
COMPUTER GRAPHICS AND IMAGE PROCESSING 19, 384-391 (1982)

NOTE

A New Linear Algorithm for Intersecting Convex
Polygons

JOSEPH O’ROURKE, CHI-BIN CHIEN, THOMAS OLSON, AND DAVID NADDOR

Department of Electrical Engineering and Computer Science, The Johns Hopkins University,
Baltimore, Maryland 21218

Received July 23, 198 1; revised October 7, 198 1

An algorithm is presented that computes the intersection of two convex polygons in linear
time. The algorithm is fundamentally different from the only known linear algorithms for this
problem, due to Shames and Hoey. These algorithms depend on a division of the plane into
either angular sectors (Shamos) or parallel slabs (Hoey), and are mildly complex. Our
algorithm searches for the intersection points of the polygons by advancing a single pointer
around each polygon, and is very easy to program.

1. INTRODUCTION

It has been known for some time that the intersection of convex polygonal regions
can be formed in linear time: O(n + m) if the boundary polygons have n and m
vertices [3, 41. Partly because of this linearity, the intersection of convex polygons
has been employed as a subcomponent of many other geometric algorithms. Shamos
used convex region intersection in his 0(n log n) half-plane intersection algorithm [3,
51, which itself can be used for computing the kernel of a polygon, for determining
whether two sets of points in the plane are linearly separable, and for solving
two-variable linear programmin g problems [3-51. Muller and Preparata use linear
convex polygon intersection in their algorithm for intersecting convex polyhedra [2],
and Ahuja et al. use it in their interference detection algorithm [11.

Shamos was the first to discover a linear algorithm for intersecting convex
polygons [3]. His algorithm depends on dividing one polygon into angular sectors,
and locating each vertex of the other polygon either inside or outside of these
sectors. Hoey later designed a somewhat simpler algorithm [4]. The plane is
partitioned into parallel “slabs,” with every polygon vertex lying on some slab edge.
Within the slabs, the problem reduces to the intersection of two trapezoids, which
can be performed in constant time. The resulting regions within the slabs can then
be merged together in a single pass over all slabs to form the output polygon. Hoey’s
algorithm seems to be in wide use [1, 2, 41.

The algorithm presented here is fundamentally different from either Shamos’s or
Hoey’s, and we feel it is considerably easier to program. The algorithm maintains
two special pointers, distinguishing one edge on each polygon. These pointers are
advanced around the polygons such that their edges “chase” one another, searching
for the intersection points. All the intersection points can be found within two cycles
around the polygons, and thus the algorithm achieves linear time complexity.

After establishing some notation, the algorithm is presented in the next section
and intuitively justified in Section 3. Section 4 covers degenerate cases. A proof of
correctness follows in the Appendix.

384
0146-664X/82/0803&GO8$02.00/0
Copyrigbl 0 1982 by Academic Press, Inc.
AI1 rights of reproduction in any form reserved.

INTERSECTING CONVEX POLYGONS 385

2. THE ALGORITHM

Notation and Definitions

Let the two polygons P and Q be represented as circular lists of their vertices.
Counterclockwise will be used as the positive sense, so that the inside of the polygon
is always to the left during a positive traversal.

Let p and q be vertices of P and Q, respectively. The next and previous vertices
with respect to p will be denoted by p+ and p- , respectively. The vector from p- to
p will be called p (recalling the tangent vector of differential geometry), and similarly
for q. Thus p is at the head of p.

The half-plane (including the half-plane edge) determined by p will be represented
by hp(p), and similarly for q. In terms of vectors, hp can be defined as the set

hp(@) = {x : p x (x - p-) 2 O}

where x is an arbitrary point in the plane. Figure 1 illustrates these definitions.

Algorithm

The algorithm consists mainly of a set of “advance rules” embedded in a repeat
loop. At each step, two edges are checked for intersection, and a vertex is output.
When the loop finishes, all the vertices of the polygon P fl Q have been output,
except when the boundaries of P and Q do not intersect. Special code handles this
possibility.

