
Constrained Delaunay Triangulations

L. Paul Chew
Department of Math and Computer Science

Dartmouth College
Hanover, NH 03755

Abstract

Given a set of n vertices in the plane

together with a set of noncrossing edges, the

constrained Delaunay triangulation (CDT) is the

triangulation of the vertices with the following

properties: (1) the prespecified edges are

included in the triangulation, and (2) it is as

close as possible to the Delaunay triangulation.

We show that the CDT can be built in optimal

O(n log n) time using a divide-and-conquer

technique. This matches the time required to

build an arbitrary (unconstrained) Delaunay

triangulation and the time required to build an

arbitrary constrained (nonDelaunay)

triangulation. CDTs, because of their

relationship with Delaunay triangulations, have

a number of properties that should make them

useful for the finite-element method.

Applications also include motion planning in the

presence of polygonal obstacles in the plane and

constrained Euclidean minimum spanning trees,

spanning trees subject to the restriction that

some edges are prespecified.

I’wnishi0tt to copy without tix all or part of thk material is granlcd provided thal
IIIC wpics arc not nude or distributed li)r direct commercial advanlagc, the ACM
copyright wficc and the title of lhc publication and its date appear. and notice is
given that copying is hy permission ol the Association Car Computing Machinery.
‘To copy otherwise. or to republish. requires a fee and/or specific permission.

0 I987 ACM O-89791-231-4/87/0006/0215 75U

Introduction

Assume we are given a planar straight-line

graph G. A constrained triangulation of G is a

triangulation of the vertices of G that includes

the edges of G as part of the triangulation. See

[PS85] for an explanation of how such a

triangulation can be found in O(n log n) time. A

constrained Delaunay triangulation (CDT) of G

(called an obstacle triangulation in [Ch86] or a

generalized Delaunay triangulation in [Le78]) is

a constrained triangulation of G that also has

the property that it is as close to a Delaunay

triangulation as possible.

In this paper, we show that the CDT can be

built in O(n log n) time, the same time bound

required to build the (unconstrained) Delaunay

triangulation, by using a method similar to that

used by Yap [Ya84] for building the Voronoi

diagram of a set of simple curved segments.

Previously, the fastest algorithm for

constructing the CDT required O(n log2n) time

[Le78].

The Delaunay triangulation is the straight

line dual of the Voronoi diagram. See [PS85] for

definitions and a number of applications of

Delaunay triangulations and Voronoi diagrams.

215

A Voronoi diagram and the corresponding Delaunay

triangulation.

An important property of the Delaunay

triangulation is that edges correspond to empty

circles. Indeed, this property can be used as the

definition of Delaunay triangulation.

Definition. Let S be a set of point in the plane.

A triangulation T is a Delaunay triangulation of

S if for each edge e of T there exists a circle C

with the following properties:

1) the endpoints of edge e are on the boundary

of C, and

2) no other vertex of S is in the interior of C.

If no 4 points of S are cocircular then the

Delaunay triangulation is unique. For most

cases in which there is not a unique Delaunay

triangulation, any of them will do.

The following definition, equivalent to the

definition given in [Le78], indicates what we

mean when we say “as close as possible to the

Delaunay triangulation”. Compare this defintion

with the definition of the (unconstrained)

Delaunay triangulation given above.

Definition. Let G be a straight-line planar

graph. A triangulation T is a constrained

Delaunay triangulation (CDT) of G if each edge of

G is an edge of T and for each remaining edge e

of T there exists a circle C with the following

properties

1) the endpoints of edge e are on the boundary

of C, and

2) if any vertex v of G is in the interior of C

then it cannot be “seen” from at least one of

the endpoints of e (i.e., if you draw the line

segments from v to each endpoint of e then

at least one of the line segments crosses an

edge of G).

It follows immediately from the definition that

if G has no edges then the constrained Delaunay

triangulation is the same as the (unconstrained)

Delaunay triangulation.

Intuitively, the definition of Delaunay

traingulation and constrained Delaunay

triangulation are the same except that, for the

CDT, we ignore portions of a circle whenever the

circle passes through an edge of G. Note that

the CDT is not the same as the dual of the

line-segment Voronoi diagram. VW log n)

algorithms for constructing the line-segment

Voronoi diagram appear in [Ki79] and [Ya84].)

We distinguish 2 types of edges that appear

in a CDT: G-edges, prespecified edges that are

forced upon us as part of G, and Delaunay edges,

the remaining edges of the CDT.

216

A graph G and the corresponding wnstrained Delaunay

triangulation.

