

Convex Hulls (3D)

O'Rourke, Chapter 4

Announcements

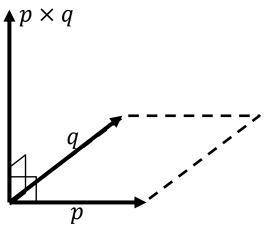
 For assignment 1: I have posted additional polygon files for testing.

Outline

- Review
- Gift-Wrapping
- Divide-and-Conquer

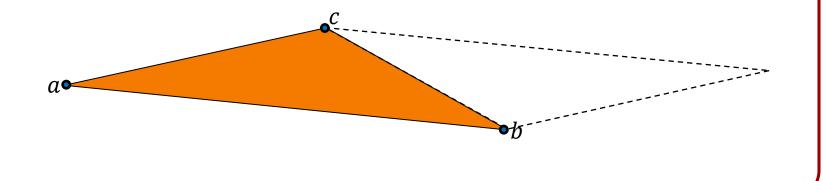
Given points $p, q \in \mathbb{R}^3$, the cross-product $p \times q \in \mathbb{R}^3$ is the vector:

- perpendicular to both p and q,
- oriented according to the right-hand-rule,
- with length equal to the area of the parallelogram defined by p and q. $p \times q$



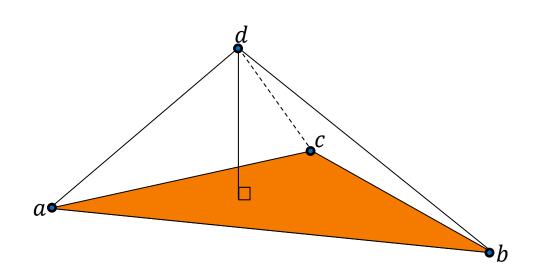
Given a triangle *T* with vertices $(a, b, c) \in \mathbb{R}^3$, the area of the triangle is:

Area(T) =
$$\frac{1}{2} \times ||(b-a) \times (c-a)||$$



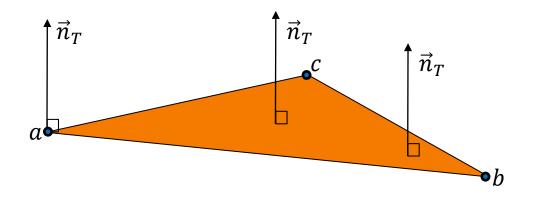
Given a tetrahedron *T* with vertices $(a, b, c, d) \in \mathbb{R}^3$, the volume of the tetrahedron is:

$$Volume(T) = \frac{1}{3} \times base \times height$$



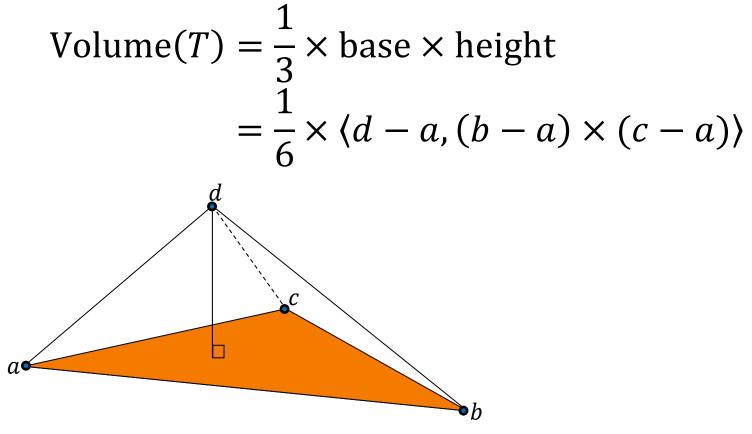
Given a triangle *T* with vertices $(a, b, c) \in \mathbb{R}^3$, the triangle normal is:

$$\vec{n}_T = \frac{(b-a) \times (c-a)}{\|(b-a) \times (c-a)\|}$$

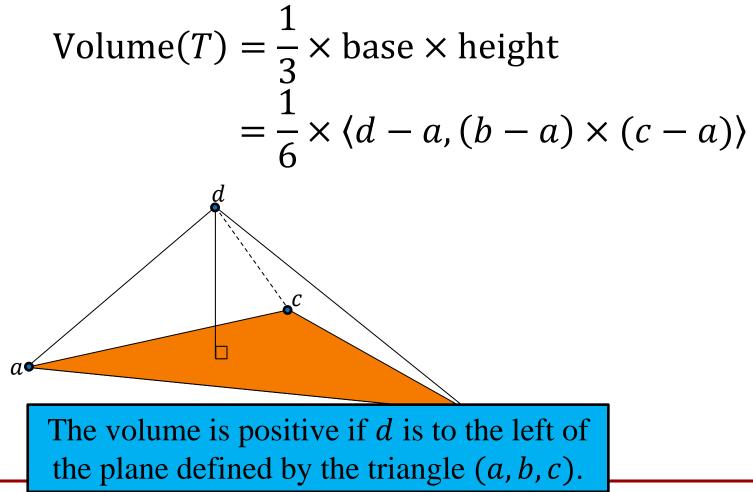


Given a triangle T with vertices $(a, b, c) \in \mathbb{R}^3$ and given a point $d \in \mathbb{R}^3$, the signed perpendicular height of d from the plane containing (a, b, c) is: Height(T, d) = $\langle d - a, \vec{n}_T \rangle$ $= \left\{ d - a, \frac{(b - a) \times (c - a)}{\|(b - a) \times (c - a)\|} \right\}$ \vec{n}_T •h

Given a tetrahedron *T* with vertices $(a, b, c, d) \in \mathbb{R}^3$, the signed volume of the tetrahedron is:



Given a tetrahedron *T* with vertices $(a, b, c, d) \in \mathbb{R}^3$, the signed volume of the tetrahedron is:



If we have a graph G, we can identify the connected component containing a node v by performing a flood-fill.

```
FloodFill(v, G)

if(NotMarked(v))

Mark(v)

for w \in Neighbors(v)

FloodFill(w, G)
```

Complexity: O(|E|)

If we have a graph G, we can identify the connected component containing a node v by performing a flood-fill.

In particular, given a winged-edge representation of a triangle mesh and given a face in the mesh, we can compute the connected component of the face in linear time.

Given a set of points $P \subset \mathbb{R}^d$, and given a simplex $s = \{p_1, \dots, p_k\}$ (vertex, edge, triangle, etc.) formed by $k \leq d$ vertices, we say that the *P* is <u>supported</u> on *s* if there exists a (d - 1)-dimensional hyperplane, $\Pi \supset s$ with *P* on one side of the plane.



Note:

If we project P' is the projection of P onto $\mathbb{R}^{d'}$ and if P' is supported on a simplex $s' = \{p'_1, \dots, p'_k\}$ then P is supported on the simplex $s = \{p_1, \dots, p_k\}$.