The algorithm below assumes that all intersections are nondegenerate: whenever
two edges intersect, they intersect in a single point that is not a vertex of either
polygon. Modifications to handle degenerate cases are described in Section 4. The
algorithm is presented in an informal style that should nevertheless be easy to
directly implement. Comments are enclosed within brackets.

input: P and Q
output: P II Q
begin {main}
Choose p and q arbitrarily.
repeat

{Check to see if p and q intersect}
if p and q intersect then

if this intersection is the same as the first intersection then halt
else output the point of intersection and

{set inside} if p E hp(Q) then inside + “P ” else inside + “Q “;
{Advance either p or q.}
ifqXpZOthen

if p E hp(Q) then (advance q) else (advance p)
else {Q X p C 0}

if q E hp(p) then (advance p) else (advance q);
until repeat has executed more than 2(1 P 1 + (Q I) times;
{either P II Q = 0 or P 2 Q or P c Q}
Choose p and q arbitrarily.
if p E Q then output P else if q E P then output Q else output 0 ;
end {main}

386 O’ROURKE ET AL.

FIG. 1. Notational conventions used to label vertices and edges of a polygon, and the half-plane
determined by an edge.

advance p:
output p if inside = “P “;
P * P+ ;

advance q:
output q if inside =“Q”;
q+q+;

The algorithm has been implemented, and a sample of its operation is detailed in
Fig. 2.

Determining whether p E Q (i.e., whether p is inside or on the boundary of the
polygon Q) can easily be accomplished in linear time by summing the angles
subtended at p by each edge of Q: if the sum is 360”, then p is inside, otherwise the
sum is 0” and p is outside.

3. INTUITIVE JUSTIFICATION

The crux of the algorithm is in the advance rules, and these are somewhat obscure.
To make their operation more transparent, define a predicate aim (p, Q) as follows:

aim (P, Q) = true iff
pEhp(il)andQXP<O

or

FIG. 2. Execution of the algorithm. The initial positions of p and 4 are labeled h and &, and an edge
of either polygon is labeled i if the ith iteration of the repeat loop caused an advance to that edge. The
circled vertices are output by the algorithm.

INTERSECTING CONVEX POLYGONS 387

FIG. 3. All of the unlabeled vectors are “aiming towards” 4’s half-plane edge.

Informally, aim (p, Q) is true iff 0 is “aiming toward” q’s half-plane edge (see Fig. 3).
In terms of this predicate, the advance rules reduce to Table 1. In this table, the
minus sign means not, and p is “outside” when p 65 hp(Q), and similarly for q. It is
easily established that the phrase “whichever is outside” is unambiguous in the
table, and that the table is equivalent to the advance rules presented in the
algorithm.

The justification for this table is that an intersection of p and q may be sought by
trying to move p so that it crosses q’s half-plane edge, and similarly for q. So
whenever just one aims towards the other’s half-plane edge, it should be advanced.
In the cases where either both or neither aim towards one another, the outside one is
advanced. The idea here is that, since all of the polygon Q is included in hp(Q), when
p is outside it must be advanced until it crosses into hp(Q) before any intersection is
possible.

Although the intuitive justification should now be clear, it is not immediately
obvious that every intersection point will be found. A straightforward but tedious
proof of the algorithm’s correctness is offered in the Appendix.

4. DEGENERATE CASES

There are three types of “degenerate” intersections that may occur: a vertex of P
may lie on an edge of Q, a vertex of P may coincide with a vertex of Q, and an edge
of P may be collinear with and overlap an edge of (2. Our claim is that the
previously presented algorithm will handle all three cases properly when (a) p and q
are interpreted as having no intersection whenever they are collinear (i.e., whenever
q X p = 0), even if they overlap, and (b) the loop exit condition

if this intersection is the same as the first intersection then halt

is modified to read

if the first intersection was not found during the previous loop iteration
then if this intersection is the same as the first intersection then halt.

TABLE 1
The Advance Rules Expressed in Terms of the aim Predicate

aim@, iL)

advance
whichever is outside

- aim (p, Q)

advance q

- aim(tj, 0) advance p advance
whichever is outside

388 O’ROURKE ET AL.

FIG. 4. A simple degenerate intersection that necessitates suspending the usual loop exit condition.

This last change is required to exclude the case illustrated in Fig. 4.
These claims concerning degenerate cases are justified in the Appendix.

5. FINAL REMARKS

By merely flipping the sense of the variable inside, the algorithm will output the
union rather than the intersection. (Minor modifications must also be made to the
code after the end of the repeat loop.)

Although it seems superficially feasible, we have been unable to extend the
algorithm to compute the intersection of non-convex polygons, or to compute the
intersection of convex polyhedra.

