Theoretical Computer Science 27 (1983) 241-253 241
North-Holland

FAST DETECTION OF POLYHEDRAL INTERSECTION

David P. DOBKIN*

Electrical Engineering and Computer Science Department, Princeton University, Princeton, NJ
08544, US.A.

David G. KIRKPATRICK

Dcpariment of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada

Abstract. Mcthods are given for unifying and extending previous work on detecting intersections
of suitably preprocessed polyhedra. New upper bounds of O(log n) and Otlog” n) are given on
plane-polyhedron and polyhedron-polyhedron intersection problems.

1. Introduction

A fundamental problem in geometric computing is that of detecting polyhedral
intersections. Versions of this problem lie at the core of such problems as linear
programming [2], hidden surface elimination [9, 10] and computer vision [11].

In a previous paper [1]the detection problem for suitably preprocessed polyhedral
intersections was distinguished from the computation problem and shown to be of
lower complexity. Given two polyhedra, the detection problem asks only for a
witness to the intersection or non-intersection rather than a computation of the
entire intersection. Furthermore, it is allowed to preprocess separately each of the
polyhedra, as long as the preprocessing is independent of any underlying coordinate
system. The witness might consist of a common point in the case of an intersection
or a separating line or plane in the case of no intersection. Because of the
preprocessing and reduced output size, solutions of complexity ¢ log“ n (for fixed
constants ¢ and k) are possible for the detection problem while linear lower bounds
are known on the computation problems [8, 5].

The results of Chazelle and Dobkin [1] are unified and extended here. This is
done by combining the method of dynamically defining convex polyhedra from [4]
and the method of shadowing from [7]. Using this method, convex polygons and
polyhedra are defined through a hierarchy of descriptions each refining previous
definitions. A coarse description of the object is given. Then, at each stage, more
detail is given about a smaller part of the object. In moving from step to step of
the detection algorithm (and level to level of the hierarchy), finer descriptions of

* This research supported in part by the National Science Foundation under Grant MCS81-14207.

0304-3975/83/%$3.00 O 1983, Elsevier Science Publishers B.V. (North-Holland)

242 D. P. Dobkin, D. G. Kirkpatrick

smaller portions of the object are given. These portions are those which are shown
to be relevant to possible intersections if the two objects intersect.

The results of this paper are derived by building from two-dimensional polygons
to three-dimensional polyhedra. As an intermediate step, drums are defined. A
drum is a three-dimensional object of restrict form. In particular, all vertices of a
drum are required to be the vertices of two convex polygons having parallel planes
of support. In our applications, drums are derived {iom consecutive cross-sections
of a polyhedron taken in a fixed direction. Our use of these properties of drums
suggesis that they are in fact 23-dimensional objects and we use them as such. All
cbjects are defined to consist of boundary and interior. Were this not the case,
linear lower bounds would exist (see [1]).

The efficiency of our algorithms is achieved by balancing the complexity of the
intersection calculation against the number of iterations which must be performed
to be certain of completely considering the relevant objects. In the case of two-
dimensional polygons and 23-dimensional drums, O(log n) iterations are performed
each requiring O(1) operations. Three-dimensjonal polyhedra require O(logn)
iterations of the O(log n) operation drum intersection algorithm.

The conclusions include a presentation of some open problems involving higher-

dimensional extensions and some applications of the algorithms to relevant
problems.

2. Detecting two-dimensional intersections

Intersection problems involving two hierarchically described objects are solved
by dynamically growing the objects. The presentation of the two-dimensional case
simplifies that of [1] and sets ideas for the three-dimensional case. A polygonal
boundary is decomposed into two monotone polygonal chains of edges by cutting
at its highest and lowest y coordinates (see Fig. 1).' This yields two sequences of
vertices and edges in order of increasing y-coordinate. By convexity, such chains
will either be left- or right-oriented. Semi-infinite rays are attached to the beginning
and end of each chain and the interior is included to form two monotone polygonal
sectors (MPS). These edges run parallel to the x-axis towards +0 if right-oriented
or — if left-oriented and define the area contained by the MPS. O(log n) operations
suffice to decompose a convex polygon P into MPS P, and Py with the vertices of
Py (resp. Pg) given in clockwise (resp. counter-clockwise) order. This decomposition
can be done in any coordinate system without preprocessing by finding the vertices
of maximum and minimum y-coordinate in that system. The decomposition into
MPS has the property that P =P, nPr and P = P,, Pg. In higher dimensions,

extensions of this decomposition method simplify algorithm presentations via the
following lemma.

