
Convex Hulls (3D)

OôRourke, Chapter 4

Announcements

ÅFor assignment 1:

I have posted additional polygon files for testing.

Outline

ÅReview

ÅGift-Wrapping

ÅDivide-and-Conquer

Recall

Given points ὴȟήɴ ᴙ , the cross-productὴ ήɴ ᴙ
is the vector:

Åperpendicular to both ὴand ή,

Åoriented according to the right-hand-rule,

Åwith length equal to the area of the parallelogram

defined by ὴand ή.

ὴ

ή

ὴ ή

Recall

Given a triangle Ὕwith vertices ὥȟὦȟὧᶰᴙ , the

area of the triangle is:

!ÒÅÁὝ
ρ

ς
ὦ ὥ ὧ ὥ

ὥ

ὦ

ὧ

Recall

Given a tetrahedron Ὕwith vertices ὥȟὦȟὧȟὨ ᶰᴙ ,

the volume of the tetrahedron is:

6ÏÌÕÍÅὝ
ρ

σ
ÂÁÓÅÈÅÉÇÈÔ

ὥ

ὦ

ὧ

Ὠ

Recall

Given a triangle Ὕwith vertices ὥȟὦȟὧᶰᴙ , the

triangle normal is:

ὲ
ὦ ὥ ὧ ὥ

ὦ ὥ ὧ ὥ

ὦ

ὧ

ὲ

ὲ

ὲ

ὥ

Recall

Given a triangle Ὕwith vertices ὥȟὦȟὧᶰᴙ and

given a point Ὠᶰᴙ , the signed perpendicular

height of Ὠfrom the plane containing ὥȟὦȟὧ is:

(ÅÉÇÈÔὝȟὨ Ὠ ὥȟὲ

Ὠ ὥȟ
ὦ ὥ ὧ ὥ

ὦ ὥ ὧ ὥ

ὦ

ὧ

ὲ

Ὠ

ὥ

Recall

Given a tetrahedron Ὕwith vertices ὥȟὦȟὧȟὨ ᶰᴙ ,

the signed volume of the tetrahedron is:

6ÏÌÕÍÅὝ
ρ

σ
ÂÁÓÅÈÅÉÇÈÔ

ρ

φ
Ὠ ὥȟὦ ὥ ὧ ὥ

ὥ

ὦ

ὧ

Ὠ

Recall

Given a tetrahedron Ὕwith vertices ὥȟὦȟὧȟὨ ᶰᴙ ,

the signed volume of the tetrahedron is:

6ÏÌÕÍÅὝ
ρ

σ
ÂÁÓÅÈÅÉÇÈÔ

ρ

φ
Ὠ ὥȟὦ ὥ ὧ ὥ

ὥ

ὦ

ὧ

Ὠ

The volume is positive if Ὠis to the left of

the plane defined by the triangle ὥȟὦȟὧ.

Recall

If we have a graph Ὃ, we can identify the connected

component containing a node ὺby performing a

flood-fill.

FloodFill (ὺ, Ὃ)
if(NotMarked (ὺ))

Mark(ὺ)
for ύᶰNeighbors(ὺ)

FloodFill (ύ, Ὃ)

Complexity: ὕȿὉȿ

Recall

If we have a graph Ὃ, we can identify the connected

component containing a node ὺby performing a

flood-fill.

In particular, given a winged-edge representation of

a triangle mesh and given a face in the mesh, we

can compute the connected component of the face

in linear time.

Supporting Simplices

Given a set of points ὖṒᴙ , and given a simplex

ί ὴȟỄȟὴ (vertex, edge, triangle, etc.) formed

by Ὧ Ὠvertices, we say that the ὖis supported on

ίif there exists a Ὠ ρ-dimensional hyperplane,

ɩṓίwith ὖon one side of the plane.

Supporting Simplices

Note:

If we project ὖᴂis the projection of ὖonto ᴙ and if

ὖᴂis supported on a simplex ί ὴȟȣȟὴ then ὖ
is supported on the simplex ί ὴȟȣȟὴ .

