
Quality Mesh Generation in Three Dimensions
Extended Abstract

Scott A. Mitchell* Stephen A. Vavasist

Abstract

We show how to triangulate a three dimensional poly-

hedral region with holes. Our triangulation is optimal

in the following two senses. First, our triangulation

achieves the best possible aspect ratio up to a constant.

Second, for any other triangulation of the same region

into m triangles with bounded aspect ratio, our trian-

gulation has size n = O(m). Such a triangulation is

desired as an initial mesh for a finite element mesh re-

finement algorithm. Previous three dimensional trian-

gulation schemes either worked only on a restricted class

of input, or did not guarantee well-shaped tetrahedral,

or were not able to bound the output size. We build on

some of the ideas presented in previous work by Bern,

Eppstein, and Gilbert, who have shown how to trian-

gulate a two dimensional polyhedral region with holes,

with similar quality and optimality bounds.

1 Introduction

Triangulation of polyhedral regions is a fundamental ge-

ometric problem for numerical analysis. In particular,

if one wishes to solve an elliptic boundary value prob-

lem on a three-dimensional domain, it is necessary to

discretize the domain with a mesh. If the domain is

sufficiently complicated, then the method of finite el-

‘Center for Applied Mathematics, Cornelt University, Ithaca,

NY 14853. Supported in part by Hughes Research Laborato-

ries, Malibu, CA, and by DARPA uuder ONR contract NooO14-

88 K-0591, ONR contract NOO014-89J-1946, and NSF grant IRI-

9006137, by a Xerox sumIu er internship and an NSF PYI award.

t Department of computer Science, Cornelt University, Ithaca,

NY 14853. Supported by an NSF Presidential Young Investigator

award.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for dkect

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a f= and/or specific permission.

ements is commonly used. In this method the domain

is divided into small convex polyhedral regions with a

fixed number of faces called elements. A common choice

for an element in three dimensions is the tetrahedron.

Thus, a triangulation of the domain is required.

For numerical stability in the finite element method,

it is necessary that the tetrahedral have bounded aspect

ratio. This means that the angle between any adjacent

pair of edges of the tetrahedron, or between any edge

and a 2-dimensional face not containing it, is bounded

below by a constant. For information about aspect ra-

tio bounds in numerical analysis, see Babu3ka and Aziz

[1976].

Our algorithm generates a triangulation for a noncon-

vex bounded polyhedral domain with holes. In addition,

the triangulation is optimal in two respects. In partic-

ular, the best possible aspect ratio is achieved for the

tetrahedral and the number of tetrahedral is within a

constant factor of the best possible for any triangula-

tion with bounded aspect ratios.

Our work is closely based on earlier work by Bern,

Eppstein and Gilbert [1990], who solved the correspond-

ing problem for two-dimensional polyhedral domains.

Our running time bounds are probably not the best pos-

sible; this is discussed further at the end of the paper.

Our optimality condition is slightly stronger than Bern

et. al.’s condition. In particular, they show that over-

all the number of triangles they generate is no more

than a constant above optimal. The triangles used in a

particular region of the domain, however, could be arbi-

trarily smaller than what is needed for the triangulation

to achieve good aspect ratio. In our triangulation, no

tetrahedron is ever more than a constant factor smaller

than the tetrahedron at the same location in the best

possible triangulation,

Other authors have considered three-dimensional re-

gions, but, to our knowledge, no previous work has si-

multaneously addressed the problems of optimality, as-

pect ratio and of complicated nonconvex regions. In-

deed, as far as we know, there is no previous algo-

rithm to triangulate a nonconvex three-dimensional re-

8th Annual Computational Geometty, 6/92, Berlin, Germany

@1992 ACM 89791-518-6/92/0006/0212 $1.50

212

gion with guaranteed aspect ratio (regardless of the op-

timality of the triangulation). Our technique is based

on an octree partitioning of the domain. This technique

haa been used before, for example, by Carey, Sharna and

Wang [1988]. Chazelle and Palios [1989] consider opti-

mality but are not interested in angle bounds. Chew

[1989b] presents an algorithm for two-dimensional poly-

hedral regions, but does not address the problem of op-

timal number of triangles. Moore and Warren [1990]

address the problem of adaptive mesh generation for

box-shaped regions. Mitchell [1987] and [1988] consider

the problem of adaptive mesh generation of complex re-

gions in regard to finite element error bounds. Because

of the importance of mesh generation, the literature on

this problem is very extensive; see for example, the con-

ference proceedings edited by Hauser and Taylor [1986].

Recently, Bern and Eppstein [1990] have surveyed the

literature on triangulations, giving more details about

earlier work.

Our optimality proof is based on characteristic length

functions. Similar functions have been used before by

Miller and Thurston [1990], Miller and Vavasis [1990],

and Miller, Teng and Vavasis [1991]. We have not seen

them used, however, to analyze the construction of a

triangulation.

The remainder of this paper is organized as follows.

In Section 2 we discuss the formation of the octree. In

Section 3 to Section 5 we we discuss the steps necessary

to produce a triangulation given an octree. In Section

6 to Section 7 we provide the optimality proof. For the

remainder of this introduction, we describe our assump-

tions.