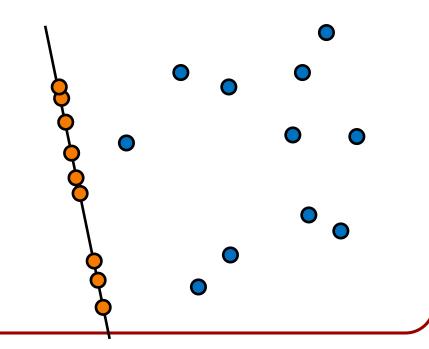
Proof:

Extrude the (d' - 1)-dimensional Π' along the direction of projection.

- The (d 1)-dimensional hyperplane Π has P on one side.
- The vertices of s lie on Π .

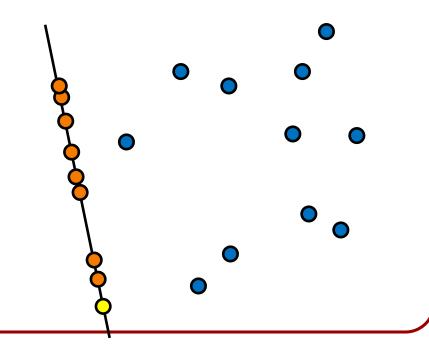
Note:

If we project P' is the projection of P onto $\mathbb{R}^{d'}$ and if P' is supported on a simplex $s' = \{p'_1, \dots, p'_k\}$ then P is supported on the simplex $s = \{p_1, \dots, p_k\}$.



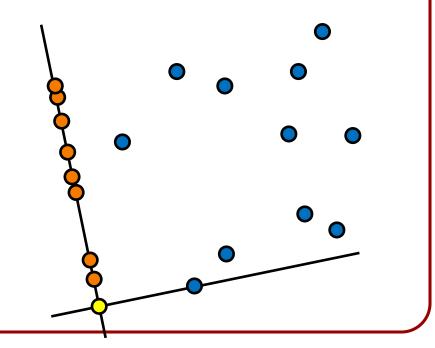
Note:

If we project P' is the projection of P onto $\mathbb{R}^{d'}$ and if P' is supported on a simplex $s' = \{p'_1, \dots, p'_k\}$ then P is supported on the simplex $s = \{p_1, \dots, p_k\}$.



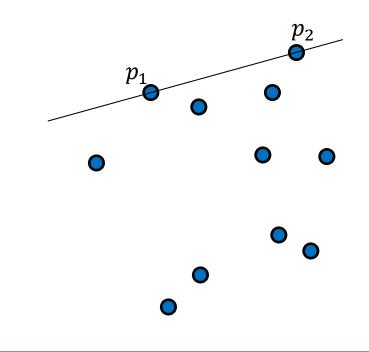
Note:

If we project P' is the projection of P onto $\mathbb{R}^{d'}$ and if P' is supported on a simplex $s' = \{p'_1, \dots, p'_k\}$ then P is supported on the simplex $s = \{p_1, \dots, p_k\}$.



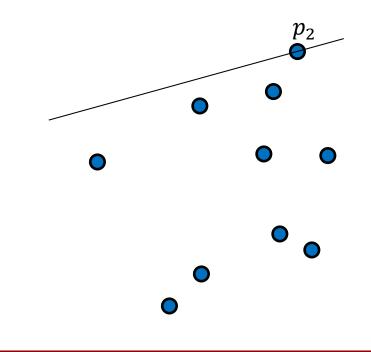
Note:

If *P* is supported by the simplex $s = \{p_1, ..., p_k\}$ then the point-set $P' = P - \{p_1\}$ is supported by the simplex $s' = \{p_2, ..., p_k\}$.



Note:

If *P* is supported by the simplex $s = \{p_1, ..., p_k\}$ then the point-set $P' = P - \{p_1\}$ is supported by the simplex $s' = \{p_2, ..., p_k\}$.



Outline

- Review
- Gift-Wrapping
- Divide-and-Conquer

Initialization:

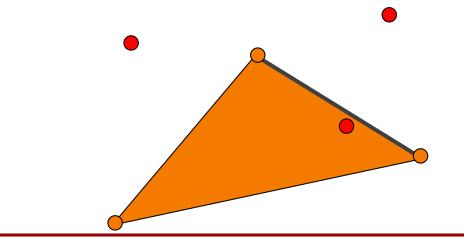
Find a triangle on the hull.

Iteratively:

Initialization:

Find a triangle on the hull.

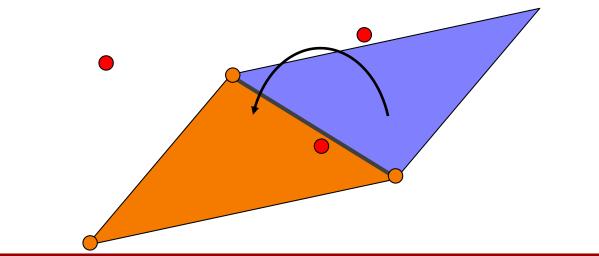
Iteratively:



Initialization:

Find a triangle on the hull.

Iteratively:



Initialization:

Find a triangle on the hull.

Iteratively:

Initialization:

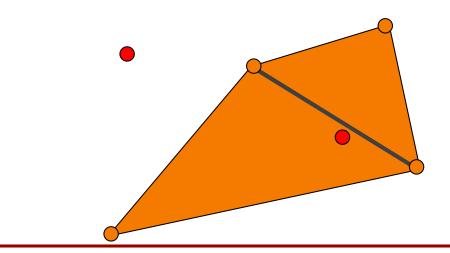
Find a triangle on the hull.

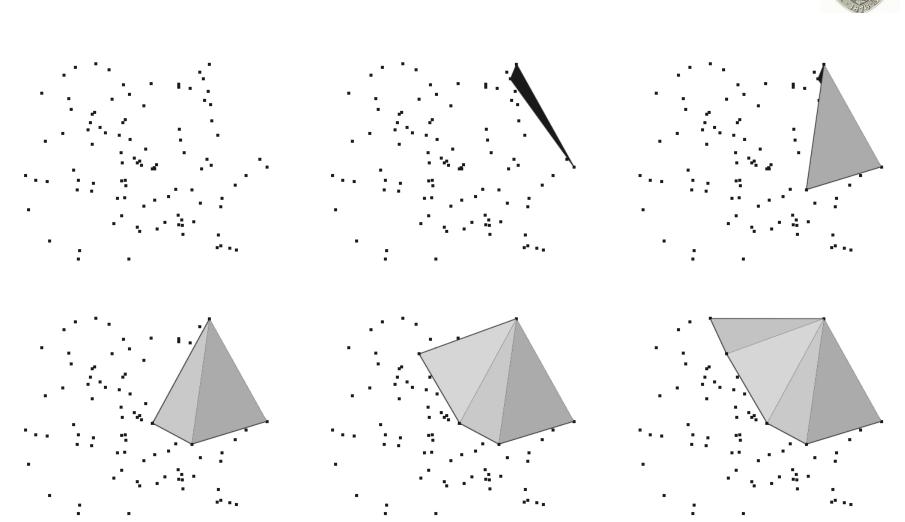
Iteratively:

