , in which

caseFAST-TWO-SUM still workscorrectly). To seethis, recall that � è is a multiple of Ì è (with ç defined
as in Lemma56), and considertwo cases:if � � è6��à Ì�è , then

ä
è is computedexactly and å èÛà Ù , so�

ä
è\�Èà Ì è � Î����Ù� � Ý è�¢ Ý � àé� � Ý è3¢ æT� . If � � èª� is larger than Ì è , it is at leasttwice aslarge,andhence

ä
è is at

leastÌU� � Ý è�¢ Ý � , soevenif roundoff occursand å è is notzero, �
ä
è6�NP�� � Ý è�¢ Ý �Fâ¥� å è6�N��� � Ý è�¢ æl� .

Note that if an input component� è is zero, then two zerooutputcomponentsareproduced,and the
accumulatorvalueis unchanged(

�
Ý è à

�
Ý è3¢ Ý ).  

Thefollowing corollarydemonstratesthatSCALE-EXPANSION is compatiblewith FAST-EXPANSION-
SUM.
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Figure6.15: An adjacent pair of one-bit components in a strongly nonoverlapping input expansion may
cause SCALE-EXPANSION to produce an adjacent pair of one-bit components in the output expansion.

Corollary 57 If � is strongly nonoverlappingand round-to-even tiebreaking is used,then
�

is strongly
nonoverlapping.

Proof: Because� is nonoverlapping,
�

is nonoverlappingby Theorem54. We have alsoseenthat if �
is nonadjacent,then

�
is nonadjacentandhencestronglynonoverlapping;but � is only guaranteedto be

stronglynonoverlapping,andmaydeviatefrom nonadjacency.

Supposetwo successive components� è and � è Q æ areadjacent.By thedefinitionof stronglynonoverlap-
ping, � è and � è Q æ arebothpowersof two andarenotadjacentto � è�¢ æ or � è Q Ý . Let Ï betheintegersatisfying� è°à Ì Ó and � è Q æ à Ì ÓáQ æ . For thesecomponentsthe multiplication of Line 3 is exact, so

ä
èÛà Ì Ó Î ,ä

è Q æ à=Ì�Ó�Q æ Î , and å è�à å è Q æ à Ù . Applying Lemma36 to Line 4,
�
Ý è3¢ Ý à � Ý è�à<Ù . However, thecompo-

nents
�
Ý è�¢ æ and

�
Ý è Q æ maycausedifficulty (seeFigure6.15).We know

�
is nonoverlapping,but canthese

two componentsbeadjacentto theirneighborsor eachother?

The argumentsusedin Theorem54 to prove that
�

is nonadjacent,if � is nonadjacentandround-to-
even tiebreakingis used,canbeappliedhereaswell to show that

�
Ý è�¢ æ and

�
Ý è Q æ arenot adjacentto any

componentsof
�

producedbeforeor afterthem,but they maybeadjacentto eachother. Assumethat
�
Ý è�¢ æ

and
�
Ý è Q æ areadjacent(they cannotbeoverlapping).�
Ý è Q æ is computedin Line 5 from

ä
è Q æ and

�
Ý è Q æ . Thelatteraddendis equalto

�
Ý è , becauseå è Q æßà�Ù .�

Ý è is notadjacentto
�
Ý è�¢ æ , becausethey areproducedin Line 5 from aFAST-TWO-SUM operation.Hence,

theleastsignificantnonzerobit of
�
Ý è Q æ (thatis, thebit thatcausesit to beadjacentto

�
Ý è�¢ æ ) musthavecome

from

ä
è Q æ , whichis equalto Ì�Ó�Q æ Î . It followsthat

�
Ý è Q æ is amultipleof Ì�ÓáQ æ ulp �ÁÎ�� . Because� � è Q æl��SxÌ�ÓáQ Ý ,

Lemma56 impliesthat � � Ý è Q æl�N�xÌ ÓáQ æ ulp �ÁÎ�� . Hence,� � Ý è Q æl�,àëÌ ÓáQ æ ulp �ÁÎ�� .
Similarly, because� � è6��SëÌ�Ó�Q æ , Lemma56 impliesthat � � Ý è3¢ æl�U�ëÌ�Ó ulp �ÁÎ�� . Thecomponents

�
Ý è Q æ and�

Ý è�¢ æ canonly beadjacentin thecase� � Ý è�¢ æ �~à<Ì�Ó ulp �ÁÎ�� . In this case,bothcomponentsareexpressiblein
onebit.

Hence,eachadjacentpairof one-bitcomponentsin theinputcangiveriseto anisolatedadjacentpairof
one-bitcomponentsin theoutput,but no otheradjacentcomponentsmayappear. If � is stronglynonover-
lapping,sois

�
.  
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6.3.7 Compressionand Approximation

Thealgorithmsfor manipulatingexpansionsdo not usuallyexpresstheir resultsin themostcompactform.
In additionto the interspersedzerocomponentsthat have alreadybeenmentioned(andareeasilyelimi-
nated),it is alsocommonto find componentsthat representonly a few bits of anexpansion’s value. Such
fragmentationrarelybecomessevere,but it cancausethe largestcomponentof anexpansionto bea poor
approximationof thevalueof thewholeexpansion;the largestcomponentmaycarryaslittle asonebit of
significance.Sucha componentmay result,for instance,from cancellationduring the subtractionof two
nearlyequalexpansions.

TheCOMPRESS algorithmbelow findsacompactform for anexpansion.Moreimportantly, COMPRESS

guaranteesthat the largestcomponentis a goodapproximationto the whole expansion. If round-to-even
tiebreakingis used,COMPRESS alsoconvertsnonoverlappingexpansionsinto nonadjacentexpansions.

Priest[76] presentsa morecomplicated“Renormalization”procedurethat compressesoptimally. Its
greaterrunningtime is rarelyjustifiedby themarginal reductionin expansionlength,unlessthereis a need
to putexpansionsin acanonicalform.

Theorem 58 Let � à �j�è±��æ � è be a nonoverlappingexpansionof �|Í -bit components,where � � Ú .
Supposethat thecomponentsof � aresortedin orderof increasingmagnitude, exceptthatanyof the � è may
bezero. Thenthefollowingalgorithmwill producea nonoverlappingexpansion

�
(nonadjacentif round-to-

eventiebreakingis used)such that
� àÉ� áè���æ � èúà � , where thecomponents

� è are in order of increasing
magnitude. If

� µàBÙ , noneof the
� è will bezero. Furthermore, the largestcomponent

� á approximates
�

with anerror smallerthanulp � � á�� .
COMPRESS � � �
1

� _ � �
2 Î<ê åáå êT�é_a�
3 for L	_ë�üÑg× downto ×
4 � � Ô\ì��B_ FAST-TWO-SUM � � Ô � è �
5 if ì µà�Ù then
6 ° �Ðíáî±î�í � _ �
7 Î<ê åáå êl�é_ Î<ê å�å êl�üÑg×
8

� _aì
9 ° �Ðíáî±î�í � _ �
10 å êEÍ`_ ×
11 for L	_ Î<ê åáå êT�Bâ	× to �
12 � � Ô\ì��B_ FAST-TWO-SUM � ° è§Ô � �
13 if ì µà�Ù then
14

� î�í O _ �
15 å êEÍ`_ å êEÍ9â�×
16

� î�í O _ �
17 Set � (thelengthof

�
) to å êEÍ

18 return
�

Figure6.16illustratestheoperationof COMPRESS. For clarity, ° and
�

arepresentedastwo separate
arraysin theCOMPRESS pseudocode,but they canbecombinedinto asingleworkingarraywithoutconflict
by replacingeveryoccurrenceof “ ° ” with “

�
”.
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Figure6.16:Operation of COMPRESS when no zero-elimination occurs.

Proof Sketch: COMPRESS worksby traversingtheexpansionfrom largestto smallestcomponent,thenback
from smallestto largest,replacingeachadjacentpairwith its two-componentsum.Thefirst traversal,from
largestto smallest,doesmostof thecompression.Theexpansion° � â ° � ¢ æ�âëãFãFãNâ ° �Ðíáî±î�í � producedby
Lines1 through9 hasthepropertythat ° ¤ ¢ æ � ulp � ° ¤ � for all ® (andthussuccessive componentsoverlap
by atmostonebit). This factfollowsbecausetheoutputof FAST-TWO-SUM in Line 4 hasthepropertythatì�� æ

Ý ulp � � � , andthevalueof ì thusproducedcanonly beincreasedslightly by thesubsequentadditionof
smallernonoverlappingcomponents.

The secondtraversal, from smallestto largest, clips any overlappingbits. The useof FAST-TWO-
SUM in Line 12 is justified becausethe propertythat ° è3¢ æ � ulp � ° è � guaranteesthat

�
(the sumof the

componentsthat aresmallerthan ° è ) is smallerthan ° è . The expansion
� î�í O â � î�í O ¢ æ�â ãFãFã�â � Ý â � æ

is nonoverlapping(nonadjacentif round-to-even tiebreakingis used)becauseFAST-TWO-SUM produces
nonoverlapping(nonadjacent)output.

During thesecondtraversal,anapproximatetotal is maintainedin theaccumulator
�

. Thecomponent� áN¢ æ is producedby the lastFAST-TWO-SUM operationthatproducesa roundoff term; this roundoff term
is no greaterthan æÝ ulp � � á�� . Hence,thesum � � áN¢ ænâ � áN¢ Ý â ãFãFã,â � Ý â � æT� (wherethecomponentsof

�
arenonoverlapping)is lessthanulp � � á � , therefore� � Ñ � á �NS ulp � � á � .  