Our triangulation is denoted AOcT. We assume we

are given a three-dimensional polyhedral region as fol-

lows. There is a list of vertices with coordinates speci-

fied. There is also a list of edges and faces. The three

lists are mutually linked. The list of edges for each ver-

tex is ordered as they occur around the vertex. Similar

orderings are assumed for the other lists. We assume

that P is connected; if not, each component could be

triangulated separately.

A face of P, or another polyhedral region, can have

either zero dimensions, called a vertex, one dimension,

called an edge, or two dimensions, called a facet. In some

circumstances we want to regard P itself as the three-

dimensional face. Note that the containment relation

induces a partial order on faces.

We assume that the polyhedral region is nondegener-

ate in the following senses. Every two-dimensional face

of P has the interior of the polytope on exactly one side.

Every one-dimensional edge is incident on exactly two

t we-dimensional faces. For every zer~dimensional face

(vertex) v, for every small enough open neighborhood

N of v, the set (N n P) – {w} has exactly one connected

component. These assumptions may be dropped in fu-

ture work.

Interior Angle. We define the interior angle or an-

gle between two faces F and G in the cases where F and

G are a facet and an edge, two facets, or two edges that

have a common intersection v. We additionally require

that one face is not a subset of the other. ‘We say that

two rays rl, rz with a common endpoint v can see each

other if there are points VI, V2 on rl, r2 each at distance

t >0 from v such that the sector VV1 V2 lies in P.

The interior angle between two faces F and G meeting

at a vertex v is the minimum over all rays rl, rz from v of

the angle of the sector vrl rz. Here we require that rl ~

F and rz E G and vrl rz E P in a small neighborhood

about v. The interior angle between two facets meeting

at an edge is the dihedral angle between those facets

interior to P. A more detailed definition appears in the

full paper.

An important constant describing a nonconvex poly-

hedron P is a, the minimum interior angle between any

pair of faces of P.

A useful measure of the shape of a tetrahedron is its

aspect ratio, which we define to be the ratio of the ra-

dius R of the smallest containing sphere, to the radius

r of the largest inscribed sphere. The aspect ratio of a

three dimensional triangulation is the maximimum as-

pect ratio of a tetrahedron in the triangulation.

It can be proved that the aspect ratio of a tetrahedron

is bounded above and below by constant multiples of

the reciprocal of the sharpest interior angle (as defined

above) in the tetrahedron. We can also show that the

aspect ratio of any triangulation of P is bounded by

k/cr, where k is a constant.

2 Subdivision of P into cubes,

the octree

The main data structure we use for our algorithm is an

octree. We commonly refer to each node of the tree as a

box. We associate with each box, b, a polyhedral region

of IR3 called the embedding of the box and denoted I(b).

During the generation of the octree, I(b) is exactly a

three dimensional cube. Later boxes are warped and

triangulated, changing their geometric structure.

An octree node is either a leaf, or has eight children.

The embedding of the eight children of a node are the

eight cubes obtained by dividing the embedding of the

box in half in each of the three dimensions. We say a

node is sp/it if it is not a leaf. The process of creating

the eight children of a node is called spiiiting.

Duplicate. Some boxes in the octree will be du-

plicated into the original node and several new nodes,

called duplicates or duplicate boxes. We create dupli-

cates whenever the intersection of the box with P has

more than one connected component. Each duplicate

213

represents the same geometric cube in IR3, but is associ-

ated with one connected component of P n I(b). We use

the notation P A b to denote the component of P n I(b)

assigned to a particular box b.

Whenever we split a box b, if P A b is nonconvex a

child box b’ may have more than one component (i.e.,

(PA b) n b’ might have more than one component even

though P A b consists of one component). Whenever a

box is split, we immediately determine whether any of

its children cent ains more than one component of P,

and if so, we make duplicates of the child box.

If a P face is incident upon P A b for a box b, we

say that a box contains the face. We maintain pointers

between each box and the faces it cent ains.

Extended Box. For a given box b, we define the
extended box of b, ex(b), such that .I(ex(b)) is the cube

concentric with I(b) and with each dimension expanded

by a factor of 5. We use the notation P Aex(b) to denote

the component of P n l(ex(b)) that contains P A b. The

extended box contains only the P faces of P A ex(b).

Note that ex(b) is not a box of the octree, but may be

const rutted from boxes of the oct ree.

Adjacent. Two boxes are called neighbors if their

embedding intersect non-trivially, and one is not a du-

plicate of the other. The size of a box b is the length of

an edge, which we denote by h(b). We say that box bl

is adjacent to box bz if they are neighbors and there is a

point of P common to both, i.e. if (PAb1)n(PAb2) # 0.

In certain cases such as when a box contains faces meet-

ing at a reflex angle, a box may be adjacent to two

duplicates of a second box. We say bl, b2 are ba!ance-

adjacent if they are neighbors and there is a point of

P common to one of the boxes and the extended box

of the other, i.e. if (P A ex(bl)) n (P A bz) # @ or if

(PA ex(bz)) fl (P A bl) #0. Boxes that are adjacent are

balance-adjacent, but not all balance-adjacent boxes are

adjacent .

Balance Condition. If we split a box, we imme-

diately split other boxes to maintain the following in-

variant called the balance condition: No box is balance-

adjacent to a box more than twice its size. Certain

boxes containing vertices or edges of P are called pro-

tected boxes, and are exempt from being split by the

balance condition later in the algorithm. Nonetheless,

the ratio of the size of an adjacent box to a protected

box is bounded below by a constant that depends lin-

early on a, as we observe below.

