Convex Hulls (3D)

O0O0Rour k e,

Chapter

-
Announcements

A For assignment 1:
| have posted additional polygon files for testing.

-

Outline

A Review
A Gift-Wrapping
A Divide-and-Conquer

S0 \

2 2]

W &

N I,f :/
‘>$‘ o %%)

o
«Jv;'l)’ v

Given points NN s, the cross-productn NN o
IS the vector:

A perpendicular to both 1y and A,
A oriented according to the right-hand-rule,

A with length equal to the area of the parallelogram
defined by) and 1. g0 N

-

Recall

(@ &

N P Ny P

Given a triangle “Ywith vertices (hudw) N g , the
area of the triangle is:

L OAW P
C

® &

-
Recall

N PN Ny PN N

the volume of the tetrahedron is:

6T16WA2 AAOEKAECEOD

-
Recall

N AN N N

Given a triangle “Ywith vertices (hudw) N g , the
triangle normal Is:

., (0 o 6
(0w & o of

-

Recall

v~v~

Given a triangle “Ywith vertices («hudw) N 5 and

given a point QN g | the signed perpendicular

height of Qfrom the plane containing oo is:
(AEQHEY (Q ¥)

(@ &
(@ O

O 0

Q &h :
'I |

-
Recall

5257
e

N PN Ny PN N

Given a tetrahedron "Ywith vertices (ctududiQ N a
the signed volume of the tetrahedron is:

671 OWAY AAOEAECEOD

Q how & o O)

S10Q

-
Recall

,VNVNV

Given a tetrahedron "Ywith vertices (ocdududiQ N g
the signed volume of the tetrahedron is:

6TI®MAS AAOEKAECEOD

Q how & o O)

S |0

-

S)
& e,
. 4
B 295
'/‘\?»Yt» vl

If we have a graph "Q we can identify the connected
component containing a node L by performing a

flood-fill.

FloodFill (U , "O)
If(NotMarked (VL))
Mark(v)
for 0 N Neighbors(0)
FloodFill(0 , "O)

-

4
1S
(<7
AL
2L)
{
) 4
E} \f S
NS %

B

If we have a graph 'Q we can identify the connecte‘y’(ﬂi
component containing a node L by performing a
flood-fill.

In particular, given a winged-edge representation of
a triangle mesh and given a face in the mesh, we
can compute the connected component of the face

In linear time.

-

Supporting Simplices

Given a set of points 0 O 5 , and given a simplex

i {N FE M } (vertex, edge, triangle, etc.) formed
by 'Q 'Qvertices, we say that the 0 is supported on
| if there existsa Q p -dimensional hyperplane,

L O i with 0 on one side of the plane.

-

Supporting Simplices
Note:

If we project O 48 the projection of U onto s and if
L @ supported on a simplex i nBMm theno
IS supported on the simplex i n B h

Proof:

Extrude the (Q p)-dimensionalt along the
direction of projection.

A The Q p -dimensional hyperplane t has 0 on
one side.

_ A The vertices of i lieont .

-
Supporting Simplices

Note:

If we project O 48 the projection of U onto s and if
L @ supported on a simplex i nBMm theno
IS supported on the simplex i n B h

-
Supporting Simplices

Note:

If we project O 48 the projection of U onto s and if
L @ supported on a simplex i nBMm theno
IS supported on the simplex i n B h

-
Supporting Simplices

Note:

If we project O 48 the projection of U onto s and if
L @ supported on a simplex i nBMm theno
IS supported on the simplex i n B h

-

Supporting Simplices

Note:

If U is supported by the simplex i
the point-set0 U 1
simplex | n B m

N B M }then

IS supported by the

-

Supporting Simplices

Note:

If O is supported by the simplex i {8 i } then
the point-set v) Uv n is supported by the
simplex | n B m

-

Outline

A Review
A Gift-Wrapping
A Divide-and-Conquer

-

Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-

Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-
Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-
Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-

Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-
Gift -Wrapping

Initialization:

Find a triangle on the hull.

lteratively:

Until the hull closes, pivot around a boundary edge.

