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Medial Axis Transformation of a Planar ’Shape-

D. T. LEE, MEMBER, 1EEE

Abstract—The medial axis transformation is a means first proposed by
Blum to describe a shape. In this paper we present a 0(x'log n) algo-
rithm for computing the medial axis of a planar shape represented by
an n-edge simple polygon. The algorithm is an improvement over most
previously known results in terms of both efficiency and exactness and
has been implemented in Fortran. Some computer-plotted output of
the program are also shown in the paper.

" Index Terms—Analysis of algorithm, computational complexity, con-
tinuous skeleton, divide-and-conquer, medical axis transformation, sim-
ple polygon, Voronoi diagram.

I. INTRODUCTION

HE MEDIAL axis transformation is a technique first pro-

posed by Blum {2] as a means to describe a figure. It is
formally defined as follows: given an object represented, say
by a simple polygon G, the medial axis M(G) is the set of
points {q} internal to G such that there are at least two points
on the object’s boundary that are equidistant from {g} and are
closest to {g}. Because of its shape, the medial axis of a figure
is also called the skeleton or the symmetric axis of the figure.
Associated with the medial axis is a radius function R, which
defines for each point on the axis its distance to the boundary
of the cbject. With the axis and the radius function one can
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The author is with the Department of Electrical Engineering and
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reconstruct the figure by taking the union of all circles cen-
tered on the points comprising the axis, each with a radius
given by the radius function.

Since the introduction of the notion of medial axis, there
has been a great deal of work involving the computation of the
medial axis reported [1], [3], [4]-[8]}, [10]-[13]. Most of
the previously known results take time proportional to n?
where n is the number of boundary edges of the figure. Re-
cently, Lee and Drysdale [8] and Kirkpatrick [7] have pre-
sented a general algorithm for finding continuous skeletons of
a set of disjoint objects. Lee-Drysdale’s algorithm runs in
O(n log® n) time whereas Kirkpatrick’s runs in O(n log 1) time.
The 0(n log 1) time algorithm by Kirkpatrick [7] is asymptoti-
cally optimal but is very tedious to implement. In this paper
we shall give an algorithm which is simpler to implement and
computes the medial axis of a simple polygon in O(n log n)
time. The output of the algorithm would be precisely the
medial axis of the polygon if the computer had arithmetic
with infinite precision. The computer-plotted diagrams shown
in the paper are exact to within the precision of the computer
used. The medial axis of a simple polygon is a tree-like planar
graph composed of straight-line segments and portions of para-
bolic curves. Before we give the description of the algorithm
in the next section we shall introduce a few definitions and
present some preliminary results.

Definition 1: A closed line segment a, b consists of two end-
points @ and b, and a straight-line portion which is denoted by

0162-8828/82/0700-0363500.75 © 1982 [EEE
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(a, b) and referred to as an open segment or briefly a segment.
Points or segments are called elements. The straight line con-
taining 7, b is denoted by a, b .

Definition 2: The projection p(q,a,b) of a point g onto a
closed segment g, b is the intersection of the line a, b and the
line perpendicular to a, b and passing through q.

" Definition 3: The distance d(q, a, b) between a point ¢ and
a closed segment @, b in the Euclidean metric is the distance
“d(g,x), x =p(q, a, b), between g and its projection onto a,b

if x belongs to a,b and is MIN(d(q,a), d(q, b)) otherwise,

where d(g, r) denotes the Euclidean distance between points
q and r. The point of a, b which is closest to ¢ is called the
image I(q, a, b) of g on a,b.

Definition 4: The bisector B(e;, ¢;) of two elements ¢; and
e; is the locus of points equidistant from e; and ¢;. The bisec-
tor B(X, Y) of two sets of elements X and Y is defined to be
the locus of points equidistant from X and Y, where the dis-
tance d(g, X) of a point g and a set of elements X is defined

to be MIN.c yx d(q,e), ie., B(X,Y)={q|miN.cx d(q,e)=
MIN < y d(q, ¢)}. The bisector B(e;, ;) is said to be oriented if

_a direction is imposed upon it so that element e; and e; lie to
the left and to the right of it, respectively. An oriented bisec-
tor B(X, Y) is defined similarly.

