

Fortune's Algorithm for Computing the Voronoi Diagram

Outline

- Math Review
- Overview of the Algorithm
- Implementation

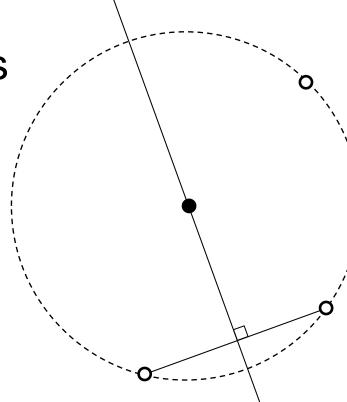
Circumcircles:

Q: Given three points in 2D, how do we compute the center (and radius) of the circumcircle?

)

0

Circumcircles:


Q: Given three points in 2D, how do we compute the center (and radius) of the circumcircle?

Circumcircles:

A: Pick two of the points and draw the perpendicular bisector.

The bisector must pass through the center of the circumcircle.

Circumcircles:

A: Pick another two of the points and draw the perpendicular bisector.

This bisector must also pass through the center of the circumcircle.

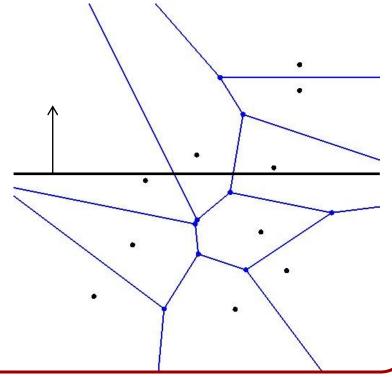
Circumcircles:

A: Pick another two of the points and draw the perpendicular bisector.

This bisector must also pass through the center of the circumcircle.

⇒ The intersection of the bisectors is the center.

Outline



- Math Review
- Overview of the Algorithm
- Implementation

Goal:

Given a set of points (sites), the goal is to use a sweep-line algorithm to construct the Voronoi diagram.

Challenge:

Regions that have already been swept may be closer to sites that are in front of the sweep line, so we cannot know how the Voronoi Diagram looks there.

Suppose that:

- The sweep-line is at position $y = y_l$
- We've seen a site at position $s = (x_s, y_s)$, with $y_s < y_l$

The set of points p = (x, y) closer to the site than to the sweep-line satisfies:

$$||p - s||^{2} \le (y - y_{l})^{2}$$

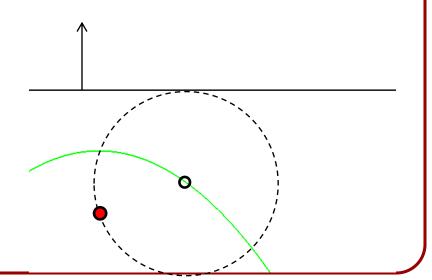
$$(x - x_{s})^{2} + (y - y_{s})^{2} \le (y - y_{l})^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

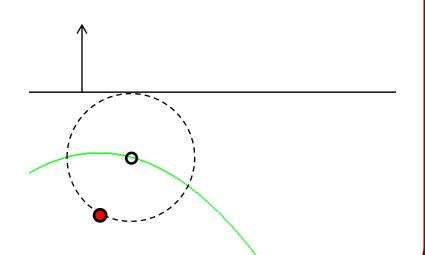
$$y \le \frac{x^{2} - 2x \cdot x_{s} + x_{s}^{2} + y_{s}^{2} - y_{l}^{2}}{2y_{s} - 2y_{l}}$$

Given a sweep-line $y = y_l$ and site $s = (x_s, y_s)$, the set of points p = (x, y) closer to the site than to the sweep-line $y = y_l$ satisfies:

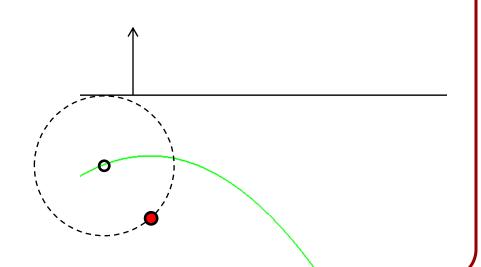
$$y \le \frac{x^2 - 2x \cdot x_s + x_s^2 + y_s^2 - y_l^2}{2y_s - 2y_l}$$


This is the equation of a parabola that expands as we advance the sweep-line.

