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Abstract. Methods are given for unifyin:: and extending previous work on detecting intersections 
of suitably preprocessed polyhedra. New upper bounds of O(log n) and O\log* IZ I are given on 
plane-polyhedron and polyhedron-polyhedron intersection problems. 

1. Introduction 

A fundamental problem in geometric computing is that of detecting polyhedral 

intersections. Versions of this problem lie at the core of such problems as linear 

programming [2], hidden surface elimination [9, lo] and computer vision [ 111. 

In a previous paper [ 1] the detection problem for suitably preprocessed polyhedral 

intersections was distinguished from the computation problem and shown to be of 

lower complexity. Given two polyhedra, the detection problem asks only for a 
witness to the intersection or non-intersection rather than a computation of the 

entire intersection. Furthermore, it is allowed to preprocess separately each of the 

polyhedra, as long as the preprocessing is independent of any underlying coordinate 

system. The witness might consist of a common point in the case of an intersection 

or a separating line or plane in the case of no intersection. Because of the 

preprocessing and reduced output size, solutions of complexity c logk n (for fixed 

constants c” and k ) are possible for the detection problem while linear lower bounds 

arc known on the computation problems [8,5]. 
The results of Chazelle and Dobkin [l] are unified and extended here. This is 

done by combining the method of dynamically defining convex polyhedra from [4] 

and the method of shadowing from [7]. Using this method, convex polygons and 

polyhedra are defined through a hierarchy of descriptions each refining previous 
dctinitions. A coarse description of the object is given. Then, at each stage, more 

detail is given about a smaller part of the object. In moving from step to step of 

the detection algorithm (and level to level of the hierarchy), finer descriptions of 
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smaller portions of the object are given. These portions are those which are shown 
to be relevant to possible intersections if the two objects intersect. 

‘fhe results of this paper are derived by building from two-dimensional polygons 
to three-dimensional polyhedra. As an intermediate step, drums are defined. A 
drum is a three-dimensional object of restrict form. In particular, all vertices of a 
drum are required to be the vertices of two convex polygons having parallel planes 
of support. In our applications, drums are derived f~om consecutive cross-sections 
of a polyhedron taken in a fixed direction. Our use of these properties of drums 
sugge:, i3 that they are in fact ‘L&dimensional objects and we use them as such. All 
objects are defined to consist of boundary and interior. Were this not the case, 
Pinear lower bounds would exist (see [l]). 

The efficiency of our algorithms is achieved by balancing the complexity of the 
intersection calculation against the number of iterations which must be performed 
to be certain of completely considering the relevant objects. In the case of two- 
dimensional polygons and 2&dimensional drums, O(log rz ) iterations are performed 
each requiring O( 1) operations. Three-dimens;ional polyhedra require O(log n ) 
iterations of the O(log n) operation drum intersyction algorithm. 

The conclusions irlclude a presentation of some open problems involving higher- 
dimensional extensions and some applications of the algorithms to relevant 
problems. 

2. Detecting two-dimensional intersections 

Intersection problems involving two hierarchically described objects are solved 
by dynamically growing the objects. The presentation of the two-dimensional case 
simplifies that of [l] and sets ideas for the three-dimensional case. A polygonal 
boundary is decomposed into two monotone polygonal chains of edges by cutting 
at its highest and lowest y coordinates (see Fig. l).’ This yields two sequences of 
ver&es and edges in order of increasing y-coordinate. By convexity, such chains 
will either be left- or right-oriented. Semi-infinite rays are attached to the beginning 
and end of each chain and the interior is included to form two morroforte pofygotlal 
sectors (MPS). These edges run parallel to the x-axis towards +a if right-oriented 
or --OO if left-oriented and define the area contained by the MPS. O(log rt ) operations 
suffice to decompose a convex polygon P into MPS PL and PR with the vertices of 
PL, (resp. PR) given in clockwise (resp. counter-clockwise) order. This decomposition 
cart be done in any coordinate systetn without preprocessing by finding the vertices 
of maximum and minimum y-coordinate in that system. The decomposition into 
MPS has the property that I’= PL n PR and P c PL., PR. In higher dimensions, 
extensions of this decomposition method simplify algorithm presentations via the 
following lemma. 