For example, in Fig. 1 the bisector B(q,a, b) of a point g
and a closed segment a, b has three components, i.e., B(q,a),
B(q,'b), and a portion of the parabola whose focus and direc-
trix are the point ¢ and the line a,b, respectively. Fig. 2
shows the bisector B(a, b, ¢,d) of two closed segments a,b
and ¢, d, where one of the components is a portion of the
angular bisector of the angle formed by the lines ﬁ and ‘c‘,?i
Note that the bisector B(a, a, b), instead of being a parabola,
is a line perpendicular to a, b and passing through a.

Definition 5. Given two elements e; and ¢;, the half-plane
associated with e; denoted h(e;, e;), is the locus of points
closer to e; than to ¢j, i.e., h(e;, ¢;) = {x|d(x, e;) <d(x, €)}.

Definition 6: Given n elements, e, e,, ", €,, the Voronoi
polygon associated with e;, denoted V{(e;), is the locus of
points closer to e; than to any other element, ie., Vie;) =
Nj=i ke, €). The boundary edges of V(e;) are not necessar-
ily straight-line segment and are called Voronoi edges and the
vertices of V(e;) are called Voronoi points. The collection of
the Voronoi polygons associated with each of the n elements
is called the Voronoi diagram vop(S) of S ={e;,ep," "~ Jent.

Definition 7: A simple polygon G of n vertices, denoted
G=(qo, 41, " »dn-1)s is a sequence of n points such that
q:9:+, is a closed segment fori=0,1,---,n- 1, called an
“edge, and no two nonconsecutive edges intersect.! In other
words, a simple polygon G is a closed plane figure composed
of straight-line edges and divides the plane into two regions,
interior and exterior.

Definition 8: Given a simple polygon G = (Go,q1," ">
Gn-1), @ vertex g; is called convex if the internal angle at g; is
less than 7 and is called reflex otherwise. We assume without
loss of generality that no internal angle has a measure 7, ie.,
no three consecutive vertices are collinear.

Definition 9: Given a simple polygon G = Go, 41, "

ITndex additions and subtractions are taken modulo n.
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e~ K-y €k -, such that the vertices g; and g are conve

B((a,b), (c,d)) B(b, (c,4))

B(c, (a,b))
B(a,c) angular bisector

(c,d)

Fig. 1. Bisector of a/ point and a closed segment.

(a,b)
a
) )/-parabrola

B(q, (a,b))

b

B(q,a)

Fig. 2. Bisector of two closed segments.

qn-1), let e; denote the segment (q;, @;+1), fori=0,1,:
n- 1. A chain of G is a sequence of elements ¢j, gj.y,¢€.4

and gj.y, """, Gi -y AT€ reflex. ‘

Note that if G is a convex polygon, i.e., every vertex of G iig
convex, then each segment e; by itself forms a chain. Suppos:
now that G has m reflex vertices, q; , qi,, " * * > iy, In the fol:
lowing we shall represent G by (e; _q, qi,, €, "> €i,-1: i
€t iy — 1o Qigyr Cip " ,851_2) which is a sequence of
segments interspersed with m reflex vertices. For convenienc
we further assume that go is convex and ¢q; is reflex if any?
exists, so that G can be written as G = (€9, q1,€1," " "> €n-1
Since in the case of convex polygons the medial axes canb
obtained in Oz log n) time using an algorithm’ given by Pre
arata [13], we shall consider the case when the given poly)go
is not convex. The algorithm presented here is certainly appli-y
cable to convex polygons. Consider now the set of m reflex §
vertices and n edges S ={e; -y, qi» €7 s €i-1> iy ©
iy 15 digg Cigp ,en-1}. The Voronoi diagra
vop(S) will partition the interior (and exterior) of G in
m +n Voronoi polygons, each associated with an element in .3
Fig. 3 shows the Voronoi diagram of a simple polygon (re- 9
stricted only to the interior of the polygon hereafter). Inter:
estingly enough the medial axis of a polygon is totally con-§
tained in the set of Voronoi edges of the polygon. Since the
definition of the medial axis requires that the circles centere'd"i
at points on the axis with radii specified by the radius function 4
be tangent to at least two boundary points of G, we can obtain}
the medial axis by removing the two Voronoi edges incident }
with each reflex vertex. Fig. 4 shows the medial axis of the,
polygon shown in Fig. 3.