$$y \le \frac{x^2 - 2x \cdot x_s + x_s^2 + y_s^2 - y_l^2}{2y_s - 2y_l}$$

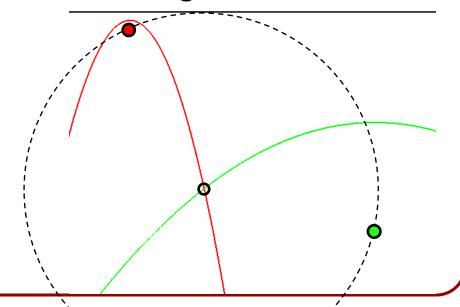

Points on the parabola are equidistant to the site and the sweep-line.

$$y \le \frac{x^2 - 2x \cdot x_s + x_s^2 + y_s^2 - y_l^2}{2y_s - 2y_l}$$


Points on the parabola are equidistant to the site and the sweep-line.

$$y \le \frac{x^2 - 2x \cdot x_s + x_s^2 + y_s^2 - y_l^2}{2y_s - 2y_l}$$

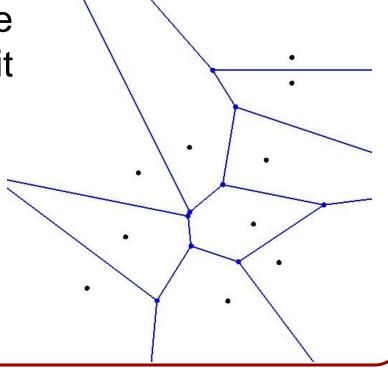
Points on the parabola are equidistant to the site and the sweep-line.



$$y \le \frac{x^2 - 2x \cdot x_s + x_s^2 + y_s^2 - y_l^2}{2y_s - 2y_l}$$

Points on the intersection of two such parabolas are equidistant to the two sites.

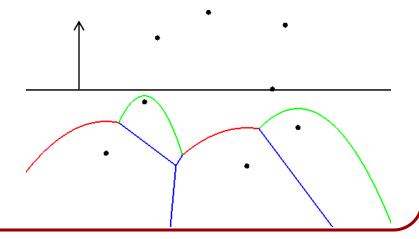
⇒ They could be on the Voronoi Diagram.



When advancing the sweep-line, we can associate a parabola with each seen site. We know we can finalize the Voronoi Diagram behind these parabolas (the *beach-line*).

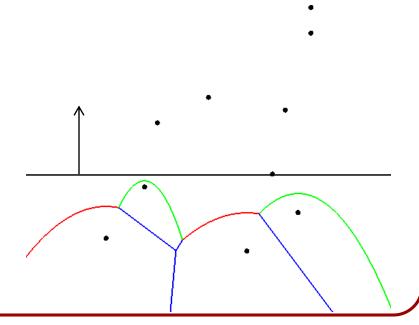
When advancing the sweep-line, we can associate a parabola with each seen site. We know we can finalize the Voronoi Diagram behind these parabolas (the *beach-line*).

Fortune's Algorithm tracks the beach-line as it evolves until it has passed through all of the event points.

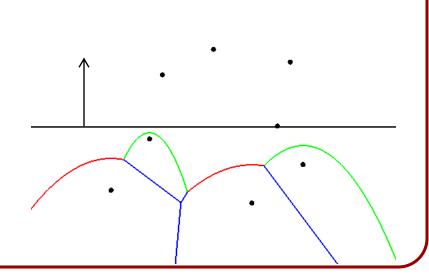


As the sweep-line advances, the beach-line evolves in one of two ways:

- Discrete:
 - The topology of the beach-front changes
- Continuous:


The geometry of an individual arc changes

We only need to track the discrete events.


What are the events that change the topology of the beach-line?

What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

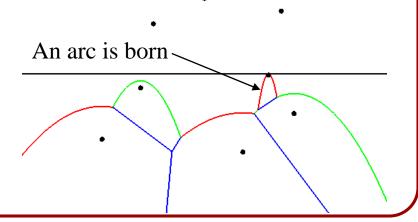
What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

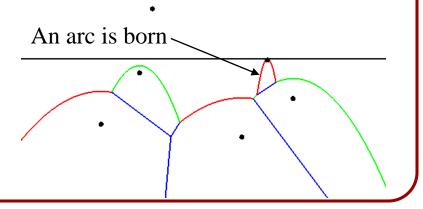
What are the events that change the topology of the beach-line?


- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

This corresponds to a new face in the Voronoi Diagram.



What are the events that change the topology of the beach-line?

- The sweep-line passes across a site
 - ⇒ A new parabola is introduced, splitting an old parabola in two

This corresponds to a new face in the Voronoi Diagram.

This occurs when the sweepline passes through the site.

What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

•

What are the events that change the topology of the beach-line?