’ Tics resulting from horizontal edges may be broken arbitrarily since there can be no more than 2 
coliincar vertices. 
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Ft. 1. ‘kcomposing a polygon into left and right MPS. 

Lemma 1. Corrce.u polygor s P and Q interwct if arzd only if PI_ arld QH intersect 
arrd PR and QL irrtersect. 

Proof. If P and Q intersect, then since P G PL,PR and Q G QL,QR, it is obvious 

that PL and QR intersect and PR and QR inrersect and PR and QL intersect. 
If P and Q do not intersect, then the supporting line of an edge of one polygon 

(say P) is separating. If the supported edge belongs to PL, it also separates PL_ from 

Q and Pi. from 0~. 

Given this reduction, it remains to prese,nt an algorithm for intersecting :!ertex 

chains. The algorithm involves a generalization of binary search. At each iteration, 

an edge of each chain is selected and extended infinitely in each direction. The 

intersection of these supporting lines gives information (based on the properties 

of MPS) which allows half of the edges of one (or both) polygons to be ignored 

without missing the detection of an intersection. Edges are not eliminated, b-;lt the 

structural information they provide is discarded and a new endedge is introduced 

preserving the MPS properties. A simple case znalysis shows that the newly formed 

chains intersect if and only if the original chains did. 
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Let R (resp. L) be a right (resp. left) MPS with edges r1, ~2,. . . , r,,, (resp. 

4,129 ’ - * , /, ). The edges ~1, T,,,, I, and In are now rays and all other edges are finite. 

Let i= [irnj andj= [$zl, and conside: the four regions formed by the intersection 

of the lines Ri and Lj supporting the edges ri and lfi R and L can exist in only two 

of these regions. Further, L and R can only coexist in one of the four regions. 
Label the regions as the R-region, the L-region, the LR-region and the empty 

region as shown in Fig. 2. New MPS R’ (resp. R”) are defined to be R with the 
area defined by edges above (resp. below) ri sliced by the semi-infinite ray parallel 
to the x-axis and intersecting rj at its vertex. L’ and L” are defined from L in an 
analogous manner. The algorithm relies on the following lemma. 

Proof (see Fig. 3). In cast (ij, since the upper endpoint of r, does not lie in the 
LR-region, all p&Its of R above r; lie in that region by convexity. A similar 

argument hancUes zase (ii). 
In case (iii), if the lower endpoint of ri has smaller y-coordinate than the lower 

endpoint of I,. then the lower part of R cannot intersect the upper part of L. The 

lower part of R can never intersect the lower part of I_ twice and the upper part 

of I. can IICWX irltcrscct the uppci part of R twice. Therefore, either the intersection 
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R-REGION 

EMPTY REGION 

Fig. 2. C’ast‘s ti, and ciir in the proof of Lemma 2. ia) CJpper endpoint of r, lies in the R-region, dashed 

paths represent possible R” trajectories. lb) Upper endpoints of both r, and I, lie in the LR-region and 

lower endpoint of r, lies Mow bwcr endpoints of I,. If I and R intersect. then L and R” must intersect. 

is exactly a vertex or edge or the upper part of R must be involved. If the intersection 
is restricted to the boundary, it must involve the upper part of R, hence R” must 

intersect L. 

The extension to the case where the U-region lies below the empty region 

yields the following theorem. 

Theorem 3. Gicerl two polygorrs, O(log n ) operations sufice to generate either 

t a 1 a poirlt corntnou to both polygor~, or 

W td he supporting arl edge of one polyj:on which separates the two polygons. 

Proof. In a constant number of operatiopq, half of one of the two chains, L or R 
can be eliminated without changing the intersection status of the reduced problem. 

To achieve this, the algorithm first consickrs the middle edges ri and li and their 

supporting lines Ri and Li. If Ri and Lj are parallel, two cases arise depending on 

whether L, is to the left or right of Ri. In the first case, there is no intersection and 

R, and Lj are separating lines. In the second, replacing i by i -+- 1 yields a situation 
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in which Ri and Lj cannot be parallel, so the algorithm proceeds. If Ri and Li 
intersect and ri and fj also intersect, then a point of intersection has been found. 
Finally, the two remaining cases handling different orientations of intersecting lines 

Ri aald Lj are considered in Lemma 2. 

