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Abstract 

Given a set of n vertices in the plane 

together with a set of noncrossing edges, the 

constrained Delaunay triangulation (CDT) is the 

triangulation of the vertices with the following 

properties: (1) the prespecified edges are 

included in the triangulation, and (2) it is as 

close as possible to the Delaunay triangulation. 

We show that the CDT can be built in optimal 

O(n log n) time using a divide-and-conquer 

technique. This matches the time required to 

build an arbitrary (unconstrained) Delaunay 

triangulation and the time required to build an 

arbitrary constrained (nonDelaunay) 

triangulation. CDTs, because of their 

relationship with Delaunay triangulations, have 

a number of properties that should make them 

useful for the finite-element method. 

Applications also include motion planning in the 

presence of polygonal obstacles in the plane and 

constrained Euclidean minimum spanning trees, 

spanning trees subject to the restriction that 

some edges are prespecified. 
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Introduction 

Assume we are given a planar straight-line 

graph G. A constrained triangulation of G is a 

triangulation of the vertices of G that includes 

the edges of G as part of the triangulation. See 

[PS85] for an explanation of how such a 

triangulation can be found in O(n log n) time. A 

constrained Delaunay triangulation (CDT) of G 

(called an obstacle triangulation in [Ch86] or a 

generalized Delaunay triangulation in [Le78]) is 

a constrained triangulation of G that also has 

the property that it is as close to a Delaunay 

triangulation as possible. 

In this paper, we show that the CDT can be 

built in O(n log n) time, the same time bound 

required to build the (unconstrained) Delaunay 

triangulation, by using a method similar to that 

used by Yap [Ya84] for building the Voronoi 

diagram of a set of simple curved segments. 

Previously, the fastest algorithm for 

constructing the CDT required O(n log2n) time 

[Le78]. 

The Delaunay triangulation is the straight 

line dual of the Voronoi diagram. See [PS85] for 

definitions and a number of applications of 

Delaunay triangulations and Voronoi diagrams. 
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A Voronoi diagram and the corresponding Delaunay 

triangulation. 

An important property of the Delaunay 

triangulation is that edges correspond to empty 

circles. Indeed, this property can be used as the 

definition of Delaunay triangulation. 

Definition. Let S be a set of point in the plane. 

A triangulation T is a Delaunay triangulation of 

S if for each edge e of T there exists a circle C 

with the following properties: 

1) the endpoints of edge e are on the boundary 

of C, and 

2) no other vertex of S is in the interior of C. 

If no 4 points of S are cocircular then the 

Delaunay triangulation is unique. For most 

cases in which there is not a unique Delaunay 

triangulation, any of them will do. 

The following definition, equivalent to the 

definition given in [Le78], indicates what we 

mean when we say “as close as possible to the 

Delaunay triangulation”. Compare this defintion 

with the definition of the (unconstrained) 

Delaunay triangulation given above. 

Definition. Let G be a straight-line planar 

graph. A triangulation T is a constrained 

Delaunay triangulation (CDT) of G if each edge of 

G is an edge of T and for each remaining edge e 

of T there exists a circle C with the following 

properties 

1) the endpoints of edge e are on the boundary 

of C, and 

2) if any vertex v of G is in the interior of C 

then it cannot be “seen” from at least one of 

the endpoints of e (i.e., if you draw the line 

segments from v to each endpoint of e then 

at least one of the line segments crosses an 

edge of G). 

It follows immediately from the definition that 

if G has no edges then the constrained Delaunay 

triangulation is the same as the (unconstrained) 

Delaunay triangulation. 

Intuitively, the definition of Delaunay 

traingulation and constrained Delaunay 

triangulation are the same except that, for the 

CDT, we ignore portions of a circle whenever the 

circle passes through an edge of G. Note that 

the CDT is not the same as the dual of the 

line-segment Voronoi diagram. VW log n) 

algorithms for constructing the line-segment 

Voronoi diagram appear in [Ki79] and [Ya84].) 

We distinguish 2 types of edges that appear 

in a CDT: G-edges, prespecified edges that are 

forced upon us as part of G, and Delaunay edges, 

the remaining edges of the CDT. 
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A graph G and the corresponding wnstrained Delaunay 

triangulation. 