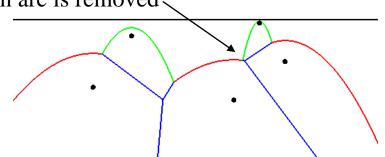
- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

· · ·

What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

•


What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

This corresponds to a new vertex in the Voronoi Diagram.

What are the events that change the topology of the beach-line?

- One parabolic arc overtakes another
 - ⇒ A parabolic arc is removed

This corresponds to a new vertex in the Voronoi Diagram.

This occurs when the sweep-line crosses the top of the circumcircle through the three sites

Outline of the Algorithm

- Create the faces of Voronoi diagrams (sites)
- Initialize the event-list of arc insertions/deletions with the sites
- Initialize an empty beach-line
- Iterate through the event list
 - o If the next event is an insertion:

» ...

If the next event is a deletion:

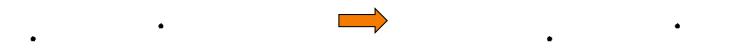
» ...

Compute the Delaunay Triangulation

Outline of the Algorithm

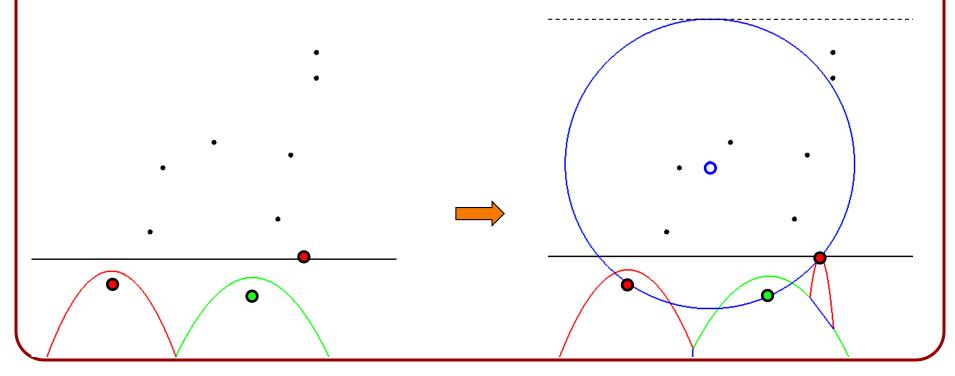
Insertion:

Add an arc to the beach-line, splitting an old arc in two

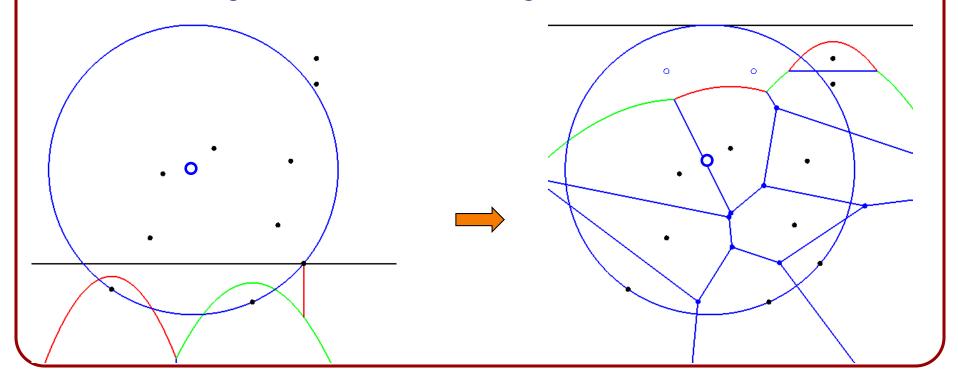


Insertion:

- Add an arc to the beach-line, splitting an old arc in two
- Add a Voronoi edge to the diagram

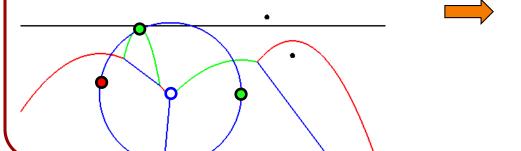


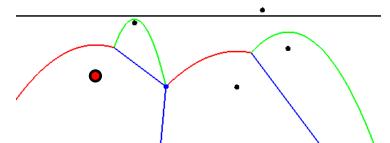
Insertion:


- Add an arc to the beach-line, splitting an old arc in two
- Add a Voronoi edge to the diagram
- Check for potential deletion events with neighbors of the new arc and add to the event-list

Deletion:

Check if the deletion event is valid
 If the circumcenter is behind the beach-line, that means there is some other site closer to the circumcenter than the original three sites that generated it.