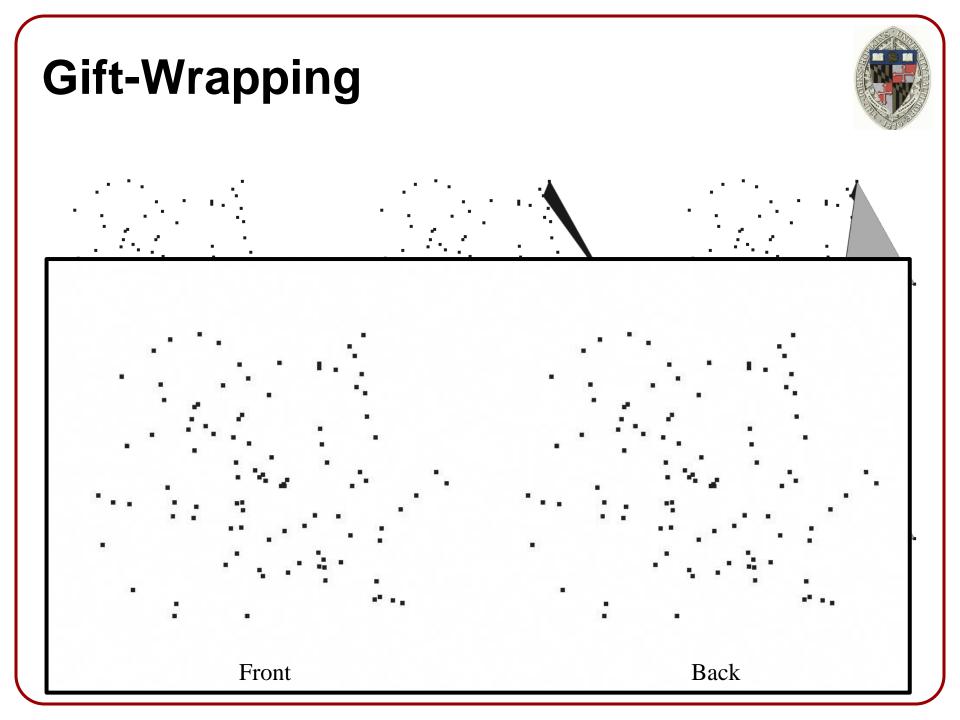
Initialization:

Find a triangle on the hull.

Iteratively:







PivotAroundEdge($e = \{q_0, q_1\}$, $P = \{p_0, ..., p_{n-1}\}$) $p \leftarrow p_0$ area2 \leftarrow SquaredArea(q_0 , q_1 , p) for $p' \in \{p_1, ..., p_{n-1}\}$: volume \leftarrow SignedVolume(q_0 , q_1 , p, p') if(volume<0) $p \leftarrow p'$ else if (volume==0) $_$ area2 \leftarrow SquaredArea(q_0 , q_1 , p') if(_area2>area2) $p \leftarrow p'$ Complexity: O(n)area2 \leftarrow _area2 return p

FindTriangleOnHull($P = \{p_0, ..., p_{n-1}\}$) $\{p,q\} \leftarrow FindEdgeOnHull(P)$ $r \leftarrow PivotAroundEdge(\{p,q\}, P)$ return $\{p,q,r\}$

Complexity: O(n) + Complexity of FindEdgeOnHull

FindEdgeOnHull($P = \{p_0, ..., p_{n-1}\}$) $p \leftarrow BottomMostLeftMostBackMost(P)$ $q \leftarrow PivotOnEdge(\{p, p + (1,0,0)\}, P)$ return $\{p, q\}$

GiftWrap(P): $t \leftarrow FindTriangleOnHull(P)$ $Q \leftarrow \{(t_1, t_0), (t_2, t_1), (t_0, t_2)\}$ $H \leftarrow \{t\}$ while $(Q \neq \emptyset)$ $e \leftarrow Q.pop_back()$ if(NotProcessed(e)) $q \leftarrow \mathsf{PivotOnEdge}(e)$ $t \leftarrow \text{Triangle}(e, q)$ $H \leftarrow H \cup \{t\}$ $Q \leftarrow Q \cup \{(t_1, t_0), (t_2, t_1), (t_0, t_2)\}$ MarkProcessedEdges(e)