The algorithm will eventually reduce one of the chains to a wedge of two edges. 
At this point, it is sufficient to apply an extension of the segment-polygon intersec- 
tion detector given in [l] to find a point of intersection or separating edge. 

Note that the two intersection tests need not report the same point of intersection. 
However, if both tests report an intersection and return a point, an intersection 
point can be found. If neither of the reported points belongs to both of the polygons, 
it must be the case that one belongs to each. 

This theorem guarantees a separating line which is an extension of an edge of 
one of the polygons. While this is unnecessary here, it proves crucial in the 
three-dimensional case. 

3. Detecting three-dimernsional intersections 

3.1. Methods of preprocesshg polyhedra 

The discussion of two-dimensional objects ignored representational issues since 

any representation of a convex polygon which allowed for binary searching was 
suitable. And, no constraints were put on the coordinate system. This was true 
because polygons are essentially one-dimensional manifolds and edge-chains can 
he represented as (piecewise) one-dimensional objects. Similarly, three-dimensional 
polyhedra can be represented as two-dinlensional manifolds or as planar sub- 

tfi\*isicms. Ilnfortunately, no known techniques reduce this suMvision to a one- 

dimensional manifold to which simple ordering properties might be applied. A 

t hr~~-dirn~nsion~~l polyhedron will bc viewed as a sequence of cross-sections each 
of which is a polygon. Appropriate choices of cross-scctians allow convexity to play 

it key role in the algorithms given here. For any representation of a polyhedron in 
an s,z coorciimtt‘ system, consider s,y cross-sections corresponding to the :-values 

of all its vertices. These cross-sections together with the edges joining nd,iacrnt 

uuss-swtions then giw i\ ~hilr;~cteriz~~tion of the complete palyhedrc)n. A OIVOII is 

ckfincd ;ts 2 ;~(.i_ii~c~~lt cross-stxtions along with iIll of their connecting edges. In this 
rcprcst‘ntntion, a polyhdrorl of tf wrticth nlight tw dccwiiposed into as nxtny as 
tl- 1 drums (see Fig. 4. 

The drum representation of a po!;;hedron has some useful properties. Even 

though a drum represents a three-dinlensior~al piece of a three-dimensional object, 

there is no freedom of motion in passing from the bottom to the top of a drum. 

This motion consists of travel along single edges on which no vertices lie. The 

simplicity of this motion allows the view of a drum as a continuous transformation 
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Fig. 4 One of the drums in the decomposition of a tetrahedron. Note that the vertices X, Y, 2, id are 

created when forming cross-sections. 

from its bottom face to its top face along the connecting edges. Thus, in a sense, 

drums are two-dimensional objects, lying between polygons and polyhedra. This 

representation allows algorithms which work on polygons to be modified to work 

on drums. 
The space and time requirements of the drum representation are unfortunate. 

A polyhedron might be decomposed into O(n) drums each requiring O(n) space 

for its description. SO, O(n ‘) space and time might be necessary for generating and 

sloring this representation. Thest% bounds are unsatisfying in light of other rep- 

resentations requiring only linear space from which intersections may be computed 
in O(n log n ) time. Recent work has provided a first step towards circumventing 

this difficulty. In [3] a method is given which requires O(n log n) preprocessing 

time and O(n log II ) storage for representing the drum decomposition of a polyhe- 

dron.’ Since this method might represent as much as O(n*) information, it is not 

possible to store information in a random access fashion. Rather, O(log’ n ,j oper- 

ations are required to retrieve specific information about particular aspects (e.g.. 

edges, vertices or faces) of particular drums. O(log n) operations at each iteration 
are sufficient to give the information necessary to the detectioil algorithms given 

here. 
In the algorithms given below, preprocessing is assumed which makes available, 

in a random-access fashion, all the necessary information about a pol!,hedron. Any 

time bounds which take advantage of this storage scheme must be multiplied by 

O(log II) if the O(n log n) space and time preprocessing of [3] is used. When 

considering 2 polyhedra, it is not assumed that each has been preprocessed in the 

same syz coordinate system. Thus, the representation is robust being invariant 

under tho translation, rotation and scaling of objects. 

