

Arrangements

O'Rourke, Chapter 6

Announcements

Assignment 3 has been posted

Outline

- Review
- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts

Review

The equation for a parabola in 2D is:

$$f(x) = x^2$$

 \Rightarrow The derivative of the parabola at α is:

$$f'(\alpha) = 2\alpha$$

 \Rightarrow The equation for the line tangent to the parabola at α is:

$$y_{\alpha}(x) = 2\alpha x - \alpha^2$$

Review

The equation for a parabola in 3D is:

$$f(x,y) = x^2 + y^2$$

 \Rightarrow The derivatives of the parabola at $p = (\alpha, \beta)$ is:

$$\frac{\partial f}{\partial x}(\alpha, \beta) = 2\alpha \qquad \qquad \frac{\partial f}{\partial y}(\alpha, \beta) = 2b$$

 \Rightarrow The equation for the tangent plane to the parabola at $p = (\alpha, \beta)$ is:

$$z_{p}(x,y) = 2\alpha x + 2\beta y - \alpha^{2} - \beta^{2}$$

$$\updownarrow$$

$$z_{p}(r) = 2\langle p, r \rangle - ||p||^{2}$$

Outline

- Review
- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts

Definition:

Given a point $p = (\alpha, \beta)$ in the plane, define the dual line to be the (non-vertical) line with equation: $D(p) = \{(x, y) | y = 2\alpha x - \beta\}$

Note:

- The slope depends on the x-coordinate of p.
- The height depends on the y-coordinate of p.
 (Height decreases as the y-coordinate increases.)

Definition:

Given a point $p = (\alpha, \beta)$ in the plane, define the dual line to be the (non-vertical) line with equation: $D(p) = \{(x, y) | y = 2\alpha x - \beta\}$

Given a (non-vertical) line $L = \{(x, y) | y = mx + b\}$, define the *dual point* to be the point with coordinates:

$$D(L) = \left(\frac{m}{2}, -b\right)$$

Claim (Inverse):

The two dual maps are inverses of each other.

Proof (Points):

$$p = (\alpha, \beta)$$

$$\Rightarrow D(p) = \{(x, y) | y = 2\alpha x - \beta\}$$

$$\Rightarrow D(D(p)) = \left(\left(\frac{2\alpha}{2}\right), \beta\right) = p$$

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Inverse):

The two dual maps are inverses of each other.

Proof (Points):

$$p = (\alpha, \beta)$$

$$\Rightarrow D(p) = \{(x, y) | y = 2\alpha x - \beta\}$$

$$\Rightarrow D(D(p)) = \left(\left(\frac{2\alpha}{2}\right), \beta\right) = p$$

Since every line is the dual of some point, it follows that the maps are inverses.

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Incidence):

Given
$$p = (\alpha, \beta)$$
 and $L = \{(x, y) | y = mx + b\}$:
 $p \in L \iff D(L) \in D(p)$.

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Incidence):

Given
$$p = (\alpha, \beta)$$
 and $L = \{(x, y) | y = mx + b\}$:
 $p \in L \iff D(L) \in D(p)$.

Proof:

$$p \in L$$

$$\Leftrightarrow \beta = m\alpha + b$$

$$\Leftrightarrow -b = 2\alpha \left(\frac{m}{2}\right) - \beta$$

$$\Leftrightarrow D(L) \in D(p)$$

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Incidence):

Given
$$p = (\alpha, \beta)$$
 and $L = \{(x, y) | y = mx + b\}$:
 $p \in L \iff D(L) \in D(p)$.

Corollary:

 $p \in L_1 \cap L_2$ if and only if $D(L_1), D(L_2) \in D(p)$.

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Ordering):

If line $L = \{(x,y)|y = mx + b\}$ is below/above point $p = (\alpha,\beta)$ then line D(L) is above/below D(p).

Claim (Ordering):

If line $L = \{(x,y)|y = mx + b\}$ is below/above point $p = (\alpha,\beta)$ then line D(L) is above/below D(p).

Proof:

L is below p

$$\Leftrightarrow \beta > m\alpha + b$$

$$\Leftrightarrow -b > 2\alpha \left(\frac{m}{2}\right) - \beta$$

$$\Leftrightarrow$$
 the point $\left(\frac{m}{2}, -b\right)$ is above the line $\{(x, y)|y = 2\alpha x - \beta\}$

$$\Leftrightarrow D(L)$$
 is above $D(p)$

Claim (Parabola):

p is on the parabola if and only if D(p) is the tangent to the parabola at p.