// hull boundary edges (?) // the hull

Complexity: $O(n^2)$

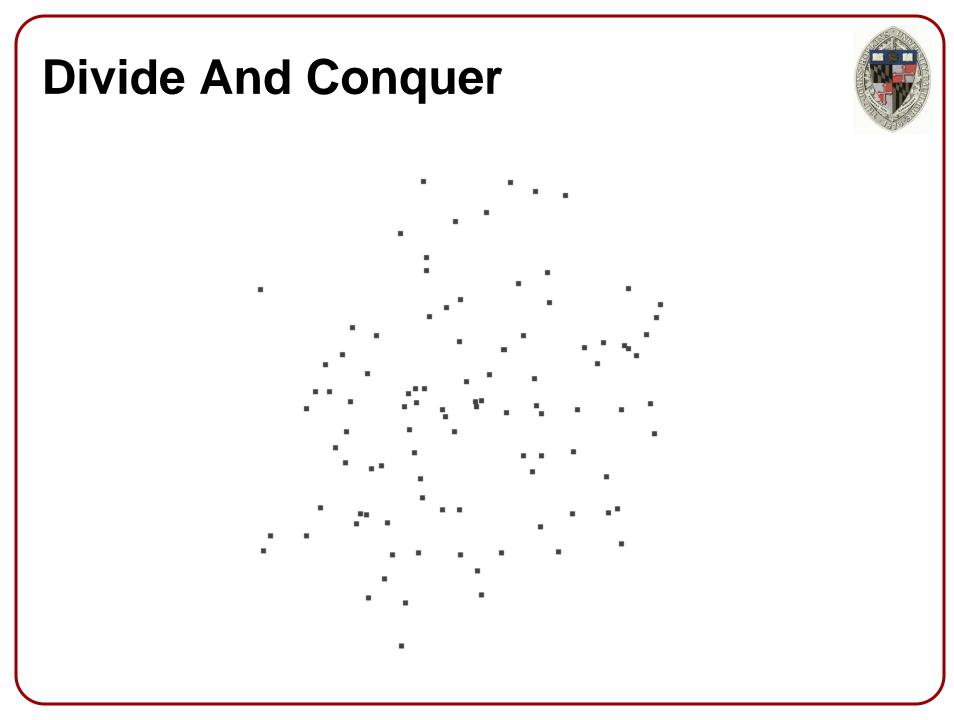
Outline

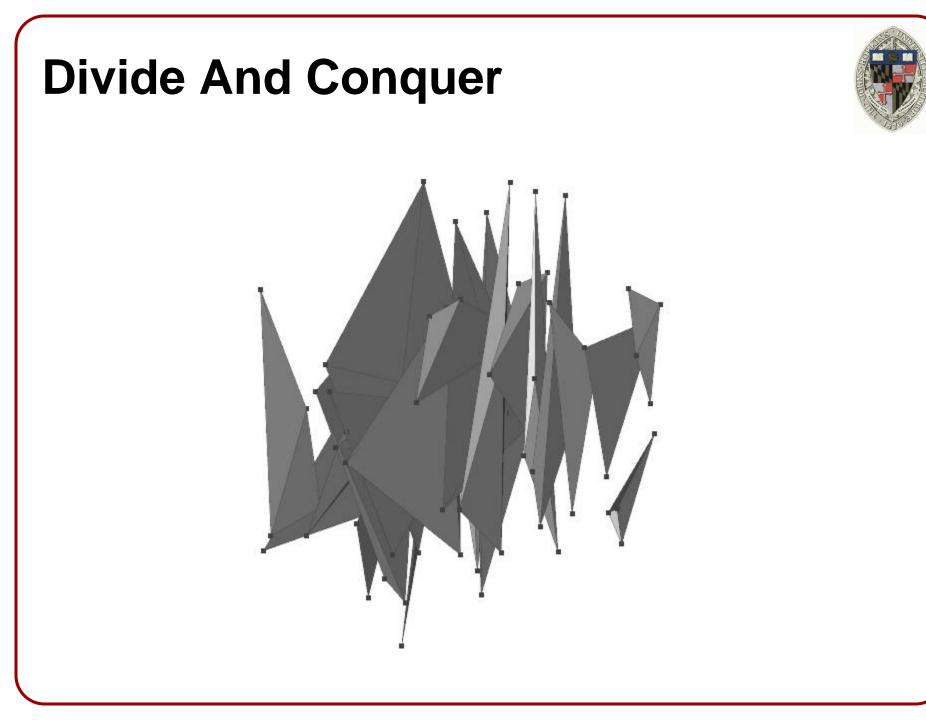
- Review
- Gift-Wrapping
- Divide-and-Conquer

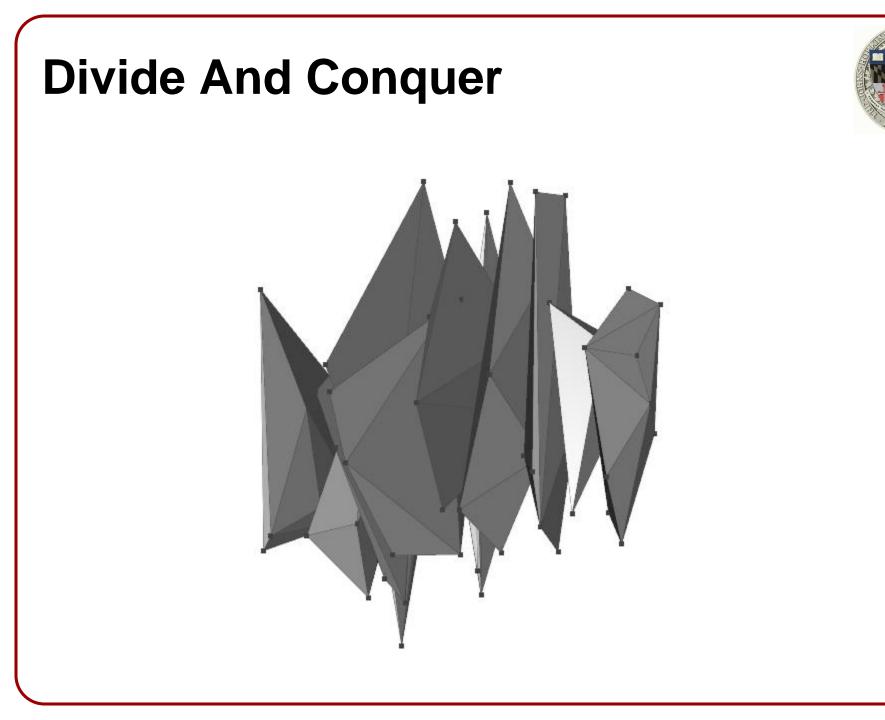
Divide And Conquer

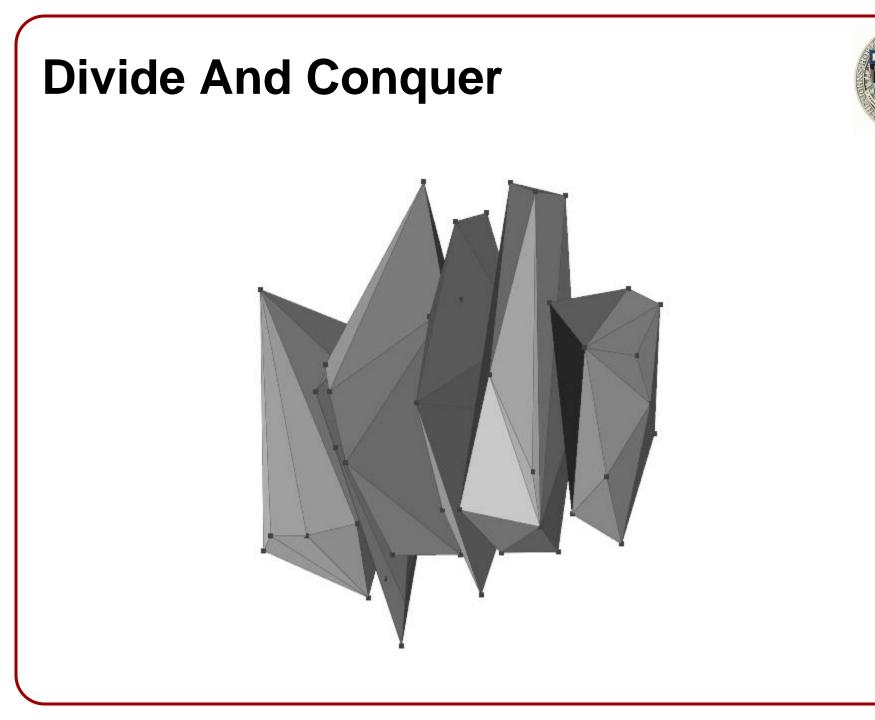
```
DivideAndConquer( P ):
 P \leftarrow \mathsf{SortByX}(P)
 return _DivideAndConquer( P )
_DivideAndConguer( P )
 if |P| < 8 ) return Incremental (P)
 (P_1, P_2) \leftarrow \text{SplitInHalf}(P)
 H_1 \leftarrow \_DivideAndConquer(P_1)
 H_2 \leftarrow \_DivideAndConquer(P_2)
 return Merge(H_1, H_2)
```