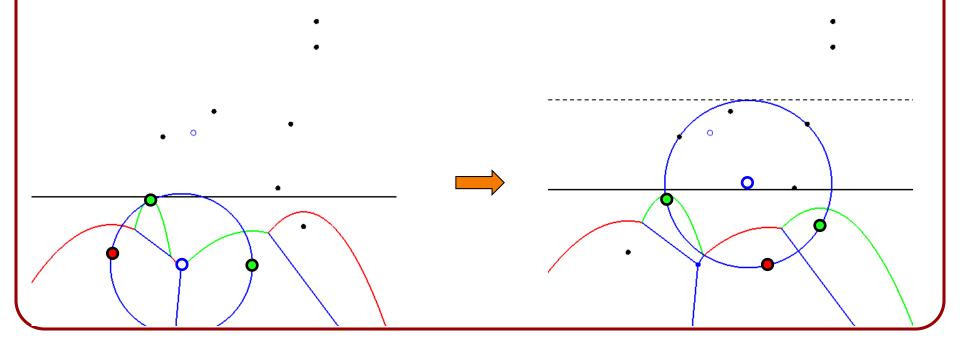
Deletion (if active):

Remove an arc from the beach-line

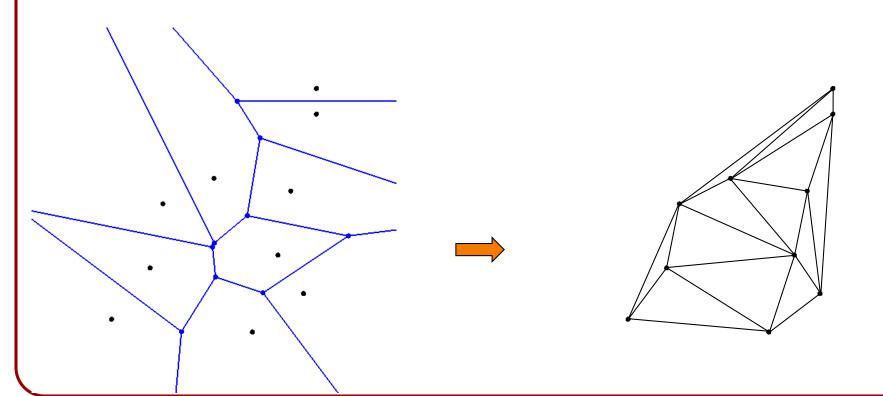


<u>Deletion (if active)</u>:

- Remove an arc from the beach-line
- Add a Voronoi vertex and edge into the diagram



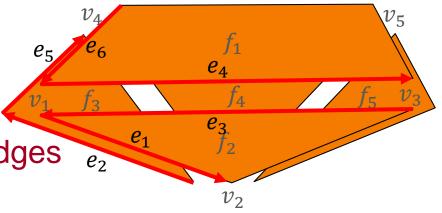
Deletion (if active):


- Remove an arc from the beach-line
- Add a Voronoi vertex and edge into the diagram
- Check for potential deletion events with new neighbors of the arc and add to the event-list

Computing the Delaunay Triangulation:

 Using duality, connect sites if the associated Voronoi faces share an edge.

Outline



- Math Review
- Overview of the Algorithm
- Implementation
 - Half-edge data structure
 - Event-list representation
 - Beach-line representation
 - Handling the events

Recall:

- Vertex Entry:
 - » Vertex data
 - » Outgoing half-edge
- Face Entry:
 - » Face data
 - » Incident half-edge
- o Half-Edge Entry:
 - » Half-edge data
 - » Previous/next half-edges
 - » Opposite half-edge
 - » Starting vertex
 - » Incident face

Useful to have a generic (template) class for half-edge data-structures and then instantiate with content type.

- Vertices will store data of type VData,
- Half-Edges will store data of type HEData,
- Faces will store data of type FData.

Pre-declare the objects since they will reference each other.