One measure of the appropriateness of a 

definition is its utility. We demonstrate the 

utility of the definition of a CDT by presenting 

some applications. Just as the (unconstrained) 

Delaunay triangulation of S can be used to 

quickly determine the Euclidean minimum 

spanning tree (EMST) of S, the CDT can be used 

to find the constrained EMST of S, constrained in 

the sense that certain edges of the spanning 

tree are prespecified and may not be crossed by 

other edges of the spanning tree. See [PS85] for 

a proof that the EMST is a subgraph of the 

Delaunay triangulation. Virtually the same 

proof can be used to show that the constrained 

EMST is a subgraph of the CDT. 

An additional application is presented in 

[Ch86] and [Ch87] where variations of the 

standard CDT are used for motion planning in the 

plane. These variations use a different distance 

function, in effect using a “circle” that is 

shaped like a square [Ch86] or a triangle [Ch87]. 

With some minor modifications, the results 

presented here are valid for CDTs based on the 

square-distance (the L1 metric) or the 

triangle-distance or based on other convex 

distance functions. See [CD851 for more 

information on convex distance functions and 

their relation to Delaunay triangulations. 

CDTs should also prove useful for the 

finite-element method. This is an area in which 

standard Delaunay triangulations have been 

shown to have desirable properties. CDTs 

inherit some of these desirable properties with 

the advantage that some edges can be 

prespecified. 

The algorithm 

We use divide-and-conquer to build the CDT. 

For simplicity of presentation, we assume that 

the planar graph G is contained within a given 

rectangle. We start by sorting the vertices of G 

by x-coordinate; then we use this information to 

divide the rectangle into vertical strips in such 

a way that there is exactly one vertex in each 

strip. Of course, this cannot be done if some 

vertex is directly above another, but we can 

avoid this problem by rotating the entire graph G 

if necessary. Following the divide-and conquer 

paradigm, the CDT is calculated for each strip, 

adjacent strips are pasted together in pairs to 

form new strips, and the CDT is calculated for 

each such newly formed strip until the CDT for 

the entire G-containing rectangle has been built. 

The whole process takes time O(n log n) 

provided the CDT calculation for each newly 

formed strip can be done in time O(v) where v is 

the total number of G-vertices in the newly 

formed strip. 

The trick used to ensure that this CDT 

pasting operation is done in reasonable time is 
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to avoid keeping track of too much edge 

information. Note that it is not possible to keep 

track of all places where G-edges intersect 

strip boundaries; if we do so then we could have 

as many as O(n2) intersections to work with. 

Edges that cross a strip, edges with no 

endpoints within the strip, are, for the most 

part, ignored. Such an edge is of interest only if 

it interacts in some way with a vertex that lies 

within the strip. Yap [Ya84] used the same 

technique to develop an algorithm for the 

line-segment Voronoi diagram. 

Each strip, then, is divided into regions by 

cross edges, G-edges that have no endpoint 

within the strip. We do not keep track of all of 

these regions (there could be O(n2) of them). 

Instead we keep track of just the regions that 

contain one or more vertices. 

Control of vertex-containing regions 

Each initial strip has a single region 

containing its single vertex. To create these 

initial regions we need to know the edge 

immediately above and the edge immediately 

below each vertex. (Note that the edge 

immediately above (below) a vertex may be the 

top (bottom) edge of the rectangle that contains 

the entire graph G.) This information can be 

found for all vertices in O(n log n) time by 

using a vertical line as a sweep-line. See 

[PS85] for an explanation of this technique and a 

number of applications. 

It is not difficult to determine appropriate 

regions when two adjacent strips are stitched 

together. Basically, we merge regions by 

running through the regions in their order along 

the strips. 

-r 

The contents of a strip and the contents that we keep track of. 

At this point, two parts of the CDT 

algrothm require further explanation: (1) how to 

handle vertex-containing regions, initializing 

them and keeping track of them as adjacent 

strips are combined, and (2) how to stitch 

together CDTs as adjacent strips are combined. 

Merging the regions of two adjacent strips. 

As we move from top to bottom in the combined 

strip, we start a new region whenever either 

strip starts a region, we continue the region as 

long as a region continues in either strip, we 

stop a region only when we reach a point where 

neither strip has a vertex-containing region. It 



is easy to see that this merge operation takes 

time proportional to the total number of regions 

in both strips; thus, it takes time O(v) where v 

is the number of vertices in both strips. 