APPENDIX

Assume that none of the cases P fl Q = 0, P > Q, or P C Q holds, as these are
obviously handled correctly by the algorithm as special cases. Further assume that
all intersections between the polygons are nondegenerate: when two edges intersect,
they intersect at a single point which is not a vertex of either polygon. Degenerate
intersections will be discussed at the end of this section.

The proof will proceed by first establishing that at least one intersection point will
be discovered, and then showing that once one intersection is found, the next one is
guaranteed to be found also.

Because we have excluded nonintersecting and degenerate cases, the two polygon
boundaries must intersect at two or more points. It is clear that these intersection
points can be ordered into a counterclockwise circular list just as the polygon
vertices are. Thus we can unambiguously speak of the “next intersection point,” and
since there are at least two intersection points, the next one will always be distinct
from the current one. Also note that if at one intersection point P enters Q, then at
the next intersection point P exits Q, and similarly for Q: the direction of passage
alternates along the sequence of intersection points.

LEMMA 1. If the boundaries of P and Q intersect nondegenerately, the algorithm
will find at least one intersection point.

Proof Assume the contrary: all intersection points are missed and the loop
iterates 2(1 P 1 + 1 Q I) times before exiting. Since each iteration advances either p or
q, after / P I + I Q I iterations either p or q (or perhaps both) must have made a
complete circuit of its polygon.

Suppose q is the one that makes a complete circuit. Then at some point q must be
situated such that q is at an intersection point where the polygon P passes from the
outside of Q to its inside. We can be assured of such a situation because there are at
least two intersection points and they alternate in direction of passage.

INTERSECTING CONVEX POLYGONS 389

FIG. 5. When an intersection point A lies on 4 and p is outside of hp(Q) (as are p, and p2), then 4 will
remain stationary and # will meet it at A.

It will now be shown that once q is situated as described above, the remaining
1 P) + 1 Q 1 iterations of the loop will necessarily result in an intersection being
found, contradicting our assumption that all are missed.

When q first arrives at the intersection point, p is either inside or outside hp(Q).
These two cases will be considered separately.

Case 1: p @ hp(il) (see Fig. 5).
Our claim is that q remains stationary while p advances until p intersects q.

Consider the initial step, when p is outside.
If p does not aim towards hp(il) (e.g., p, in Fig. 5), then the “ -aim (p, Q)” column

of Table 1 is applicable. It is clear from the figure that in this case the “ -aim (4, p)”
row is the appropriate one, so p will be advanced and p will remain outside.

If p does aim towards hp(Q) (e.g., li, in Fig. 5), then the “aim@,@” column is
applicable and again p will be advanced. Clearly, p cannot change its status from
outside to inside without crossing q.

Thus the initial step advances p and leaves it outside if it does not cross q. But this
leaves us in the same situation as that which held before the initial step. Thus, until p
crosses q, p will remain outside and only p will be advanced. This establishes the
claim.

Case 2: p E &I(Q) (see Fig. 6).
Here there are two distinct possibilities. If p aims towards hp(Q) (e.g., p, in Fig. 6),

then because it is not the case that aim(g, p),Table 1 shows that p will be advanced.
In fact, p will be advanced until it emerges from hp(il), which gives Case I. Therefore
an intersection will be found.

If p aims away from hp(Q) (e.g., h in Fig. 6), we claim that p and q will meet at the
next intersection point. This will be established by proving that it is not possible for
either p or q to pass through the next intersection point before the other.

FIG. 6. When an intersection point A lies on 4 and p is inside of hp(q), then if) aims toward hp(e) (as
p, does), then 4 will remain stationary and in will meet it at A. If) aims away from hp(q) (as & does), then
they will meet at B, the next intersection point.

390 O’ROURKE ET AL.

First, if q is inside hp(p) (as it is with h in Fig. 6), then aim(q, fi) is true, but our
hypothesis is that aim@, Q) is false, so q would be advanced. Thus eventually it will
be the case that q @ hp(@).

Once this latter condition holds, the advancement of p and q follows very simple
rules up until the next intersection point: p advances only if q E hp(p), and therefore
q advances only if q B hp(p). To see this, suppose that q @ hp(p) but that p
advances. Since q is outside, only one cell of Table 1 could account for p’s
advancement. But that cell requires both aim@, q,) and - aim(a, p), conditions that
cannot simultaneously hold under the described situation.