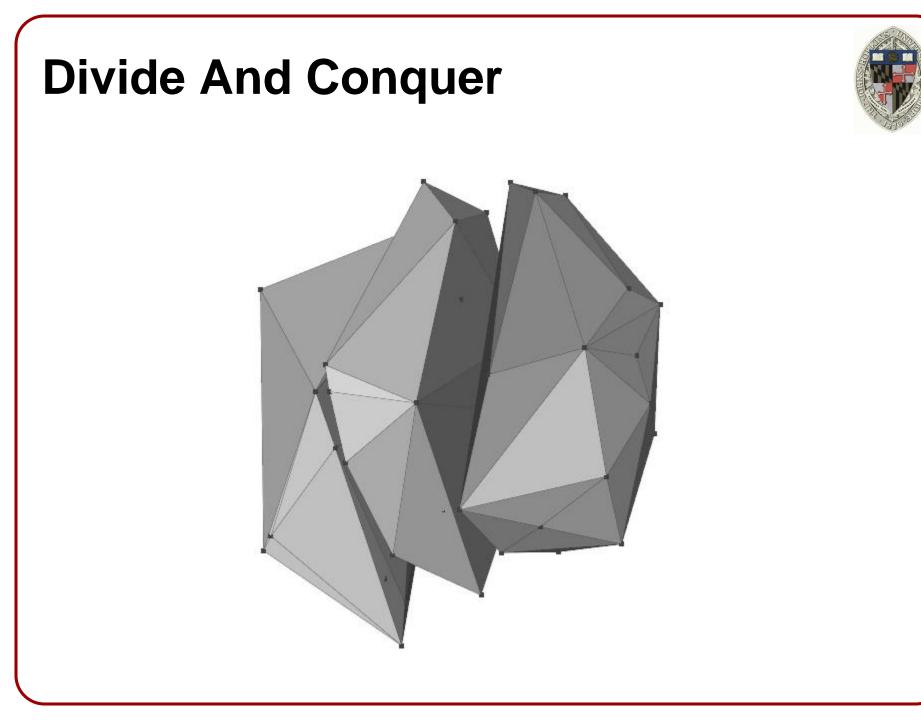

Complexity: $O(n \log n)$

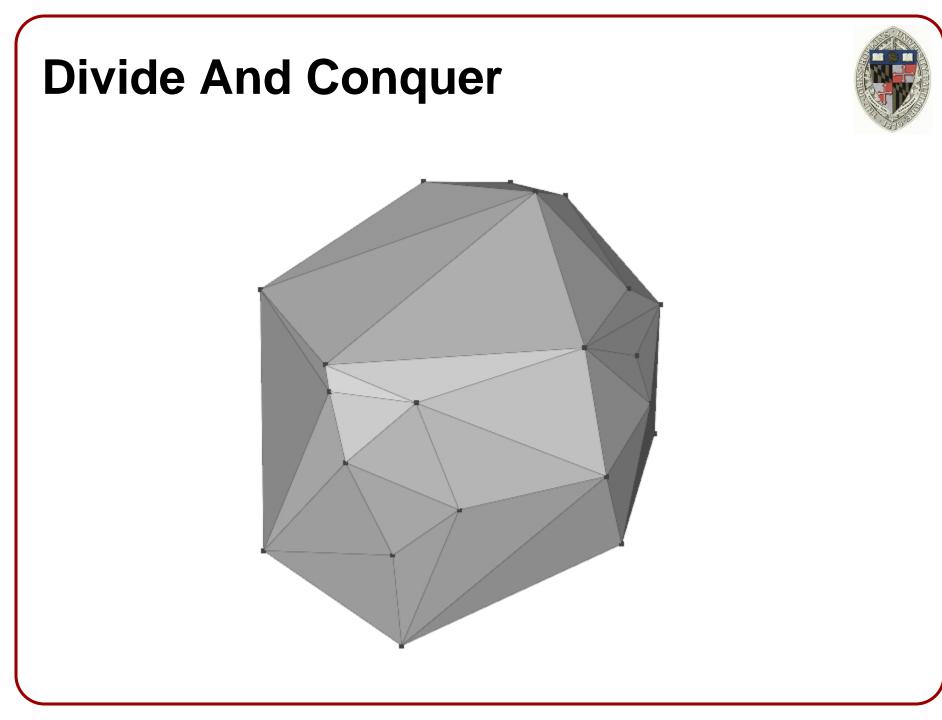




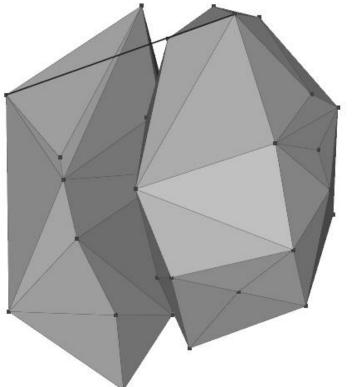




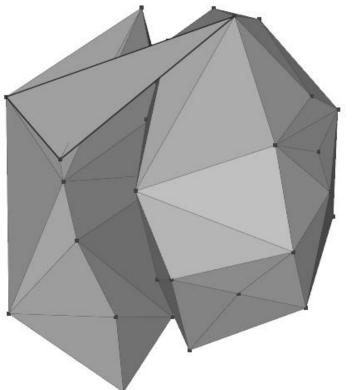




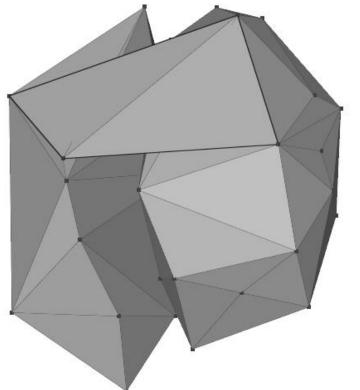
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



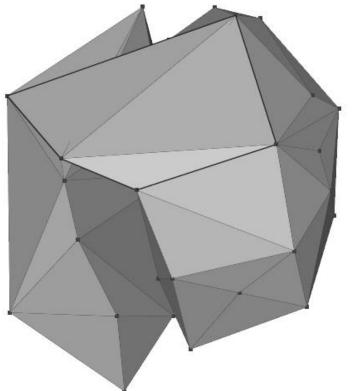
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



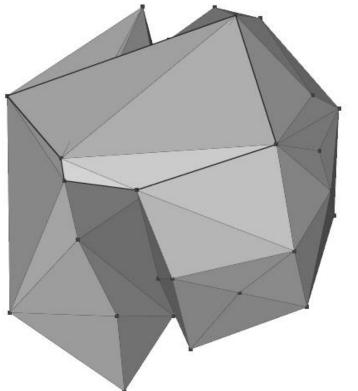
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