We generate the octree by selectively splitting and

duplicating nodes. The goal of splitting and duplicating

boxes is to make the boxes small enough so that the

intersection of P with the embedding of any box is as

simple as possible. However, boxes should not be made

too small, as this would lead to an excessive number of

tetrahedral in the final triangulation.

It is easy to state the conditions under which we du-

Figure 1: Here a box is duplicated for two components,

and one duplicate box is split because it is crowded.

plicate b, namely, whenever P n l(b) has more than one

component. Nonetheless, the box duplication process

is actually the most computationally complicated part

of the octree generation algorithm, because determin-

ing components of Pn I(b) is a nontrivial computational

task. The duplication process is built upon standard al-

gorithms from computational geometry including point-

in-polygon testing and planar sweeps. See below.

On the other hand, for splitting, the conditions under

which a box is split are more complicated, but the com-

putational tasks are straightforward. The octree gener-

ation algorithm is divided into three phases, the vertex

phase, the edge phase, and the facet phase. We now

describe the various steps of the splitting algorithm.

How finely we split boxes during the vertex phase

depends on the following definition.

Vertex Cone. A vertex cone of a box b is a set of

P faces, F1, F2, ..., Fk, that satisfy the following: F1

is a vertex lying in b, and F2, Fk are the superfaces

of F1. Moreover, 1’1, Fk are exactly the P faces

incident upon P A ex(b).

Vertex Crowded. We say that a box b is vertex

crowded if the following is satisfied: There is a P vertex

v in b, but the super faces of v are not the only P faces

incident upon P A ex(b). Equivalently, a box is vertex

crowded if P A b contains a vertex that is not the apex

of a vertex cone.

We recursively split and duplicate boxes, maintain-

ing the balance condition at each step, until every box

containing a vertex contains exactly one vertex cone.

Clearly this procedure will terminate once the box sizes

become a constant factor smaller than the minimum

path length in P between a vertex and a face that does

not cent ain that vertex.

The details of the procedure for determining whether

a box b should be split are straightforward given an enu-

meration of the P faces bounding P A ex(b). Such an

enumeration is obtained from the procedure for deter-

mining whether a box should be duplicated described

below.

The conclusion of the vertex phase is a special one-

time reorganization of the boxes so that each vertex of

P is far from the boundary of the box that contains it.

The value of this property will become clear in Section

3 and later sections. In particular, after reorganization

214

the distance between a vertex and any box face is at

least h(b)/8, where b is the box containing the vertex.

This step involves splitting every box at most one more

time, and merging the box containing b with some of

its neighbors. This is called the centering step and its

details are in the full paper.

Once the vertex is centered in its box b, this box is

protected, meaning that it is never split again during the

course of the algorithm. Also, protected boxes are never

considered to be part of the extended box of another

box.

The next phase of the octree generation algorithm

focuses on edges of P, and is analogous to the vertex

phase. The details of this case are in the full paper.

An unprotected box contains an edge cone if it contains

an edge, and if the edge and its two facets are the only

P faces contained in P A ex(b). We define an unpro-

tected box to be edge crowded if it contains an edge,

and there is some face bounding P A ex(b) that is not a

superface of the edge. We recursively split edge crowded

boxes and enforce the balance condition until the only

unprotected boxes containing edges are boxes with edge

cones. Then we protect all edge cone boxes, and boxes

balance-adjacent to them. We do not reorganize in the

same way as vertices, relying instead on Section 3.

The third phase of the octree generation algorithm

focuses on facets of P. An unprotected box b contains

a facet cone if it contains a facet, and that is the only

P face incident on extended P A ex(b). We say that a

box is facet crowded if it contains a facet, and if the

facet is not the only P face incident upon PA ex(b). We

split unprotected boxes until any box containing a facet

cent ains a facet cone. Boxes cent aining a facet are then

protected. The details are in the full paper.

2.1 The duplication process

Recall that we duplicate b whenever it is determined

that P n I(b) haa more than one component. In this

section we explain how to identify the components of

P n I(b). This same techniques allow us to determine

the components of P n I(ex(b)), which is necessary for

determining whether boxes are crowded, and when to

propagate the balance condition.

The first part of the duplication algorithm is a pre-

processing algorithm. Before the octree generation be-

gins, we identify the separate components of dP. One

component is the ezterior component; we call all the

other components floaters. For each facet, edge, and

vertex, we can determine which component contains it

with a standard graph search. This takes total time

O(n), where n is the total number of facets, edges and

vertices of P.

Once the components are identified, we now perform

a second procedure in which we identify a tether for

Figure 2: Floaters and tethers for a two dimensional

polygon.

each floater. First, for each floater C, we identify the

point v with the largest x coordinate on C, which we

call the base of the tether. From v we shoot a ray in

the positive r coordinate direction and identify the first

point v’ of 8P encountered, which we call the head of the

tether. The head cannot be on the same floater as the

base. A head exists, since the ray must eventually pass

through the exterior component. The directed segment

from v to v’ is called the tether for C’. See Figure 2 for

a two dimensional example of the tethering structure of

a polygon.