Ties resulting from horizontal edges may be broken arbitrarily since there can be no more than 2
collinear vertices.

Fast detection of polyhedral intersection 243

P
------ - - -
—————— - - - - - -
PR PL

Fi- 1. Decomposing a polygon into left and right MPS.

Lemma 1. Convex polygors P and Q intersect if and only if Py and Qg intersect
and Pg and Q. intersect.

Proof. If P and Q intersect, then since P = P ,Pr and Q = Q.,Qk, it is obvious
that P, and Qg intersect and Pgr and Qg iniersect and Pr and Q. intersect.

If P and Q do not intersect, then the supporting line of an edge of one polygon
(say P) is separating, If the supported edge belongs to P, it also separates P, from
Q and P, from Qk.

Given this reduction. it remains to present an algorithm for intersecting vertex
chains. The algorithm involves a generalization of binary search. At each iteration,
an edge of cach chain is selected and extended infinitely in each direction. The
intersection of these supporting lines gives information (based on the properties
of MPS) which allows half of the edges of one (or both) polygons to be ignored
without missing the detection of an intersection. Edges are not eliminated, bat the
structural information they provide is discarded and a new endedge is introduced
preserving the MPS properties. A simple case znalysis shows that the newly formed
chains intersect if and only if the original chains did.

244 D. P. Dobkin, D. G. Kirkpatrick

Let R (resp. L) be a right (resp. left) MPS with edges ry, 72, ..., r, (resp.
I, 15, ...,). The edges ry, ry, [; and [, are now rays and all other edges are finite.
Leti=[3m] and j = [3n], and consides the four regions formed by the intersection
of the lines R; and L; supporting the edges r; and /.. R and L can exist in only two
of these regions. Further, L and R can only ccexist in one of the four regions.
Label the regions as the R-region, the L-region, the LR-region and the empty
region as shown in Fig. 2. New MPS R’ (resp. R") are defined to be R with the
area defined by edges above (resp. below) #; sliced by the semi-infinite ray parallel
to the x-axis and intersecting r; at its vertex. L' and L" are defined from L in an
analogous manner. The algorithm relies on the following lemma.

Ry

LR-REGION

k- REGION
L-REGION

EMPTY REGION

Fig. 2. Regions involved in tests for polygonal intersection—r, tresp. {,) can exist in one of the three
e f b ‘ hop
positions ri'or oy wresp. 00 O onr, wresp. (),

Lemnia 2. If the lines R, and L; intersect and the segments r; and 1, do not, then if
the LR-region is above the empty region (i.e. seeks +¢ in the y-direction):
(1) {f the upper endpoint of r; does not lie in the LR-region, then R intersects [

if and only if R" intersects L.

(11) If the upper endpoint of 1, does not lie in the LR-region, then R intersects L if
and only if R intersccts L'

i) If both endpoints of r, and !, lie in the LR-region and the lower endpoint of r,
has smaller (resp. larger) y-coordinate than the lower endpoint of I, then R intersects
L if und only if R intersects L.

Proof (see Fig. 3). In case (i), since the upper endpoint of r; does not lie in the
LR-region, all points of R above r; lie in that region by convexity. A similar
argument handles case (ii).