Declaring functions acting on vertices, halfedges, and faces

```
typedef std::function< void ( V^*) > VFunctor; typedef std::function< void ( const V^*) > ConstVFunctor; typedef std::function< void ( HE^*) > HEFunctor; typedef std::function< void ( const HE^*) > ConstHEFunctor; typedef std::function< void ( F^*) > Ffunctor; typedef std::function< void ( const F^*) > ConstFFunctor;
```


Declaring the vertex structure

```
struct V
    HE *halfEdge;
    VData data:
   V( VData d=VData() );
    void processHalfEdges( HEFunctor f);
    void processHalfEdges (ConstHEFunctor f) const;
    void processFaces( Ffunctor f );
   void processFaces( ConstFFunctor f ) const;
};
```


Declaring the half-edge structure

```
struct HE
    HE *opposite , *previous , *next;
    V *startVertex:
    F *face;
    HEData data:
    HE( HEData d=HEData() );
};
```


Declaring the face structure

```
struct F
   HE *halfEdge;
   FData data:
   F(FData d=FData());
   void processHalfEdges( HEFunctor f);
   void processHalfEdges (ConstHEFunctor f) const;
   void processVertices ( ConstVFunctor f ) const;
};
```


Defining the vertex constructor

```
template< typename VData , typename HEData , typename FData >
HalfEdge< VData , HEData , FData >::V::V( VData d )
:
    data(d) , halfEdge(NULL)
{ }
```


Defining the vertex neighboring edge processor

```
template< typename VData, typename HEData, typename FData>
void HalfEdge VData , HEData , FData >:: V::processHalfEdges
(HalfEdge VData, HEData, FData >::HEFunctor f)
    for(HE *he=halfEdge; he; he=he->opposite->next)
        f( he );
        if(he->opposite->next==halfEdge) break;
```


Defining the vertex neighboring face processor

```
template< typename VData , typename HEData , typename FData >
void HalfEdge< VData , HEData , FData >::V::processFaces
( HalfEdge< VData , HEData , FData >::FFunctor f )
{
    processHalfEdges( [](HE *he ){ return f( he->face ); } );
}
```


Defining the half-edge constructor

```
template< typename VData , typename HEData , typename FData >
HalfEdge< VData , HEData , FData >::HE::HE( HEData d )

:
    data(d) ,
    opposite(NULL) , previous(NULL) , next(NULL) ,
    startVertex(NULL) ,
    face(NULL)
{ }
```


Defining the face constructor

```
template< typename VData , typename HEData , typename FData >
HalfEdge< VData , HEData , FData >::F::F( FData d )
:
    data(d) ,
    halfEdge(NULL)
{ }
```


Declaring vertex/edge/face data:

- Vertices should track the position of the circumcenter and its radius
- Half-edges don't need to track anything
- Faces should track the associated site and its index within the list of sites (for computing the Delaunay Triangulation)

```
struct VData{ Geometry::Point2d vertex ; double radius; };
struct HEData{ };
struct FData{ Geometry::Point2i site ; int index; };
```


For simplicity of notation, typedef half-edge elements to something concise.

```
typedef typename HalfEdge< VData , HEData , FData >::V Vertex; typedef typename HalfEdge< VData , HEData , FData >::HE HalfEdge; typedef typename HalfEdge< VData , HEData , FData >::F Face;
```

Outline

- Math Review
- Overview of the Algorithm
- Implementation
 - Half-edge data structure
 - Event-list representation
 - Beach-line representation
 - Handling the events

Challenges:

- 1. The event list is dynamic, with deletion events introduced while sweeping
- 2. The event list must support two different types of events insertions and deletions

<u>Approach</u>:

- 1. Use a balanced binary tree (e.g. std::set) to represent the event-list
- 2. Have each event know its own type

An EventList object is a balanced binary tree containing Event objects

```
struct Event;
typedef std::function< bool ( const Event & , const Event & ) > EventComparator;
struct EventList : public std::set< Event , EventComparator >
{
    ...
};
```


An Event object is either an Insertion or Deletion object

```
struct Event
{
    struct Insertion { ... };
    struct Deletion { ... }
    enum Type { INSERTION , DELETION };
    Type type;
    union { Insertion insertion ; Deletion deletion; }
    static bool Compare( const Event &e1 , const Event &e2 );
};
```


An Insertion object corresponds to a Voronoi face

```
struct Event
{
    struct Insertion
    {
        Face *face;
        double eventTime( void ) const;
    };
};
```


A Deletion object corresponds to a circumcircle of three sites (i.e. Voronoi faces)

```
struct Event
{
    struct Deletion
    {
        Face *face1 , *face2 , *face3;
        Geometry::Point2d center( void ) const;
        double radius( void ) const;
        double eventTime( void ) const;
};
}
```


An Insertion event happens when the sweepline passes through the site

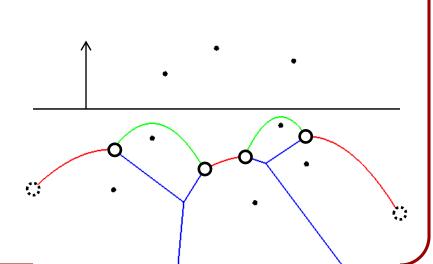
```
double Event::Insertion::eventTime( void ) const
{
    return face->data.site[1];
}
```