One measure of the appropriateness of a

definition is its utility. We demonstrate the

utility of the definition of a CDT by presenting

some applications. Just as the (unconstrained)

Delaunay triangulation of S can be used to

quickly determine the Euclidean minimum

spanning tree (EMST) of S, the CDT can be used

to find the constrained EMST of S, constrained in

the sense that certain edges of the spanning

tree are prespecified and may not be crossed by

other edges of the spanning tree. See [PS85] for

a proof that the EMST is a subgraph of the

Delaunay triangulation. Virtually the same

proof can be used to show that the constrained

EMST is a subgraph of the CDT.

An additional application is presented in

[Ch86] and [Ch87] where variations of the

standard CDT are used for motion planning in the

plane. These variations use a different distance

function, in effect using a “circle” that is

shaped like a square [Ch86] or a triangle [Ch87].

With some minor modifications, the results

presented here are valid for CDTs based on the

square-distance (the L1 metric) or the

triangle-distance or based on other convex

distance functions. See [CD851 for more

information on convex distance functions and

their relation to Delaunay triangulations.

CDTs should also prove useful for the

finite-element method. This is an area in which

standard Delaunay triangulations have been

shown to have desirable properties. CDTs

inherit some of these desirable properties with

the advantage that some edges can be

prespecified.

The algorithm

We use divide-and-conquer to build the CDT.

For simplicity of presentation, we assume that

the planar graph G is contained within a given

rectangle. We start by sorting the vertices of G

by x-coordinate; then we use this information to

divide the rectangle into vertical strips in such

a way that there is exactly one vertex in each

strip. Of course, this cannot be done if some

vertex is directly above another, but we can

avoid this problem by rotating the entire graph G

if necessary. Following the divide-and conquer

paradigm, the CDT is calculated for each strip,

adjacent strips are pasted together in pairs to

form new strips, and the CDT is calculated for

each such newly formed strip until the CDT for

the entire G-containing rectangle has been built.

The whole process takes time O(n log n)

provided the CDT calculation for each newly

formed strip can be done in time O(v) where v is

the total number of G-vertices in the newly

formed strip.

The trick used to ensure that this CDT

pasting operation is done in reasonable time is

217

to avoid keeping track of too much edge

information. Note that it is not possible to keep

track of all places where G-edges intersect

strip boundaries; if we do so then we could have

as many as O(n2) intersections to work with.

Edges that cross a strip, edges with no

endpoints within the strip, are, for the most

part, ignored. Such an edge is of interest only if

it interacts in some way with a vertex that lies

within the strip. Yap [Ya84] used the same

technique to develop an algorithm for the

line-segment Voronoi diagram.

Each strip, then, is divided into regions by

cross edges, G-edges that have no endpoint

within the strip. We do not keep track of all of

these regions (there could be O(n2) of them).

Instead we keep track of just the regions that

contain one or more vertices.

Control of vertex-containing regions

Each initial strip has a single region

containing its single vertex. To create these

initial regions we need to know the edge

immediately above and the edge immediately

below each vertex. (Note that the edge

immediately above (below) a vertex may be the

top (bottom) edge of the rectangle that contains

the entire graph G.) This information can be

found for all vertices in O(n log n) time by

using a vertical line as a sweep-line. See

[PS85] for an explanation of this technique and a

number of applications.

It is not difficult to determine appropriate

regions when two adjacent strips are stitched

together. Basically, we merge regions by

running through the regions in their order along

the strips.

-r

The contents of a strip and the contents that we keep track of.

At this point, two parts of the CDT

algrothm require further explanation: (1) how to

handle vertex-containing regions, initializing

them and keeping track of them as adjacent

strips are combined, and (2) how to stitch

together CDTs as adjacent strips are combined.

Merging the regions of two adjacent strips.

As we move from top to bottom in the combined

strip, we start a new region whenever either

strip starts a region, we continue the region as

long as a region continues in either strip, we

stop a region only when we reach a point where

neither strip has a vertex-containing region. It

is easy to see that this merge operation takes

time proportional to the total number of regions

in both strips; thus, it takes time O(v) where v

is the number of vertices in both strips.

Stitching CDTs together’

The method we use for stitching CDTs

together is similar to one of the methods used

by Lee and Schachter [LS801 to build

(unconstrained) Delaunay triangulations. We

assume the following operations can be done in

unit time: (1) given point p and circle C, test

whether p is in the interior of C; (2) given

points p, q, and r, return the circle through these

points. These functions clearly take constant

time for any reasonable model of computation,

even if we use nonstandard “circles” as in

[CD85].