Note the following two properties of tethers: (1) Each

tether is contained completely in P. (2) When regarded

as a digraph on the components of dP, the tethers form

an in-tree rooted at the exterior component.

Now we discuss the procedure for determining when

a box should be duplicated. Consider the P faces con-

tained in the box. A particular P facet F in the box

may intersect the box in more than one component if

the facet is nonconvex. We therefore must first deter-

mine all the components of each facet passing through

the box. This may be done by sweeping a line seg-

ment across the facet, requiring O(rn log m) steps if m

is the number of vertices of the facet. The total time

for identifying all components of all facets for a box is

O(TIlog n).

Then we perform a combinatorial graph search to

identify the various components of 8P n I(b). Let these

components be called sheets. There are two kinds of

sheets: those that intersect the boundary of I(b), and

those that are completely internal to 1(b). Note that a

sheet entirely inside I(b) must be a floater; such a floater

is called an internal floater for b. The (other sheets are

called external sheets. Note that a floater that intersects

I(b) is an internal floater if and only if it lies entirely in

I(b), otherwise it is one or more external sheets.

Clearly any sheet is incident upon a single connected

component of P n l(b) since the sheet itself is connected.

Thus, the remaining task is to determine which sheets

are connected to each other in P (1 I(b).

215

Figure 3: Determining the components of a box. Sweep-

ing the boundary determines two components, and fol-

lowing tethers determines that all internal floaters be-

long to the same component.

For external sheets, the following algorithm exactly

determines how they are connected. We consider the

intersection of each sheet with the boundary of I(b)

(the surface of a cube). This intersection is a collection

of disjoint simple polygons. We form the list of poly-

gons for all sheets. We call these polygons the “rims.”

Note that these polygons break across edges of the cube.

We then sweep over the boundary of I(b) by the sum

of x, y, z coordinates, forming a tree indicating which

rim polygons are contained in others in O(n log n) time.

From the sweep we can build a rooted tree indicating

the cent ainment hierarchy among the polygons. The

reader unfamiliar with point-in-polygon tests and plane

sweeps should consult Edelsbrunner [1987] or Preparata

and Shames [1985].

Thus, from an O(n log n) procedure we can determine

exactly which external sheets are in the same compo-

nents of P n l(b). This leaves the problem of determin-

ing the component of P n I(b) for an internal floater C.

This is determined from the tether (v, v’) of C. If the

head v’ is inside l(b), then the floater lies in the same

component as the facet containing v’ (because the entire

tether is in P). This facet might be a facet of another

internal float er, but because the t et hers form an acyclic

graph, eventually we will reach a point v’ on an external

sheet. See Figure 3.

The other case is that the tether’s head v’ lies out-

side I(b). In this case we find the point v“ where the

tether intersects the surface of I(b). If we knew where

in the polygon tree v“ lay, then we could determine the

component containing v“ (which is the same component

containing the floater). The polygon regions containing

v“ are easily determined if, before starting the polygon

containment sweep, we first insert v“ into the list of

polygons ss a singleton polygon. This should be done

for all tethers. This does not change the running time

bound of O(n log n).

Thus, in time O(n log n) we can determine all the

components of P n I(b). Moreover, it is easy to see that

the rims allow us to determine which neighboring boxes

are adjacent to a given duplicate box.

Finally, we need to determine the facets adjacent to

P A ex(b) for testing crowdedness. This is done by run-

ning the component-determination algorithm on ex(b),

and then saving the component of Pn I(ex(b)) that con-

tains a point in P A b. This also allows us to determine

which neighboring boxes are balance-adjacent to b.

We now consider the running time of constructing the

octree. We believe that our current running time analy-

sis is suboptimal, so we omit some of the details. First,

there is a slight addition to the algorithm as described

so far that gives us a better bound. If a box with ver-

tex v is vertex crowded, in time linear in the number of

P faces in the extended box, we determine the closest

face to v that is not a superface of v, and immediately

split the box down to a size smaller than this distance.

Similarly if the box is edge or facet crowded.

This allows us to claim that the total number of boxes

constructed by the octree algorithm is bounded by a

constant multiple of the number of leaf boxes that con-

tain a point of P. From the warping and triangulat-

ing rules to follow, each such leaf box leads to at least

one tetrahedron. In particular, the number of such leaf

boxes is bounded by 7, the size of the output. Finally,

the total amount of time spent on each box is at most

n log n, where n is the number of faces of the polyhe-

dral region P. Thus, a bound on the running time is

O(~n log n). Note that this subsumes the 0(n2) prepro-

cessing to find tethers, since -y = Q(n). See Section 8

for more remarks on this bound.

We claim that after the octree algorithm is finished,

we have the following result for relative sizes of boxes.

Theorem 1 Let B be any box of the octree whose em-

bedding contains a point of P, and b an adjacent box.

Then

h(b) z k .a . h(B),

where k is a constant.

The proof of this theorem involves many lemmas and

is contained in the full paper. The general idea is as

follows. If a protected vertex box is adjacent to a box

with an edge, E, then that edge box could be much

smaller than the vertex box. However, if it is much

smaller, this means that there is another face, F, not

containing E, but very close to E as it emerges from the

protected vertex box. But F is in the extended vertex

box, and hence both it and E must be a superface of

the vertex in the protected vertex box. That is, we have

an interior angle defined between E and F. Recalling

that their common vertex is far from the boundary of

the protected vertex box, the edge box is only small

when this interior angle is small. It is surprising that

the result also holds for boxes with facets adjacent to a

216

protected vertex box. The proof for that case requires

extensive analysis and appears in the full paper.