Claim (Parabola):

p is on the parabola if and only if D(p) is the tangent to the parabola at p.

Proof:

$$L = \{(x,y)|y = mx + b\}$$
 is tangent to the parabola at α

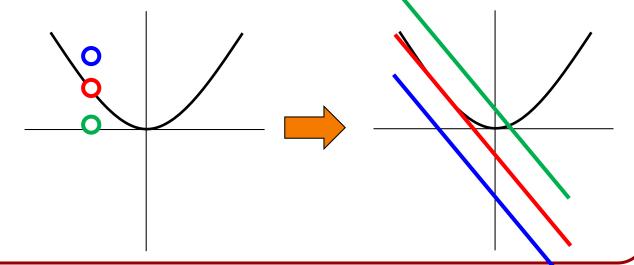
$$\downarrow L = \{(x,y)|y = 2\alpha x - \alpha^2\}$$

$$\downarrow D(L) = (\alpha,\alpha^2)$$

$$\downarrow D(L)$$
 is on the parabola

For a point $p = (\alpha, \beta)$:

- $\beta = \alpha^2$: If p is on the parabola, D(p) is the tangent to the parabola at (α, α^2) .
- \circ β < α^2 : If p is below the parabola, D(p) is parallel and above the tangent to the parabola at (α, α^2) .
- \circ $\beta > \alpha^2$: If p is above the parabola, D(p) is parallel and below the tangent to the parabola at (α, α^2) .



In a similar manner, we can define duality between points and (non-vertical) hyperplanes in d dimensions:

$$\left\{ (\alpha_1, \dots, \alpha_d) \right.$$

$$\left\{ (x_1, \dots, x_d) \mid x_d = 2 \sum_{i=1}^{d-1} \alpha_i x_i - \alpha_d \right\}$$

Outline

- Review
- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts

Recall:

• Given a point $P(p) = (p, ||p||^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - \|p\|^2$$

 For any point q the (vertical) distance between the points on the parabola and the tangent plane are:

$$P(q) - z_p(q) = ||p - q||^2$$

 \Rightarrow Given points p and q, wherever the tangent plane at q is higher than the tangent plane at p, we are closer to q than to p.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points $\{(p_i, ||p_i||^2)\}$ and view

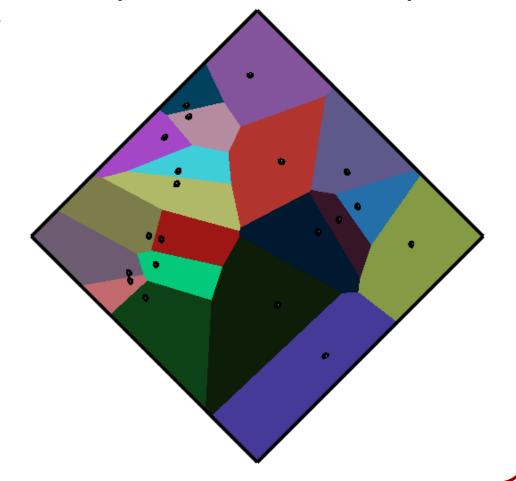
from above, we "see" the Voronoi diagram.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points $\{(p_i, ||p_i||^2)\}$ and view from above, we "see"

the Voronoi diagram.

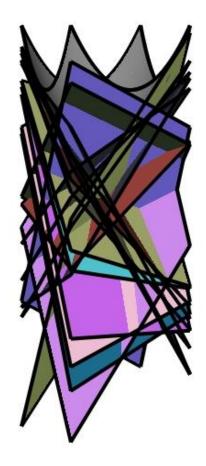
Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points

 $\{(p_i, ||p_i||^2)\}$ and view from above, we "see" the Voronoi diagram.



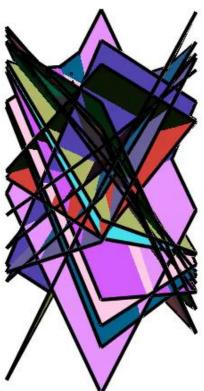
Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points

 $\{(p_i, ||p_i||^2)\}$ and view from below, we "see" the furthest-point Voronoi diagram.