’ Actually, Overmars [6] has improved upon the hounds given here. 
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3.2. Detecting thm-drum irr tersectiom 

A drum-drum intersection detector forms the core of the polyhedron-polyhedron 
intersection detector. Separation information for 2 non-intersecting drums is used 
to remove half of one polyhedron from consideration in the polyhedron-polyhedron 
intersection algorithm. Thus, polyhedron-polyhedron intersection problems arc 
reduced to O(log !I ) drum-drum intersection problems. 

Drum-drum intersections are detected by generalizations of the techniques used 
to detect polygon-polygon intersections. The structure of a drum as the continuous 
transformation of its bottom into its top is crucial. However, the change to three 
dimensions adds complexity to the analysis which resolved the polygon-polygon 
intersection problem. To set ideas, consider first the problem of detecting polygon- 
drum inter-sections. 

Let P bc a polygon and Q a drum. If R is the intersection of the plane of P 

with Q, then P and 0 intersect if and only if P and R intersect. Determining the 
vertices and edges of R explicitly requires a linear number of operations. Therefore, 
R is considered as an implicitly specified object. The polygon-polygon intersection 
algorithm is used to detect th.2 intersection of P and R. Additional computation is 
done each time an edge of h’ is needed. R is described as a clockwise sequcncc 

of vertices consisting of 2 (or possibly I or 0) vertices from the intersection of the 
plane and the top of the drum, followed by vertices derived from intersections of 

the plane and consecutive edges connecting the top and bottom faces of the drum, 
fC?llowtX~ by 3, WI- 1 or 0) vertices from the intersection of the plane and the bottom 

c~f the drum and finally consisting of vertices dcrivcd from intelsections of the plane 
Ed consccutivc edges connecting the hottom and top faces of the drum. Since the 

representation is presented in no more than four components, the needed edges 

ol” K can be found in a constant nunntw of operations. Thus, intcrscctinp a drum 

;ind a polygon is as easy (after O(log II j opcrations~ as iWrstxting two polygons 
Icading to the f,)llowing theorcnl. 
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left and right halves relative to the plane formed by the normals to the tops of the 

two drums.’ Conceptually this division is done by shining a beam of light in the 

direction of the normal to this plane starting at +OO (resp. -00) to define the right 

(resp. left) halfdrum. All faces lit by this light (consisting of those having positive 
component of their normals in this direction) belong to the relevant halfdrum. 

These halfdrums are then made semi-infinite by adding endfaces perpendicular to 

the drum top and extending towards +OO or --a~. For a drum D, this decompositicn 
into left and right halfdrums D, and Dit satisfies again tile properties that D = 

DR nD,_ and D G D, , DR. Using these results, it is e:-lsy to verify the following 

lemma. 

Proof. If D A E, then since D C_ D,,, DR and E c El_, ER, it is obvious that DI_ n ER 
and DR n El.. 

If D and E do not intersect, assume without loss of generality that there is a 

face of D which forms a separating plane between D and E. Assume that this face 

belongs to DI !the case of DR following in an obvious manner). Then, D must lie 

to the left of this face and E to its right (with left and right defined relative to the 

decomposition of the drums into halfdrums). So, any extension of E to the right 
cannot intersect this plane and hence cannot intersect &. Therefore, DIG and EK 
cannot intersect. 

Given this reduction, it remains to generalize the polygon algorithm to the case 

of halfdrums. The middle face of each halfdrum is selected and extended infinitely 

in all directions. The intersection of these supporting planes then gives information 

(based on the properties of halfdrums) which allows the identification of thait half 
of the faces of one drum which can be ignored without missing the detection of an 

intersection. Faces are not eliminated, but the structural information they provide 

is discarded and an cndfacc is created as a semi-infinite slab preserving the halftlru,n 

propcrt it3. .tI sin@ cast‘ analysis sho\is that the nc~*ly formed h:llfdrums intersect 

il‘ iIlld onl>* if the original drum\ did. 