The major difficulty is to determine a

place to start so that the CDTs of two adjacent

strips may be stitched together. To do this, we

create imaginary vertices at infinity. Each

vertex-containing region has a set of 4 of these

infinite vertices. For each region, the 4 infinite

vertices are treated as if they are located at

(+-,+-). It is convenient to picture the infinite

vertices for a region as if they are located at

the 4 corners of the region; this is a

convenience for drawing pictures - these

vertices are treated in other respects as if they

are located at one of the 4 infinite points. The

CDT for a vertex-containing region is

constructed using these infinite vertices as

additional data points for the CDT. We specify

that infinite vertices of two different regions

do not interact; these vertices interact only

with points within their own region. Note that

with just 4 extra vertices per vertex-containing

region the overall running time is affected by

just a constant factor.

In the following algorithm, we c’reate

circles that go through these infinite vertices.

To determine the proper form for such a circle,

for instance a circle through (-,oo), the reader

should first consider a circle using the point

(w,w), where w is a large number. Use the

limiting circle as w approaches m. (The

limiting circle will be a half-plane.)

The infinite vertices were introduced so

that we always have a starting place for a CDT.

Whenever we need access to a CDT we use an

infinite vertex a starting point. The following

lemmas show that the infinite vertices do not

otherwise affect the CDTs.

Lemma 1. If we eliminate the infinite vertices

of a region by removing the infinite vertices and

their edges then the remaining vertices and

edges form a CDT for the region.

Proof. Infinite vertices interact only with

vertices on the convex hull.

Lemma 2. Let S, and S2 be adjacent strips

that are combined to make strip S and let T be a

CDT that is in S. (St and S2 contain CDTs that

may be altered in the process of making S.) If e

is a Delaunay edge of T and both endpoints of e

are in S1 then e is a Delaunay edge of a CDT in

-%-

219

Proof. By definition, there is a circle through

the endpoints of e that contains no other

vertices of S that can be seen from e. The same

circle shows that e is a Delaunay edge in St.

The process by which we combine the

adjacent CDTs of the two strips is roughly

equivalent to the process of constructing the

dividing chain in the divide-and-conquer

algorithm for building the Voronoi diagram.

(See [PS85] for an explanation the Voronoi

diagram algorithm.) CDTs are combined by

executing the following steps; (1) eliminate

infinite vertices along the boundary, leaving a

partial CDT in each half; (2) stitch the partial

CDTs together; and (3) eliminate any infinite

vertices not stored at the region corners. More

detailed versions of these ‘steps are given

below.

step 1. Eliminate the infinite vertices along

the boundary between the two strips. Also,

eliminate any edges that use these vertices as

endpoints. This leaves a partial CDT in each

strip. Add a new infinite vertex for each region

corner that does not have one. Lemma 2 implies

Step 1: Eliminating infinite vertices as strips are combined.

Open circles represent infinite vertices.

that the only new edges that need to be added to

complete the CDT for ,the combined strip are

edges that cross the boundary between the two

strips. (Some Delaunay edges of the partial

CDTs may still need to be eliminated.)

Explanation for step 2. Let A and B be

vertices of G. Assume edge AB crosses the

boundary between the two strips and that edge

AB is known to be part of the desired CDT (AB

may be either a new Delaunay edge added in an

earlier stage or a G-edge). Consider a circle

with points A and B on its boundary and with

center well below AB. Change the circle by

moving the center upward toward AB always

keeping A and B on the boundary. Continue

moving the center upward until the circle

intersects the first point above AB that can be

seen from both A and B. Call this point X. By

definition, the edges AX and BX are Delaunay

edges of the CDT.

x ;

A

~

B

X is the first point that can be seen from A and B.

X is either in B’s strip or in A’s strip; we

assume for the moment that X is in A’s strip. By

Lemma 2, we know AX exists in the lefthand

partial CDT. So the next new edge above AB

must go from B to a point X already connected to

A; in other words, the possible points X are

limited to those connected to A. This gives us

an efficient way to find the next edge above AB:

if X is on the left then we only have to examine

edges connected to A; if X is on the right then

we only have to examine edges connected to B.

Of course, we can’t tell ahead of time whether

the point we are looking for is on the left or the

right, so we choose the best candidate point on

each side, then we choose between them.

We still need to develop an efficient way to

determine which of the points connected to A is

the best candidate. We assume for the moment

that X is on the same side of the boundary as A.

We know from the argument above that the

circle through A, B, and X shows AX to be a

Delaunay edge, by definition. In other words, if

AX is a good candidate then circle ABX will not

contain a vertex that can be seen from A and X.

Let AC be the next edge counterclockwise

around A from AB. We test if AC is a good

candidate by examining triangle ADC (if it

exists) where AD is the next edge around A from

AC. If no such triangle exists (AC is on the edge

of the partial CDT) or if AC is a G-edge then

edge AC is automatically considered a good

candidate. If triangle ADC does exist and AC is

a Delaunay edge then we test to see if D is

within circle ABC; if it is then AC is not a good

candidate. Further, we know AC is not a valid

D
Ci

A

~

B

AC is not a good candidate and is eliminated.

edge in the CDT at all, so it can be eliminated;

AD would then be tested to see if AD is a good

candidate.