In case (iii), if the lower endpoint of r; has smaller y-coordinate than the lower
endpoint of /;, then the lower part of R cannot intersect the upper part of L. The
lower part of R can never intersect the lower part of L twice and the upper part
of I. can never intersect the upper part of R twice. Therefore, either the intersection

'»

Fast detection of polyhedral intersection 245

v, a

L-REGION R-REGION

t———
EMPTY REGION

R - REGION
L -REGION

EMPTY
REGION

Fig. 3. Cases (i) and (i) in the proof of Lemma 2. (a) Upper endpoint of r, lies in the R-region, dashed
paths represent possible R” trajectories. (b) Upper endpoints of both r; and [, lie in the LR-region and
lower endpoint of r, lies below iower endpoints of /. If I and R intersect, then L and R” must intersect.

is exactly a vertex or edge or the upper part of R must be involved. If the intersection
is restricted to the boundary, it must involve the upper part of R, hence R" must
intersect L.

The extension to the case where the LR-region lies below the empty regicn
yields the following theorem.

Theorem 3. Given two polygons, Ollog n) operations suffice to generate either
(a) a point common to both polygons, or
(b) « line supporting an edge of one polygon which separates the two polygons.

Proof. In a constant number of operations, half of one of the two chains, L or R
can be eliminated without changing the intersection status of the reduced problem.
To achieve this, the algorithm first considzrs the middle edges r; and /; and their
supporting lines R; and L,. If R; and L, are parallel, two cases arisc depending on
whether L, is to the left or right of R,. In the first case, there is no intersection and
R, and L, are separating lines. In the second, replacing / by i +1 yields a situation

246 'D. P. Dobkin, D. G. Kirkpatrick

in which R; and L; cannot be parallel, so the algorithm proceeds. If R; and L,
intersect and r; and /; also intersect, then a point of intersection has been found.
Finally, the two remaining cases handling different orientations of intersecting lines
R; and L; are considered in Lemma 2.

The algorithm will eventually reduce one of the chains to a wedge of two edges.
At this point, it is sufficient to apply an extension of the segment-polygon intersec-
tion detector given in [1] to find a point of intersection or separating edge.

Note that the two intersection tests need not report the same point of intersection.
However, if both tests report an intersection and return a point, an intersection
point can be found. If neither of the reported points belongs to both of the polygons,
it must be the case that one belongs to each.

This theorem guarantees a separating line which is an extension of an edge of
one of the polygons. While this is unnecessary here, it proves crucial in the
three-dimensional case.

3. Detecting three-dimensional intersections

3.1. Methods of preprocessing polyhedra

The discussion of two-dimensional objects ignored representational issues since
any representation of a convex polygon which allowed for binary searching was
suitable. And, no constraints were put on the coordinate system. This was true
because polygons are essentially one-dimensional manifolds and edge-chains can
be represented as (piecewise) one-dimensional objects. Similarly, three -dimensional
polyhedra can be represented as two-dimensional manifolds or as planar sub-
divisions. Unfortunately. no known techniques reduce this subdivision to a one-
dimensional manifold to which simple ordering properties might be applied. A
three-dimensional polyhedron will be viewed as a sequence of cross-sections cach
of which is a polygon. Appropriate choices of cross-sections allow convexity to play
a key role in the algorithms given here. For any representation of a polyhedron in
an xvz coordinate system, consider X,y cross-sections corresponding to the z-values
of all its vertices. These cross-sections together with the edges joining adjacent
cross-sections then give a characterization of the complete polyhedron. A drum is
defined as 2 adjacent cross-sections along with all of their connecting edges. In this
representation, a polyhedron of a vertices might be decompaosed into as many as
n-1 drums (sce Fig. 4).

The drum representation of a polyhedron has some useful properties. Even
though a drum represents a three-dimensional piece of a three-dimensional object,
there is no freedom of motion in passing from the bottom to the top of a drum.
This motion consists of travel along single edges on which no vertices lie. The
simplicity of this motion allows the view of a drum as a continuous transformation

Fast detection of polyhedrai intersection 247

A
]
C
0
Bpo~—-=-= Y
LA,

Fig. 4. Onc of the drums in the decomposition of a tetrahedron. Note that the vertices X, Y, Z, W are
created when forming cross-sections.

from its bottom face to its top face along the connecting edges. Thus, in a sense,
drums are two-dimensional objects, lying between polygons and polyhedra. This
representation allows algorithms which work on polygons to be modified to work
on drums.