To set notation, consider a right halfdrum R and a left halfdrum L with faces 

rl, I:. . . . , r,,, and II, I, . . . . I,, rcspccti\ely. Recall that in these representations, the 

ClltifiiCCS r 1 T,,,, I, and I,, are semi-infinite and all other faces are finite. Let i ~-1 [$?z] 

and j -- [ill 1, and consider the four regions formed by the intersection of the @anes 

R, and L, supporting the faces r, and I,. Again, R and L can exist in only two of 

thcsc regions. L and R can only coexist in one of the four regions. The regions 

’ In the Cast whcrc the t\vcl drum tops arc parallel any plane inclu(‘.l;g the normal to the drum tops 
~111 sutficc. In this cast’, the problem is first reduced tin contrast time) to one in which drum tops and 
bottcjms are (pairwise, coplanar. This will have no effect on running times and will make the algorithms 
avoid unnecessary work. 
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are labeled as the R-region, the L-region, the LR-region analogous to the planar 
regions shown in Fig. 2. The halfdrums R’ (resp. R”) are defined as R with the 
faces beyond (resp. before) Ti replaced by the semi-infinite endface of extension of 
ri. L’ and L” are defined from L in an analogous fashion. 

Lemma 6. If the planes Ri and Li intersect and the faces ri and ii do not and the 
LR-region is above the empty region (i.e., seeks +cQ), then : 

(i) If the upper edge of ri does not lie in the ,LR-region, t/ten R intersects L if and 
only if R” intersects L. 

(ii) lf the upper edge of li does not lie in the LR-region, then R irttersects L if crud 
only if R intersects L”. 

(iii) If ail edges of ri and li lie in the LR-region and the lower edge of r, ltas a 
smaller (resp. larger) normaI than the lower edge of Ii, then R intersects L if attd only 
if R ” intersects L. 

Proof (shown in projection in Fig. 2). In case (i), since the upper edge of r, does 
not lie In the LH-region, all points of R above ri lie in that region by convexity. 

A similar argument handles case (ii). 
In case (iii), if the lower edge of ri has smaller normal than the lower edge of I,, 

then the lower part of R cannot intersect the upper part of L. As always, the lower 

part of R cannot intersect the lower part of L twice and the upper part of L cannot 
intersect the upper part of R twice. Since an intersection must involve two ‘punc- 

turcs’ or be restricted to the boundary (in which case it must involve R”). the 

problem reduces to detecting the intersection of R” and L. 

This theorem immediately suggests an algorithm for detecting drum-drum inter- 

sections in O(log u ) operations. vi and /j arc considered and R, and L, are formed 

yielding the four regions f, R, LR and empty. If I, and r, intersect, the algorithm 

reports an intersection and halts. If Li and R, are parallel, one of two situations 

results. If there can be no intersection (i.e. I+, and R, are separating planes), the 
algorithm reports so and halts. Othcrwisc, i is set to i + 1 and the algorithm 
continues. If none of these cases result, it must be the cast that the four regions 

exist in a configuration Ne those shown in projection in Fig. 3 or a similar 

configuration with the empty region above the LR-region. In the former case, the 

results of Lemma 6 give us a method of removing half of one drum from consider- 

ration in O(log H I operations. In the latter cast‘, an obvious analog of Lemma 6 
gives the same result. This kads to the following theorem. 
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3.3. Detecting polyhedral intersections 

Finally, there remains the extension to polyhedral-polyhedral intersection prob- 

lems. The algorithm of the previous section could be easily extended to the problem 

of detecting drum-polyhedron intersections. In that case, the drum is first compared 
to the middle drum of the pofyhedron.4 If these drums intersect, it is reported and 

the algorithm halts. If not, the result of Theorem 7 gives a separating plane 

supporting one of the drums. If it supports the drum belonging to the polyhedron, 
then it also separates the polyhedron from the drum. If it supports the separate 
drum, then one of three cases results depending on the intersection of this plane 
and the polyhedron. This intersection need not be computed. It is sufficient to 

