

Arrangements

O'Rourke, Chapter 6

Outline

- Voronoi Diagrams
- Arrangements

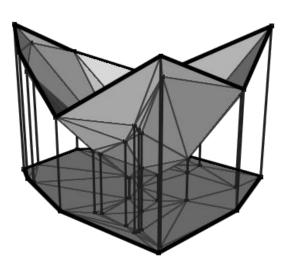
Recall:

Recall:

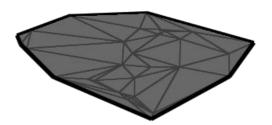


Recall:

Recall:



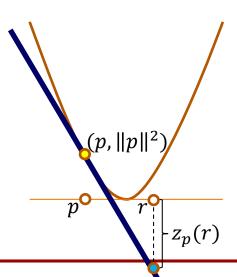
Recall:



Recall:

Given a point $P(p) = (p, ||p||^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - ||p||^2$$



Recall:

Given a point $P(p) = (p, ||p||^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - ||p||^2$$

For any point r the (vertical) distance between its position on the parabola and its position on the tangent plane at p is:

$$P(r) - z_p(r) = ||r||^2 - (2\langle r, p \rangle - ||p||^2)$$

$$(p, ||p||^2)$$

 $P(z) - z_p(r)$

Recall:

Given a point $P(p) = (p, ||p||^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - ||p||^2$$

For any point r the (vertical) distance between its position on the parabola and its position on the tangent plane at p is:

$$P(r) - z_p(r) = ||r||^2 - (2\langle r, p \rangle - ||p||^2)$$

$$= ||p - r||^2$$

$$(p, ||p||^2)$$

 $\frac{p}{\|p-r\|} - \|p-r\|^2$

 \Rightarrow Given points p and q, wherever the tangent plane at q is higher than the tangent plane at p, we are closer to q than to p.

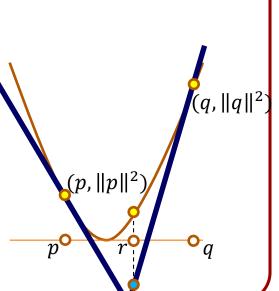
$$z_{p}(r) \leq z_{q}(r)$$

$$\updownarrow$$

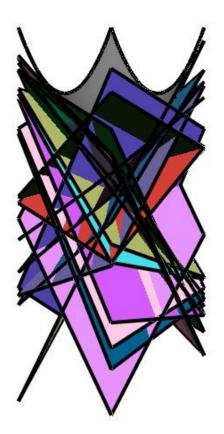
$$P(r) - z_{p}(r) \geq P(r) - z_{q}(r)$$

$$\updownarrow$$

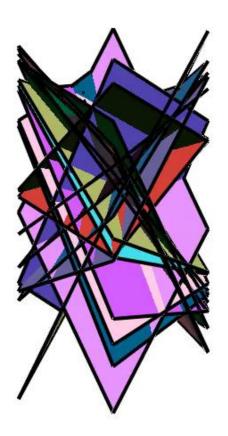
$$||p - r||^{2} \geq ||q - r||^{2}$$



- \Rightarrow Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.
- ⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.

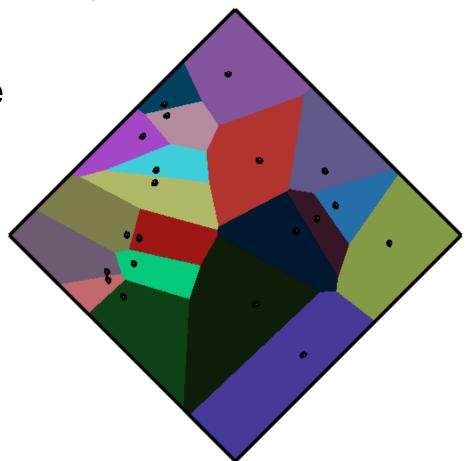


- \Rightarrow Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.
- ⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.



 \Rightarrow Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.

⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.



Outline

- Voronoi Diagrams
- Arrangements

Arrangements

Definition:

An arrangement of lines is a set of lines in the plane, inducing a partition of the domain into (convex) faces, edges, and vertices.