The space and time requirements of the drum representation are unfortunate.
A polyhedron might be decomposed into O(n) drums each requiring O(n) space
for its description. So, O(n”) space and time might be necessary for generating and
sworing this representation. Thest bounds are unsatisfying in light of other rep-
resentations requiring only linear space from which intersections may be computed
in O(n log n) time. Recent work has provided a first step towards circumventing
this difficulty. In [3] a method is given which 1equires O(n log n) preprocessing
time and O(n log n) storage for representing the drum decomposition of a polyhe-
dron.” Since this method might represent as much as O(n %) information, it is not
possible to store information in a random access fashion. Rather, O(log® n) oper-
ations are required to retrieve specific information about particular aspects (e.g.,
edges, vertices or faces) of particular drums. O(log n) operations at each iteration
are sufficient to give the information necessary to the detection algorithms given
here.

In the algorithms given below, preprocessing is assumed which makes available,
in a random-access fashion, all the necessary information about a polvhedron. Any
time bounds which take advantage of this storage scheme must be multiplied by
O(logn) if the O(n logn) space and time preprocessing of [3] is used. When
considering 2 polyhedra, it is nor assumed that each has been preprocessed in the
same xyz coordinate system. Thus, the representation is robust being invariant
under the translation, rotation and scaling of objects.

* Actually, Overmars [6] has improved upon the bounds given here.

2.8 D. P. Dobkin, D. G. Kirkpatrick

3.2. Detecting drum-drum intersections

A drum-drum intersection detector forms the core of the polyhedron-polyhedron
intersection detector. Separation information for 2 non-intersecting drums is used
to remove half of one polyhedron from consideration in the polyhedron-polyhedron
intersection algorithm. Thus, polyhedron-polyhedron intersection problems are
reduced to O(log n) drum—-drum intersection problems.

Drum-drum intersections are detected by generalizations of the techniques used
to detect polygon-polygon intersections. The structure of a drum as the continuous
transformation of its bottom into its top is crucial. However, the change to three
dimensions adds complexity to the analysis which resolved the polygon-polygon
intersection problem. To set ideas, consider first the problem of detecting polygon-
drum intersections.

Let P be a polygon and Q a drum. If R is the intersection of the plane of P
with Q, then P and Q intersect if and only if P and R intersect. Determining the
vertices and edges of R explicitly requires a linear number of operations. Therefore,
R is considered as an implicitly specified object. The polygon-polygon intersection
algorithm is used to detect the intersection of P and R. Additional computation is
done cach time an edge of R is needed. R is described as a clockwise sequence
of vertices consisting of 2 (or possibly 1 or 0) vertices from the intersection of the
plane and the top of the drum, followed by vertices derived from intersections of
the plane and consecutive edges connecting the top and bottom faces of the drum,
fellowed by 2 tor 1 or () vertices from the intersection of the plane and the bottom
of the drum and finally consisting of vertices derived from intersections of the plane
and consccutive edges connecting the bottom and top faces of the drum. Since the
representation is presented in no more than four components, the needed edges
of R can be found in a constant numbe: of operations. Thus, intersecting a drum
and a polygon is as casy (after Olog n) operations) as intersecting two polygons
leading to the following theorem.

Theorem 4. Given a drum and « polvgon, Otlog n) operations suffice to compute
cither

t0 d point commaon to both, or

b1« line supporting an edge of the poivgon or ¢ plane supporting a face (or top
ar bottom) of the drum (or both)y which separates the two ovjects.

Proof. To begin, an implicit representation for R is found in Qtlog 1) operations.
From this representation, desired vertices of R can be found in a constant number
of operations. Since R and P are coplanar, by construction, the algorithm of
Theorem 3 yields the result.