3 Warping box faces

Warping consists of moving box vertices. We warp the

faces of a box away from P faces to achieve good aspect

ratio when we triangulate. It is only necessary to warp

box faces that are close to P faces, where the definition

of “close” is below. Note that P vertices are already

guaranteed to be well separated from box faces because

of the special reorganization at the end of the vertex

phase. Thus, we only need to warp for P edges and P

faces.

The warping is done in two passes. The first warping

pass is for box edges close to P edges. We say that a box

edge E is close to a P edge F if the distance from E to

F is less than h/8. Here, his the size of the smallest box

sharing the box edge E. Note that the boxes containing

E are all edge-protected, since they are all adjacent to

a box containing F. This means that the sizes of these

boxes are all within a factor of two from each other.

For every close edge E, we move it away from F as

follows. We move every point on the edge, including

the endpoints, by distance h/8 in the direction that is

orthogonal to E and F, oriented away from F. (If E

and F happen to be parallel, we move the points of E

in the direction orthogonal to E and coplanar with F.)

Even though the boxes after warping have compli-

cated shapes, we still let the “size” of a box b be its

prewarped edge length, and we continue to use nota-

tion h(b) for this size.

The second warping pass is for box vertices close to P

facets. We say that a box vertex v is close to a P facet

F if the distance between them is at most h/16, where

h is the size of the smallest box containing v. For such

a vertex, we move it distance h/16 away from the facet

in the direction orthogonal to the facet.

An unfortunate consequence of moving box vertices

is that for some box facets, the vertices of the facet are

no longer coplanar. This inconsistency is removed when

we triangulate box facets in the following section.

4 Two dimensional triangula-

tion

After warping, we triangulate facets of boxes. This is a

preliminary step to the three dimensional triangulation

algorithm of the next section. Suppose two boxes b, V

are adjacent, and suppose their intersection is a facet

S. If we assume that h(b) > h(b’), then S is a facet of

b’. Under these circumstances, we always triangulate S

by considering it a facet of b’, not b. (If b, b’ are the

same size, we break ties arbitrarily). This means that

we can always assume that when triangulating a square

S, there is no box vertex in the interior of S. There are

four box vertices at the corners of S, and there maybe

additional box vertices at points along edges of S.

Note that a protected vertex box (after the centering

step described in the full paper) is always adjacent to

boxes the same size or smaller. This means that, with-

out loss of generality, we do not have to triangulate and

warp facets of a protected vertex box; instead we can

triangulate and warp the facets of the boxes adjacent to

it as in the last paragraph.

We now describe the triangulation of a box facet S.

Note that after warping, the points of S are not neces-

sarily coplanar, although the points are nearly coplanar

because the warping distances are small.

The triangulation of a box facet S breaks down into

four cases, and cases C and D have two subcases. The

cases depend on which P faces pass through the facet.

Note that we only have to triangulate the portion of S

interior to P, which we call m. Note that T is bounded

by a closed path of line segments. We can think of n

as a ‘(perturbed polygon” (since the vertices are nearly

coplanar). The six sub cases are illustrated in Figure 4;

the regions ir are shaded. Each vertex of m is the inter-

section of a P edge with a box facet, or tlhe intersection

of a P facet with a box edge, or a box vertex.

Case A, no P faces pass through the Jzcet S. In this

case, we put in a new point v at the center of the pre-

warped box facet, and we connect v to every segment

along the boundary of S.

Case B, two P facets F, G and thetr common edge E

pass through facet S. Let v be the ir vertex where E

passes through the prewarped version of facet S. Then

we connect v to all segments on the boundary of n,

triangulating 7r.

Case C, one P facet F passes through (two edges of)

the facet S. Let x, y be the two points where F passes

through two edges of S, and let v be the midpoint of

x, y. Let c be the center of S (before warping). Let h

be the edge length of S (before warping).

Subcase Cl, v is within h/4 of c. Then we connect v

to every segment along the boundary of ;?. This divides

the region into triangles.

Subcase C2, v is further than h/4 from c. Then

we connect c to every segment along the boundary of

m. This divides polygonal region m into triangles and

quadrilaterals. Then we insert a diagonal (arbitrarily)

into each quadrilateral, triangulating m.

Case D, two P facets F, G pass through facet S, but

no P edge. Let x, y and x’, y’ be points where F, G

respectively cross through the boundary of S. Let v, v’

be the midpoints of these segments. Let c be the center

of S (before warping). Let h be the edge length of S

(before warping).

Figure 4: The six cases for triangulating a box facet.

Subcase Dl, v or v’ is within h/4 of c. Say v is within

h/4 of c. Then we connect v to every segment along the

boundary of r. This divides r into triangles.

Subcase D2, v and v’ are both further than h/4 from c.

Then we connect c to every segment along the boundary

of ~. This divides ~ into triangles and quadrilaterals.

Then we insert a diagonal (arbitrarily) into each quadri-

lateral, triangulating T.