Stitching CDTs together’ 

The method we use for stitching CDTs 

together is similar to one of the methods used 

by Lee and Schachter [LS801 to build 

(unconstrained) Delaunay triangulations. We 

assume the following operations can be done in 

unit time: (1) given point p and circle C, test 

whether p is in the interior of C; (2) given 

points p, q, and r, return the circle through these 

points. These functions clearly take constant 

time for any reasonable model of computation, 

even if we use nonstandard “circles” as in 

[CD85]. 

The major difficulty is to determine a 

place to start so that the CDTs of two adjacent 

strips may be stitched together. To do this, we 

create imaginary vertices at infinity. Each 

vertex-containing region has a set of 4 of these 

infinite vertices. For each region, the 4 infinite 

vertices are treated as if they are located at 

(+-,+-). It is convenient to picture the infinite 

vertices for a region as if they are located at 

the 4 corners of the region; this is a 

convenience for drawing pictures - these 

vertices are treated in other respects as if they 

are located at one of the 4 infinite points. The 

CDT for a vertex-containing region is 

constructed using these infinite vertices as 

additional data points for the CDT. We specify 

that infinite vertices of two different regions 

do not interact; these vertices interact only 

with points within their own region. Note that 

with just 4 extra vertices per vertex-containing 

region the overall running time is affected by 

just a constant factor. 

In the following algorithm, we c’reate 

circles that go through these infinite vertices. 

To determine the proper form for such a circle, 

for instance a circle through (-,oo), the reader 

should first consider a circle using the point 

(w,w), where w is a large number. Use the 

limiting circle as w approaches m. (The 

limiting circle will be a half-plane.) 

The infinite vertices were introduced so 

that we always have a starting place for a CDT. 

Whenever we need access to a CDT we use an 

infinite vertex a starting point. The following 

lemmas show that the infinite vertices do not 

otherwise affect the CDTs. 

Lemma 1. If we eliminate the infinite vertices 

of a region by removing the infinite vertices and 

their edges then the remaining vertices and 

edges form a CDT for the region. 

Proof. Infinite vertices interact only with 

vertices on the convex hull. 

Lemma 2. Let S, and S2 be adjacent strips 

that are combined to make strip S and let T be a 

CDT that is in S. (St and S2 contain CDTs that 

may be altered in the process of making S.) If e 

is a Delaunay edge of T and both endpoints of e 

are in S1 then e is a Delaunay edge of a CDT in 

-%- 
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Proof. By definition, there is a circle through 

the endpoints of e that contains no other 

vertices of S that can be seen from e. The same 

circle shows that e is a Delaunay edge in St. 

The process by which we combine the 

adjacent CDTs of the two strips is roughly 

equivalent to the process of constructing the 

dividing chain in the divide-and-conquer 

algorithm for building the Voronoi diagram. 

(See [PS85] for an explanation the Voronoi 

diagram algorithm.) CDTs are combined by 

executing the following steps; (1) eliminate 

infinite vertices along the boundary, leaving a 

partial CDT in each half; (2) stitch the partial 

CDTs together; and (3) eliminate any infinite 

vertices not stored at the region corners. More 

detailed versions of these ‘steps are given 

below. 

step 1. Eliminate the infinite vertices along 

the boundary between the two strips. Also, 

eliminate any edges that use these vertices as 

endpoints. This leaves a partial CDT in each 

strip. Add a new infinite vertex for each region 

corner that does not have one. Lemma 2 implies 

Step 1: Eliminating infinite vertices as strips are combined. 

Open circles represent infinite vertices. 

that the only new edges that need to be added to 

complete the CDT for ,the combined strip are 

edges that cross the boundary between the two 

strips. (Some Delaunay edges of the partial 

CDTs may still need to be eliminated.) 

Explanation for step 2. Let A and B be 

vertices of G. Assume edge AB crosses the 

boundary between the two strips and that edge 

AB is known to be part of the desired CDT (AB 

may be either a new Delaunay edge added in an 

earlier stage or a G-edge). Consider a circle 

with points A and B on its boundary and with 

center well below AB. Change the circle by 

moving the center upward toward AB always 

keeping A and B on the boundary. Continue 

moving the center upward until the circle 

intersects the first point above AB that can be 

seen from both A and B. Call this point X. By 

definition, the edges AX and BX are Delaunay 

edges of the CDT. 

x ; 

A 

~ 

B 

X is the first point that can be seen from A and B. 