For the problem of detecting drum-drum intersections twa-dimensional analogs
of polygon-polygon intersection detectors are used. Each drum is decomposed into

Fast detection of polyhedral intersection 249

left and right halves relative to the plane formed by the normals to the tops of the
two drums." Conceptually this division is done by shining a beam of light in the
direction of the normal to this plane starting at +00 (resp. —00) to define the right
(resp. left) halfdrum. All faces lit by this light (consisting of those having positive
component of their normals in this direction) belong to the relevant halfdrum.
These halfdrums are then made semi-infinite by adding endfaces perpendicular to
the drum top and extending towards +00 or —oc. For a drum D, this decompositicn
into left and right halfidrums D, and D satisfies again tne properties that D=
Drn D, and D € D\, Dg. Using these results, it is easy to verify the following
lemma.

LemmaS. If D and E are drums which have been decomposed into left and right
halves as described above, then D N E iff D, "Er and DN E}.

Proof. If D nE, thensince D € D,, Drand E S E|, Eg, itis obvious that D; n Eg
and DrnE,.

If D and E do not intersect, assume without loss of generality that there is a
face of D which forms a separating plane between D and E. Assume that this face
belongs to D, (the case of Dy following in an obvious manner). Then, D must lie
to the left of this face and E to its right (with left and right defined relative to the
decomposition of the drums into halfdrums). So, any extension of E to the right
cannot intersect this plane and hence cannot intersect D, . Therefore, D, and Ex
cannot intersect.

Given this reduction, it remains to generalize the polygon algorithm to the case
of halfdrums. The middle face of each halfdrum is selected and extended infinitely
in all directions. The intersection of these supporting planes then gives information
(based on the properties of halfdrums) which allows the identification of that half
of the faces of one drum whick can be ignored without missing the detection of an
intersection. Faces are not eliminated, but the structural information they provide
is discarded and an endface is created as a semi-infinite slab preserving the halfdruin
properties. A simple case analysis shows that the newly formed halfdrums intersect
il and only it the original drums did.

To set notation, consider a right halfdrum R and a left halfdrum L with faces
Fiotse. oo and 1y, 1, L, respectively. Recall that in these representations, the
endfaces ry. r,, [, and [, are semi-infinite and all other faces are finite. Let i = [am]
and j = [3n], and consider the four regions formed by the intersection of the planes
R, and L, supporiing the faces r, and /. Again, R and L can exist in only two of
these regions. L and R can only coexist in one of the four regions. The regions

' In the case where the two drum tops are parallel any plane including the normal to the drum tops
will suffice. In this case, the problem is first reduced (in contrast time) to one in which drum tops and
bottoms are (pairwise) coplanar. This will have no effect on running times and will make the algorithms
avoid unnecessary work.

250 D. P. Dobkin, D. G. Kirkpatrick

are labeled as the R-region, the L-region, the LR-region analogous to the planar
regions shown in Fig. 2. The halfdrums R’ (resp. R") are defined as R with the
faces beyond (resp. before) r; replaced by the semi-infinite endface of extension of
r.. L' and L" are defined from L in an analogous fashion.

Lemma 6. If the planes R, and L; intersect and the faces r; and |; do not and the
LR-region is above the empty region (i.e., seeks +), then:
(i) If the upper edge of r; does not lie in the LR-region, then R intersects L if and

only if R"” intersects L.

(ii) If the upper edge of l; does not lie in the LR-region, then R intersects L if and
only if R intersects L".

(iii) If all edges of r; and I; lie in the LR-region and the lower edge of r; has a
smaller (resp. larger) normal than the lower edge of I, then R intersects L if and only
if R" intersects L.

Proof (shown in projection in Fig. 2). In case (i), since the upper edge of r, does
not lie in the LR-region, all points of R above r; lie in that region by convexity.
A similar argument handles case (ii).