To ensurethat
� á is a goodapproximationto

�
, only the secondtraversalis necessary;however, the

first traversalis moreeffective in reducingthenumberof components.Thefastestway to approximate� is
to simply sumits componentsfrom smallestto largest;by thereasoningusedabove, theresulterrsby less
thanoneulp. Thisobservationis thebasisfor anAPPROXIMATE procedurethatis usedin thepredicatesof
Section6.5.

Theorem58 is not thestrongeststatementthatcanbemadeaboutCOMPRESS. COMPRESS is effective
even if thecomponentsof the input expansionhave a certainlimited amountof overlap. Furthermore,the
boundfor � � Ñ � á�� is not tight. (I conjecturethatthelargestpossiblerelative erroris exhibitedby anumber
that containsa nonzerobit every Í th bit; observe that ×câ æ

Ý ulp �§×��ßâ æ
ÿ Ð ulp �§×���Õ Ý âêãFãFã cannotbe further

compressed.)Theseimprovementscomplicatetheproofandarenotexploredhere.
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Figure6.17:Distillation of sixteen C -bit floating-point values.

6.3.8 Other Operations

Distillation is theprocessof summingð unorderedÍ -bit values.Distillation canbeperformedby thedivide-
and-conqueralgorithmof Priest[76], which usesany expansionadditionalgorithmto sumthevaluesin a
tree-like fashionasillustratedin Figure6.17.EachÍ -bit addendis a leaf of thetree,andeachinteriornode
representsa call to anexpansionadditionalgorithm. If EXPANSION-SUM is used(andzeroeliminationis
not), thenit doesnot matterwhetherthe treeis balanced;distillation will take precisely æÝ ð��ÐðùÑë×�� TWO-
SUM operations,regardlessof theorderin which expansionsarecombined.If FAST-EXPANSION-SUM is
used,thespeedof distillation dependsstronglyon thebalanceof the tree. A well-balancedtreewill yield
an �`�ÐðFñ±ò�ó£ðU� distillationalgorithm,anasymptoticimprovementoverdistilling with EXPANSION-SUM. As
I have mentioned,it is usuallyfastestto useanunrolledEXPANSION-SUM to createexpansionsof length
four, andFAST-EXPANSION-SUM with zeroeliminationto sumtheseexpansions.

To find theproductof two expansions� and § , useSCALE-EXPANSION (with zeroelimination)to form
theexpansions� § æ Ô � § Ý ÔFÏFÏFÏ , thensumtheseusingadistillation tree.

Division cannotalways,of course,beperformedexactly, but it canbeperformedto arbitraryprecision
by an iterative algorithmthat employs multiprecisionadditionandmultiplication. ConsultPriest[76] for
onesuchalgorithm.

The easiestway to comparetwo expansionsis to subtractonefrom the other, andtestthe signof the
result. An expansion’s sign can be easily testedbecauseof the nonoverlappingproperty; simply check
the sign of the expansion’s mostsignificantnonzerocomponent.(If zeroeliminationis employed, check
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the componentwith the largestindex.) A nonoverlappingexpansionis equalto zeroif andonly if all its
componentsareequalto zero.

6.4 AdaptivePrecisionArithmetic

6.4.1 Why Adaptivity?

Exactarithmeticis expensive, andwhenit canbe avoided, it shouldbe. Someapplicationsdo not need
exact results,but requirethe absoluteerror of a result to fall below somethreshold. If this thresholdis
known beforethe computationis performed,it is economicalto employ adaptivity by prediction. One
writesseveralprocedures,eachof which approximatesthe resultwith a differentdegreeof precision,and
with acorrespondinglydifferentspeed.Errorboundsarederivedfor eachof theseprocedures;thesebounds
are typically much cheaperto computethan the approximationsthemselves, except for the leastprecise
approximation.For any particularinput,theapplicationcomputestheerrorboundsandusesthemto choose
theprocedurethatwill attainthenecessaryaccuracy mostcheaply.

Sometimes,however, onecannotdeterminewhethera computationwill beaccurateenoughbeforeit is
done.An exampleis whenonewishesto boundtherelativeerror, ratherthantheabsoluteerror, of theresult.
(A specialcaseis determiningthesignof anexpression;theresultmusthave relative error lessthanone.)
Theresultmayprove to bemuchlargerthanits errorbound,andlow precisionarithmeticwill suffice,or it
maybesocloseto zerothat it is necessaryto evaluateit exactly to satisfytheboundon relative error. One
cannotgenerallyknow in advancehow muchprecisionis needed.

In thecontext of determinantevaluationfor computationalgeometry, FortuneandVanWyk [36] suggest
usingafloating-pointfilter. An expressionis evaluatedapproximatelyin hardwareprecisionarithmeticfirst.
Forwarderroranalysisdetermineswhethertheapproximateresultcanbe trusted;if not, anexact resultis
computed.If theexactcomputationis only neededoccasionally, theapplicationis slowedonly a little.

Onemight hopeto improve this ideafurtherby computinga sequenceof increasinglyaccurateresults,
testingeachonein turn for accuracy. Alas, whenever anexact resultis required,onesuffersboth thecost
of the exact computationandthe additionalburdenof computingseveral approximateresultsin advance.
Fortunately, it is oftenpossibleto useintermediateresultsassteppingstonesto moreaccurateresults;work
alreadydoneis notdiscardedbut is refined.

6.4.2 Making Arithmetic Adaptive

FAST-TWO-SUM, TWO-SUM, andTWO-PRODUCT eachhave thefeaturethatthey canbebroken into two
parts:Line 1, whichcomputesanapproximateresult,andtheremaininglines,whichcalculatetheroundoff
error. Thelatter, moreexpensive calculationcanbedelayeduntil it is needed,if it is ever neededat all. In
thissense,theseroutinescanbemadeadaptive, sothatthey only produceasmuchof theresultasis needed.
I describeherehow to achieve thesameeffect with moregeneralexpressions.

Any expressioncomposedof addition,subtraction,andmultiplicationoperationscanbecalculatedadap-
tively in a mannerthatdefinesa naturalsequenceof intermediateresultswhoseaccuracy it is appropriate
to test.Sucha sequenceis mosteasilydescribedby consideringthetreeassociatedwith theexpression,as
in Figure6.18(a).Theleavesof this treerepresentfloating-pointoperands,andits internalnodesrepresent
operations.Replaceeachnodewhosechildrenarebothleaveswith thesum Þ è â é è , whereÞ è representsthe
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Figure6.18: (a) Formula for the square of the distance between two points " and % . (b) The lowest subex-
pressions in the tree are expressed as the sum of an approximate value and a roundoff error. (c) A simple
incremental adaptive method for evaluating the expression. The approximations ô 7 and ô p are generated
and tested in turn. The final expansion ôBÃ is exact. Each ô 0 includes all terms of size õ�13öá0ÁÀ�7i; or larger, and
hence has error no greater than õ�1Áö 0 ; . (d) Incremental adaptivity taken to an extreme. The three subex-
pression trees ÷Hø , ÷ 7 , and ÷ p are themselves calculated adaptively. Each ù 0 incorporates only the terms
needed to reduce its error to õ�1Áöú0�; .
approximatevalueof thesubexpression,and éNè representstheroundoff error incurredwhile calculatingÞÈè ,
asillustratedin Figure6.18(b).Expandtheexpressionto form apolynomial.

In theexpandedexpression,thetermscontainingmany occurrencesof é variables(roundoff errors)are
dominatedby termscontainingfewer occurrences.As anexample,considertheexpression��
Nû�ÑgÎiû
� Ý â��
Nü�Ñ Îiül��Ý (Figure6.18),which calculatesthesquareof thedistancebetweentwo pointsin theplane.Set
NûÓÑwÎ6ûaà	Þçæ�âwésæ and 
NüìÑÖÎiücà�Þ Ý âwé Ý . Theresultingexpression,expandedin full, is

�-Þ Ý æ âwÞ ÝÝ � â��ÁÌeÞ æ1ésæ�â ÌeÞ Ý é Ý � â��-é Ýæ â é ÝÝ �EÏ (6.5)

It is significantthateachéNè is small relative to its correspondingÞÈè . Usingstandardterminologyfrom
forwarderroranalysis[97], thequantity æÝ ulp �§×�� is calledthemachineepsilon, denotedý . Recallthatexact
roundingguaranteesthat � éNè\�N�AýT� ÞÈèª� ; thequantity ý boundstherelativeerror err��
Ü�zÎ��ªþH��
Ü� Î�� of any basic
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floating-pointoperation.Notethat ý àêÌ ¢ O . In IEEE 754doubleprecisionarithmetic, ýÓàêÌ ¢ þ Ü ; in single
precision,ýúàëÌ ¢ Ý ÿ .

Expression6.5 canbe divided into threeparts,having magnitudesof �`�§×�� , �`�Ðý<� , and �`�Ðý Ý � , respec-
tively. Denotetheseparts

ä  
,

ä
æ , and

ä
Ý . More generally, for any expressionexpandedin this manner, let

ä
è bethesumof all productscontainingL of the é variables,sothat

ä
è hasmagnitude�`�Ðý è � .

Onecanobtainanapproximationÿ ¤ with errorno larger than �`�Ðý ¤ � by computingexactly thesumof
thefirst ® terms,

ä  
through

ä ¤ ¢ æ . Thesequenceÿaæ�Ô\ÿ Ý ÔFÏFÏFÏ of increasinglyaccurateapproximationscanbe
formedincrementally;ÿ ¤ is theexactsumof ÿ ¤ ¢ æ and

ä ¤ ¢ æ . Membersof this sequencearegeneratedand
tested,asillustratedin Figure6.18(c),until oneis sufficiently accurate.