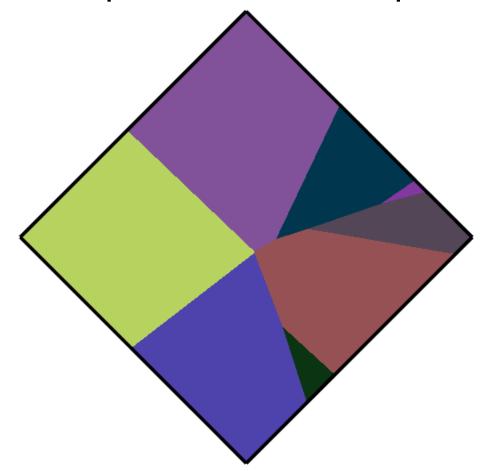
Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points $\{(p_i, ||p_i||^2)\}$ and view from below, we "see"

the furthest-point Voronoi diagram.



Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points

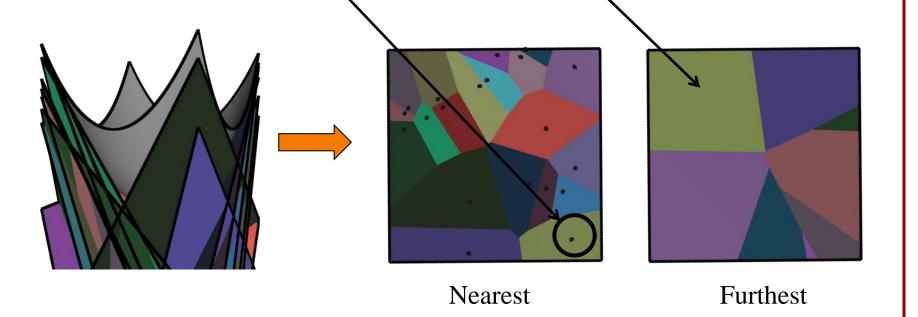
 $\{(p_i, ||p_i||^2)\}$ and view from below, we "see" the furthest-point Voronoi diagram.



From Above: (Nearest-Point) Voronoi Diagram

From Below: Furthest-Point Voronoi Diagram

The points here are further from this site than from any other site.

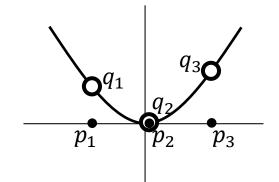


Definition:

The k-th order Voronoi Diagram is a partition of space into convex cells, indexed by k-tuples of points $(p_{i_1}, ..., p_{i_k})$, with $i_j < i_{j+1}$, such that a point q is in cell $(p_{i_1}, ..., p_{i_k})$ iff. the k nearest neighbors of q are $\{p_{i_1}, ..., p_{i_k}\}$.

Given sites in 2D, lift them to the paraboloid:

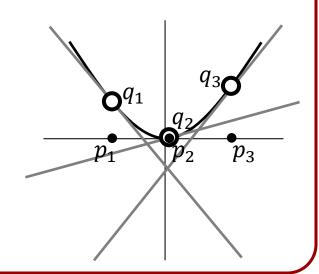
$$p_i \to q_i = \left(p_i, \|p_i\|^2\right)$$



Given sites in 2D, lift them to the paraboloid:

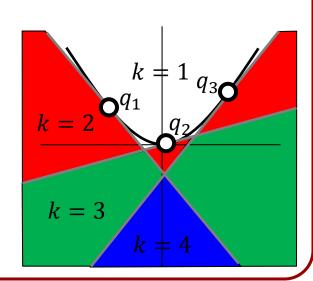
$$p_i \to q_i = \left(p_i, \|p_i\|^2\right)$$

The set of tangent planes to the paraboloid at these points form an arrangement.

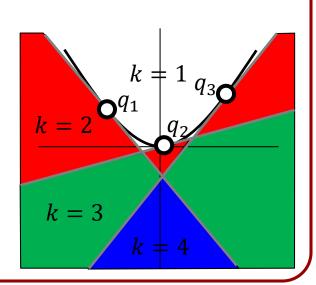


Definition:

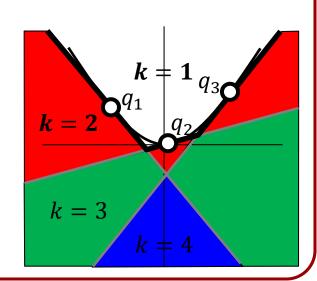
The k-th level of the arrangement is the set of cells in the arrangement which have exactly k-1 planes above them.