know the maximal and minimal vertex valges in the direction normal to this plane. 
These values may be computed in O(logn) operations from the preprocessed 

polyhedron. If the plane does not intersect the polyhedron, it acts as a separating 
plane and there can be no intersection. If it intersects the polyhedron above its 

middle drum, then the bottom part (lower half of its drums) of the polyhedron can 

be eliminated from further consideration of intersections. Similarly, if it intersects 

the polyhedron below its middle drum, the upper half of the polyhedron is eliminated 

from further consideration. Convexity guarantees that a plane cannot intersect the 

polyhedron both above and below its middle drum without intersecting the middle 
drum. This fact forms the basis of the algorithm which follows. 

In considering polyhedron-polyhedron intersection problems, it is worthwhile 
to set some notation (see Fig. 5). The waist of a polyhedron is its middle drum. 

The COW of a drum of a polyhedron is formed by extending all its faces infinitely 

to their supporting planes and computing this intersection of half-spaces. The cone, 

which may or may not be closed, is the largest convex polyhedra which might 
enclose the given drum. Therefore, any polyhedron having this drum as its waist 

must be contained in its cone. However, the waist of the cone is exactly the drum 

which generated the cone. Therefore, if two drums do not intersect, their cones 
cannot intersect both above and below the drums. This fact is used to eliminate 

half of a polyhedron from consideration in intersection detection problems leading 

to the following result. 

Theorem 8. Given two preprocessed polyhedra P and Q of p and y vertices 

respectively, O( log”@ + q )) operations su&e to determine either 

(a 1 a point commo~i to both, or 
th) a plane supporting a face or edge of one of the polyhedra mad separating tlwn. 

Proof. The proof follows from a method of dividing the number of drums of one 

of the polyhedra in half in O( log@ + y )) operations. The resultant problem is shown 

A If the preprocessing direction of the polyhedron is parallel to the top ot the drum some difficulties 
result. This is resolved by doing (in O(log n) operations) a binary search to eliminate all drums of the 
polyhedron except those which could possibly intersect the drum (i.e., occrlr in the range of values 
between the drum top and bottom). 
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to have the same form. Let E ho the waist c;f P, F hc the waist of 0, A be the 

COW c~f E and B the cone of F as shown in Fig. 3. The algorithm of Theorem 7 

is LIW~ to detect whether E and F intersect. If they do, the algorithm exits in case 

!a) of this theorem. If not, a plane T is found which is an extension of a face or 

edge of E (without ioss of generality) and hcncc P and scparatcs E from F. Two 

cases now result. If T is an cxtensicln of a face or face-edge of E, T must also 

separate P from F. In this cast, the i&m from the drum-polyhedron intersccticjn 

detector eliminate half of F from further cc,nsideration. The case where T is an 

cstcnsion of the top or bottom of E (or of :m edge ckfining the top or bottom) is 

mtlre complex. 

Assume without 10s~ of generality that jY is an c$cnsion of the top of E (alI 

othtx cscs being similar). Now, since T separates E born F, F must lit ‘ahovc’ 

E. A and F inttxstxt kause othcrwk :\ separating plant which was an extension 

of a face or face-edge of E would haw kn found. Therefore, F must intersect 

A above E. Now since F and A intersect above E, A and B also intersect above 

E. Observe that faces of A and R cannot intersect hAow E by convexity. Therefore, 
the bottom of A (and hence the bottom of P) can he eliminated from further 
irittlrstxtions. 
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4. Conclusions and possible extensions 

A methodology for studying polyhedral intersection detection algorithms has 

been presented. The benefits of the methodology are twofold, providing a cleaner 

presentation of intersection algorithms and improving known results for these 
problems. There remain many open problems. 

The techniques used to state and prove these results in three dimensions differ 
very little from those used in two dimensions. This suggests the possibility of 

extending these algorithms to arbitrary dimensions and achieving O(.(d log n) 9s 

a time bound for intersection detection in d dimensions. There also remains opt, 

the problem of determining whether three (or more) polyhedra have a point in 

common. 
There also remain the practical issues of implementing the algorithms presented 

here with the goal of achieving improved methods for hidden surface elimination. 
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