We give below some properties of the Voronoi diagram Of‘,‘}
polygon G. Detailed proofs can be found in [8]. ‘ »

Lemma I: Let e; be a segment or a reflex vertex of G. For§
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%.1: MEDIAL AXIS TRANSFORMATION

Fig. 4. Medial axis of a simple polygon.

any point z in V(e;), the line segment z, ¢, where ¢ is the image
of z on e;, is entirely contained in V{(e;) [see Fig. 5(a)].
“Corollary 1: Each Voronoi polygon V{e,) is path-connected,
ie., for any two points u and v in V(e;), there exists a path
connecting v and v that is totally contained in V{e;).

- Proof: Letiand v'hgthe images of u and v on e;, respec-
tively. Since uu' and vv' lie completely in V(e;), the path
u,u', v'; v, connecting u and v lies in V(e;). Note that if e; is a
reflex vertex, u' =v' =¢; and that if e; is an edge, then line seg-
ment u', v' is contained in e;. a
“The lemma implies that if we move a point z along the
§ boundary Voronoi edges of V(e;) in a counterclockwise (clock-
| Wise) direction, then the image I(z, ¢;) also moves in the same
direction along e;. If e; is a vertex, then e; itself is the image
1z, ¢;) for all z € V(e,).

: Lemma 2: The Voronoi polygons V(e;) and V{e;) share an
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(b)

Fig. 5. Illustration of Lemmas 1 and 2.

edge if and only if there exists a point z such that the circle
centered at z with radius d(z, e;) =d(z, e;) does not include
any boundary point of G in its interior [see Fig. 5(b)].
Corollary 2: Let z be any point on a Voronoi edge B(ei? ej)
of V(e;). The circle centered at z with radius d(z, I(z, e;)) is
tangent to elements e; and e; at points I(z, e;) and I(z, €;).
Since for z € Ble;, €)), 1(z, e;) and I(z, ;) are identical only
when e; is an endpoint of e; or vice versa, we can obtain the
medial axis of G by removing those Voronoi edges Be;, €;)
where ¢; is an endpoint of ¢; or vice versa. Thus, we have the
following. .
Corollary 3: The medial axis of G is the set of Voronoi
edges less the edges incident with reflex vertices. '
Lemma 3: The Voronoi diagram of a simple polygon with
n edges and m reflex vertices is planar and has at most 2(n +
m) - 3 Voronoi edges and n +m - 2 Voronoi points.
Proof- The planarity follows from the fact that each Voro-
noi polygon is path-connected and the numbers of Voronoi
edges and Voronoi points can be obtained by Euler’s formula.