In case (iii), if the lower edge of r; has smaller normal than the lower edge of {,,
then the lower part of R cannot intersect the upper part of L. As always, the lower
part of R cannot intersect the lower part of L twice and the upper part of L cannot
intersect the upper part of R twice. Since an intersection must involve two ‘punc-
tures’ or be restricted to the boundary (in which case it must involve R"). the
problem reduces to detecting the intersection of R” and L.

This theorem immediately suggests an algorithm for detecting drum-drum inter-
sections in O(log n) operations. r; and {; are considered and R, and L, are formed
yiclding the four regions L, R, LR and empty. If [, and r, intersect, the algorithm
reports an intersection and halts. If L; and R; are parallel, one of two situations
results. If there can be no intersection (i.e. L, and R, are separating planes), the
algorithm reports so and halts. Otherwise, ¢ is set to i +1 and the algorithm
continues. If none of these cases result, it must be the case that the four regions
exist in a configuration like those shown in projection in Fig. 3 or a similar
configuration with the empty region above the LR-region. In the former case, the
results of Lemma 6 give us a method of removing half of one drum from consider-
ation in Oflog n) operations. In the latter case, an obvious analog of Lemma 6
gives the same result. This lcads to the following theorem.

Theorem 7. Given two preprocessed drums, Otlog n) operations suffice to determine
cither
{a) a point common to both, or

(b} a plane supporting a face or edge of one of the drums which separates the two
drums.

Fast detection of polyhedral intersection 251

3.3. Detecting polyhedral intersections

Finally, there remains the extension to polyhedral-polyhedral intersection prob-
lems. The algorithm of the previous section could be easily extended to the problem
of detecting druin-polyhedron intersections. In that case, the drum is first compared
to the middle drum of the polyhedron.! If these drums intersect, it is reported and
the algorithm halts. If not, the result of Theorem 7 gives a separating plane
supporting one of the drums. If it supports the drum belonging to the polyhedron,
then it also separates the polyhedron from the drum. If it supports the separate
drum, then one of three cases results depending on the intersection of this plane
and the polyhedron. This intersection need not be computed. It is sufficient to
know the maximal and minimal vertex values in the direction normal to this plane.
These values may be computed in O(log n) operations from the preprocessed
polyhedron. If the plane does not intersect the polyhedron, it acts as a separating
plane and there can be no intersection. If it intersects the polyhedron above its
middle drum, then the bottom part (lower half of its drums) of the polyhedron can
be eliminated from further consideration of intersections. Similarly, if it intersects
the polyhedron below its middle drum, the upper half of the polyhedron is eliminated
from further consideration. Convexity guarantees that a plane cannot intersect the
polyhedron both above and below its middle drum without intersecting the middle
drum. This fact forms the basis of the algorithm which follows.

In considering polyhedron-polyhedron intersection problems, it is worthwhile
to set some notation (see Fig. 5). The waist of a polyhedron is its middle drum.
The cone of a drum of a polyhedren is formed by extending all its faces infinitely
to their supporting planes and computing this intersection of half-spaces. The cone,
which may or may not be closed, is the largest convex polyhedra which might
enclose the given drum. Therefore, any polyhedron having this drum as its waist
must be contained in its cone. However, the waist of the cone is exactly the drum
which generated the cone. Therefore, if two drums do not intersect, their cones
cannot intersect both above and below the drums. This fact is used to eliminate
half of a polyhedron from consideration in intersection detection problems leading
to the following result.

Theorem 8. Given two preprocessed polyhedra P and Q of p and q vertices
respectively, Ollog’(p + q)) operations suffice to determine either

{a) a point common to both, or

(b) a plane supporting a face or edge of one of the polyhedra and separating thein.

Proof. The proof follows from a method of dividing the number of drums of one
of the polyhedra in half in O(log(p + q)) operations. The resultant problem is shown

* If the preprocessing direction of the polyhedron is parallel to the top of the drum some difficulties
result. This is resolved by doing (in O(log n) operations) a binary search to eliminate all drums of the
polyhedron except those which could possibly intersect the drum (i.e., occur in the range of values
between the drum top and bottom).