Arrangements

Definition:

An arrangement of lines is a set of lines in the plane, inducing a partition of the domain into (convex) faces, edges, and vertices.

An arrangement is *simple* if all pairs of lines intersect, and no three lines intersect at the same point.

Claim:

A simple arrangement of *n* lines has

- $\binom{n}{2}$ vertices,
- n^2 edges, and
- $\binom{n}{2} + n + 1$ faces.

Proof (Vertices):

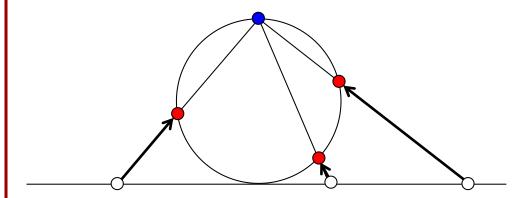
Since each pair of lines intersects exactly once, the total number of vertices is the number of distinct line pairs, $\binom{n}{2}$.

Proof (Edges):

Since each line is intersected by n-1 other lines, partitioning the lines into n edges, the total number of edges is n^2 .

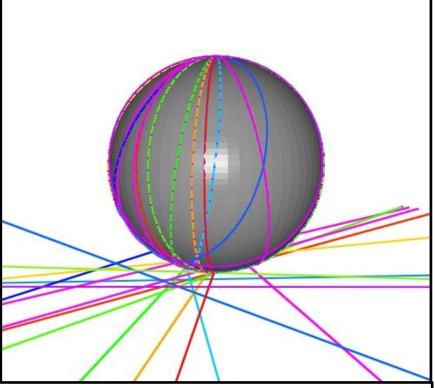
Proof (Faces):

Using stereographic mapping, arrangements of lines in the plane can be thought of as polygonizations of the sphere.



Proof (Faces):

Using stereographic mappi lines in the plane can be the polygonizations of the spherometric mapping the spherometric mapping and serious serious serious and serious s



Note:

The stereographic mapping of the lines intersect at the North Pole.

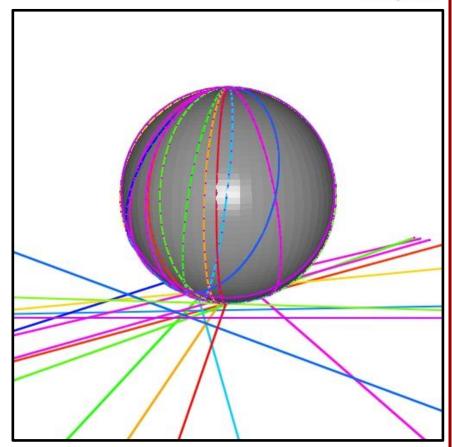
Proof (Faces):

By Euler's theorem the number of faces is:

$$F = 2 - (V + 1) + E$$

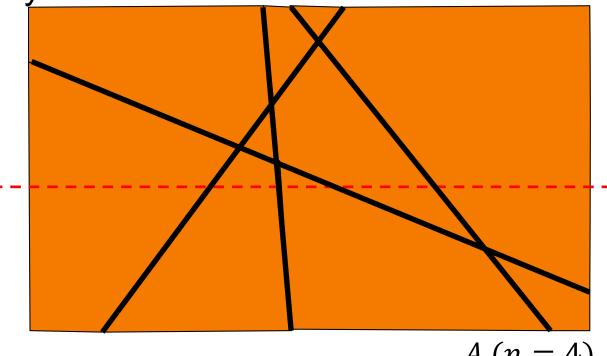
$$= 2 - \binom{n}{2} - 1 + n^{2}$$

$$= \binom{n}{2} + n + 1$$



Definition:

Given an arrangement A and a line L (s.t. $A \cup \{L\}$ is simple) the *zone* of L in A, Z(L), is the set of faces of A intersected by L.