"1I. THE ALGORITHM

We shall now describe the algorithm for constructing the
Voronoi diagram of a simple polygon. As before we assume
that G is represented by a list of N =n +m elements e,, e;,
-+, ey where n is the number of edges and m the number of
reflex vertices. The algorithm to be described is based on the
divide-and-conquer technique. ' That is, we shall divide G into
two lists Gy = (eq. e, e nj2)) and Gy = (€| nj2) 415" " »
ex) and recursively construct the Voronoi diagrams vop(G)
and von(G,). Then we merge von(G,) and vop(G, ) to form
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the diagram vop(G). As we shall see later, since the merge
process takes O(V) time, the overall running time is OV log NV).
Because we are interested in only the portion of the diagram
that is internal to G, we shall restrict our discussion to the in-
terior of G. To distinguish the interior of G from the exterior
we shall assume that G is traversed in a counterclockwise direc-
tion so that the interior of G always lies to the left. Further-
more, when we say the Voronoi diagram of a list of elements,
we mean the portion that is to the left of the list of elements.
Fig. 6(2) and (b) illustrate the Voronoi diagrams of G = (€1,
€y, ,€10) and of Gy =(ey1, €12, " " * »€21) Where (ey,€2,
.+, ey) =G is a polygon shown in Fig. 3. For implementa-
tion purposes we instead partition the list of elements of G
into chains Cy, C3,* ", Ch (cf. Definition 9) and apply the
divide-and-conquer technique to S = {Cy,Cq," " ,Cn}t. The
reason for it is that the Voronoi diagram of a chain can be
computed straightforwardly in time proportional to the num-
ber of elements in the chain, and yet the running time of the
modified algorithm remains the same, i.e., OV log N). Refer-
ring to Fig. 6(a), we can partition G, into 4 chains, ie., Cy =
e1, Cy=ey,C3=¢e;3 and C; =€4,€5," " " s€10- The Voronoi
diagram of Cj4 consists of six (6) Voronoi edges B(eas, es),

Bes, es), B(es, €7), Blea, es), Bles, ), and Bes, €10)-
Note that these Voronoi edges involve two elements one of
which is an endpoint of the other. To be consistent with the
implementation we shall'describe the algorithm using the latter
approach, i.e., we first partition & into a set §={C,Cy,"" ",
Cp} of chains, recursively construct von(S;) and voDn(S, ),
where Sl = {Cl,Cz, e ’Clh/“} and S2 = {Cl”'/'l-’l 1
C,} and then merge von(S,) and voD(S,) together to form
-~ vobp(S).

Let us now assume that vop(S;) and voD(S, ) are available
and describe how these two diagrams can be merged in O(V)
time. Suppose that §; contains the elements e;,€5, """ ,€j
and S, contains €j,;, €j+2," " »EN> where e, and e¢; are, re-
spectively, the first and last elements of C; and Cypypy and
ej,y and ey are, respectively, the first and last elements of
Cinj2y+1 and Cu. To merge vop(S;) and voD(S,) we need
to construct the merge curve M which is the bisector B(S:,S2)
of two sets of S; and S, of elements. Since ¢; and €j.4, share
a vertex ¢ which is convex, the bisector Blej, ej) which is an
angle bisector is a component bisector of M and will be our
starting bisector. Similarly, the vertex shared by e, and ey is
convex and the angle bisector B(ey, en ) which is also a com-
ponent bisector of M will be our terminating bisector, ie.,
when Bleq, ey) is constructed during the merge process, we
know that the merge is completed. The terminating bisector is
easy to identify at the very last phase of merging. During the
recursion, the terminating bisector will be one, say Bleg, e1)
such that both e, and e, are vertices of G and the line / deter-
mined by e; and e, has the property that all the elements in-
volved in the current merge process lie on one side of /. The
merge process will terminate once the stopping condition is
met. With the starting (oriented) bisector Blej, ej. 1) we shall
scan the edges of the Voronoi polygon V{ey) in counterclock-
wise (CCW) direction to find the edge B(e;, es) which inter-
sects Blej, €j+1) and similarly scan the edges of the Voronoi
polygon V(ej,)ina clockwise (CW) direction to find the edge
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Fig. 6. Voronoi diagrams of two lists of elements.