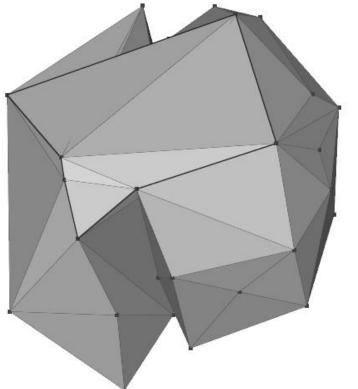
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



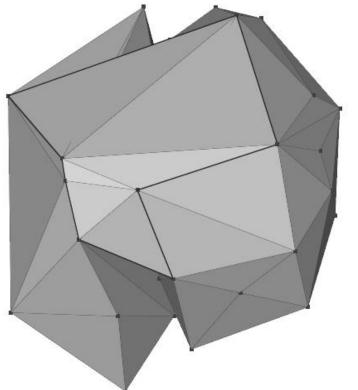
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



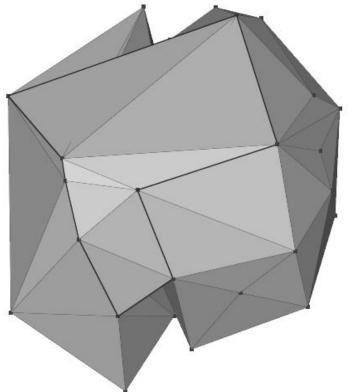
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



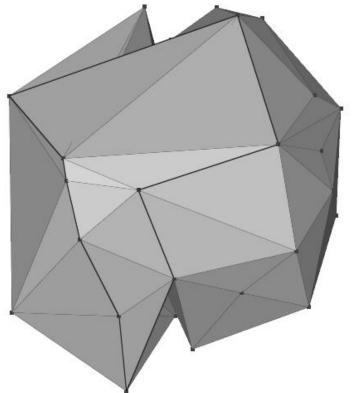
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



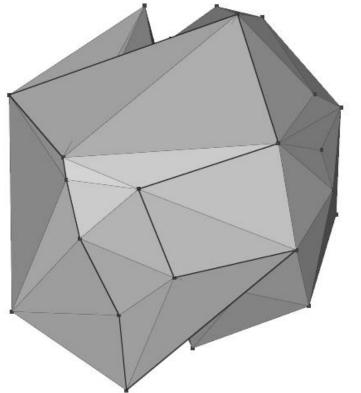
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



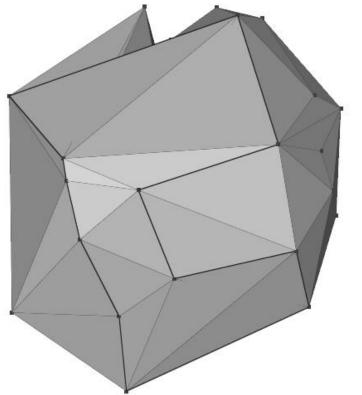
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



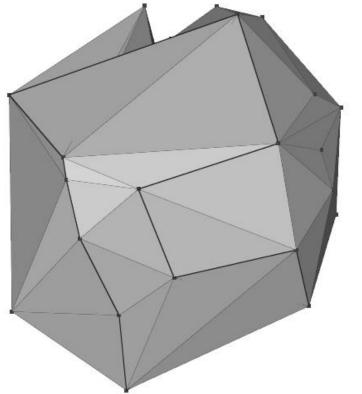
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



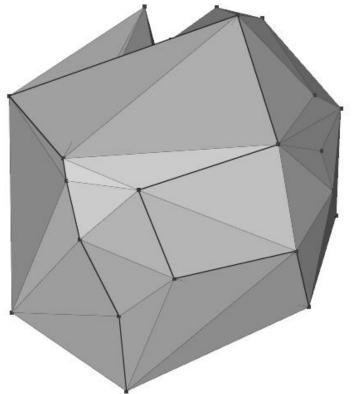
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



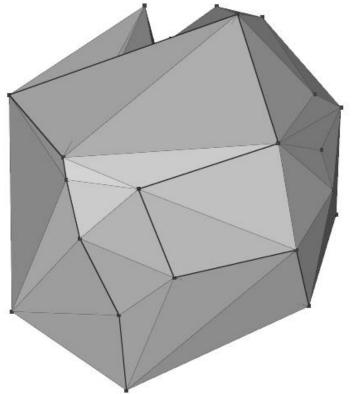
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



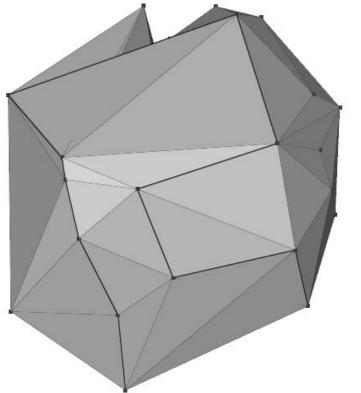
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



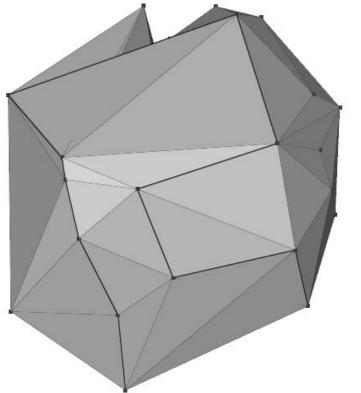
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



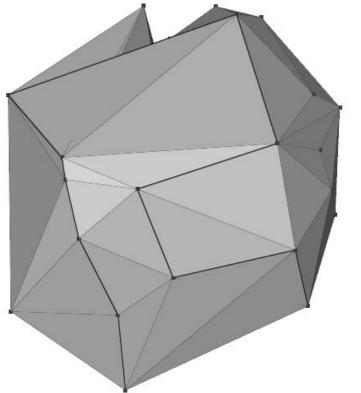
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



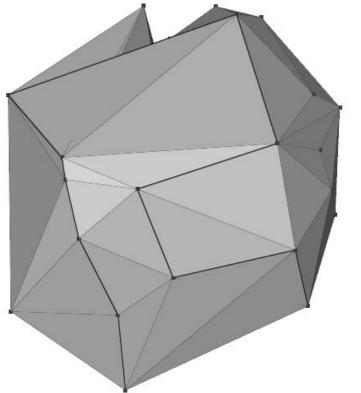
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



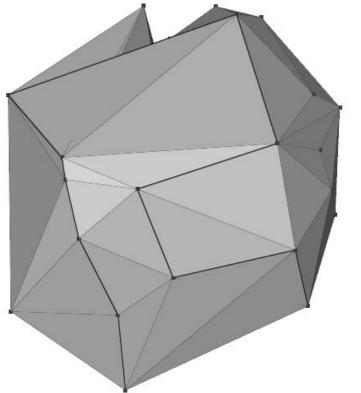
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