In the full paper, a case analysis of the smallest pos-

sible distance between r vertices and an analysis of the

angles at v or c subtended by an edge of ir results in the

following theorem.

Theorem 2 Let B be a box. For any triangle T on a

facet of B, let r be the radius of the largest inscribed

circle. Then r > k . CY. h(B), where k is a constant.

General results have been obtained for two-

dimensional triangulations with guaranteed inscribed-

circle radius bounds. Bern, Edelsbrunner, Eppstein,

Mitchell, and Tan [1991] have a result concerning opti-

mal two-dimensional triangulation of polygons, assum-

ing new points cannot be introduced. Bern, Dobkin, and

Eppstein [1991] have similar results in the case that new

points can be introduced. We have not been able to in-

corporate these algorithms in the present version of our

triangulation algorithm because we need to introduce

new points, but the new points have to be introduced

in a carefully controlled fashion.

5 Three dimensional triangula-

tion

We now describe how to form tetrahedral from the trian-

gles in the last section. We triangulate on a box by box

basis. The details of how we triangulate depends on a

case analysis of what is contained in a box, and how it

intersects the box. However, the general principle is to

find a central vertex, and then form one tetrahedron or

prism for each triangle in the box by taking the convex

hull of this vertex and the triangle. The organization

of the argument is very similar to the two-dimensional

triangulation in the last section. We cover two of the

possible cases here; all the cases are enumerated in the

full paper.

Vertex box tetrahedral. For a box b containing a

vertex of P, the three-dimensional triangulation is par-

ticularly easy. We take as the central vertex v the P

vertex itself. For each of the triangles of ir on the sur-

face of b, we form a tetrahedron by taking its convex

hull with v.

Facet box tetrahedral. Consider a box b containing

one P facet F. We introduce a central vertex v at the

centroid of the prewarped box. If v is within distance

h(b)/4 to F, then we move v to the closest point of F

to v.

We now have three cases. The first case is if v lies

in the interior of P, but not on F. For each m triangle

on the boundary of the box we form a tetrahedron by

taking its convex hull with v. We also triangulate the

polygonal region of F fl (PA b) and form a tetrahedron

for each triangle of F fl (P A b) by taking its convex hull

with v. This polygonal region is nearly convex (it would

be convex if the triangles on each the surface of the box

were coplanar). To form a triangulation of F fl (PA b),

we make a new vertex centrally located in the region

and take its convex hull with each edge of the region, as

in Case A of the two dimensional triangulation.

The second case is that v lies on F. We take the

central vertex v, and proceed as if it were a vertex of

P. That is, for each n triangle of I(b), we generate a

tetrahedron by taking the convex hull of it and v.

The third case is if v lies outside of P. For each r

triangle of I(b) we form a tetrahedron by taking the

convex hull of it with v. These tetrahedral are clipped

by F into “prisms” with nonparallel sides, and a trian-

gular top and bottom. Zero, one or two of the vertices

of the top may also be vertices of the bottom. If two

vertices are shared, then a prism is a tetrahedron. If

one vertex is shared, a prism is split into two tetrahe-

dral by introducing a facet between the shared vertex,

and one distinct vertex of the top and one distinct ver-

tex of the bottom. If no vertices are shared between the

top and bottom, a prism is split into three tetrahedral by

introducing two facets. One facet is between two of the

top vertices and the opposite bottom vertex. The other

facet is between the opposite bottom vertex, one of the

other bottom vertices, and the opposite top vertex.

218

6 Aspect ratio of tetrahedral

Our triangulation is optimal in two respects. First, the

maximum aspect ratio among tetrahedral of our trian-

gulation is optimal up to a constant multiple. Second,

compared to all other triangulations of fixed aspect ra-

tio, our triangulation has the minimum number of tetra-

hedral up to a constant multiple. In this section we

establish the first optimality property, focusing on the

optimality of the aspect ratio.

Recall that the tetrahedra we form are either the con-

vex hull of a central vertex and a triangle on the surface

of a box or a facet of P, or else a portion of a prism. We

now want to argue about the aspect ratio of all tetra-

hedral arising in the algorithm of the previous section.

There are three types of tetrahedral arising in the tri-

angulation. A Type A tetrahedron has one vertex v

centrally located in the box, and the other vertices on a

box face. This type of tetrahedron arises in the cases of

triangulating a box with a vertex, a box with an edge,

or a box with a facet in which the vertex v in the last

section lies near the center of the box, is in P, and is

not close to the second facet (if the box has two facets).

Also some of the tetrahedral arising from the case of two

facets in a box and v on one of the facets are of this

type.

A Type B tetrahedron arises only in the two-facet case

described in the full paper.

A Type C tetrahedron arises from a vertex v in the last

section outside P. This happens only with boxes with

one or two facets and no edges. W@ causes P A b to be

divided into prisms, and then each pri

x

is divided into

tetrahedra. These tetrahedral arise in c es analogous

to triangles in cases C2 and D2 in Figure 4.

Intuitively, all three types of tetrahedral have aspect

ratio at most I/a, because they involve a base (the

base being a triangle) whose inscribed radius is between

ICIcxh(b) and k2h(b), and the apex is well-centered over

the base, and is distance between k3cxh(b) and k~h(b)

from the base. Here, kl, k~ are constants.