B(ej+,, €;) which intersects Blej, €j.1)- With an additiond
comparison we can determine between the two edges B(ei,es
and B(ej,,, €,) which intersects Blej, ej4y) first. If Blej ¢
intersects B(ej, €j.,) before B(ej 1, 1), then the next bisecto
to consider is B(eg, €j4+ ), otherwise it will be B(ej, e)- T
are broken arbitrarily. In general, in each step there is a triple
Bley,ey), View), Vie,)), ie.,a current bisector and two Voro
noi polygons whose edges are to be tested for intersection wit
the current bisector. The scanning scheme is that for currel
oriented bisector B(e,, e,) we scan the edges of the polygor,
associated with the element e,, to the left of Bley,e,)in a CCW g
direction starting with the last examined edge and scan th
edges of the polygon associated with the element e, to t
right of B(e,,, e,) in a CW direction starting with the last ex8
ined edge. If B(e,, €,) intersects the edge Bley, €;) of Viea)
before the edge B(e,, e;) of V(e,), then the next triplet to cO
sidet is (B(es, ey), V(es), Viey)) otherwise the triplet is (Blew,
e,), Viey), Viep)). If during the scan none of the edges of
V(e,) and of V{e,) intersects B(ey, ey), then Bley, ep) will b3
the last component bisector of M. It can be shown that at thet
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Fig. 7. Merge of two Voronoi diagrams.

me Bley, e,) satisfies the stopping condition. Let us illus-
rate this idea by an example. Consider the example shown in
ig. 7, where Sy ={C, =(1), C; =(2), C3=(3, 4, -+, 11),
w=(12)} and S, ={Cs =(13), C¢ =(14), C; =(15), Cg =
16, 17, 18), Cs =(19, 20, 21)}. von(S,) and vop(S;), are
hown in dotted and dashed lines, respectively. B(12, 13) is
ur starting bisector. We scan the edges of V(12) in CCW di-
ection and find that B(12, 13) intersects B(10, 12).  Simi-
arly we scan the edges of V(13) in a CW direction and find that
(12, 13) intersects B(13, 17). Since B(10, 12) intersects
"B(12, 13) before B(13, 17) does, the next bisector is B(10,
13). Now we scan the edges of ¥(10) in a CCW direction start-
‘ing with the last examined edge B(10, 12) and scan the edges
of V(13) in a CW direction starting with the last examinededge
B(13, 17) to find the edges which intersect B(10, 13). Since
B(9, 10) intersects B(10, 13) before B(13, 14) does, the next
bisector is B(9, 13). The same process is repeated until the
bisector B(6, 20) is reached. Note that when the current bisec-
for B(6, 20) is being constructed, we will scan as before the
-edges of V(6) and V(20) to find which edges intersect B(6, 20).
Since no other edges except B(17,20) of V(20) intersect
B(6, 20), we terminate the merge procedure. All those edges
of vop(S, ) that lie to the right of the oriented bisector B(S,
§8,) are discarded. Similarly the edges of vobp(S,) that lie to
the left of B(S,, S, ) are discarded. In fact, these edges can be
deleted while applying the scanning scheme to construct the
merge curve.

The analysis of the algorithm shows that merging two Voro-
noi diagrams voDp(S; ) and voD(S, ) takes time proportional to
the total number of elements in §; and S,. Therefore, the en-

tire algorithm runs in time O(V log N) where N =n +m. The

proof of the correctness of the algorithm and its running time
tan be found in [8].

[II. IMPLEMENTATION

The algorithm described in Section II has been implemented
I Fortran in a nonrecursive manner. The program takes as
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Fig. 8. Binary mesge tree for compuyting the Voronoi diagram of a sim-
ple polygon.

input a sequence of vertices q,,¢>, " ", qn, €ach represented
by its x- and y-coordinates of a simple polygon and partitions
the set of vertices into h chains Cy,C,, -+, Cy. Then the
Voronoi diagram for each chain, von(Cy), i=1,2,- -, h, is
computed. Next these 4 Voronoi diagrams are merged two at
a time to form vop(Cy U C,), vobp(C3 U Cy), etc., as illus-
trated by the binary merge tree shown in Fig. 8. In Fig. 8, the
leaves are the Voronoi diagrams for chains and the internal.
nodes represent the Voronoi diagrams for the elements in the
corresponding subtrees. Thus, the root of the binary merge
tree will represent the final Voronoi diagram of the-simple
polygon. The height of the merge trée is [log, k] and each in-
ternal node [ represents work for merging of the two Voronoi
diagrams associated with its twa sons and is O(z; + ¢,), where
t; and ¢, denote the numbers of elements in the left and right
subtrees of node /. Thus, the time required for the program is
at most [log, A} * O(V) which is O(NV log V).