The approximationÿ ¤ is not the way to achieve an error boundof �`�Ðý ¤ � with the leastamountof
work. For instance,a floating-pointcalculationof �-ÞÈÝ æ â:ÞÈÝÝ � using no exact arithmetictechniqueswill
achieve an �`�Ðýi� errorbound,albeitwith a largerconstantthantheerrorboundfor ÿqæ . Experimentationhas
shown thatthefastestadaptive predicatesarewritten by calculatinganapproximationhaving bound �`�Ðý ¤ �
asquickly aspossible,thenmoving onto thenext smallerorderof magnitude.Improvementsin theconstant
prefacingeacherrorboundwill make a differencein only a smallnumberof cases.Hence,I will consider
two modificationsto the techniquejust described.Thefirst modificationcomputeseacherrorboundfrom
the minimum possiblenumberof roundoff terms. This lazy approachis presentedherefor instructional
purposes,but is notgenerallythefastest.ThesecondmodificationI will consider, andtheoneI recommend
for use,is fasterbecauseit spendslesstimecollatingsmalldata.

Thefirst modificationis to computethesubexpressions

ä  
,

ä
æ , and

ä
Ý adaptively aswell. Themethod

is thesame:replaceeachbottom-level subexpressionof

ä  
(and

ä
æ and

ä
Ý ) with thesumof anapproximate

resultandanerrorterm,andexpand

ä  
into asumof termsof differingorder. An approximation� ¤ having

anerrorboundof magnitude�`�Ðý ¤ � maybefoundby approximatingeach

ä
termwith error �`�Ðý ¤ � . Because

the term

ä
´ hasmagnitudeat most �`�Ðý ´ � , it neednot beapproximatedwith any betterrelative error than�`�Ðý ¤ ¢ ´ � .

Figure6.18(d)showsthatthemethodis aslazyaspossible,in thesensethateachapproximation� ¤ uses
only theroundoff termsneededto obtainan �`�Ðý ¤ � errorbound.(Notethat this is trueat every level of the
tree.It is apparentin thefigurethatevery roundoff termproducedis fed into adifferentcalculationthanthe
largertermproducedwith it.) However, thelaziestapproachis notnecessarilythefastestapproach.Thecost
of thismethodisunnecessarilylargefor tworeasons.First,recallfromSection6.3.8thatFAST-EXPANSION-
SUM is mosteffectivewhentermsaresummedin abalancedmanner. Theadditionsin Figure6.18(d)areless
well balancedthanthosein Figure6.18(c).Second,andmoreimportantly, thereis a gooddealof overhead
for keepingtrack of many small piecesof the sum; the methodsacrificesmostof the advantagesof the
compressedform in whichexpansionsarerepresented.Figure6.18(d)doesnot fully revealhow convoluted
this extremeform of adaptivity canbecomefor larger expressions.In additionto having anunexpectedly
largeoverhead,thismethodcanbeexasperatingfor theprogrammer.

Thefinal methodfor incrementaladaptivity I shallpresent,which is usedto derive thegeometricpredi-
catesin Section6.5,fallssomewherebetweenthetwo describedabove. As in thefirst method,computethe
sequenceÿqæ�Ô\ÿ Ý ÔFÏFÏFÏ , anddefinealso ÿ   à Ù . We have seenthat theerrorboundof eachterm ÿ ¤ maybe
improvedfrom �`�Ðý ¤ � to �`�Ðý ¤ Q æ � by (exactly)adding

ä ¤ to it. However, becausethemagnitudeof

ä ¤ itself is�`�Ðý ¤ � , thesameeffectcanbeachieved(with aslightly worseconstantin theerrorbound)by computing

ä ¤
with floating-pointarithmeticandtoleratingtheroundoff error, ratherthancomputing

ä ¤ exactly. Hence,an
approximation� ¤ Q æ having an �`�Ðý ¤ Q æ � errorboundis computedby summingÿ ¤ andaninexpensive cor-
rectionalterm, which is merelythefloating-pointapproximationto

ä ¤ , asillustratedin Figure6.19. � ¤ Q æ is
nearlyasaccurateas ÿ ¤ Q æ but takesmuchlesswork to compute.If � ¤ Q æ is notsufficiently accurate,thenit
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Figure6.19:An adaptive method of intermediate complexity that is frequently more efficient than the other
two. Each � 0 achieves an õ�1Áöú0�; error bound by adding an inexpensive correctional term (labeled “ct”) toô 0ÁÀ�7 .
is thrown away, andtheexactvalueof

ä ¤ is computedandaddedto ÿ ¤ to form ÿ ¤ Q æ . This schemereuses
thework donein performingexactcalculations,but doesnot reusethecorrectionalterms.(In practice,no
speedcanbegainedby reusingthecorrectionalterms.)

Thefirst value( � æ ) computedby this methodis anapproximationto

ä  
; if � æ is sufficiently accurate,

it is unnecessaryto computethe é terms,or useany exactarithmetictechniques,at all. (Recallthat the é
termsaremoreexpensive to computethanthe Þ terms.)Thisfirst testis identicalto FortuneandVanWyk’s
floating-pointfilter.

This methoddoesmorework duringeachstageof thecomputationthanthefirst method,but typically
terminatesonestageearlier. It is slowerwhentheexactresultmustbecomputed,but is fasterin applications
thatrarelyneedanexactresult.In somecases,it maybedesirableto testcertainmembersof bothsequencesÿ and � for accuracy; thepredicatesdefinedin Section6.5doso.

All threemethodsof makingexpressionsadaptive aremechanicalandcanbeautomated.An expression
compilersimilartoFortuneandVanWyk’s[37], discussedin Section6.2,wouldbevaluable;it couldconvert
expressionsintocodethatevaluatestheseexpressionsadaptively, with automaticallycomputederrorbounds.

Thereadermaywonderif writing anexpressionin sum-of-productsform isn’t inefficient. In ordinary
floating-pointarithmeticit often is, but it seemsto make little differencewhenusingthe exactarithmetic
algorithmsof Section6.3. Indeed,the multiplication operationdescribedin Section6.3.8multiplies two
expansionsby expandingtheproductinto sum-of-productsform.

Theseideasarenot exclusively applicableto the multiple-componentapproachto arbitraryprecision
arithmetic.They will work with multiple-digit formatsaswell, thoughthedetailsdiffer.
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6.5 Implementation of GeometricPredicates

6.5.1 The Orientation and Incir cle Tests

Let 
 , Î , Ñ , and � befour pointsin theplane.Definea procedureORIENT2D ��
ÈÔ�Î�Ô\Ñ�� that returnsa positive
valueif thepoints 
 , Î , and Ñ arearrangedin counterclockwiseorder, a negative valueif thepointsarein
clockwiseorder, andzeroif thepointsarecollinear. A morecommon(but lesssymmetric)interpretation
is that ORIENT2D returnsa positive valueif Ñ lies to the left of the directedline 
sÎ ; for this purposethe
orientationtestis usedby many geometricalgorithms.

Definealsoa procedureINCIRCLE ��
�Ô�Î�Ô\ÑeÔ���� that returnsa positive valueif � lies insidethe oriented
circle 
sÎ<Ñ . By orientedcircle, I meanthe unique(and possiblydegenerate)circle through 
 , Î , and Ñ ,
with thesepointsoccurringin counterclockwiseorderaboutthecircle. (If thesepointsoccurin clockwise
order, INCIRCLE will reversethesignof its output,asif thecircle’s exterior wereits interior.) INCIRCLE

returnszeroif andonly if all four pointslie on a commoncircle. Both ORIENT2D andINCIRCLE have the
symmetrypropertythatinterchangingany two of theirparametersreversesthesignof their result.

Thesedefinitionsextendtrivially to arbitrarydimensions.For instance,ORIENT3D ��
�Ô�Î�Ô\ÑeÔ���� returnsa
positive valueif � lies below theorientedplanepassingthrough 
 , Î , and Ñ . By orientedplane, I meanthat
 , Î , and Ñ appearin counterclockwiseorderwhenviewedfrom above theplane.(Onecanapplya left-hand
rule: orient your left handwith fingerscurledto follow the circular sequence
sÎiÑ . If your thumbpoints
toward � , ORIENT3D returnsa positive value.) To generalizethe orientationtestto dimensionality� , let� æFÔ � Ý ÔFÏFÏFÏuÔ ��� betheunit vectors;ORIENT is definedsothatORIENT � � æeÔ � Ý ÔFÏFÏFÏ�Ô ��� Ô1Ù
�úà × .

In any dimension,the orientationandincircle testsmay be implementedasmatrix determinants.For
threedimensions:

ORIENT3D ��
ÈÔ�ÎuÔ\ÑeÔ��H� à
���������


Nû 
Nü�

	 ×
Îiû Îiü Î�	 ×Ñ û Ñ ü Ñ 	 ×
�
û �
ü ��	 ×

���������
(6.6)

à
�������
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ü Ñ
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�	�Ñ���	
Îiû�Ñ��-û Îiü Ñ
�-ü Î�	�Ñ
�
	Ñ û Ñ
� û Ñ ü Ñ
� ü Ñ 	 Ñ
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�������
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INSPHERE ��
�Ô�Î�Ô\ÑeÔ�� Ô � � à

�����������
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à
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���������
(6.9)

Theseformulaegeneralizetootherdimensionsin theobviousway. Expressions6.6and6.7canbeshown
to beequivalentby simplealgebraictransformations,ascanExpressions6.8and6.9with alittle moreeffort.
Theseequivalencesareunsurprisingbecauseoneexpectstheresultof any orientationor incircle testnot to
changeif all thepointsundergo an identicaltranslationin theplane.Expression6.7, for instance,follows
from Expression6.6by translatingeachpointby Ñ�� .
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Figure6.20: Shaded triangles can be translated to the origin without incurring roundoff error (Lemma 40).
In most triangulations, such triangles are the common case.