Proof:

Extrude the Ὠ ρ-dimensional ɩ along the

direction of projection.

ÅThe Ὠ ρ-dimensional hyperplane ɩhas ὖon

one side.

ÅThe vertices of ίlie on ɩ.

Supporting Simplices

Note:

If we project ὖᴂis the projection of ὖonto ᴙ and if

ὖᴂis supported on a simplex ί ὴȟȣȟὴ then ὖ
is supported on the simplex ί ὴȟȣȟὴ .

Supporting Simplices

Note:

If we project ὖᴂis the projection of ὖonto ᴙ and if

ὖᴂis supported on a simplex ί ὴȟȣȟὴ then ὖ
is supported on the simplex ί ὴȟȣȟὴ .

Supporting Simplices

Note:

If we project ὖᴂis the projection of ὖonto ᴙ and if

ὖᴂis supported on a simplex ί ὴȟȣȟὴ then ὖ
is supported on the simplex ί ὴȟȣȟὴ .

Supporting Simplices

Note:

If ὖis supported by the simplex ί ὴȟȣȟὴ then

the point-set ὖ ὖ ὴ is supported by the

simplex ί ὴȟȣȟὴ .

ὴ

ὴ

Supporting Simplices

Note:

If ὖis supported by the simplex ί ὴȟȣȟὴ then

the point-set ὖ ὖ ὴ is supported by the

simplex ί ὴȟȣȟὴ .

ὴ

Outline

ÅReview

ÅGift-Wrapping

ÅDivide-and-Conquer

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Initialization:

Find a triangle on the hull.

Iteratively:

Until the hull closes, pivot around a boundary edge.

Gift -Wrapping

Gift -Wrapping

Front Back

Gift -Wrapping

PivotAroundEdge(Ὡ ήȟή , ὖ ὴȟȣȟὴ)
ὴᴺὴ

area2 ᴺSquaredArea (ή , ή , ὴ)
for ὴᴂɴ ὴȟȣȟὴ :

volume N SignedVolume(ή , ή , ὴ, ὴᴂ)
if(volume<0)
ὴᴺὴᴂ

else if(volume==0)
_area2 ᴺSquaredArea (ή , ή , ὴᴂ)
if(_area2>area2)
ὴᴺὴᴂ

area2 ᴺ_area2
return ὴ

Complexity: ὕὲ

Gift -Wrapping

FindTriangleOnHull(ὖ ὴȟȣȟὴ)
ὴȟήᴺFindEdgeOnHull(ὖ)
ὶN PivotAroundEdge (ὴȟή , ὖ)
return ὴȟήȟὶ

Complexity: ὕὲ + Complexity of FindEdgeOnHull

Gift -Wrapping

FindEdgeOnHull(ὖ ὴȟȣȟὴ)
ὴᴺBottomMostLeftMostBackMost(ὖ)
ήᴺPivotOnEdge(ὴȟὴ ρȟπȟπ , ὖ)
return ὴȟή

Complexity: ὕὲ

Gift -Wrapping

GiftWrap(ὖ):
ὸN FindTriangleOnHull(ὖ)
ὗᴺ ὸȟὸȟὸȟὸȟὸȟὸ // hull boundary edges (?)
Ὄᴺ ὸ // the hull
while(ὗ)ɲ
ὩN ὗ.pop_back()
if(NotProcessed (Ὡ))
ήN PivotOnEdge(Ὡ)
ὸN Triangle(Ὡ, ή)
ὌᴺὌ᷾ὸ

ὗᴺὗ᷾ ὸȟὸ ȟὸȟὸȟὸȟὸ

MarkProcessedEdges(Ὡ)

Complexity: O(ὲ)

Outline

ÅReview

ÅGift-Wrapping

ÅDivide-and-Conquer

Divide And Conquer

DivideAndConquer(ὖ):
ὖᴺSortByX (ὖ)
return _ DivideAndConquer(ὖ)

_DivideAndConquer(ὖ)
if(ὖ ψ) return Incremental(ὖ)
ὖȟὖ ᴺSplitInHalf (ὖ)
Ὄ ᴺ_DivideAndConquer(ὖ)
Ὄ ᴺ_DivideAndConquer(ὖ)
return Merge(Ὄ , Ὄ)

Complexity: O(ὲÌÏÇὲ)

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Divide And Conquer

Merge:

Å Construct the fillet that

merges the two hulls

Å Remove the triangles

that are no longer visible

Note:

The fillet has linear complexity since each triangle

on the fillet uses an edge from one of the two hulls.