To facilitate the computation of the merge curve B(S;,S,)
for some sets S; and S, of elements we make use of the
following.

1) The merge curve B(S;,S,) consists of component bisec-
tors of the form B(e;, ¢;) where ¢; €S, and ¢; €S,. To com-
pute the curve imagine moving a point z along B(e;, ¢;). In or-
der for z to be in Ble;, e;) the projections of z onto e; and ¢;
must belong to e; and e, respectively. That is, if e; is a seg-
ment, then z must be within the region defined by two parallel
lines through endpoints of e; and perpendicular to e; and if e;
is a reflex vertex, then z must be within the wedge defined by
the lines perpendicular to e;_, and to e;,, and by the apex e;.

2) In computing B(S;,S,), where S, ={e; ej.y, ", ¢}
and S, = {€j4, €44, " * *, €k}, we terminate the computation
when the stopping condition is met, i.e., when B(e,,e,) is
reached where e, €S, and e, €5, and all the elements in S,
and §, lic on one side of ¢, e,. It can be shown that this
can only happen when both e, and e, are reflex vertices. Note
that e, can be g; which is an endpoint of ¢; and e, can be
Gy +, which is an endpoint of e.

Figs. 9-11 are the output of the program run under FTN
with pLOT-10.
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1V. CONCLUSION

We have presented a divide-and-conquer algorithm for con-
structing the medial axis of a simple polygon with n edges in
O(n log n) time. The algorithm has been implemented in For-
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Fig. 9. Computer-plotted example 1.

formation about where the closest distance (or clearance
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Fig. 11. Computer-plotted example 111

tran and satisfactory results have been obtained. Whether o
not its time complexity is optimal remains to be an opet
problem. -

As a passing remark; the medial axis not only describes th

figure represented by a simple polygon, but also contains m
)b

tween nonconsecutive vertices and/or edges occurs. It ther®

fore has an application in the design rule checking (clearan
test) of artworks in very large scale integrated (VLSI) circt

design [9].
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Read-

stract—Long-term electrocardiograms exhibit a small number of
morphologies (waveform shapes) whose analysis can reveal cardiac

ces of each in 24-h ECG recordings.

new learning algorithm was developed. Each QRS morphology is
sented as a tree of rule activations, which associate attribute
urements with a rule. Each rule has a syntactic pattern together
‘a semantic procedure which manages and applies the knowledge
d in the activation. A single rule may be activated several times
am different waveform segments. Delineation refinement improves
ypothesized signal interpretation. A simple conflict resolution
nism resolves conflicting interpretations into a single unambigu-
e, Comparisoﬁ of the system with an existing program con-
¢l the promise of the new approach.
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KENNETH P. BIRMAN

I. INTRODUCTION

E BEGIN by summarizing the structure of the paper.

Sections I and II review the problem and then present
our rule-based knowledge representation technique. Interac-
tive secondary analysis strategies are covered in Section III
Section IV presents other contemporary algorithms, and Sec-
tion V compares our work with these alternative approaches.
Section VI presents a simple R-wave recognition program
coded in the SEEK pattern recognition language, which we de-
signed for concise specification of rule-based algorithms. Sec-
tion VII concludes the paper and outlines problems for future
study.

A. The Recorded Electrocardiogram
Each time the heart beats, a QRS waveform is induced on

" the electrocardiogram. Usually, there are three major waves

present: the P-wave, corresponding to the contraction of the
atria (upper chambers of the heart), the R-wave, corresponding
to contraction of the ventricles (lower chambers of the heart),
and the T-wave, corresponding to the repolarization of the
ventricles. The R-wave is said to begin with the Q-point and to
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