Whencomputingthesedeterminantsusingthe techniquesof Section6.3, the choicebetweenExpres-
sions6.6and6.7,or between6.8and6.9,is not straightforward. In principle,Expression6.6seemsprefer-
ablebecauseit can only producea 96-componentexpansion,whereasExpression6.7 could producean
expansionhaving 192components.Thesenumbersaresomewhatmisleading,however, becausewith zero-
elimination,expansionsrarelygrow longerthansix componentsin realapplications.Nevertheless,Expres-
sion6.7 takesroughly25%moretime to computein exactarithmetic,andExpression6.9 takesabout50%
moretime thanExpression6.8.Thedisparitylikely increasesin higherdimensions.

Nevertheless,themechanicsof errorestimationturn thetide in theotherdirection. Importantasa fast
exact test is, it is equallyimportantto avoid exact testswhenever possible.Expressions6.7 and6.9 tend
to have smallererrors(andcorrespondinglysmallererrorestimates)becausetheir errorsarea functionof
the relative coordinatesof the points,whereasthe errorsof Expressions6.6 and6.8 area function of the
absolutecoordinatesof thepoints.

In mostgeometricapplications,thepointsthat serve asparametersto geometricteststendto beclose
to eachother. Commonly, their absolutecoordinatesaremuchlarger thanthedistancesbetweenthem. By
translatingthepointssothey lie neartheorigin, workingprecisionis freedfor thesubsequentcalculations.
Hence,the errorsanderror boundsfor Expressions6.7 and6.9 aregenerallymuchsmallerthanfor Ex-
pressions6.6 and6.8. Furthermore,the translationcanoftenbedonewithout roundoff error. Figure6.20
demonstratesa toy problem:supposeORIENT2D is usedto find theorientationof eachtrianglein a trian-
gulation. Thanksto Lemma40, any shadedtrianglecanbetranslatedso thatoneof its verticeslies at the
origin without roundoff error;thewhite trianglesmayor maynotsuffer from roundoff duringsuchtransla-
tion. If thecompletetriangulationis muchlargerthantheportionillustrated,only a smallproportionof the
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triangles(thoseneara coordinateaxis)will suffer roundoff. Becauseexacttranslationis thecommoncase,
my adaptive geometricpredicatestestfor andexploit thiscase.

Onceadeterminanthasbeenchosenfor evaluation,thereareseveralmethodsto evaluateit. A numberof
methodsaresurveyedbyFortuneandVanWyk [36], andonly theirconclusionis repeatedhere.Thecheapest
methodof evaluatingthedeterminantof a Í°ËjÍ or smallermatrix seemsto beby dynamicprogramming
appliedto cofactorexpansion.Evaluatethe �

�
Ý
�

determinantsof all Ì Ë Ì minorsof thefirst two columns,
thenthe �

�
Ü
�

determinantsof all ÚaË Ú minorsof thefirst threecolumns,andsoon. All four of my predicates
usethismethod.

6.5.2 ORIENT2D

My implementationof ORIENT2D computesa sequenceof up to four results(labeledA throughD) as
illustratedin Figure6.21.TheexactresultD maybeaslongassixteencomponents,but zeroeliminationis
used,soa lengthof two to six componentsis morecommonin practice.

A, B, andC arelogicalplacesto testtheaccuracy of theresultbeforecontinuing.In mostapplications,
the majority of calls to ORIENT2D will endwith the floating-pointapproximationA, which is computed
without resortto any exactarithmetictechniques.Although the four-componentexpansionB, like A, has
anerrorof ������� , it is anappropriatevalueto testbecauseB is theexactresultif thefour subtractionsat the
bottomof theexpressiontreeareperformedwithout roundoff error (correspondingto theshadedtriangles
in Figure6.20). Becausethis is the commoncase,ORIENT2D explicitly testsfor it; executioncontinues
only if roundoff occurredduring the translationof coordinatesandB is smallerthanits errorbound. The
correctedestimateC hasanerrorboundof ��������� . If C is not sufficiently accurate,theexactdeterminantD
is computed.

Therearetwo unusualfeaturesof thistest,bothof whicharisebecauseonly thesignof thedeterminantis
needed.First, thecorrectionaltermaddedto B to form C is not addedexactly; instead,theAPPROXIMATE

procedureof Section6.3.7 is usedto find an approximationB  of B, and the correctionalterm is added
to B  with the possibility of roundoff error. The consequenterrorsmay be of magnitude����� B � , which
would normallyprecludeobtaininganerrorboundof ����� � � . However, thesignof thedeterminantis only
questionableif B is of magnitude������� , soan �����!��� errorboundfor C canbeestablished.

The secondinterestingfeatureis that, if C is not sufficiently accurate,no more approximationsare
computedbeforecomputingtheexactdeterminant.To understandwhy, considerthreecollinearpoints " , # ,
and $ ; thedeterminantdefinedby thesepointsis zero.If acoordinateof oneof thesepointsis perturbedby a
singleulp, thedeterminanttypically increasesto �����%� . Hence,onemightguessthatwhenadeterminantisno
largerthan �����!�&� , it isprobablyzero.Thisintuitionseemstoholdin practicefor all thepredicatesconsidered
herein,on bothrandomand“practical” point sets.Determinantsthatdon’t stopwith approximationC are
nearlyalwayszero.

Thederivationof errorboundsfor thesevaluesis tricky, soanexampleis givenhere.Theeasiestway
to applyforwarderroranalysisto anexpressionwhosevalueis calculatedin floating-pointarithmeticis to
expresstheexactvalueof eachsubexpressionin termsof thecomputedvalueplusanunknown error term
whosemagnitudeis bounded.For instance,theerror incurredby thecomputation')(*",+-# is no larger
than �/. '0. . Furthermore,the error is smallerthan �/. "213#4. . Eachof theseboundsis usefulunderdifferent
circumstances.If 5 representsthetruevalue "617# , anabbreviatedwayof expressingthesenotionsis to write
598-',:
�/. '0. and 598-',:)�;. 5&. . Henceforth,thisnotationwill beusedasshorthandfor therelation 598-',1)<
for some< thatsatisfies.=<>.@?A�;. 'B. and .=<C.
?A�;. 5&. .
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Figure6.21: Adaptive calculations used by the 2D orientation test. Dashed boxes represent nodes in the
original expression tree.

Let usconsidertheerrorboundfor A. For eachsubexpressionin theexpressiontreeof theorientation
test,denoteits true(exact)value 5ED andits approximatevalue '�D asfollows.

5%FG83"
HJI
$�H 'KFG83"�H�L�$�H
5 � 8M#%NOI
$�N ' � 8M#%NGL�$�N5QP�83"
NOI
$�N 'RP�83"�NSL�$�N
5ETU8M# H I
$ H '�TU8M# H LV$ H
5QW�8-5%FX5 � 'RW�8-'YF>Z�' �5Q[�8-5QP�5 T 'R[�8-'�P9Z�' T
5Q\]835EW^I�5Q[ A 83'�W6L�'R[

Fromthesedefinitions,it is clearthat 5%F_8`'KFB:A�;. 'KF�. ; similar boundshold for 5 � , 5EP , and 5 T . Observe
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Approximation Errorbound
A ��ab�>1Mc&db� � �eZM��. ' W .&+M. ' [ .=�
B  ��fb�>1Mc&fb���;�eZM��. 'RW�.&+M. '�[�.=�
C ��ab�01Vgb� � �YZh.B  i.j+M��kb� � 1ld/m�� P �eZM��. 'RW�.&+M. '�[�.=�

Table6.1: Error bounds for the expansions calculated by ORIENT2D. B n is a o -bit approximation of the
expansion B, computed by the APPROXIMATE procedure. Note that each coefficient is expressible in o bits.

alsothat '�W�8-'KFKZ�' � 8-'KFQ' � :V�;. 'RWp. . It follows that

5QWS835!F�5 � 8 'YFX' � :M��fb�>1V� � �j. 'YF�' � .
8 '�W9:V�/. '�W�.j:M��fb�01V� � ����. 'RW
.j:V�/. '�Wp.=�
8 ' W :M��ab�01Vab� � 1V� P �j. ' W .rq

Similarly, 5E[�8A'R[6:M��ab�C1lab���61V� P �j. 'R[�. .
It may seemodd to be keepingtrack of termssmallerthan �����%� , but the effort to find the smallest

machine-representable coefficient for eacherrorboundis justifiedif it ever preventsa determinantcompu-
tationfrom becomingmoreexpensive thannecessary. An errorboundfor A cannow bederived.

5E\s8-5EW^I
5E[�8 'RWGI�'�[6:M��ab�01Vab� � 1�� P ����. '�W�.�1h. '�[p.=�
8 A :V�;.A .&:h��ab�C1�ab� � 1V� P ����. 'RW�.&1M. '�[�.=�

Onecanminimizetheeffect of theterm �;.A . by takingadvantageof thefact thatwe areonly interestedin
thesignof 5 \ . Onecanconcludewith certaintythatA hasthecorrectsignif

�QcOI)�%�j.A .@tu��ab�C1�ab� � 1V� P ����. 'RW�.j1h. '�[�.=�%v
which is trueif

.A .@wu��ab�C1ldb� � 1Vgb� P ����. 'RW
.j1h. 'R[�.=�%q
This boundis not directly applicable,becauseits computationwill incur roundoff error. To accountfor

this, multiply thecoefficient by �QcO1-�%� � (a factorof �QcO1-�%� for theadditionof . '�W�. and . 'R[p. , andanother
suchfactorfor themultiplication).Hence,wearesecurethatthesignof A is correctif

.A .�wx��ab�C13c&fb� � 1Vf/m�� P �KZM��. '�W�.j+h. 'R[�.=�%q
This boundis not directly applicableeither, becausethecoefficient is not expressiblein y bits. Rounding
up to thenext y -bit number, wehave thecoefficient ��ab�K1Ac&db�!�;� , whichshouldbeexactlycomputedonceat
programinitializationandreusedduringeachcall to ORIENT2D.