I
(]
ta

D. P. Dobkin, D. G. Kirkpatrick

Fig. 5. A drum and the faces constituting the front of its cone.

to have the same form. Let E be the waist of P, F be the waist of Q, A be the
cone of E and B the cone of F as shown in Fig. 4. The algorithm of Theorem 7
is used to detect whether E and F intersect. If they do, the algorithm exits in case
(a) of this theorem. If not, a plane T is found which is an extension of a face or
edge of £ (without loss of generality) and hence P and separates E from F. Two
cases now result. If T is an extension of a face or face-edge of E, T must also
separate P from F. In this case, the ideas from the drum-polyhedron intersection
detector climinate half of F from further consideration. The case where T is an
extension of the top or bottom of E (or of an edge defining the top or bottom) is
more complex.

Assume without loss of generality that T is an extension of the top of £ (all
other cases being similar). Now, since T separates E from F, F must lic “above’
E. A and F intersect because otherwise a separating plane which was an extension
of a face or face-edge of E would have been found. Therefore, F must intersect
A above E. Now since F and A intersect above E, A and B also intersect above
E. Observe that faces of A and B cannot intersect below E by convexity. Therefore,

the bottom of A (and hence the bottom of P) can be eliminated from further
mtersections.

Fast detection of polyhedral intersection

IV
j 41
W

4. Conclusions and possible extensions

A methodology for studying polyhedral intersection detection algorithms has
been presented. The benefits of the methodology are twofold, providing a cleaner
presentation of intersection algorithms and improving known results for these
problems. There remain many open problems.

The techniques used to state and prove these results in three dimensions differ
very little from those used in two dimensions. This suggests the possibility of
extending these algorithms to arbitrary dimensions and achieving O((d logn) as
a time bound for intersection detection in d dimensions. There also remains ope..
the problem of determining whether three (or more) polyhedra have a point in
common.

There also remain the practical issues of implementing the algorithms presented
here with the goal of achieving improved methods for hidden surface elimination.

Acknowledgment

We would like to thank Dan Field whese comments helped in making the firzal
presentation of this paper more coherent. We also acknowledge his help in identi-
fving a bug in the original presentation of Lemma 1. We thank an anonvmous
referee for comments leading to a more coherent final presentation.

References

{1] B. Chazelle and D. Dobkin, Detection is casier than computation, ACM Svmp. on Theorv of
Compuiing, Los Angeles, CA (19801 146153,
[21 G.B. Dantzig. Linear Programing and Its Exiensions (Princeton University Press, Princeton, NJ,
1963,
{3] D.P. Dobkin and J.I. Munro, Eflicient uses uf the past, 21st Ann. Symp. on Foundations of Computer
Science, Syracuse, NY (1980} 200-206.
(4] D.G. Kirkpatrick, Optimal search in planar subdivisions (detailed abstract), Univ. of British
Columbia, Vancouver, BC, Canada, 1980.
D NMubler and F. Preparata. Finding the intersection of 2 convex polyhedra, Tech. Rept., University
of lhnos, 1977
fo) NLEE Onvernnars, Searching in the past 11 General Trandforms, Tech. Rept., RUU-CS-81-9. Deypurt-
ment of Computer Saence. University of Utrecht. TUSE
[7] MLH. Overmars and 1. van Lecuwen, Mantenance of configurations in the plane, JCSS 23 (2)
V198D 166--204,
(8] M Shamos, Computational geometry. Ph.D. Thesis. Yale University, 1978,
(o] LE. Warnock. A hidden-sarface algorithm for computer generated half-tone pictures. Tech. Rept..
Unnerany of Utah, Computer Science Department. 1969,
[10] G.S. Wathins, A real-time visible surface algorithm., UTEC-CSc-70-101, University of Utah,
Computer Science Department. 1970,
[11] P.H. Winston, The Psvchology of Computer Vision «‘McGraw-Hill. New York, 1975

T