Definition:

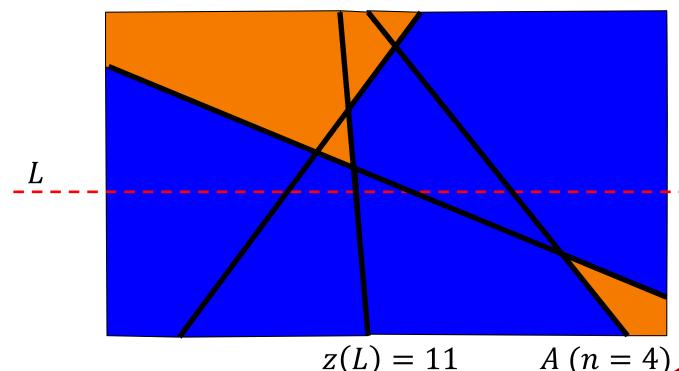
Given an arrangement A and a line L (s.t. $A \cup \{L\}$ is simple) the *zone* of L in A, Z(L), is the set of faces of A intersected by L.

A (n = 4)

Notation:

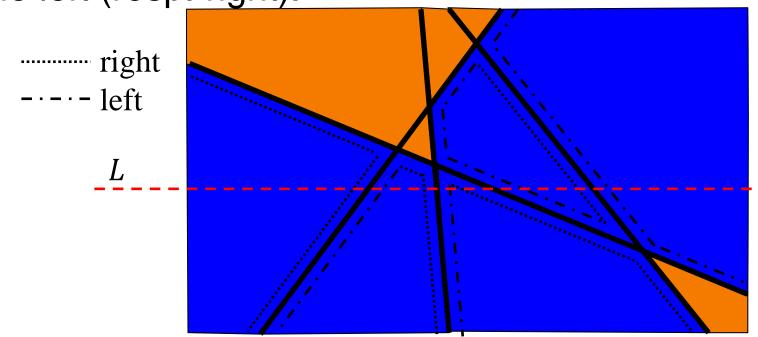
The number of edges in Z(L) is denoted z(L).

The max size of z(L) over all lines is denoted z_n .



Note:

Assuming that no line in A is horizontal, we mark an edge as *left* (resp. *right*) if it bounds a face of Z(L) from the left (resp. right).*



*Note that an edge can be marked both *left* and *right*.

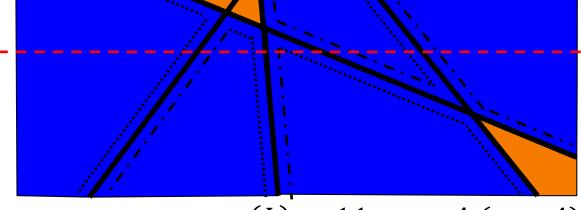
z(L) = 11

A (n = 4)

Note:

Assuming that no line in A is horizontal, we mark an edge as *left* (resp. *right*) if it bounds a face of Z(L)from \(\psi\) Note:

The number of edges in the zone is at most the number of edges marked left plus the number of edges marked right.



*Note that an edge can be marked both *left* and *right*.

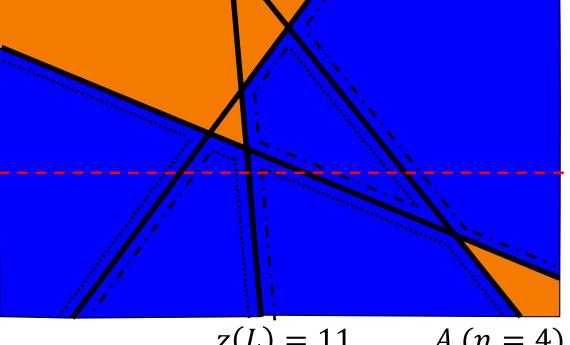
$$z(L) = 11$$

Theorem:

For an arrangement of n lines, $z_n \leq 6n$.

In particular, the number of edges marked left (resp.

right) at most 3n.



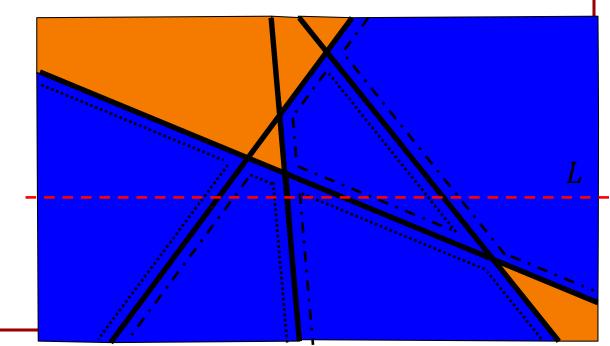
Proof:

Without loss of generality, assume that the line L is horizontal.