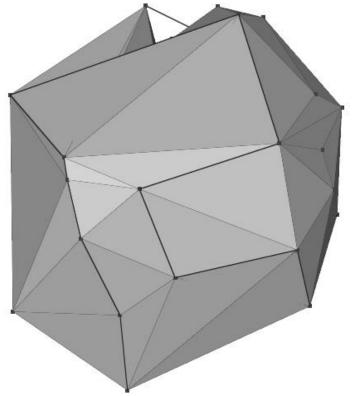
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



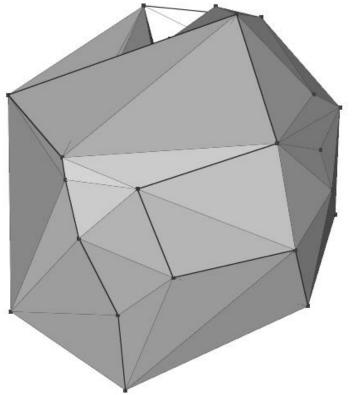
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



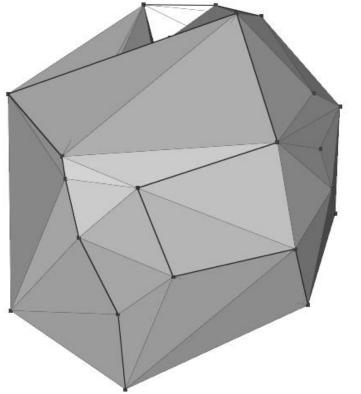
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



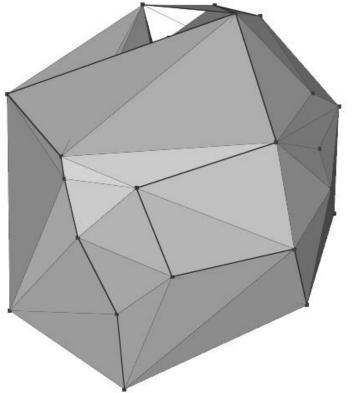
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



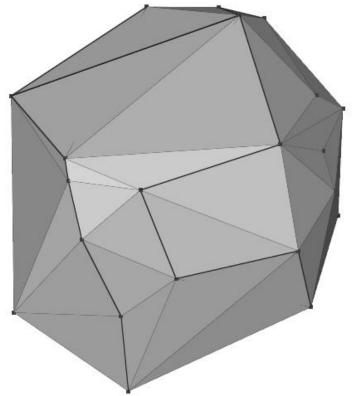
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



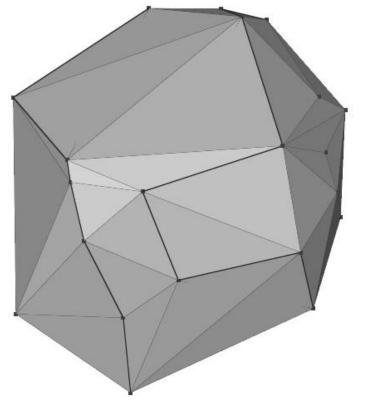
- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible

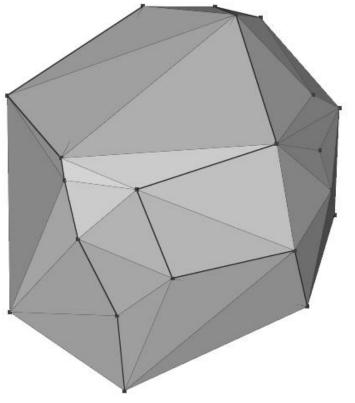


- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible



Merge:

- Construct the fillet that merges the two hulls
- Remove the triangles that are no longer visible

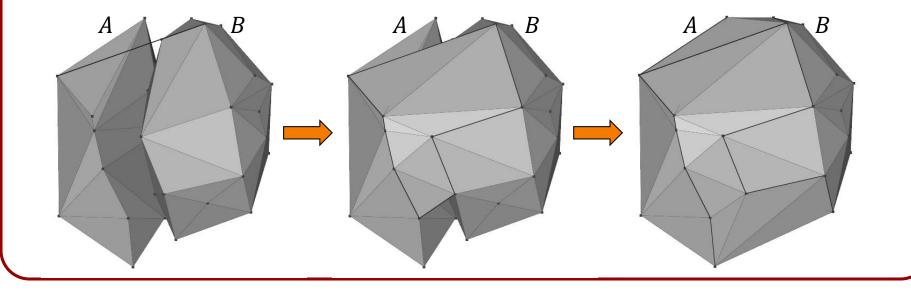


Note:

The fillet has linear complexity since each triangle on the fillet uses an edge from one of the two hulls.

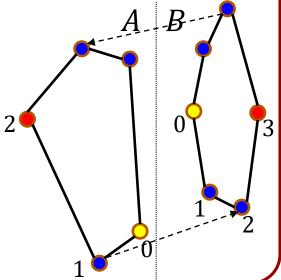
Constructing the Fillet:

- Find a supporting line
- Pivot around the supporting line



Finding a Supporting Line:

- While computing the 3D hull (recursively), simultaneously compute the 2D hull of the projection of the points onto the *xy*-plane.
- The supporting lines in 2D correspond to supporting lines in 3D.



Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

• To run in linear time, we can't try all points.

Observation:

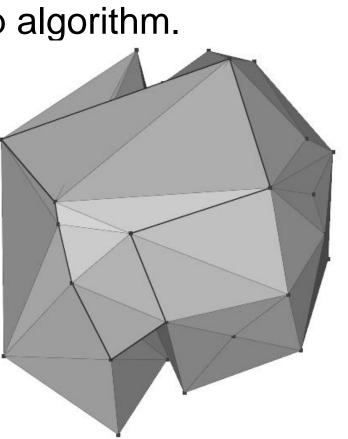
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

• To run in linear time, we can't try all points.

Observation:



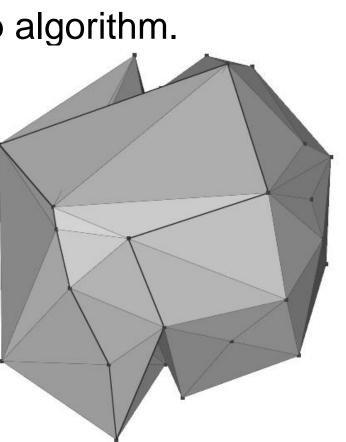
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

• To run in linear time, we can't try all points.

Observation:



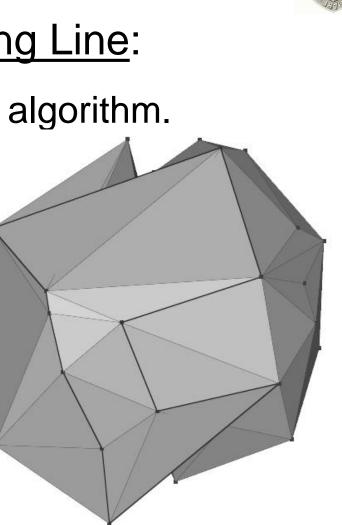
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

• To run in linear time, we can't try all points.