Divide And Conquer

Constructing the Fillet:

Å Find a supporting line

Å Pivot around the supporting line

ὃ ὄ ὃ ὄ ὃ ὄ

Divide And Conquer

Finding a Supporting Line:

Å While computing the 3D hull (recursively),

simultaneously compute the 2D hull of the

projection of the points onto the ὼώ-plane.

Å The supporting lines in 2D correspond to

supporting lines in 3D. ὃ ὄ

σ

ς
ρ

π

π
ρ

ς

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å To run in linear time, we

canôt try all points.

Observation:

Å When we pivot, the first

point we hit is one of the

neighbors of the lineôs

end-points.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å To run in linear time, we

canôt try all points.

Observation:

Å When we pivot, the first

point we hit is one of the

neighbors of the lineôs

end-points.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å To run in linear time, we

canôt try all points.

Observation:

Å When we pivot, the first

point we hit is one of the

neighbors of the lineôs

end-points.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å To run in linear time, we

canôt try all points.

Observation:

Å When we pivot, the first

point we hit is one of the

neighbors of the lineôs

end-points.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

(e.g. If the right endpoint

has many neighbors but

the pivot keeps hitting a

vertex on the left.)

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

Pivot Around the Supporting Line:

Å Proceed as in the gift-wrap algorithm.

Challenge:

Å This could still be costly

since a vertex can have

many neighbors.

Observation:

Å We can use the previous

estimated (failed) hit to

constrain the next one.

Divide And Conquer

More Specifically:

ÅAssume the fillet is at edge ὥȟὦ having

just added triangle ὥȟὦȟὥ .

ὦὥ

ὥ

Divide And Conquer

More Specifically:

ÅAssume the fillet is at edge ὥȟὦ having

just added triangle ὥȟὦȟὥ .

ÅSort the neighbors of ὥ
CW starting from ὥ. ὦὥ

ὥ

ὥ

ὥ

ὥ

ὥ

ὥ

Divide And Conquer

More Specifically:

ÅAssume the fillet is at edge ὥȟὦ having

just added triangle ὥȟὦȟὥ .

ÅSort the neighbors of ὥ
CW starting from ὥ.

ÅLet ὥ be the neighbor

of ὥs.t. the plane through

ὦȟὥȟὥ supports ὃ.

ὦὥ

ὥ

ὥ

ὥ ὥ

ὥ

ὥ ὥ

Divide And Conquer

More Specifically:

ÅLet ὥ be the neighbor s.t. the plane

through ὦȟὥȟὥ supports ὃ.

ÅThe points ὥȟȣȟὥ
must be inside the hull.

ÅEven if we advance on

ὦwe wonôt need to retest
these points.

ὦὥ

ὥ

ὥ

ὥ

ὥ ὥ

ὥ

ὥ

Divide And Conquer

Merge(Ὄ , Ὄ):
ὺȟὺ ᴺFindSupportingLine (Ὄ , Ὄ)
ὗᴺ ὺȟὺ

Ὂᴺᶮ

While (ὗ)ɲ
ὩN ὗ.pop_back()
if(Ὡ ὺȟὺ)
ὸN SupportingTriangle (Ὄ , Ὄ , Ὡ)
ὊᴺὊ᷾ὸ

ὗᴺὗ᷾CrossingEdges(ὸ) / Ὡ
CleanUp

Divide And Conquer

Clean-Up:

ÅRepresent the two hulls with a winged-

edge data structure.

ÅReplace the opposite

edges of the silhouette

with the edges of the

new triangles.

ÅFlood-fill to find interior

triangles.

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

Divide And Conquer