Errorboundsfor A, B  , andC aregivenin Table6.1. Theboundfor B  takesadvantageof Theorem58,
which shows that B  approximatesB with relative error lessthan fb� . (Recall from Section6.3.7that the
largestcomponentof B mighthave only onebit of precision.)

Theseboundshave the pleasingpropertythat they are zero in the commoncasethat all threeinput
pointslie on a horizontalor vertical line. Hence,althoughORIENT2D usuallyresortsto exactarithmetic
whengivencollinearinputpoints,it only performstheapproximatetest(A) in thetwo casesthatoccurmost
commonlyin practice.
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DoubleprecisionORIENT2D timingsin microseconds
Points Uniform Geometric Nearly

Method Random Random Collinear
Approximate(6.7) 0.15 0.15 0.16
Exact(6.6) 6.56 6.89 6.31
Exact(6.7) 8.35 8.48 8.13
Exact(6.6),MPFUN 92.85 94.03 84.97
Adaptive A (6.7),approximate 0.28 0.27 0.22
Adaptive B (6.7) 1.89
Adaptive C (6.7) 2.14
Adaptive D (6.7),exact 8.35
LN adaptive (6.7),approximate 0.32 n/a
LN adaptive (6.7),exact n/a 4.43

Table6.2: Timings for ORIENT2D on a DEC 3000/700 with a 225 MHz Alpha processor. All determinants
use the 2D version of either Expression 6.6 or the more stable Expression 6.7 as indicated. The first
two columns indicate input points generated from a uniform random distribution and a geometric random
distribution. The third column considers two points chosen from one of the random distributions, and a third
point chosen to be approximately collinear to the first two. Timings for the adaptive tests are categorized
according to which result was the last generated. Each timing is an average of 60 or more randomly
generated inputs. For each such input, time was measured by a Unix system call before and after 10,000
iterations of the predicate. Individual timings vary by approximately 10%. Timings of Bailey’s MPFUN
package and Fortune and Van Wyk’s LN package are included for comparison.

Compilereffectsaffect the implementationof ORIENT2D. By separatingthecalculationof A andthe
remainingcalculationsinto two procedures,with theformercallingthelatterif necessary, I reducedthetime
to computeA by 25%,presumablybecauseof improvementsin the compiler’s ability to performregister
allocation.

Table6.2 lists timings for ORIENT2D, given randominputs. Observe that the adaptive test,whenit
stopsat theapproximateresultA, takesnearlytwice aslong astheapproximatetestbecauseof theneedto
computeanerrorbound.Thetableincludesa comparisonwith Bailey’s MPFUN [4], chosenbecauseit is
thefastestportableandfreely availablearbitraryprecisionpackageI know of. ORIENT2D codedwith my
(nonadaptive) algorithmsis roughlythirteentimesfasterthanORIENT2D codedwith MPFUN.

Also includedis acomparisonwith anorientationpredicatefor 53-bit integerinputs,createdby Fortune
andVanWyk’s LN. TheLN-generatedorientationpredicateis quite fastbecauseit takesadvantageof the
fact thatit is restrictedto boundedinteger inputs.My exacttestscostlessthantwice asmuchasLN’s; this
seemslike a reasonablepriceto payfor theability to handlearbitraryexponentsin theinput.

Thesetimingsarenotthewholestory;LN’sstaticerrorestimateis typicallymuchlargerthantheruntime
errorestimateusedfor adaptive stageA, andLN usesonly two stagesof adaptivity, so the LN-generated
predicatesareslower in someapplications,asSection6.5.4will demonstrate.It is significantthatfor 53-bit
integerinputs,themultiple-stagepredicateswill rarelypassstageB becausetheinitial translationis usually
donewithout roundoff error;hence,theLN-generatedORIENT2D usuallytakesmorethantwice aslong to
produceanexactresult. It shouldbeemphasized,however, that thesearenot inherentdifferencesbetween
LN’s multiple-digit integer approachand my multiple-componentfloating-pointapproach;LN could, in
principle,employ thesameruntimeerrorestimateandasimilarmultiple-stageadaptivity scheme.
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Approximation Errorbound
A �iz4�C1l{bdb� � �eZM��|C}^+V|>~Y+�|C�!�
B  ��ab�C1lfbgb�����eZM��| } +V|>~Y+�| � �
C ��ab�01Vgb� � �YZ�.B  �.�+3��fbdb� � 1Vfbgbgb� P �eZM��| } +V|>~Y+�| � �

| } 8 . 'YF/.jZh��. '�[�.&+h. '��b.=�
8 . "��6L�����.&Zh��.���#!HULV�pH��YZ3��$�NSLV�pN/�j.&+�.���#!NSL��pNb�YZ3��$�HUL��pH��j.=�

|C~�8 . #��6L�����.�ZM��.���$�HUL��pH��YZM��"
N^LV�pN/�j.&+�.���$%NOL���N/�YZM��"
H�L��pH��j.=�
| � 8 . $���L��
��.jZM��.���"�HULV�pH��YZM��#%N^LV�pN/�j.&+�.���"�NSL��pNb�YZM��#%H�L��pH��j.=�

Table6.3: Error bounds for the expansions calculated by ORIENT3D.

DoubleprecisionORIENT3D timingsin microseconds
Points Uniform Geometric Nearly

Method Random Random Coplanar
Approximate(6.7) 0.25 0.25 0.25
Exact(6.6) 33.30 38.54 32.90
Exact(6.7) 42.69 48.21 42.41
Exact(6.6),MPFUN 260.51 262.08 246.64
Adaptive A (6.7),approximate 0.61 0.60 0.62
Adaptive B (6.7) 12.98
Adaptive C (6.7) 15.59
Adaptive D (6.7),exact 27.29
LN adaptive (6.7),approximate 0.85 n/a
LN adaptive (6.7),exact n/a 18.11

Table6.4: Timings for ORIENT3D on a DEC 3000/700. All determinants are Expression 6.6 or the more
stable Expression 6.7 as indicated. Each timing is an average of 120 or more randomly generated inputs.
For each such input, time was measured by a Unix system call before and after 10,000 iterations of the
predicate. Individual timings vary by approximately 10%.

6.5.3 ORIENT3D, INCIRCLE, and INSPHERE

Figure6.22illustratesthe implementationof ORIENT3D, which is similar to theORIENT2D implementa-
tion. A is thestandardfloating-pointresult.B is exact if thesubtractionsat thebottomof thetreeincur no
roundoff. C representsadropin theerrorboundfrom �����%� to ����� � � . D is theexactdeterminant.

Errorboundsfor thelargestcomponentof eachof theseexpansionsaregivenin Table6.3,partlyin terms
of thevariables'KF , 'R[ , and 'R� in Figure6.22.Theboundsarezeroif all four inputpointssharethesame' -,� -, or � -coordinate,soonly theapproximatetestis neededin themostcommoninstancesof coplanarity.

Table6.4 lists timings for ORIENT3D, given randominputs. The error boundfor A is expensive to
compute,andincreasestheamountof time requiredto performtheapproximatetestin theadaptive caseby
a factorof two andahalf. Thegapbetweenmy exactalgorithmandMPFUNis smallerthanin the2D case,
but is still a factorof nearlyeight.
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Figure6.22: Adaptive calculations used by the 3D orientation test. Bold numbers indicate the length of an
expansion. Only part of the expression tree is shown; two of the three cofactors are omitted, but their results
appear as dashed components and expansions.
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Approximation Errorbound
A �Qcj�p�01lkbdb� � �eZM��|C}^+V|>~Y+�|C�!�
B  ��m��C1�m�gb�����eZM��| } +V|>~Y+�| � �
C ��ab�01Vgb� � �YZ�.B  �.�+3��mbm�� � 1V{pz4db� P �eZM��| } +V|>~Y+�| � �

| } 8 �X��"
HUL��pH�� � +M��"
N^L���N4� � �YZM��.���#%HUL���H��YZM��$�N^L���N/�j.&+h.���#%NSL��pNb�YZM��$�H�L��pH��j.=�
|C~�8 �X��#%HUL��pH�� � +M��#%NSL��pNb� � �KZM��.���$�HUL��pH��YZM��"
N^LV�pN/�j.&+�.���$%NOL���N/�YZM��"
H�L��pH��j.=�
| � 8 �X��$�HUL��pH�� � +M��$�NOL��pN4� � �YZ3��.���"�HJL��pH
�eZM��#%N^LV�pN4�j.�+M.���"�NOL��pN4�YZM��#%H�L��pH��j.=�

Table6.5: Error bounds for the expansions calculated by INCIRCLE. Squares are approximate.

DoubleprecisionINCIRCLE timingsin microseconds
Points Uniform Geometric Nearly

Method Random Random Cocircular
Approximate(6.9) 0.31 0.28 0.30
Exact(6.8) 71.66 83.01 75.34
Exact(6.9) 91.71 118.30 104.44
Exact(6.8),MPFUN 350.77 343.61 348.55
Adaptive A (6.9),approximate 0.64 0.59 0.64
Adaptive B (6.9) 44.56
Adaptive C (6.9) 48.80
Adaptive D (6.9),exact 78.06
LN adaptive (6.9),approximate 1.33 n/a
LN adaptive (6.9),exact n/a 32.44

Table6.6: Timings for INCIRCLE on a DEC 3000/700. All determinants are the 2D version of either Expres-
sion 6.8 or the more stable Expression 6.9 as indicated. Each timing is an average of 100 or more randomly
generated inputs, except adaptive stage D. (It is difficult to generate cases that reach stage D.) For each
such input, time was measured by a Unix system call before and after 1,000 iterations of the predicate.
Individual timings vary by approximately 10%.