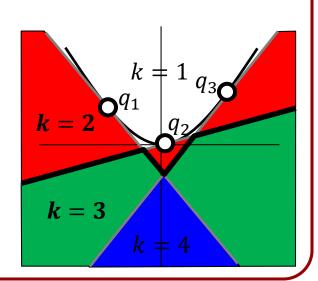
Note:



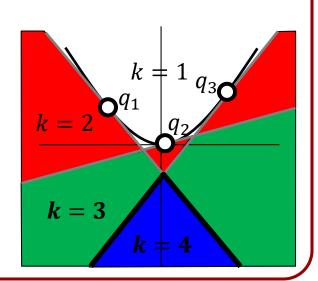
Note:



Note:

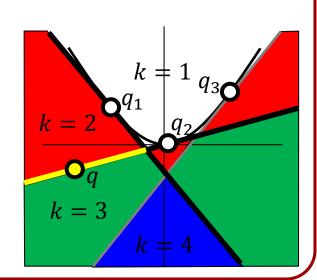


Note:



Note:

Every point q on a face of the intersection of the k-th and (k + 1)-st levels of the arrangement has the same set of k planes on or above it.

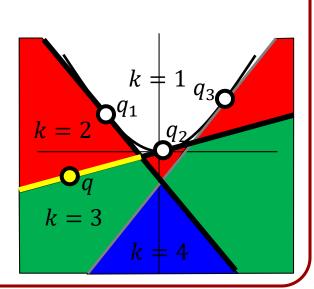


Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

Recall:

• The planes of the arrangement are the tangent planes to the paraboloid at the lifted sites, q_i .

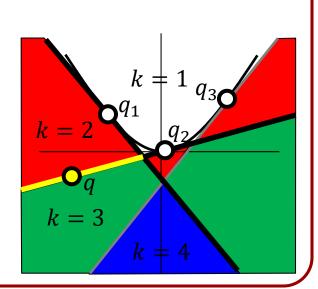


Note:

Every point q on a face of the intersection of the k-th and (k + 1)-st levels of the arrangement has the same set of k planes on or above it.

Recall:

- The planes of the arrangement are the tangent planes to the paraboloid at the lifted sites, q_i .
- Their duals are the lifted sites.

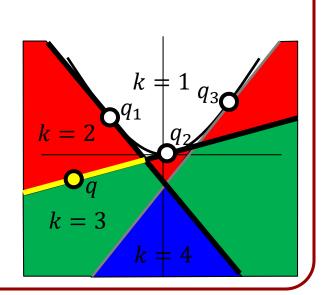


Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

Recall:

- The planes of the arrangement are the tangent planes to the paraboloid at the lifted sites, q_i .
- Their duals are the lifted sites.
- The projection of the planes' duals onto the xy-plane are the sites p_i .

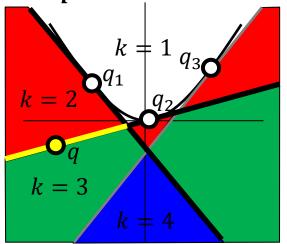


Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

 \Rightarrow The projection of the duals of those k planes are the sites closest to the projection of q onto the

xy-plane.

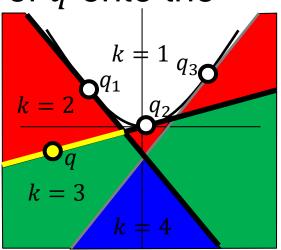


Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

 \Rightarrow The projection of the duals of those k planes are the sites closest to the projection of q onto the

xy-plane.

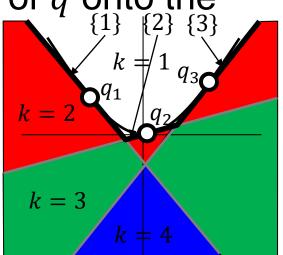


Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

 \Rightarrow The projection of the duals of those k planes are the sites closest to the projection of q onto the

xy-plane.