X is either in B’s strip or in A’s strip; we 

assume for the moment that X is in A’s strip. By 

Lemma 2, we know AX exists in the lefthand 

partial CDT. So the next new edge above AB 

must go from B to a point X already connected to 

A; in other words, the possible points X are 



limited to those connected to A. This gives us 

an efficient way to find the next edge above AB: 

if X is on the left then we only have to examine 

edges connected to A; if X is on the right then 

we only have to examine edges connected to B. 

Of course, we can’t tell ahead of time whether 

the point we are looking for is on the left or the 

right, so we choose the best candidate point on 

each side, then we choose between them. 

We still need to develop an efficient way to 

determine which of the points connected to A is 

the best candidate. We assume for the moment 

that X is on the same side of the boundary as A. 

We know from the argument above that the 

circle through A, B, and X shows AX to be a 

Delaunay edge, by definition. In other words, if 

AX is a good candidate then circle ABX will not 

contain a vertex that can be seen from A and X. 

Let AC be the next edge counterclockwise 

around A from AB. We test if AC is a good 

candidate by examining triangle ADC (if it 

exists) where AD is the next edge around A from 

AC. If no such triangle exists (AC is on the edge 

of the partial CDT) or if AC is a G-edge then 

edge AC is automatically considered a good 

candidate. If triangle ADC does exist and AC is 

a Delaunay edge then we test to see if D is 

within circle ABC; if it is then AC is not a good 

candidate. Further, we know AC is not a valid 

D 
Ci 

A 

~ 

B 

AC is not a good candidate and is eliminated. 

edge in the CDT at all, so it can be eliminated; 

AD would then be tested to see if AD is a good 

candidate. 

Step 2. Each vertex containing region is 

divided into subregions by G-edges that cross 

the boundary of the strip. We consider only 

those G-edges that have endpoints within the 

strip, either G-vertices or the special infinite 

vertices. New Delaunay edges that cross the 

boundary (by Lemma 2 these are the only new 

edges we need) can be found be completing the 

following process for each subregion. Let A and 

B be the endpoints of the G-edge at the bottom 

of the current subregion. 

loop 

Eliminate A-edges that can be shown to be illegal 

because of their interaction with B; 

Eliminate B-edges that can be shown to be illegal 

because of their interaction with A; 

Let C be a candidate where AC is the next edge 

counterclockwise around A from AB (if such an 

edge exists); 

Let D be a candidate where BD is the next edge 

clockwise around B from BA (if such an edge 

exists): 

exit loop if no candidates exist; 

Let X be the candidate that correspcnds to the lower 

of circles ABC and ABD; 

Add edge AX or BX as appropriate and call this new 

edge AB; 

end loop; 

Step 3. Eliminate any infinite vertices not 

stored at the region corners. Of course, we also 

eliminate any Delaunay edges (the ones that are 

not part of G) that use these infinite vertices. 

Because these vertices are located at infinity, 

their elimination does not affect CDT edges 

within the newly combined strip. 
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The process outlined above runs in time 

O(v) where v is the total number of vertices in 

the newly combined strip. To see this note that 

in each part of step 2 we either eliminate an 

edge from a partial CDT or we add an edge for 

the combined CDT. Since both the partial CDT 

and the combined CDT contain O(v) edges, the 

time bound follows. 

Conclusions 

We have shown how a divide-and-conquer 

algorithm can be used to produce the 

constrained Delaunay triangulation (CDT) in 

O(n log n) time. This time bound is optimal 

since it is easy to show that a CDT can be used 

to sort. There are two ideas that have been 

particularly important in reaching this time 

bound: (1) as in [Ya84], the only cross edges that 

we keep track of are those that bound 

vertex-containing regions; (2) infinite vertices 

are used so that partial CDTs are linked for 

efficient access. A useful property of these 

infinite vertices is that such a vertex can be 

eliminated with minimal effect on edges 

between noninfinite vertices. 

It may be possible to develop a sweep-line 

algorithm for constructing the CDT. Such an 

algorithm would probably run faster than the 

divide-and-conquer algorithm presented here, 

although it would, of course, have the same 

asymptotic time bound. Not surprisingly, the 

CDT, a type of Delaunay triangulation, has a dual 

that is a type of Voronoi diagram. However, this 

dual graph can overlap itself, with different 

portions of the graph sharing the same portion 

of the Euclidean plane. Thus, the CDT does not 

lend itself to sweep-line techniques of the type 

used by Fortune [Fo86] to build the standard 

Voronoi diagram. 
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