The aspect ratio computations are very technical and

involved. In the full paper we prove aspect ratio bounds

for all types of tetrahedral by constructing an inscribed

and a cent aining sphere. These proofs are omitted here.

The containing sphere haa radius no more than the box

size, and the inscribed sphere has radius at least a con-

st ant times the size of an adjacent box.

Hence the result is that we can prove a theorem show-

ing that the aspect ratio of any tetrahedron in our tri-

angulation is bounded by a constant multipled by the

ratio between h(b) and h(b’), where b, b’ are adjacent

boxes. We already know from Theorem 1 that this ra-

tio is bounded above by k/ci.

We can also show that any triangulation of P must

have a tetrahedron of aspect ratio at least k/a by

considering the tetrahedron that must fit “inside” the

sharpest interior angle of P. The details are in the full

paper.

Let T be a three dimensional triangulatic,n. Let A(T)

be its aspect ratio, defined to be be the maximum over

all tetrahedron t E T, of the aspect ratio of t.We may

now state the theorem concerning the optimality of the

aspect ratio of our triangulation of P.

Theorem 3 (Aspect ratio optimality)

A(AOc~) < kA(A*)

where k is a true constant, independent of P and a,

and AOcT is the triangulation of P arzsing from our

algorithm, and A* is any other triangulati(~n of P.

7 Optimality
of ~OCT

In this section we prove

of the car(dinality

that the number c)f tetrahedral

in our triangulation is no more than a constant factor

larger than any other triangulation with a bounded as-

pect ratio. The reasoning in this section is as follows.

We first prove that any triangulation with bounded as-

pect ratio, which we denote A*, has certain geometric

properties concerning how fast the sizes of the tetrahe-

dral can change. We use these geometric properties to

derive upper bounds on how large the tetrahedral of A*

can be in terms of the boxes of our octree. We also give

lower bounds on how small the tetrahedral of our trian-

gulation A°CT can be compared to the size of boxes in

our octree. Comparing these two sets of bounds shows

that our triangulation is within a constant factor of op-

timal.

Conformal. Any triangulation AT of P, including

our triangulation, that we consider in this paper must be

conformai to P. This means that the following condition

must hold. Let x be a point on a P face F. Let F’ be

the lowest dimensional face of bT cent aining x. Then

F“ c F.

Characteristic length function. We define fT :

P + JR to be the characteristic length junctzon of a

triangulation AT. This function is defined as follows. If

z is a point of P, then we define ~T (z) to be the longest

edge among all tetrahedral that contain x.

Aspect ratio bound. We let A denote the maxi-

mum aspect ratio of all tetrahedral of A*. In rest of this

section there will be many constant factorfi that depend

on A, usually denoted c1, C2,

The following is one of many lemmas that we prove

in the full paper relating aspect ratio to how the char-

acteristic length function of A* may change over P.

219

L&7
Figure 5: An illustration of case 2. in Theorem 4.

Lemma 1 Given a bounded aspect ratio triangulation

A*, two points x, y, and any two faces F, G containing

X, Y respectively, dejine H = FnG. If H # 0, then there

exists a constant c1 depending on A such that f* (x) >

c1 . f*(y).

Geodesic distance. We let distp (F, G) denote the

geodesic distance in P between two closed subsets F, G

of P. In other words, this is the length of the shortest

path in P between a point of F and a point of G. This

distance is always at least as great as the Euclidean

distance.

We now state the following theorem about the

geodesic distance between points on faces in a triangula-

tion. The theorem has two cases, depending on whether

the faces have a common point or not. See Figure 5.

Theorem 4 Let F, G be two faces of A*. Let H =

F n G. Let z, g be two points such that x E F, y E G.

Then there ezist constants C2 and C3 depending on A,

such that

I. If H # 0 and distp(~, H) > t, then dist~(z, Y) 2

Czt.

2. If H = fJ, then distp(x, y) ~ c3f*(iz).

Combining the previous theorem and lemma shows the

following.

Theorem 5 For a triangulation A“ with aspect ratio

bound A, there exist constants C4 and C5 dependent on

A such that for all x, y E P,

fx(%) S max(c~ . fx(v), C5 . dist~(z, y)).

An observation about our triangulation lloc~ is that

the characteristic length function at a point in a box is

always bounded below by a constant multiple of the size

of an adj scent box. Thus from Theorem 1 and Theorem

3, we have that the characteristic length function at a

point in our triangulation is always at least the size of

the box containing that point times a constant multiple

depending on A.

We can prove that any triangulation A* with aspect

ratio bounded by A has its characteristic length function

bounded above by a constant multiple of the box sizes

in our octree, where this constant depends on A. We

first note that if a box b containing a point x on a P face

F was split to a certain size, then we may find another

P face G that does not contain F, and a point y E G

such that distp(~, y)<6@(b).

Consider a vertex z of P. We may apply Theorem 4

Case 2 to the P faces F and G of the last paragraph

(F is z, and G is disjoint from F) to show that f.(z)

is at most a constant factor larger than the size of the

box containing x. As in Theorem 4, this constant factor

depends on A. From Theorem 4 and Lemma 1 we can

show that this result also holds for an arbitrary point

in a protected vertex box.