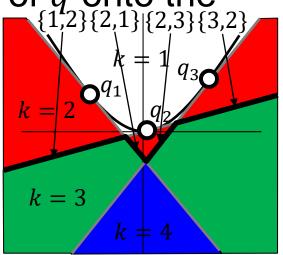


Note:

Every point q on a face of the intersection of the k-th and (k + 1)-st levels of the arrangement has the same set of k planes on or above it.

 \Rightarrow The projection of the duals of those k planes are the sites closest to the projection of q onto the

xy-plane.



Note:

Every point q on a face of the intersection of the k-th and (k+1)-st levels of the arrangement has the same set of k planes on or above it.

 \Rightarrow The projection of the duals of those k planes are the sites closest to the projection of q onto the $\{1,2,3\} \mid \{3,2,1\}\}$

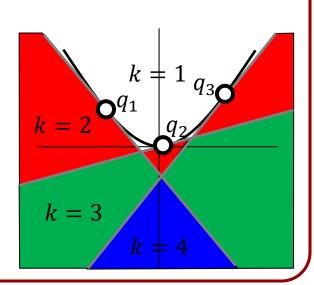
k = 3

xy-plane.

[Edelsbrunner 1987]

Theorem:

The points of intersection of the k-th and (k + 1)-th levels in the arrangement project to the k-th order Voronoi diagram.

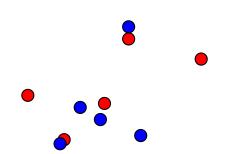


Outline

- Review
- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts
 - Red-Blue Matching

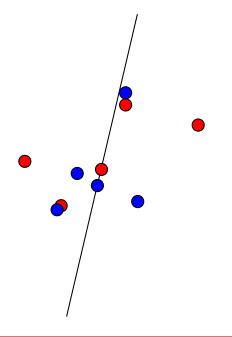
Claim:

Given two sets of points, P_1 and P_2 , in the plane, there is a line that simultaneously bisects both sets.



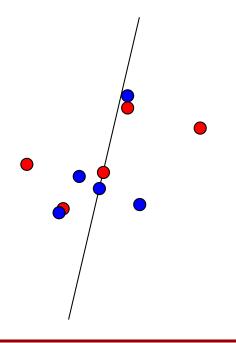
Claim:

Given two sets of points, P_1 and P_2 , in the plane, there is a line that simultaneously bisects both sets.



Proof:

Assume general position and, with some loss of generality, that the two point-sets each have an odd number of points.



Note:

A line splits the point set P_1 in two if:

1. It passes through one of the points, and

Note:

A line splits the point set P_1 in two if:

- 1. It passes through one of the points, and
- 2. It has the same number of points above and below.

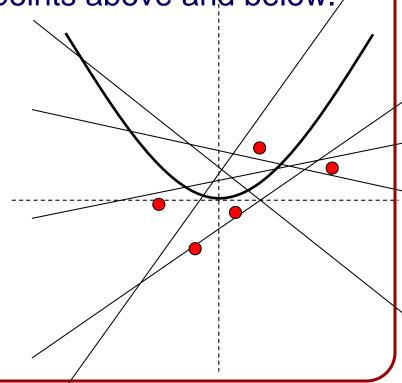
Note:

A line splits the point set P_1 in two if:

- 1. It passes through one of the points, and
- 2. It has the same number of points above and below.

Equivalently:

1. Its dual lies on the dual of one of the points, and



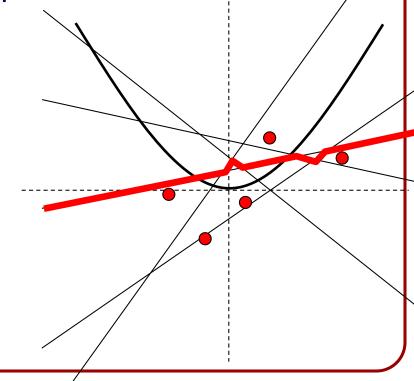
Note:

A line splits the point set P_1 in two if:

- 1. It passes through one of the points, and
- 2. It has the same number of points above and below.

Equivalently:

- 1. Its dual lies on the dual of one of the points, and
- 2. Its dual is on the median level of the dual arrangement.