Now since p can advance only when q enters hp(p), it is impossible for p to
advance past the next intersection point while q remains outside. So the only way for
the intersection point to be missed is for q to pass through while p hangs back. But q
clearly cannot do this without crossing p’s half-plane edge. Since neither p nor q can
pass through next intersection point before the other, and since the 1 P 1 + 1 Q 1
available iterations will force at least one of them past the intersection point, p and q
must meet there.

Thus in both of the Cases (which exhaust all possibilities), an intersection will be
found, contradicting our denial of the Lemma. 0

LEMMA 2. If the boundaries of P and Q intersect nondegenerately, and if p and Q
are situated at an intersection point, then the next intersection point will be properly
found, and it will in fact be the next one to be found (i.e., no intersection points will be
skipped).

Proof If p and q intersect, then it must be the case that either q @ hp(p) and
p E hp(il), or vice versa (interchanging p and q). Assume the former without loss of
generality. This corresponds precisely to the second possibility in Case 2 of Lemma
1, which established that p and q would meet at the next intersection point. 0

THEOREM. Zf the boundaries of P and Q intersect nondegenerately, then the
algorithm will find all of the intersection points in order.

Proof Follows immediately from Lemmas 1 and 2. 0
It should be mentioned that the convexity of the two polygons was used implicitly

at a number of places throughout the above proofs. For example, in the analysis of
Case 1 in Lemma 1, when -aim@, Q) holds, the condition aim(& ri> can be shown to
require P to be nonconvex, which justifies our choice of the “ - uim(& p)” row of the
table.

Finally, we consider degenerate intersections. The claim of Section 4 will be
argued informally, as a detailed proof is even more tedious than the foregoing.

There are only two ways in which the algorithm could go awry in degenerate
cases:

(1) The variable inside might be improperly set (due to a vertex falling on the
edge of a half-plane), thus causing a vertex to be output by the “advance” function
which in fact should not be output.

(2) The advance rules may select the wrong pointer (due to either a zero cross
product of q and p, or a vertex falling on the edge of a half-plane), allowing one
pointer to “slip through” an intersection point when it should not.

INTERSECTING CONVEX POLYGONS 391

b mQ
P

FIG. 7. The three classes of degenerate intersection. (a) A vertex of P falls on an edge of Q. (b) P and
Q share a common vertex. (c) An edge of P overlaps an edge of Q.

Consider the three classes of degenerate intersections mentioned in Section 4,
instances of which are illustrated in Fig. 7. In Figs. 7a and b, it does not matter if
inside is set “improperly,” since the only vertex that might be output is actually on
the boundary of P fl Q. This vertex may be output twice in succession, but we
assume this is no problem. Because of the convention that collinear vectors do not
intersect, the situation depicted in Fig. 7c cannot itself cause inside to be set. If,
however, inside was first set by a condition like that illustrated in Figs. 7a or b, it
might happen that the wrong one of two collinear vectors is advanced, causing an
incorrect output. This never occurs for a fairly subtle reason: inside is set to “P”
whenever there is a borderline case, but the Q pointer is the one advanced in the
collinear degenerate cases. Thus these advances are always “safe” in that the value
of inside will prevent any output. Thus the first way that the algorithm might go
wrong does not occur.

It is easily established that the degeneracies in Figs. 7a and b do not modify the
arguments presented in Case 2 of Lemma 1: these types of degenerate intersection
points prevent passage of one pointer before the other in the same manner as normal
intersection points. In the type of degeneracy illustrate in Fig. 7c, it does not matter
which of the two pointers is advanced, since (a) any vertex in the overlap portion is
on the boundary of P rl Q and can be output without error, and (b) eventually, one
of the cases shown if Figs, 7a or b will hold. Thus the algorithm will not make any
errors of type (2) above.

REFERENCES
1. N. Ahuja, R. T. Chien, R. Yen, and N. Birdwell, Interference detection and collision avoidance among

three dimensional objects, Proceedings of First Annual National Conference on Artificial Intelli-
gence, pp. 44-48, Stanford, California, 1980.

2. D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra, Theorer. Compur.
Sci. 7, 1978, 217-236.

3. M. I. Shamos, Geometric Complexity, Proceedings of Seventh Annual ACM Symposium on Theory of
Computing, pp. 224-233, 1975.

4. M. I. Shamos, Computational Geometry, Ph.D. Dissertation, Yale University, 1978.
5. M. I. Shamos and D. Hoey, Geometric Intersection Problems, Proceedings of Seventeenth Annual

Symposium on Foundations of Computer Science, pp. 208-215, Houston, Texas, 1976.