For a point x on a P edge F, we use a similar argu-

ment. We find a distinct P face G and y c G as in the

vertex case. By conformality, there are two faces of A*

contained in the two faces F and G of P, respectively,

that contain our points x and y. We use Theorem 5 and

Theorem 4 applied to these triangulation faces, and the

fact that we have proved the result for P vertices, to

conclude that f* (c) is at most a constant factor larger

than the size of the box cent aining x. Again this con-

stant factor depends on A. The result generalizes to an

arbitrary point of P in a protected edge box. Similar ar-

guments prove the result for points in a protected facet

box, and finally for an unprotected box (containing no

P faces). The full proof appears in the full paper.

Thus, we show that the tetrahedral in AOcT are never

more than a constant factor smaller than those in A*.

A straightforward volume counting argument then gives

the following result.

Theorem 6 For all polytopes P and constants A, there

exists a constant c“, dependent only on A and a, such

that

lA°CT I < C“l A* 1,

where IA* [denotes the number of tetrahedral of A“ and

similarly for I AOcT 1.

8 Conclusions

An important open question is the running time. We

demonstrated a running time bound of 0(-yn log n) for

our algorithm, which is inferior to Bern, Epstein and

Gilbert’s running time of O(n log n + -y) for two dimen-

sional regions. However, we have recently found out

by private communication with those authors that this

bound does not actually hold for the algorithm that

they propose for two-dimensional nonconvex polygons.

Therefore, it is not clear what is the best possible run-

ning time for triangulation of nonconvex polyhedral re-

gions in either two or three dimensions.

It would be interesting to generalize our algorithm

to work for higher dimensional regions. Also, the non-

220

degeneracy conditions on the input region could be re-

laxed.

Another open question concerns optimizing the tetra-

hedral for properties other than aspect ratio. For ex-

ample, is there an algorithm for triangulating a three-

dimensional nonconvex polyhedral region to maximize

inscribed sphere radius of the tetrahedral?

Finally, we have plans to implement this algorithm.

The two-dimensional analog of this algorithm has been

implemented by the first author in C++.

Acknowledgement

Thanks to Paul Chew of Cornell for discussing various

triangulations with us. Thanks to Marshall Bern, David

Eppstein and John Gilbert of Xerox for help with their

earlier work. Thanks to Joe Mitchell of Cornell for help-

ing with the plane sweep algorithm.

References

I. Babuika and A. K. Aziz [1976], On the angle condition

in the finite element method, SIAM J. Num. Anal.

13:214-226.

M. Bern, D. Dobkin, and D. Eppstein [1991], Triangu-

lating polygons without large angles, preprint.

M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and

T. S. Tan [1991], Edge-insertion for optimal trian-

gulations, preprint,

M. Bern, D. Eppstein, J. Gilbert [1990] Provably Good

Mesh Generation, Xerox Palo Alto Research Cen-

ter. Also, Proc. 1990 Symposium on Foundations

of Computer Science.

M. Bern and D. Eppstein [1991], Mesh Generation and

Optimal Triangulation, preprint.

G. Carey, M. Sharna, and K. Wang [1988], A Class of

Data Structures for 2-D and 3-D adaptive mesh re-

finement, Int. J. Numer. Meth. in Engr. 26:2607-

2622.

B. Chazelle, L. Palios [1989], Triangulating a Nonconvex

Polytope, Proc. 5th ACM Symposium on Compu-

tational Geometry. 393-399.

L. P. Chew [1989a], Constrained Delaunay Triangula-

tion, Algorithmic 4:97–108.

L. P. Chew [1989b], Guaranteed-Quality Triangular

Meshes, C. S. Cornell, TR 89-983,

H. Edelsbrunner [1987], Algorithms in combinatorial ge-

ometry, Springer Verlag, Berlin.

J. Hauser and C. Taylor [1986], Numerical Grid Gener-

ation in Computational Fluid Dynamtcs (Proceed-

ings), Pineridge Press, Swansea, U.K.

G. L. Miller, S.-H. Teng, and S. A. Vavasis [1991], A

Unified Geometric Approach to Graph Separators,

Proc. 32nd Symp. Foundations of Comp. Sci.

G. L. Miller and W. Thurston [1990], Separators in Two

and Three Dimensions, Proc. 22nd Symp. on The-

ory of Computing, 300–309.

G. L. Miller and S. A. Vavasis [1990], Density Graphs

w.

w.

and Separators, Department of Colmputer Sci-

ence, Cornell, Tech Report 90-1169, and to appear,

Symposium on Discrete Algorithms.

F. Mitchell [1987], A Comparison of Adap-

tive Refinement Techniques for Ellliptic Prob-

lems, Department of Computer Science, Univer-

sity of Illinois at Urbana-Champaign, Report No.

UIUCDCS-R-87-1375.

1?. Mitchell [1988], Unified Multilevel Adaptive

Finite Element Methods for Elliptic Problems,

Department of Computer Science, University

of Illinois at Urbana-Champaign, Report No.

UIUCDCS-R-88-1446.

D. Moore, J. Warren [1990], Multidimensional Adap-

tive Mesh Generation, Department o,f Computer

Science, Rice University, Rice COMP TR 90-106.

F. Preparata and M. Shames [1985], Computational Ge-

ometry: An Introduction, Springer Verlag, New

York.