Proceed by induction.

Proof (base case):

Trivially true when n = 0.

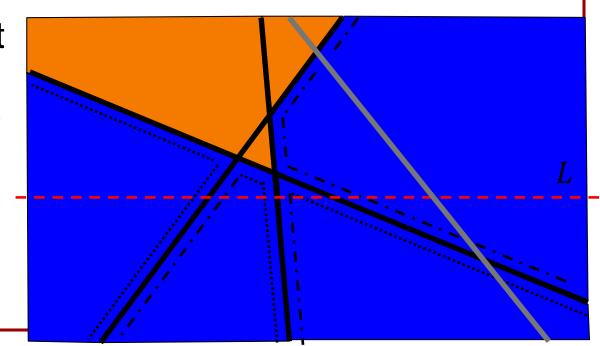


Proof (inductive case):

Remove the right-most line on L.

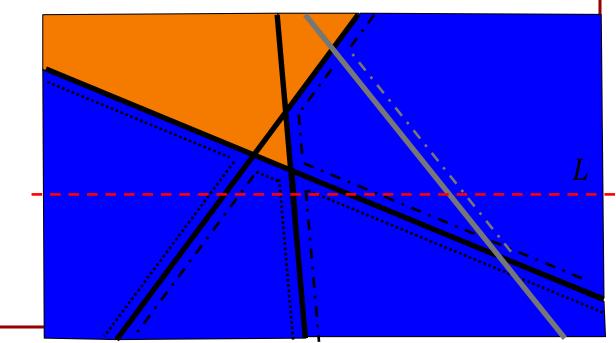
By induction, the number of left edges crossed is at most 3(n-1).

Need to show that adding the line back generates at most 3 additional left edges.



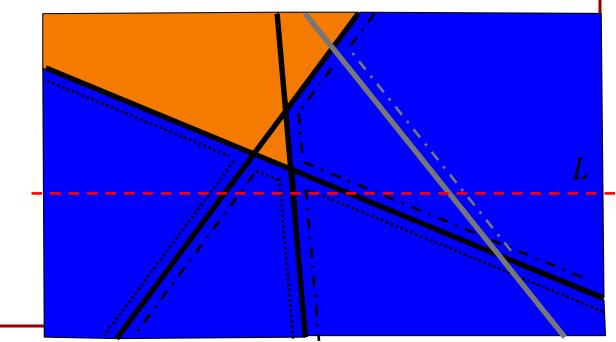
Claim 1:

Adding the right-most line introduces exactly one <u>new</u> left edge.



Proof of Claim 1:

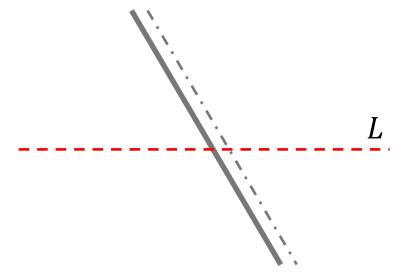
It introduces one because this will be a left edge of the right-most face.



Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

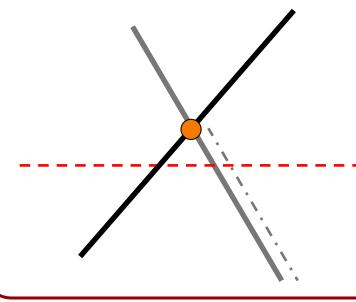
It introduces exactly one because a right-most line cannot contribute more than one left edge.



Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

It introduces exactly one because a right-most line cannot contribute more than one left edge.

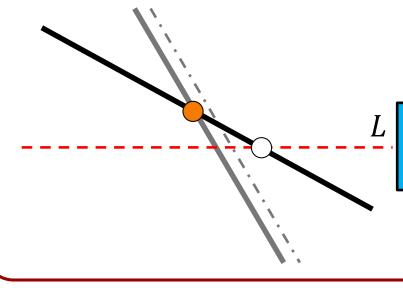


If it is split by a line from the left, only one of the two segments will be in the zone, (the one containing L.)

Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

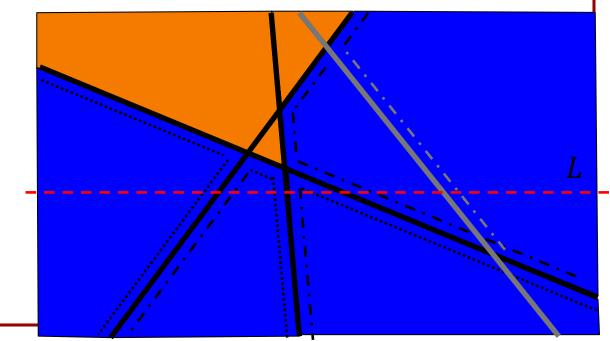
It introduces exactly one because a right-most line cannot contribute more than one left edge.



L If it is split by a line from the right, then it wasn't right-most.

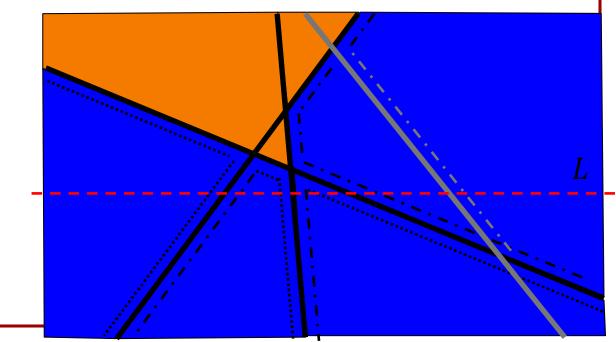
Claim 2:

Adding the right-most line splits at most two existing left edges.



Proof of Claim 2:

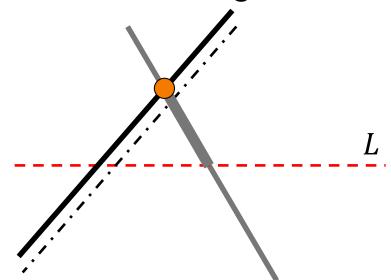
If the right-most line splits a left edge in two, the edge must be on the right-most face.



Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

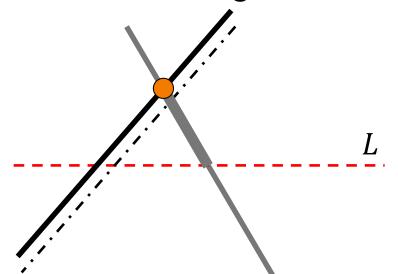
Consider the segment of the right-most line from L to the left edge.



Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Consider the segment of the right-most line from L to the left edge.

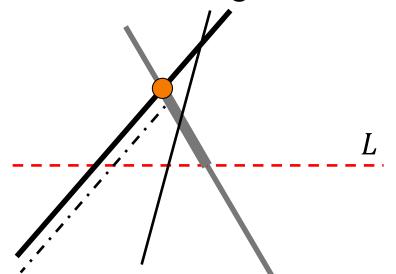


If it is not split by another line, the left edge must have been on the right-most face.

Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Consider the segment of the right-most line from L to the left edge.



If it is split by another line, only one of the two sides of the left edge will be in the zone.

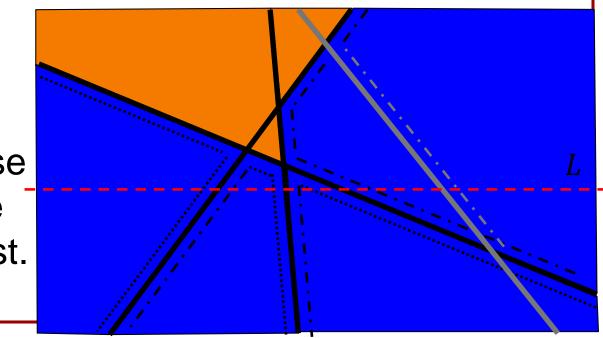
Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Since faces are convex, the line splits at most two

edges on the right-most face.