Oddly, thetablerevealsthatD is calculatedmorequickly thantheexactresultis calculatedby thenon-
adaptive versionof ORIENT3D. Theexplanationis probablythatD is only computedwhenthedeterminant
is zeroor verycloseto zero,hencethelengthsof theintermediateexpansionsaresmallerthanusual,andthe
computationtime is less.Furthermore,whensomeof thepoint coordinatesaretranslatedwithout roundoff
error, theadaptive predicateignoresbranchesof theexpressiontreethatevaluateto zero.

INCIRCLE is implementedsimilarly to ORIENT3D, asthedeterminantsaresimilar. Thecorresponding
errorboundsappearin Table6.5,andtimingsappearin Table6.6.

Timingsfor INSPHERE appearin Table6.7.This implementationdiffersfrom theothertestsin that,due
to programmerlaziness,D is not computedincrementallyfrom B; rather, if C is not accurateenough,D is
computedfrom scratch.Fortunately, C is usuallyaccurateenough.

TheLN exacttestshave anadvantageof a factorof roughly2.5for INCIRCLE and4 for INSPHERE, so
thecostof handlingfloating-pointoperandsis greaterwith the largerexpressions.As with theorientation
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DoubleprecisionINSPHERE timingsin microseconds
Points Uniform Geometric Nearly

Method Random Random Cospherical
Approximate(6.9) 0.93 0.95 0.93
Exact(6.8) 324.22 378.94 347.16
Exact(6.9) 374.59 480.28 414.13
Exact(6.8),MPFUN 1,017.56 1,019.89 1,059.87
Adaptive A (6.9),approximate 2.13 2.14 2.14
Adaptive B (6.9) 166.21
Adaptive C (6.9) 171.74
Adaptive D (6.8),exact 463.96
LN adaptive (6.9),approximate 2.35 n/a
LN adaptive (6.9),exact n/a 116.74

Table6.7: Timings for INSPHERE on a DEC 3000/700. All determinants are Expression 6.8 or the more
stable Expression 6.9 as indicated. Each timing is an average of 25 or more randomly generated inputs,
except adaptive stage D. For each such input, time was measured by a Unix system call before and after
1,000 iterations of the predicate. Individual timings vary by approximately 10%.

tests,thiscostis mediatedby bettererrorboundsandfour-stageadaptivity.

Thetimingsfor theexactversionsof all four predicatesshow somesensitivity to thedistribution of the
operands;they take5%to 30%longerto executewith geometricallydistributedoperands(whoseexponents
varywidely) thanwith uniformly distributedoperands.Thisdifferenceoccursbecausetheintermediateand
final expansionsare larger whenthe operandshave broadlydistributedexponents.The exact orientation
predicatesare cheapestwhen their inputs are collinear/coplanar, becauseof the smallerexpansionsthat
result,but thiseffectdoesnotoccurfor theexactincirclepredicates.

6.5.4 Performancein Two Triangulation Programs

To evaluatethe effectivenessof the adaptive testsin applications,I integratedtheminto Triangleand
Pyramid,andrecordedthe speedsof 2D divide-and-conquer Delaunaytriangulationand3D incremental
Delaunaytetrahedralizationundervariousconditions. For both 2D and 3D, threetypesof inputs were
tested:uniform randompoints,pointslying (approximately)on the boundaryof a circle or sphere,anda
squareor cubicgrid of latticepoints,tilted soasnot to bealignedwith thecoordinateaxes.Thelatter two
werechosenfor their nastiness.Thelatticeshave beentilted usingapproximatearithmetic,sothey arenot
perfectlycubical,andtheexponentsof their coordinatesvary enoughthatLN cannotbeused.(I have also
triedperfectlatticeswith 53-bit integercoordinates,but ORIENT3D andINSPHERE never passstageB; the
perturbedlatticesarepreferredherebecausethey occasionallyforcethepredicatesinto stageC or D.)

Theresultsfor 2D, which appearin Table6.8, indicatethat the four-stagepredicatesaddabout8% to
thetotal runningtimefor randomlydistributedinputpoints,mainlybecauseof theerrorboundtests.For the
moredifficult point sets,thepenaltymaybeasgreatas30%. Of course,this penaltyappliespreciselyfor
thepointsetsthataremostlikely to causedifficultieswhenexactarithmeticis notavailable.

The resultsfor 3D, outlinedin Table6.9, arelesspleasing.The four-stagepredicatesaddabout35%
to thetotal runningtime for randomlydistributedinput points;for pointsdistributedapproximatelyon the
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2D divide-and-conquerDelaunaytriangulation
Uniform Perimeter Tilted
Random of Circle Grid

Inputsites 1,000,000 1,000,000 1,000,000
ORIENT2D calls
Adaptive A, approximate 9,497,314 6,291,742 9,318,610
Adaptive B 121,081
Adaptive C 118
Adaptive D, exact 3
Averagetime, � s 0.32 0.38 0.33

LN approximate 9,497,314 2,112,284 n/a
LN exact 4,179,458 n/a
LN averagetime, � s 0.35 3.16 n/a
INCIRCLE calls
Adaptive A, approximate 7,596,885 3,970,796 7,201,317
Adaptive B 50,551 176,470
Adaptive C 120 47
Adaptive D, exact 4
Averagetime, � s 0.65 1.11 1.67

LN approximate 6,077,062 0 n/a
LN exact 1,519,823 4,021,467 n/a
LN averagetime, � s 7.36 32.78 n/a
Programrunningtime,seconds
Approximateversion 57.3 59.9 48.3
Robustversion 61.7 64.7 62.2
LN robustversion 116.0 214.6 n/a

Table6.8: Statistics for 2D divide-and-conquer Delaunay triangulation of several point sets. Timings are
accurate to within 10%.

surfaceof a sphere,the penaltyis a factorof eleven. Ominously, however, the penaltyfor the tilted grid
is uncertain,becausethe tetrahedralizationprogramusingapproximatearithmeticfailed to terminate. A
debuggerrevealedthatthepoint locationroutinewasstuckin aninfinite loopbecauseageometricinconsis-
tency hadbeenintroducedinto themeshdueto roundoff error. Robustarithmeticis not alwaysslower after
all.

In theseprograms(andlikely in any program),threeof thefour-stagepredicates(INSPHERE beingthe
exception)arefasterthantheir LN equivalents.This is asurprise,consideringthatthefour-stagepredicates
accept53-bit floating-pointinputswhereastheLN-generatedpredicatesarerestrictedto 53-bit integer in-
puts.However, theintegerpredicateswould probablyoutperformthefloating-pointpredicatesif they were
to adoptthesameruntimeerrorestimateandasimilar four-stageadaptivity scheme.
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3D incrementalDelaunaytetrahedralization
Uniform Surface Tilted
Random of Sphere Grid

Inputsites 10,000 10,000 10,000
ORIENT3D calls
Adaptive A, approximate 2,735,668 1,935,978 5,542,567
Adaptive B 602,344
Adaptive C 1,267,423
Adaptive D, exact 28,185
Averagetime, � s 0.72 0.72 4.12

LN approximate 2,735,668 1,935,920 n/a
LN exact 58 n/a
LN averagetime, � s 0.99 1.00 n/a
INSPHERE calls
Adaptive A, approximate 439,090 122,273 3,080,312
Adaptive B 180,383 267,162
Adaptive C 1,667 548,063
Adaptive D, exact
Averagetime, � s 2.23 96.45 48.12

LN approximate 438,194 104,616 n/a
LN exact 896 199,707 n/a
LN averagetime, � s 2.50 70.82 n/a
Programrunningtime,seconds
Approximateversion 4.3 3.0 �
Robustversion 5.8 34.1 108.5
LN robustversion 6.5 30.5 n/a

Table 6.9: Statistics for 3D incremental Delaunay tetrahedralization of several point sets. Timings are
accurate to within 10%. The approximate code failed to terminate on the tilted grid input.

6.6 Caveats

Unfortunately, thearbitraryprecisionarithmeticroutinesdescribedhereinarenotuniversallyportable;both
hardwareandcompilerscanpreventthemfrom functioningcorrectly.

Compilerscaninterfereby makinginvalid optimizationsbasedon misconceptionsaboutfloating-point
arithmetic.For instance,aclever but incorrectcompilermightcauseexpansionarithmeticalgorithmsto fail
by deriving the“f act” that # virtual, computedby Line 2 of FAST-TWO-SUM, is equalto # , andoptimizing
the subtractionaway. This optimizationwould bevalid if computersstoredarbitraryreal numbers,but is
incorrectfor floating-pointnumbers.Unfortunately, notall compilerdevelopersareawareof theimportance
of maintainingcorrectfloating-pointlanguagesemantics,but asawhole,they seemto beimproving. Gold-
berg [44, � 3.2.3]presentsseveral relatedexamplesof how carefullydesignednumericalalgorithmscanbe
utterly ruinedby incorrectoptimizations.

Evenfloating-pointunits thatusebinaryarithmeticwith exact rounding,including thosethatconform
to theIEEE754standard,canhavesubtlepropertiesthatunderminetheassumptionsof thealgorithms.The
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mostcommonsuchdifficulty is the presenceof extendedprecisioninternalfloating-pointregisters,such
as thoseon the Intel 80486and Pentiumprocessors.While suchregistersusually improve the stability
of floating-pointcalculations,they causethemethodsdescribedhereinfor determiningthe roundoff of an
operationto fail. Thereareseveralpossibleworkaroundsfor this problem.In C, it is possibleto designate
a variableasvolatile, implying that it mustbestoredto memory. This ensuresthat thevariableis rounded
to a y -bit significandbeforeit is usedin anotheroperation. Forcing intermediatevaluesto be storedto
memoryandreloadedcanslow down thealgorithmssignificantly, andthereis a worseconsequence.Even
a volatile variablecouldbedoublyrounded, beingroundedonceto theinternalextendedprecisionformat,
then roundedagainto single or doubleprecisionwhen it is storedto memory. The result after double
roundingis not alwaysthesameasit would be if it hadbeencorrectlyroundedto thefinal precision,and
Priest[77, page103] describesa casewhereinthe roundoff error producedby doubleroundingmay not
beexpressiblein y bits. This might bealleviatedby a morecomplex (andslower) versionof FAST-TWO-
SUM. A bettersolutionis to configureone’s processorto roundinternallyto doubleprecision.While most
processorswith internalextendedprecisionregisterscanbe thusconfigured,andmostcompilersprovide
supportfor manipulatingprocessorcontrolstate,suchsupportvariesbetweencompilersandis notportable.
Nevertheless,thespeedadvantageof multiple-componentmethodsmakesit well worth thetroubleto learn
theright incantationto correctlyconfigureyourprocessor.