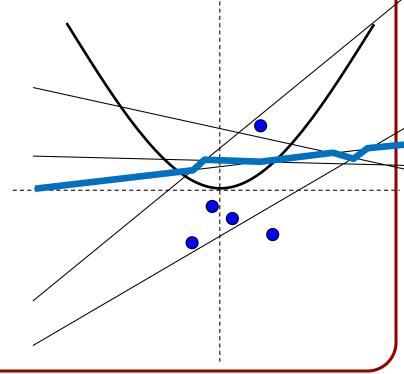
Note:

A line splits the point set P_2 in two if:

- 1. It passes through one of the points, and
- 2. It has the same number of points above and below.

Equivalently:

- 1. Its dual lies on the dual of one of the points, and
- 2. Its dual is on the median level of the dual arrangement.



Note:

A line splits both P_1 and P_2 in two if it passes through a point in P_1 and a point in P_2 and has the same number of points in P_1 and the same number of points in P_2 above and below.

Note:

A line splits both P_1 and P_2 in two if it passes through a point in P_1 and a point in P_2 and has the same number of points in P_1 and the same number of points in P_2 above and below.

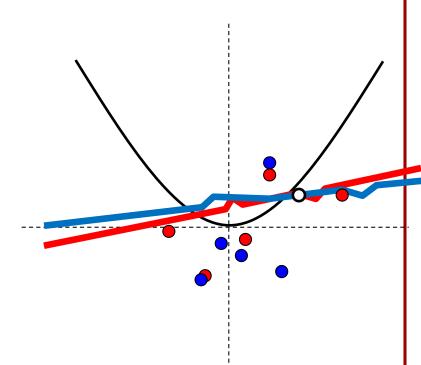
⇒ To find the cut, we need to find the intersection of the median levels of the two arrangements.

Claim:

The median levels of two arrangements must intersect (an odd number of times).

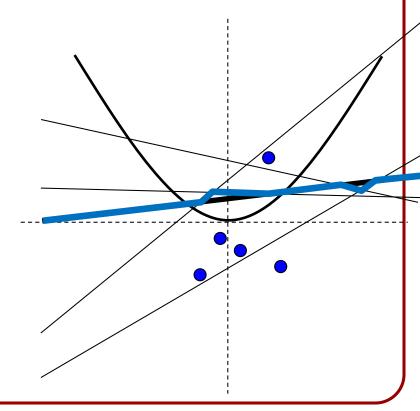
Sub-Claim:

The two infinite edges of the median level are defined by the same line.



Proof (Sub-Claim):

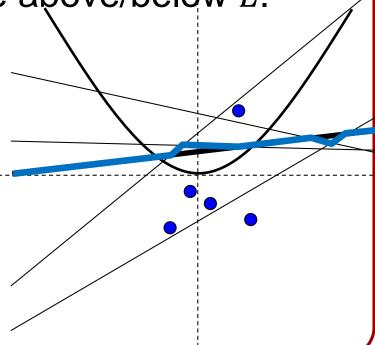
Let *L* be the line giving the left edge of the median level.



Proof (Sub-Claim):

Let *L* be the line giving the left edge of the median level.

 \Rightarrow As $x \to -\infty$ half the lines are above/below L.

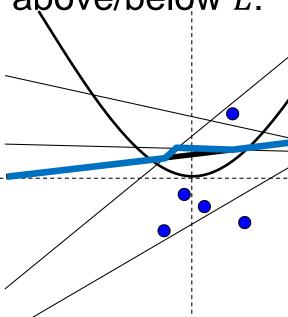


Proof (Sub-Claim):

Let *L* be the line giving the left edge of the median level.

 \Rightarrow As $x \to -\infty$ half the lines are above/below L.

 \Rightarrow Assuming general position, at $x = \infty$ the "above" lines are "below" and the "below" lines are "above".



Proof (Sub-Claim):

Let *L* be the line giving the left edge of the median level.

 \Rightarrow As $x \to -\infty$ half the lines are above/below L.

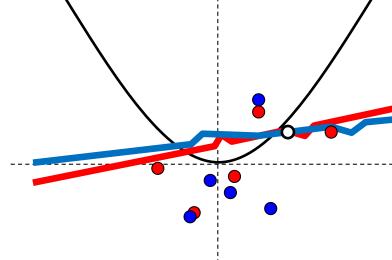
- \Rightarrow Assuming general position, at $x = \infty$ the "above" lines are "below" and the "below" lines are "above".
- \Rightarrow L also defines the right edge of the median level.