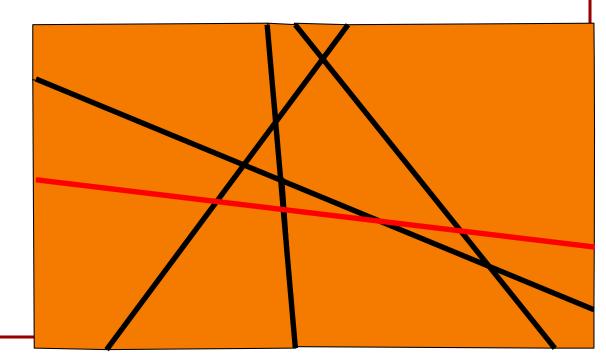
These must be left edges because otherwise the line was not right-most.



Corollary:

We can construct a (simple) arrangement of n lines in $O(n^2)$ time.

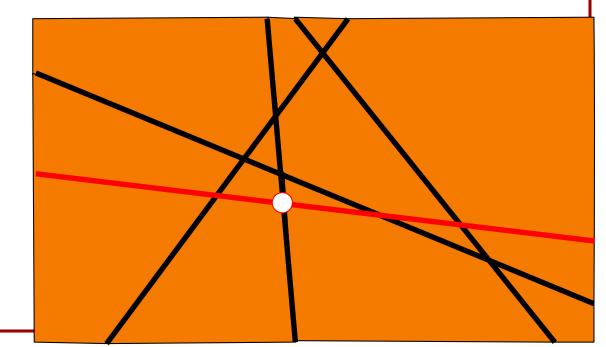
Proof:



Proof:

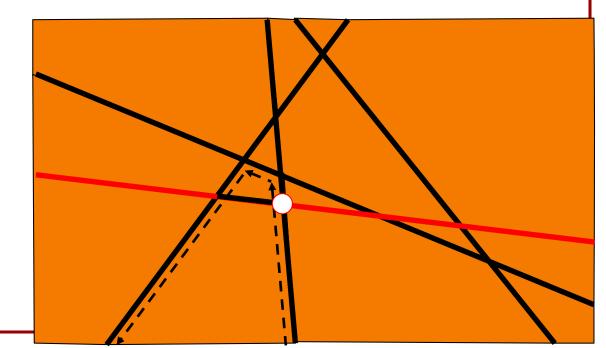
Iteratively add the k-th line.

• Find an intersection with an existing edge.



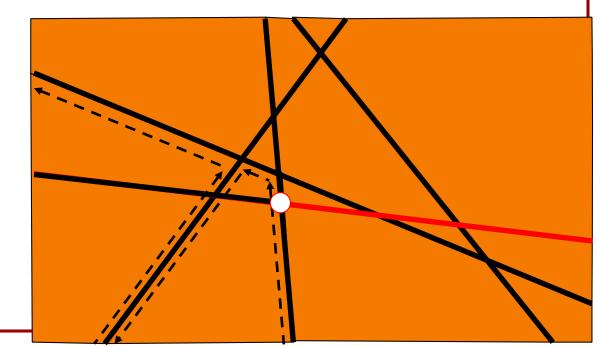
Proof:

- Find an intersection with an existing edge.
- Cycle around faces to the left



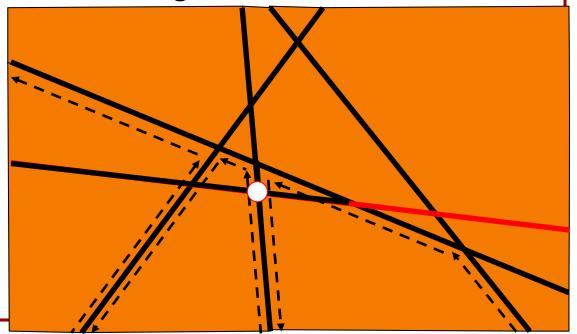
Proof:

- Find an intersection with an existing edge.
- Cycle around faces to the left



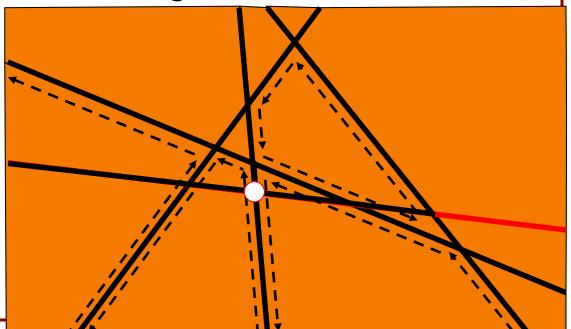
Proof:

- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right



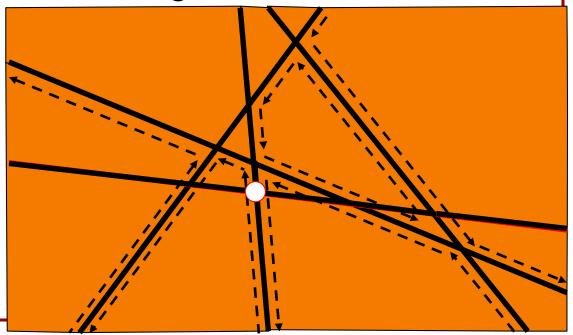
Proof:

- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right



Proof:

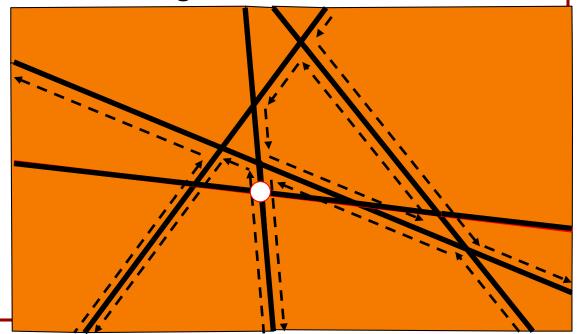
- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right



Proof:

Iteratively add the k-th line. O(n) iterations

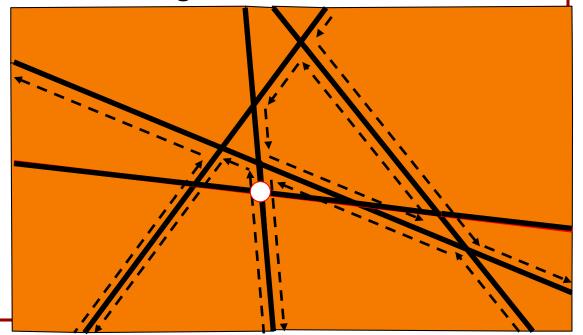
- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right



Proof:

Iteratively add the k-th line. O(n) iterations

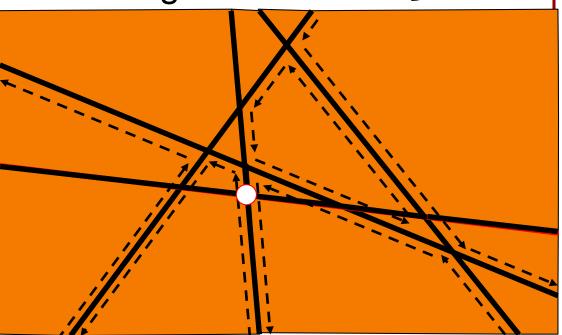
- Find an intersection with an existing edge. $\int O(k)$
- Cycle around faces to the left
- Cycle around faces to the right



Proof:

Iteratively add the k-th line. O(n) iterations

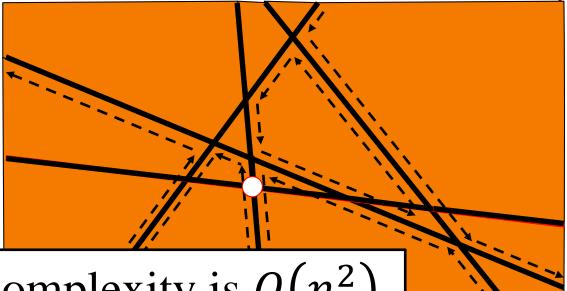
- Find an intersection with an existing edge. $\int O(k)$
- Cycle around faces to the left
- Cycle around faces to the right



Proof:

Iteratively add the k-th line. O(n) iterations

- Find an intersection with an existing edge. $\int O(k)$
- Cycle around faces to the left
- Cycle around faces to the right



The total complexity is $O(n^2)$.

Generalizations:

In *d*-dimensional space:

- The number of faces of any dimension of an arrangement is $O(n^d)$.
- The number of faces in the zone of a hyper-plane is bounded by $O(n^{d-1})$.
- The arrangement can be computed in $O(n^d)$ time.