A Deletion event happens when the sweep-line passes through the top of the circumcircle

```
double Event::Deletion::eventTime( void ) const
{
    return center()[1] + radius();
}
```


Events can be ordered by their event-time

Outline


- Math Review
- Overview of the Algorithm
- Implementation
 - Half-edge data structure
 - Event-list representation
 - Beach-line representation
 - Handling the events

Beach-Line Representation

One way to represent a beach-line is by the end-points of the parabolic arcs:

```
struct EndPoint
{
    static double SweepLineHeight;
    Face *leftFace , *rightFace;
    HalfEdge *left , *right;
    double x( void ) const;
};
```


Beach-Line Representation

To compute the x-coordinate of the end-point, need to construct parabolic fronts for the left and right sites and see where they intersect

```
double EndPoint::x( void ) const
{
...
}
```


Beach-Line Representation

To compute the x-coordinate of the end-point, need to construct parabolic fronts for the left and right sites and see where they intersect

Note:

double End

The left/right face could be NULL if it bounds left/right-most arc in the beach-line

Warning:

The two parabolas will intersect at two points. Need to choose the right one

When an **Insertion** event occurs we will want to query the beach line using the x-position of the site. (The end-points of the arc will not be known at the time.)

```
struct XPosition
{
double x;
};
```


As with the Event object, a beach-line element object will be either an EndPoint or a Position

```
struct BLElement
    struct EndPoint{ .... };
    struct XPosition{ ... };
    enum Type{ END_POINT , POSITION };
    Type type;
    union { EndPoint endPoint; Position position; }
    static bool Compare (const BLElement &e1, const BLElement &e2);
```


BLElements can be ordered by their positions

The beach-line itself can be represented as a balanced binary tree of BLElements

```
typedef std::function< bool ( const BLElement & , const BLElement & ) >
BLElementComparator;
struct BeachLine : public std::set< BLElement , BLElementComparator >
{
    bool sanityCheck( void ) const;
    bool isActive( Geometry::Point2d p ) const;
};
```


Confirm that the beach line is consistent

```
bool BeachLine::sanityCheck(void) const
    for( auto iter=begin(); iter!=end(); iter++)
        auto next = std::next( iter );
        if(iter!=end())
             if( iter->endPoint.rightFace!=next->endPoint.leftFace ) return false;
```


A 2D point is not active, if its y-coordinate is less than the height of the parabolic arc over its x-coordinate

```
bool BeachLine::isActive(Geometry::Point2d p) const
    BLElement e:
    e.type = POSITION;
    e.position.x = p[0];
    auto upperIter = upper_bound( e );
    auto lowerIter = std::prev( upperIter );
```

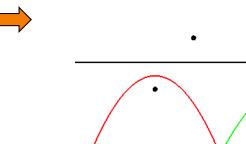
Outline

- Math Review
- Overview of the Algorithm
- Implementation
 - Half-edge data structure
 - Event-list representation
 - Beach-line representation
 - Handling the events

Insertion (first event):

- Create two EndPoint objects and add them into the BeachLine object
 - »The left one should have a left NULL face and the right one should have a right NULL face

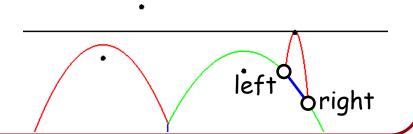
<u>Insertion (subsequent event)</u>:


Find the arc that will be split

»Use std::set::upper_bound

Insertion (subsequent event):

- Find the arc that will be split
 - »Use std::set::upper_bound
- Create the left and right EndPoint objects and add them into the beach-line



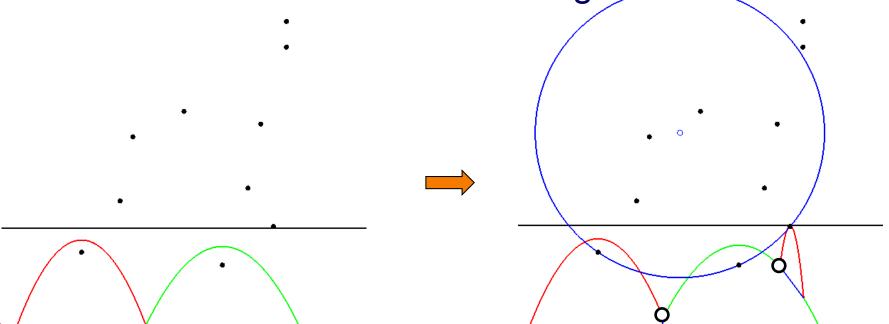
ft⁰ oright

<u>Insertion (subsequent event)</u>:

- Add a Voronoi edge to the diagram
 - » Create the half-edge and its opposite
 - » Make them point to each other
 - » Set the incident faces
 - »Set the half-edges of the left and right EndPoints

<u>Insertion (subsequent event)</u>:

 Try creating a Deletion using the right end-point of the inserted arc and its right neighbor


•

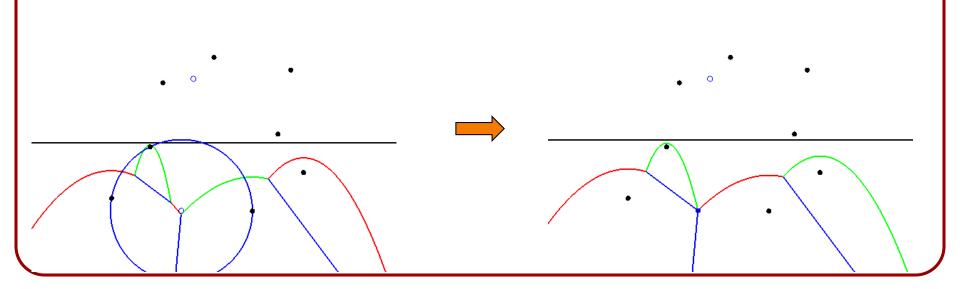
.

<u>Insertion (subsequent event)</u>:

- Try creating a Deletion using the right end-point of the inserted arc and its right neighbor
- Try creating a Deletion using the left end-point of the inserted arc and its left neighbor

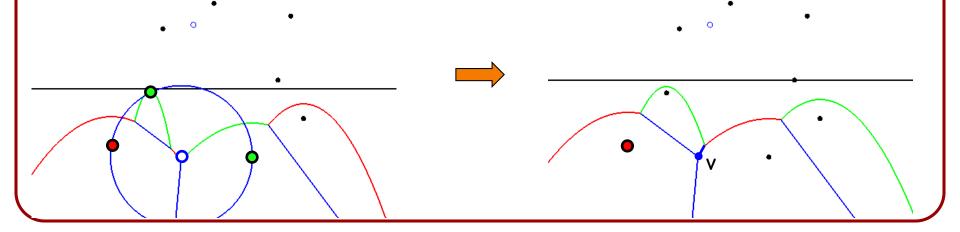
Deletion:

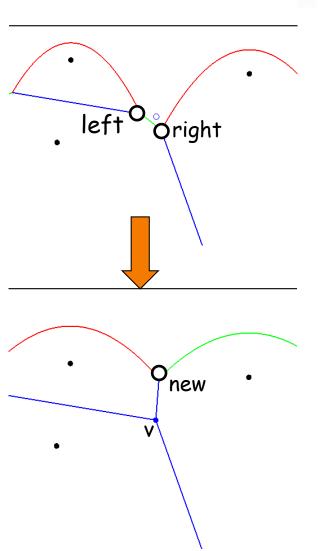
 Check if the circumcenter was just ahead of the beach-line


•

• •

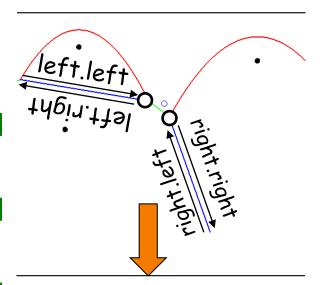
Deletion:

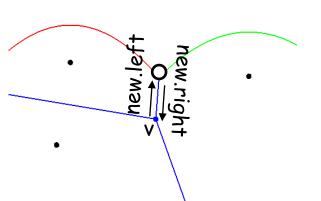

- Use the three sites to compute the three EndPoints that meet at the circumcenter
 - »Remove the two already in the beach-line and insert the third


Deletion:

- Add a Voronoi vertex and edge into the diagram
 - »Create the new Voronoi vertex, v
 - »Create the half-edge and its opposite, new.left and new.right
 - »Link up everything

Deletion:

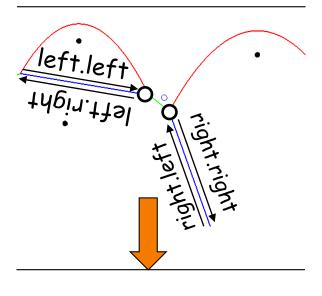

»Link up everything

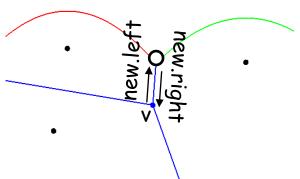


Deletion:

»Link up everything

- Two half-edges are associated with the old left end-point
- Two half-edges are associated with the old right end-point
- Two half-edges are associated with the new end-point

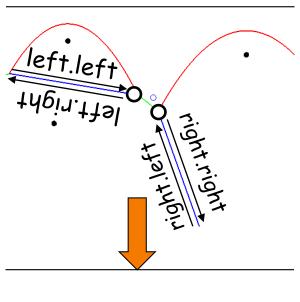


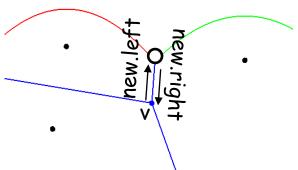


Deletion:

»Link up everything

- right.right->startVertex=v
- left.right->startVertex=v
- new.left->startVertex=v

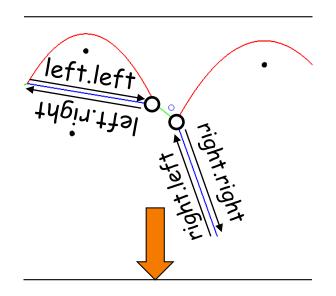


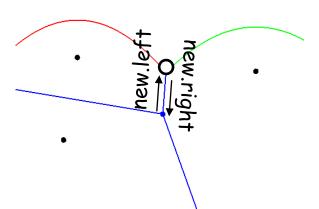


Deletion:

»Link up everything

- v->startVertex=new.left

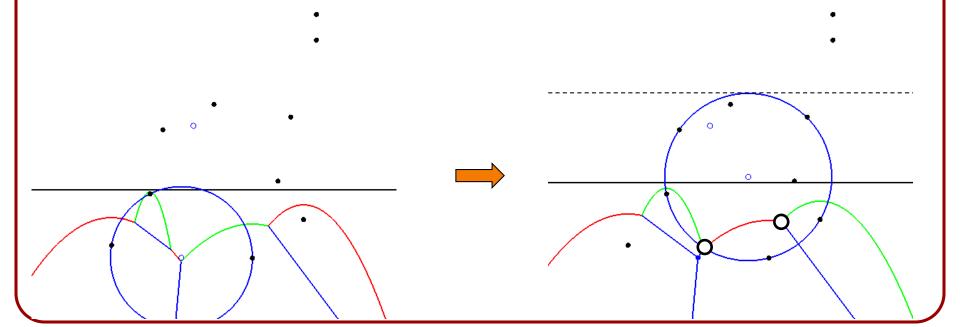




Deletion:

»Link up everything

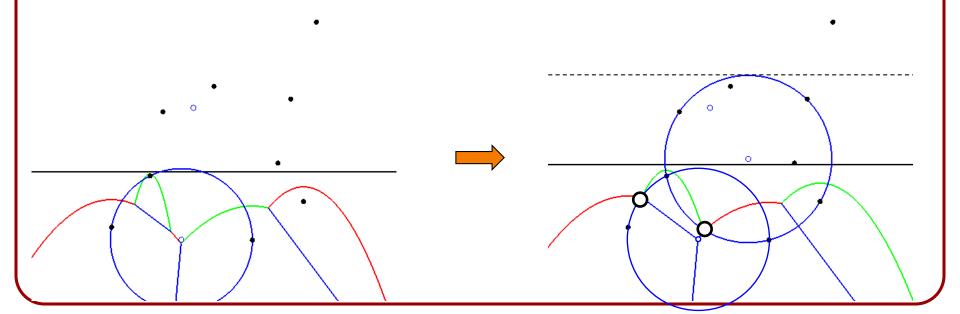
- new.left->opposite=new.right
- new.right->opposite=new.left
- new.left->prev=left.left
- left.left->next=new.left
- new.right->next=right.right
- right.right->prev=new.right
- right.left->next=left.right
- left.right->next=right.left



Outline of the Algorithm

<u>Deletion (if active)</u>:

 Try creating a Deletion using the new endpoint and its right neighbor



Outline of the Algorithm

<u>Deletion (if active)</u>:

- Try creating a Deletion using the new endpoint and its right neighbor
- Try creating a Deletion using the new endpoint and its left neighbor

Outline of the Algorithm

Warnings:

- As with the triangulation code, you need to be careful about whether you want to be just above or just below the sweep-line as you update the beach-line.
- Unlike the triangulation code, it's hard to get by with integer arithmetic because deletion events can happen at irrational heights.