The algorithmsdo work correctlywithout specialtreatmenton mostcurrentUnix workstations.Nev-
ertheless,usersshouldbecarefulwhentrying theroutines,or moving to a new platform,to ensurethatthe
underlyingassumptionsof themethodarenotviolated.

6.7 Conclusions

Thealgorithmspresentedhereinaresimpleandfast;lookingatFigure6.9,it is difficult to imaginehow ex-
pansionscouldbesummedwith feweroperationswithoutspecialhardwareassistance.Two featuresof these
techniquesaccountfor theimprovementin speedrelative to othertechniques,especiallyfor numberswhose
precisionis only a few componentsin length.Thefirst is therelaxationof theusualconditionthatnumbers
be normalizedto fixed digit positions. Instead,oneenforcesthe muchweaker conditionthat expansions
benonoverlapping(or stronglynonoverlapping).Expansionscanbesummedandtheresultingcomponents
madenonoverlappingatacostof six floating-pointoperationsandonecomparisonpercomponent.It seems
unlikely thatnormalizationto fixeddigit positionscanbedonesoquickly in a portablewayoncurrentpro-
cessors.Thesecondfeatureto which I attribute the improvedspeedis the fact thatmostpackagesrequire
expensive conversionsbetweenordinaryfloating-pointnumbersandthepackages’internalformats. With
thetechniquesPriestandI describe,noconversionsarenecessary.

The readermay be misledandattribute the whole differencebetweenmy algorithmsandMPFUN to
thefactthatI storedoubleprecisioncomponents,while MPFUNstoressingleprecisiondigits,andimagine
thedifferencewould go away if MPFUN werereimplementedin doubleprecision.Sucha belief betraysa
misunderstandingof how MPFUNworks.MPFUNusesdoubleprecisionarithmeticinternally, andobtains
exact resultsby usingdigits narrow enoughthat they canbe multiplied exactly. Hence,MPFUN’s half-
precisiondigits arean integral part of its approach:to calculateexactly by avoiding roundoff error. The
surpriseof multiple-componentmethodsis that reasonablespeedcanbe attainedby allowing roundoff to
happen,thenaccountingfor it afterthefact.

As well asbeingfast,multiple-componentalgorithmsarealsoreasonablyportable,makingnoassump-
tionsotherthanthata machinehasbinaryarithmeticwith exactrounding(andround-to-even tiebreakingif
FAST-EXPANSION-SUM is to beusedinsteadof L INEAR-EXPANSION-SUM). No representation-dependent
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tricks likebit-maskingto extractexponentfieldsareused.Therearestill machinesthatcannotexecutethese
algorithmscorrectly, but their numbersseemto bedwindlingastheIEEEstandardbecomesentrenched.

Perhapsthe greatestlimitation of the multiple-componentapproachis that while it easilyextendsthe
precisionof floating-pointnumbers,thereis no simpleway to extendthe exponentrangewithout losing
muchof thespeed.Theobviousapproach,associatingaseparateexponentfieldwith eachcomponent,is sure
to betoo slow. A morepromisingapproachis to expresseachmultiprecisionnumberasa multiexpansion
consistingof digits of very largeradix,whereeachdigit is anexpansioncoupledwith anexponent.In this
scheme,thetrueexponentof acomponentis thesumof thecomponent’s own exponentandtheexponentof
theexpansionthatcontainsit. Thefastalgorithmsdescribedin this chaptercanbeusedto addor multiply
individualdigits; digitsarenormalizedby standardmethods(suchasthoseusedby MPFUN).IEEEdouble
precisionvalueshave anexponentrangeof I�cj�pfbf to cj�pfba , soonecouldmultiply digitsof radix f F��X�X� with
a simpleexpansionmultiplicationalgorithm,or digits of radix f � �X�X� with a slightly morecomplicatedone
thatsplitseachdigit in half beforemultiplying.

TheC codeI havemadepublicly availablemightform thebeginningof anextensive libraryof arithmetic
routinessimilar to MPFUN, but a greatdealof work remainsto be done. In additionto the problemof
expandingtheexponentrange,thereis oneproblemthat is particularto themultiple-componentapproach:
it is not possibleto useFFT-basedmultiplication algorithmswithout first renormalizingeachexpansion
to a multiple-digit form. This normalizationis not difficult to do, but it coststime andputsthe multiple-
componentmethodat a disadvantagerelative to methodsthat keepnumbersin digit form asa matterof
course.

As Priestpointsout, multiple-componentalgorithmscanbe usedto implementextended(but finite)
precisionarithmeticaswell asexact arithmetic;simply compressandthentruncateeachresult to a fixed
numberof components.Perhapsthegreatestpotentialof thesealgorithmslies not with arbitraryprecision
libraries,but in providingafastandsimplewayto extendslightly theprecisionof critical variablesin numer-
ical algorithms.Hence,it would not bedifficult to provide a routinethatquickly computestheintersection
pointof two segmentswith doubleprecisionendpoints,correctlyroundedto adoubleprecisionresult.If an
algorithmcanbemadesignificantlymorestableby usingdoubleor quadrupleprecisionfor a few key val-
ues,it maysave a researcherfrom spendingagreatdealof timedevising andanalyzingastableralgorithm;
Priest[77, � 5.1] offersseveralexamples.Speedconsiderationsmaymake it untenableto accomplishthisby
callingastandardextendedprecisionlibrary. ThetechniquesPriestandI havedevelopedaresimpleenough
to becodeddirectly in numericalalgorithms,avoiding functioncall overheadandconversioncosts.

A usefultool in codingsuchalgorithmswould be an expressioncompilersimilar to FortuneandVan
Wyk’s LN [37, 36], which convertsan expressioninto exact arithmeticcode,completewith error bound
derivationandfloating-pointfilters. Sucha tool couldalsoautomatetheprocessof breakinganexpression
into adaptive stagesasdescribedin Section6.4.

To seehow adaptivity canbeusedfor morethanjustdeterminingthesignof anexpression,supposeone
wishesto find, with relative errorno greaterthan1%, thecenter� of a circle thatpassesthroughthethree
points " , # , and $ . Onemayusethefollowing expressions.

� H 83$ H I

�����
"
NOI
$�N ��"�H�I�$�H
� � 1M��"
N�I�$�Nb� �
# N I
$ N ��# H I�$ H � � 1M��# N I�$ N � �

�����
f
�����
"
HJI
$�H "
NOI
$�N
#%HJI
$�H #%N�I
$�N

�����
v�� N 8M$ N 1

�����
"�HJI
$�H ��"�HJI
$�H�� � 1M��"
N�I
$�N4� �
# H I
$ H ��# H I
$ H � � 1M��# N I
$ N � �

�����
f
�����
"�HJI
$�H "
N�I)$%N
#%HJI
$�H #%N�I)$%N

�����
q

Thedenominatorof thesefractionsis preciselytheexpressioncomputedby ORIENT2D. Thecomputation
of � is unstableif " , # , and $ arenearlycollinear;roundoff errorin thedenominatorcandramaticallychange
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the result,or causea division by zero. Disastercanbe avoided,andthe desirederrorboundenforced,by
computingthedenominatorwith a variantof ORIENT2D thatacceptsanapproximationonly if its relative
erroris roughlyhalf of onepercent.A similaradaptive routinecouldaccuratelycomputethenumerators.

It mightbefruitful to explorewhetherthemethodsdescribedby Clarkson[23] andAvnaimetal. [2] can
beextendedby fastmultiprecisionmethodsto handlearbitrarydoubleprecisionfloating-pointinputs.One
couldcertainlyrelax their constraintson thebit complexity of the inputs; for instance,themethodof Av-
naimet al. couldbemadeto performthe INSPHERE teston d/m -bit inputsusingexpansionsof lengththree.
Unfortunately, it is not obvioushow to adapttheseinteger-basedtechniquesto inputswith wildly differing
exponents.It is alsonot clearwhethersuchhybrid algorithmswould be fasterthanstraightforward adap-
tivity. Nevertheless,Clarkson’s approachlookspromisingfor larger determinants.Althoughmy methods
work well for smalldeterminants,they areunlikely to work well for sizesmuchlarger than {2�s{ . Evenif
oneusesGaussianeliminationratherthancofactorexpansion(animportantadjustmentfor matriceslarger
than {��]{ ), theadaptivity techniquedoesnot scalewell with determinants,becauseof thelargenumberof
termsin theexpandedpolynomial.Clarkson’s techniquemaybetheonly economicalapproachfor matrices
largerthan cj����cj� .