-

Gift -Wrapping

-

Gift -Wrapping

Front

Back

-
Gift -Wrapping

PivotAroundEdge(' Q nhy ,0 MM
nN 1
area2 N SquaredArea(n ,n ,N)
fornenBh
volumeN SignedVolume(nn ,n ,N.nN 3
If(volume<O0)
nN nee
else if(volume==0)
_area2 N SquaredArea(n ,n ,N ¥
If(_area2>area2)
nNnee
area2 N _area?2 _

return n

-
Gift -Wrapping

A4

FindTriangleOnHull(0 /B RH)
nh N FindEdgeOnHull(0)
i N PivotAroundEdge(nhy ,0)
return MK

-

Gift -Wrapping

FindEdgeOnHull(0 1 I8 M
NN BottomMostLeftMostBackMost(
AN PivotOnEdge(nhy phrm
return M

).
o)

,0)

Gift -Wrapping

GiftWrap(0):
oON FindTriangleOnHull(0)
ON (Oh)ho)No M)
ON 0
while(0 1)
ON 0 .pop_back()
If(NotProcessed (Q))
NN PivotOnEdge(Q)
oN Triangle(Q, n)
ON 'O o
ON O
MarkProcessedEdges(Q)

(6 1D)A(6 M)A o)

// hull boundary edges (?)
// the hull

-

Outline

A Review
A Gift-Wrapping
A Divide-and-Conquer

-

Divide And Conqguer

DivideAndConquer(0):
0N SortByX (0)
return _ DivideAndConquer(0)

_DivideAndConquer(0)
if(0| W) return Incremental(
(0 b)N SplitinHalf (0)

'O N _DivideAndConquer(0)
'O N _DivideAndConquer(0)
return Merge(O, 0)

0)

Divide And Conqguer

(

Divide And Conquer

(

Divide And Conquer

(

Divide And Conquer

Divide And Conquer

r

Divide And Conquer

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Divide And Conquer
Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

s
Divide And Conquer

Merge:

A Construct the fillet that
merges the two hulls

A Remove the triangles
that are no longer visible

Note:

The fillet has linear complexity since each triangle

on the fillet uses an edge from one of the two hulls.
- J

-

Divide And Conquer

Constructing the Fillet:

A Find a supporting line

A Pivot around the supporting line

-
Divide And Conqguer

Finding a Supporting Line:

A While computing the 3D hull (recursively),
simultaneously compute the 2D hull of the
projection of the points onto the w eplane.

A The supporting lines in 2D correspond to
supporting lines in 3D.

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A Toruninlinear time, we B
canot try al il

Observation:

A When we pivot, the first
point we hit is one of the
neighbors ofthel 1 n e

_____end-points. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A To run in linear time, we
canot try al

Observation:

A When we pivot, the first
point we hit is one of the e
neil ghbors o | ;

____end-points. J

r mn

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A To run in linear time, we
canot try al

Observation:

A When we pivot, the first
point we hit is one of the <
nei ghbors o ;

____end-points. J

r mn

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A To run in linear time, we
canot try al

Observation:

A When we pivot, the first
point we hit is one of the |/
neil ghbors o ' ;

____end-points. J

r mn

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly

since a vertex can have
many neighbors.
(e.g. If the right endpoint
has many neighbors but
the pivot keeps hitting a
vertex on the left.)

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-
Divide And Conquer

Pivot Around the Supporting Line:

A Proceed as in the gift-wrap algorithm.

Challenge:

A This could still be costly
since a vertex can have
many neighbors.

Observation:

A We can use the previous
estimated (failed) hit to
_ constrain the next one. J

-

Divide And Conquer
More Specifically:

A Assume the fillet is at edge ot having

just added triangle ¢hodd

I(I)

-

Divide And Conquer
More Specifically:

A Assume the fillet is at edge ot having

just added triangle ¢hufrd .

A Sort the neighbors of ©,
CW starting from .

A

-
Divide And Conqguer

More Specifically:

A Assume the fillet is at edge ot having
just added triangle ¢hufrd .

A

A Sort the neighbors of ©,
CW starting from .

A Let & be the neighbor ©
of ws.t. the plane through

NVV

oo supports o. © e

-
Divide And Conqguer

More Specifically:

A Let ® be the neighbor s.t. the plane
through oty supports o

A The points & B8 hd
must be Inside the huII

A Even if we advance on ©
wowe wonot nee
these points. © e

-
Divide And Conqguer

Merge('O, O):
(O I)N FindSupportingLine (O , 0)
0N {(bh)}
"ON 1
While(0 1)
QN 0 .pop_back()
QO })
oN SupportingTriangle ('O , 0 , Q)
ON 'O o
ON 0 CrossingEdges(0)/ Q
CleanUp

-
Divide And Conquer

Clean-Up:

A Represent the two hulls with a winged-
edge data structure.

A Replace the opposite
edges of the silhouette
with the edges of the
new triangles.

A Flood-fill to find interior
triangles.

g

-

Divide And Conquer

-

Divide And Conquer

-

Divide And Conquer

-

Divide And Conquer

-

Divide And Conquer

-

Divide And Conquer