Observation:

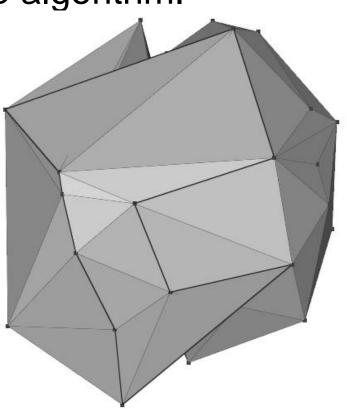


Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

This could still be costly since a vertex can have many neighbors.
 (e.g. If the right endpoint has many neighbors but the pivot keeps hitting a vertex on the left.)



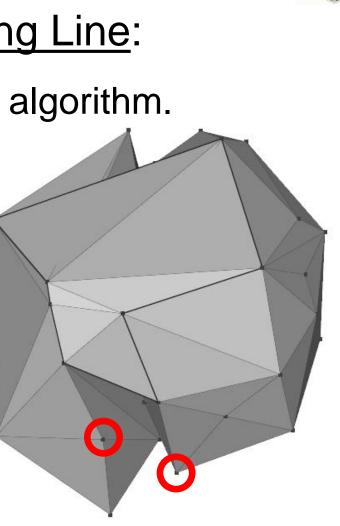
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

 This could still be costly since a vertex can have many neighbors.

Observation:



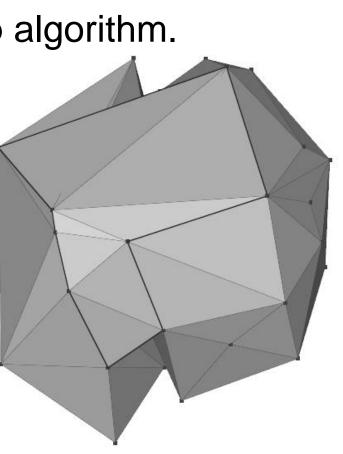
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

 This could still be costly since a vertex can have many neighbors.

Observation:



Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

 This could still be costly since a vertex can have many neighbors.

Observation:

Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

 This could still be costly since a vertex can have many neighbors.

Observation:

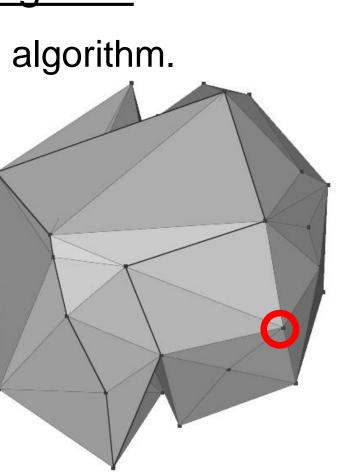
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

 This could still be costly since a vertex can have many neighbors.

Observation:



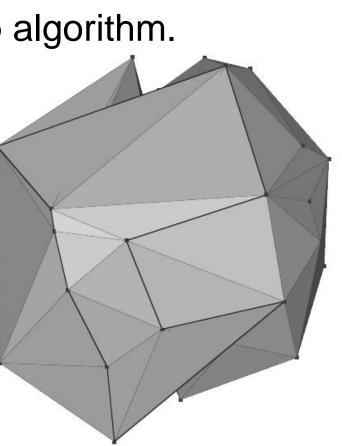
Pivot Around the Supporting Line:

• Proceed as in the gift-wrap algorithm.

Challenge:

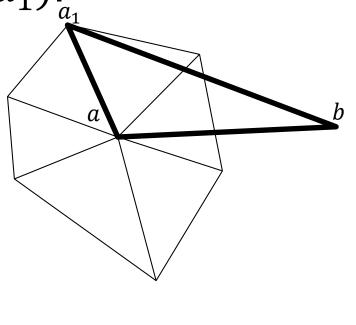
 This could still be costly since a vertex can have many neighbors.

Observation:



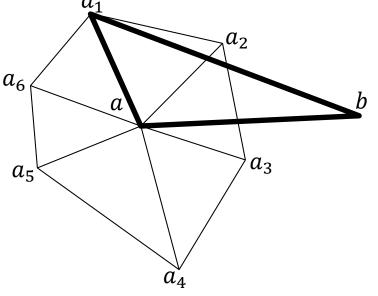
More Specifically:

Assume the fillet is at edge (a, b) having just added triangle (a, b, a₁).



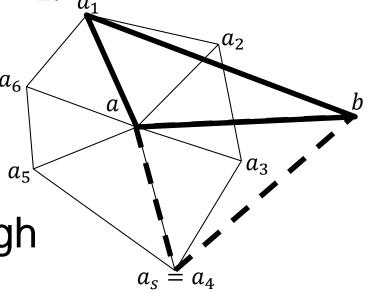
More Specifically:

- Assume the fillet is at edge (a, b) having just added triangle (a, b, a₁).
- Sort the neighbors of a CW starting from a_1 .



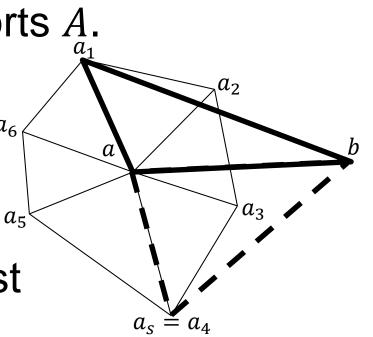
More Specifically:

- Assume the fillet is at edge (a, b) having just added triangle (a, b, a₁).
- Sort the neighbors of a_{a} CW starting from a_{1} .
- Let a_s be the neighbor a_{5^k} of a s.t. the plane through (b, a, a_s) supports A.



More Specifically:

- Let a_s be the neighbor s.t. the plane through (b, a, a_s) supports A_{a_s} .
- The points $\{a_2, \dots, a_{s-1}\}_{a_6}$ must be inside the hull.
- Even if we advance on ^{a₅}
 b we won't need to retest these points.



```
Merge(H_1, H_2):
  (v_1, v_2) \leftarrow \text{FindSupportingLine}(H_1, H_2)
 Q \leftarrow \{(v_1, v_2)\}
 F \leftarrow \emptyset
  While (Q \neq \emptyset)
     e \leftarrow Q.pop\_back()
     if (e \neq \{v_2, v_1\})
         t \leftarrow \text{SupportingTriangle}(H_1, H_2, e)
         F \leftarrow F \cup \{t\}
         Q \leftarrow Q \cup \text{CrossingEdges}(t) / \{e\}
 CleanUp
```


<u>Clean-Up</u>:

- Represent the two hulls with a wingededge data structure.
- Replace the opposite edges of the silhouette with the edges of the new triangles.
- Flood-fill to find interior triangles.