Whetheror not theseissuesare resolved in the nearfuture, researcherscanmake usetodayof tests
for orientationandincircle in two andthreedimensionsthatarecorrect,fastin mostcases,andapplicable
to singleor doubleprecisionfloating-pointinputs. I invite working computationalgeometersto try my
codein their implementations,andhopethatit will save themfrom worryingaboutrobustnesssothey may
concentrateongeometry.
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Appendix A

Linear-Time ExpansionAddition without
Round-to-EvenTiebreaking

Theorem 59 Let ��8����D�� F �jD and �u8��s�D�� F �/D be nonoverlappingexpansionsof   and ¡¢y -bit com-
ponents,respectively, where yMw£a . Supposethat the componentsof both � and � are sortedin order of
increasingmagnitude, exceptthatanyof the �&D or �/D maybezero. Thenthefollowingalgorithmwill produce
a nonoverlappingexpansion¤ such that ¤�8 �¥�^¦R�D�� F ¤ D 8£�U1M� , where the componentsof ¤ are also in
orderof increasingmagnitude, exceptthatanyof the ¤ D maybezero.

L INEAR-EXPANSION-SUM �i�bv!�Y�
1 Merge � and � into asinglesequence§ , in orderof

nondecreasingmagnitude(possiblywith interspersedzeroes)
2 �i¨ � v�© � �B( FAST-TWO-SUM �ª§ � vQ§
F��
3 for «0(¬a to  ­1)¡
4 ��® D v!¤ D�¯ � �B( FAST-TWO-SUM �ª§ D v�© D�¯ F��
5 �i¨ D v�© D �B( TWO-SUM �i¨ Dª¯ F&v�® D �
6 ¤ �G¦R� ¯ FG(�© �^¦R�
7 ¤ �G¦R� (°¨ �G¦R�
8 return ¤

¨ D 1�© D is anapproximatesumof thefirst « componentsof § ; seeFigureA.1.

Proof: At the endof eachiterationof the for loop, the invariant ¨JDK1h©jDK1 � Dª¯ �± � F ¤ ± 8 � D± � F § ± holds.
Certainlythis invariantholdsfor «083f afterLine 2 is executed.FromLines4 and5, wehave that ¨ D 1¥© D 1
¤ D�¯ � 8²¨ D�¯ F01l© Dª¯ FB1�§ D ; theinvariantfollows by induction. (Theuseof FAST-TWO-SUM in Line 4 will
be justifiedshortly.) This assuresus that afterLines 6 and7 areexecuted,�¥�G¦R�± � F ¤ ± 8³���G¦R�± � F § ± , so the
algorithmproducesacorrectsum.

Theproofthat ¤ is nonoverlappingandincreasingreliesonthefactthatthecomponentsof § aresummed
in orderfrom smallestto largest,sotherunningtotal ¨ D 1¥© D nevergrowsmuchlargerthanthenext compo-
nentto besummed.Specifically, I proveby inductionthattheexponentof ¨�D is atmostonegreaterthanthe
exponentof § D ¦ F , andthecomponents¤�F&vjqjqjq�v!¤ D�¯ F arenonoverlappingandin orderof increasingmagni-
tude(exceptingzeros).This statementholdsfor «B8�f because.=¨ � .
8­. §�FC+�§ � .@?3f´. § � .µ?-f´. §bP
. . To prove
thestatementin thegeneralcase,assume(for theinductive hypothesis)thattheexponentof ¨ Dª¯ F is atmost
onegreaterthantheexponentof § D , andthecomponents¤eF&vjqjqjq�v!¤ Dª¯ � arenonoverlappingandincreasing.
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FigureA.1: Operation of L INEAR-EXPANSION-SUM. ºS»´¼s½%» maintains an approximate running total. The
FAST-TWO-SUM operations in the bottom row exist to clip a high-order bit off each ½%» term, if necessary,
before outputting it.

© D�¯ F is theroundoff errorof theTWO-SUM operationthatproduces̈ D�¯ F , so . © D�¯ F;.�? F
� ulp �i¨ D�¯ F�� . This

inequalityandtheinductive hypothesisimply that . © D�¯ F/.
? ulp �ª§ D � , which justifiestheuseof a FAST-TWO-
SUM operationin Line 4. This operationproducesthesum . ® D 1-¤ D�¯ � .¸8¾. § D 1A© D�¯ F�.e¿À��f�ÁÂ1�c�� ulp �ª§ D � .
Corollary43(a)impliesthat . ¤µD�¯ � .�¿ ulp �ª§/D�� . Because¤ F vjqjqjq;v!¤µD�¯ � arenonoverlapping,wehavethebound
. � Dª¯ �± � F ¤ ± .
¿ ulp �ª§ D �G? ulp �ª§ D ¦ F�� .

Assumewithout loss of generalitythat the exponentof § D ¦ F is y
I²c , so that ulp �ª§ D ¦ F��¥8�c , and
. §�F/.rv;. § � .rvjqjqjq;v;. § D ¦ F/. areboundedbelow f Á . Because§ is formedby merging two nonoverlappingincreasing
expansions,.X� D± � F § ± .Y¿Ãf�Á�1-f�Á ¯ F . Consider, for instance,if § D ¦ F�8Äcj�b�b� (in four-bit arithmetic);then
.X� D± � F § ± . canbenogreaterthanthesumof cbcbcbc4q�cbcbcbc0qjqjq and cbcbc4q�cbcbcbc0qjqjq .

Substitutingtheseboundsinto the invariantgivenat thebeginningof this proof, we have .=¨�D�1-©jDX.>?
. � Dª¯ �± � F ¤ ± .41Å. � D± � F § ± .>¿Àf Á 1-f Á ¯ F 1xc , which confirmsthat theexponentof ¨ D is at mostonegreater
thantheexponentof § D ¦ F .

To show that ¤ D�¯ F is larger than previous componentsof ¤ (or is zero) and doesnot overlap them,
observe from FigureA.1 that ¤ Dª¯ F is formed(for «Ow�a ) by summing§ D ¦ F , ® D , and ¨ D�¯ F . It canbeshown
thatall threeof theseareeitherequalto zeroor too large to overlap ¤µD�¯ � , andhenceso is ¤µD�¯ F . We have
alreadyseenthat . ¤ D�¯ � .�¿ ulp �ª§ D � , which is boundedin turnby ulp �ª§ D ¦ F�� . It is clearthat . ¤ D�¯ � . is toosmall
to overlap ®_D becauseboth areproducedby a FAST-TWO-SUM operation.Finally, . ¤´Dª¯ � . is too small to
overlap ¨ D�¯ F because. ¤ Dª¯ � .@?u. © D�¯ F/. (applyingLemma36 to Line 4), and . © D�¯ F;.�? F

� ulp �i¨ Dª¯ F�� .
The foregoing discussionassumesthat noneof the input componentsis zero. If any of the § D is zero,

thecorrespondingoutputcomponent¤ D�¯ � is alsozero,andtheaccumulatorvalues̈ and © areunchanged
( ¨ D 8h¨ D�¯ F , © D 83© Dª¯ F ). Æ



Appendix B

Why the TiebreakingRule is Important

Theorem48is complicatedby theneedto considerthetiebreakingrule. Thisappendixgivesanexamplethat
provesthatthis complicationis necessaryto ensurethatFAST-EXPANSION-SUM will producenonoverlap-
ping output. If one’s processordoesnot useround-to-even tiebreaking,onemight useinsteadanalgorithm
thatis independentof thetiebreakingrule,suchastheslower L INEAR-EXPANSION-SUM in AppendixA.

Section6.3.4gave examplesthatdemonstratethatFAST-EXPANSION-SUM doesnot preserve thenon-
overlappingor nonadjacentproperties. The following exampledemonstratesthat, in the absenceof any
assumptionaboutthetiebreakingrule,FAST-EXPANSION-SUM doesnotpreserve any propertythatimplies
thenonoverlappingproperty. (As wehaveseen,theround-to-evenruleensuresthatFAST-EXPANSION-SUM

preservesthestronglynonoverlappingproperty.)

For simplicity, assumethat four-bit arithmeticis used.Supposetheround-toward-zerorule is initially
in effect. The incompressibleexpansionsf F T 1hf4ÇJ1hf T 1²c and f FXF 1hf [ 1hf4� caneachbe formedby
summingtheir componentswith any expansionadditionalgorithm.Summingthesetwo expansions,FAST-
EXPANSION-SUM (with zero elimination) yields the expansion cj�b�µcÈ�Éf FXF 1`f Ç 1`f [ 1`f T 1`f � 1Êc .
Similarly, onecanform theexpansioncj�b�µcË�7f F�� 1Éf � 1lf W 1Éf P 1Vf F . Summingthesetwo in turn yields
cbcj�µc��Of FXF 1Ìf F�� 1ÍcbcbcbcR�Of W 1Ìf T 1Ìf P 1Ìf � 1Ìf F 1Íc , whichis nonoverlappingbut notstronglynonoverlapping.

Switchingto theround-to-evenrule,supposeFAST-EXPANSION-SUM is usedto sumtwo copiesof this
expansion.The resulting“expansion”is cbcbcÎ�
f F�P 1xI_f FXF 1Mf F�� 1xIUf W 1hf W 1xIUf F , which containsa
pairof overlappingcomponents.Hence,it is notsafeto mix theround-toward-zeroandround-to-evenrules,
andit is not possibleto prove that FAST-EXPANSION-SUM producesnonoverlappingexpansionsfor any
tiebreakingrule.

Although the expansionabove is not nonoverlapping,it is not particularlybad, in the sensethat AP-
PROXIMATE will nonethelessproduceanaccurateapproximationof theexpansion’s value.It canbeproven
that, regardlessof tiebreakingrule, FAST-EXPANSION-SUM preserveswhat I call theweaklynonoverlap-
pingproperty, whichallows only a smallamountof overlapbetweencomponents,easilyfixedby compres-
sion. (Detailsareomittedhere,but I am quite certainof the result. I produceda proof similar to that of
Theorem48, andrivalling it in complexity, beforeI discoveredthe stronglynonoverlappingproperty.) I
conjecturethatthegeometricpredicatesof Section6.5work correctlyregardlessof tiebreakingrule.
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