Step 2. Each vertex containing region is

divided into subregions by G-edges that cross

the boundary of the strip. We consider only

those G-edges that have endpoints within the

strip, either G-vertices or the special infinite

vertices. New Delaunay edges that cross the

boundary (by Lemma 2 these are the only new

edges we need) can be found be completing the

following process for each subregion. Let A and

B be the endpoints of the G-edge at the bottom

of the current subregion.

loop

Eliminate A-edges that can be shown to be illegal

because of their interaction with B;

Eliminate B-edges that can be shown to be illegal

because of their interaction with A;

Let C be a candidate where AC is the next edge

counterclockwise around A from AB (if such an

edge exists);

Let D be a candidate where BD is the next edge

clockwise around B from BA (if such an edge

exists):

exit loop if no candidates exist;

Let X be the candidate that correspcnds to the lower

of circles ABC and ABD;

Add edge AX or BX as appropriate and call this new

edge AB;

end loop;

Step 3. Eliminate any infinite vertices not

stored at the region corners. Of course, we also

eliminate any Delaunay edges (the ones that are

not part of G) that use these infinite vertices.

Because these vertices are located at infinity,

their elimination does not affect CDT edges

within the newly combined strip.

221

The process outlined above runs in time

O(v) where v is the total number of vertices in

the newly combined strip. To see this note that

in each part of step 2 we either eliminate an

edge from a partial CDT or we add an edge for

the combined CDT. Since both the partial CDT

and the combined CDT contain O(v) edges, the

time bound follows.

Conclusions

We have shown how a divide-and-conquer

algorithm can be used to produce the

constrained Delaunay triangulation (CDT) in

O(n log n) time. This time bound is optimal

since it is easy to show that a CDT can be used

to sort. There are two ideas that have been

particularly important in reaching this time

bound: (1) as in [Ya84], the only cross edges that

we keep track of are those that bound

vertex-containing regions; (2) infinite vertices

are used so that partial CDTs are linked for

efficient access. A useful property of these

infinite vertices is that such a vertex can be

eliminated with minimal effect on edges

between noninfinite vertices.

It may be possible to develop a sweep-line

algorithm for constructing the CDT. Such an

algorithm would probably run faster than the

divide-and-conquer algorithm presented here,

although it would, of course, have the same

asymptotic time bound. Not surprisingly, the

CDT, a type of Delaunay triangulation, has a dual

that is a type of Voronoi diagram. However, this

dual graph can overlap itself, with different

portions of the graph sharing the same portion

of the Euclidean plane. Thus, the CDT does not

lend itself to sweep-line techniques of the type

used by Fortune [Fo86] to build the standard

Voronoi diagram.

References

[CD851

[Ch86]

[Ch87]

[Fo86]

[Ki79]

[Le78]

[LS801

[PS85]

[Ya84]

L. P. Chew and R. L. Drysdale, Voronoi
diagrams based on convex distance
functions. Proceedinas of the 1st
Symposium on Corn uicational Geometry,
Baltimore (1985) f35-244 (Revised
version submitted to Discrete and
Computational Geometry.)

L. P. Chew, There is a planar graph
almost as good as the complete graph,
Proceedings of the Second Annual
Symposium on Computational Geometry,
Yorktown Heights (1986), 169-l 77.

L. P. Chew, Planar graphs and sparse

w
raphs for efficient motion planning in

t e plane, manuscript.

S. Fortune, A swee line
‘vSiy;;rd dtagrams, B

aigorithm for
of the

Annual
roceedmgs
Symposrum on

Computational Geometry, Yorktown
Heights (1986), 313-322.

D. G. Kirkoatrick, Efficient computation
of continuous skeletons, Proceedings of
the 20th Annual Svmoosium on the
Foundations of -Computer Science, IEEE
Computer Society (1979), 18-27.

D. T. Lee, Proximity and reachibilit
i

in
the plane, Technical R- 31,
Coordinated Science

Report
Laboratory,

University of Illinois (1978).

D. T. Lee and 6. Schachter, Two
algorithms for constructing Delaunay
triangulations, International Journal of
Computer and Information Sciences, 9:3
(1980) 219-242.

F. P. Preparata and M. I. Shamos,
Computational Geometry,
Springer-Verlag (1985).

C. K. Yap,. An O(n lo
7 the Voronor diagram o

n) algorithm for
a set of sample

curve segments, Technical Report,
Courant Institute, New York University
(Oct. 1984).

222