Proof (Claim):

Since the left/right-most edges lie on the same line, if the median level of P_1 is above (resp. below) the median level of P_2 as $x \to -\infty$ then the median level of P_1 is below (resp. above)

the median level of P_2

as $x \to \infty$.



Proof (Claim):

as $x \to \infty$.

Since the left/right-most edges lie on the same line, if the median level of P_1 is above (resp. below) the median level of P_2 as $x \to -\infty$ then the median level of P_1 is below (resp. above) the median level of P_2

⇒ The median levels cross (an odd number of times).

Proof (Claim):

Since the left/right-most edges lie on the same line, if the median level of P_1 is above (resp. below) the median level of P_2 as $x \to -\infty$ then the median level of P_1 is below (resp. above) the median level of P_2 as $x \to \infty$.

⇒ The median levels cross (an odd number of times).

[Lo, Maoutsek, and Steiger, 1994]:

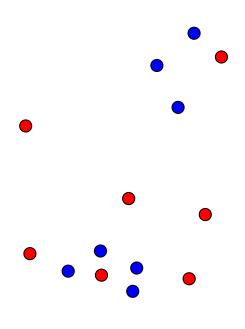
The intersection can be found in $O(|P_1| + |P_2|)$ time.

A similar argument holds in *d* dimensions:

Given d sets of points, $P_1, P_2, ..., P_d$, in d-dimensions, there is a hyperplane that simultaneously bisects each of the sets.

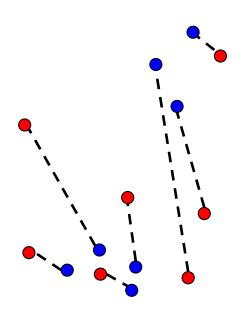
Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.



Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

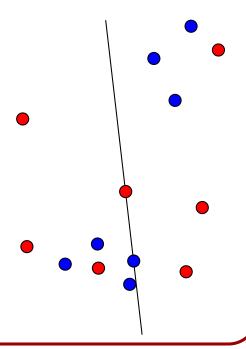


Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

Compute a ham-sandwich cut



Claim:

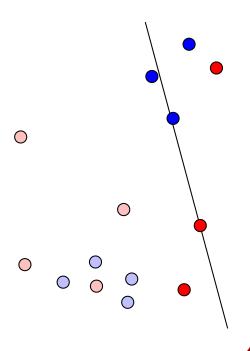
Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

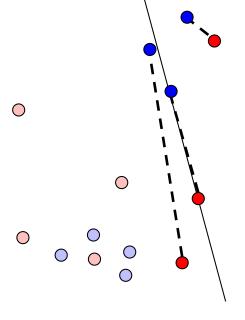
- Compute a ham-sandwich cut
- (Recursively) compute a matching.



Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

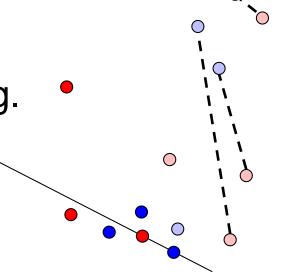
- Compute a ham-sandwich cut
- (Recursively) compute a matching.



Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

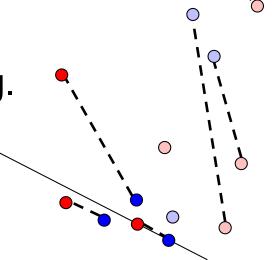
- Compute a ham-sandwich cut
- (Recursively) compute a matching.



Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

- Compute a ham-sandwich cut
- (Recursively) compute a matching.



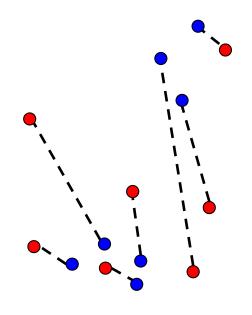
Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Since the line-segments for each sub-problem are on one side of the cut, the segments from the two sub-problems do not intersect.



Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Since the line-segments for each sub-problem are on one side of the

Cut [Lo, Maoutsek, and Steiger, 1994]:

Sub The matching can be found in $O(n \log n)$ time.