

Convex Hulls (2D)

O'Rourke, Chapter 3

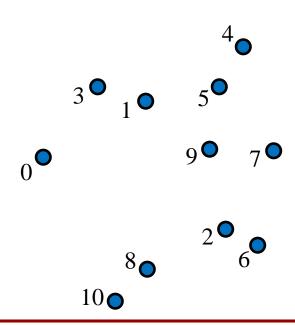
[Preparata and Hong, 1977]

Outline

- Incremental Algorithm
- Divide-and-Conquer

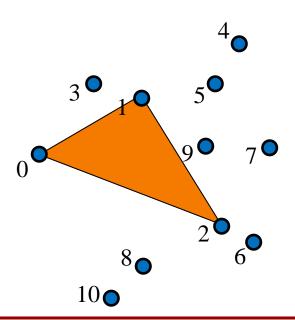
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



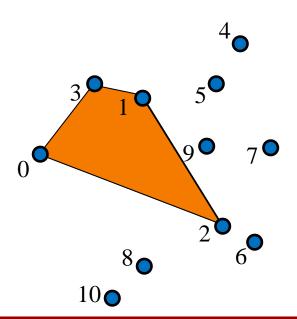
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



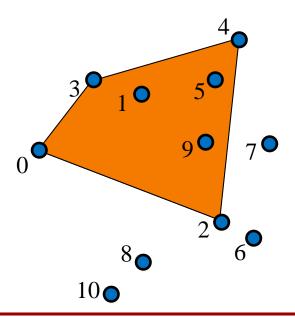
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



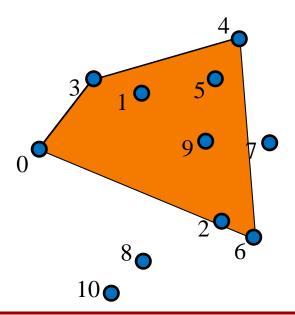
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



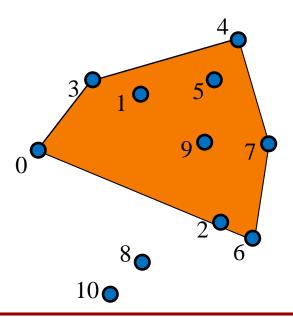
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



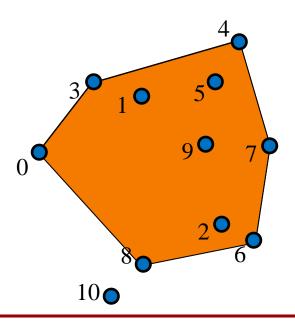
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



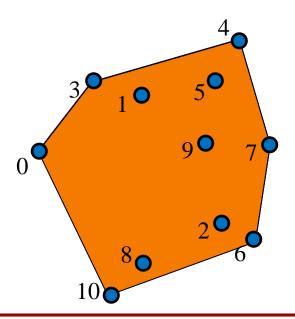
Approach:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.

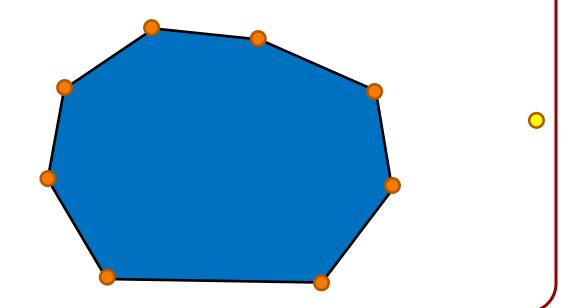


Approach:

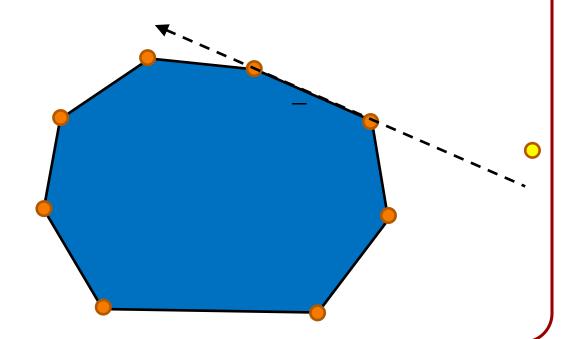
- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



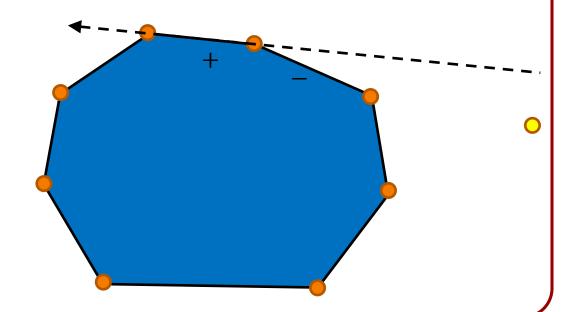
Note:



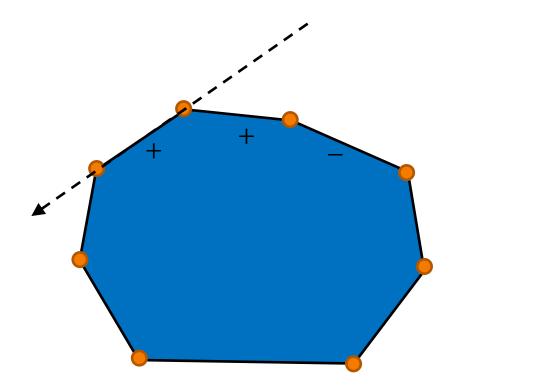
Note:



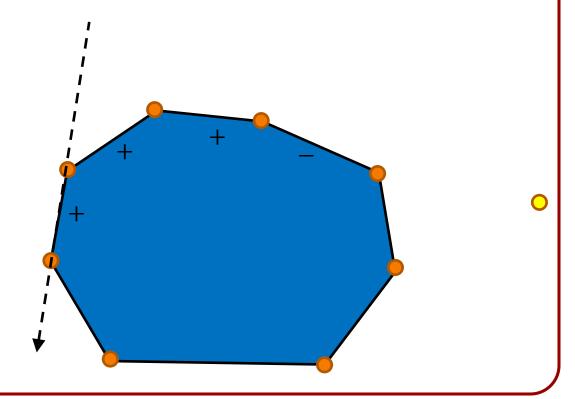
Note:



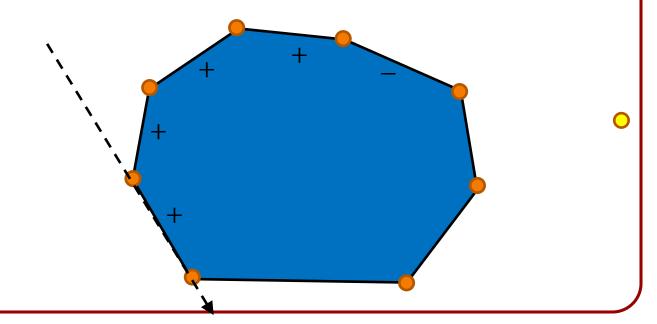
Note:



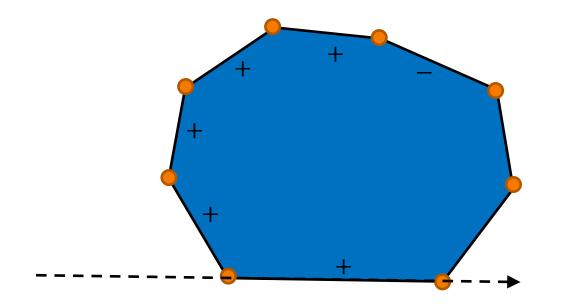
Note:



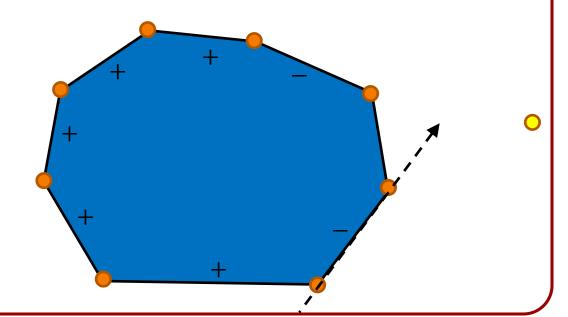
Note:



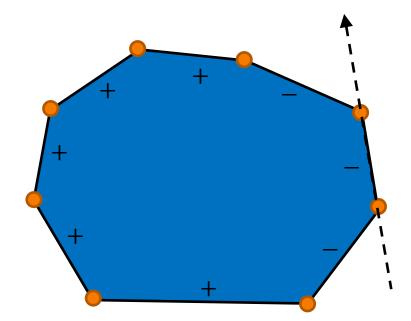
Note:



Note:



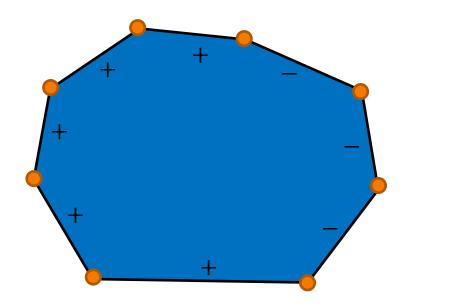
Note:



Note:

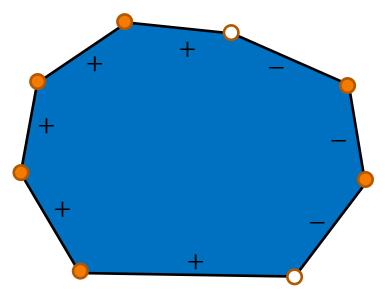
If a point is outside the hull, we can label the hull edges as left/right relative to the new point.

⇒ We get two vertex chains.



Note:

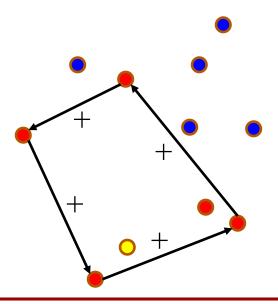
- ⇒ We get two vertex chains.
- ⇒ We get two transition vertices.



Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

If it is left of all edges, it is interior.



Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

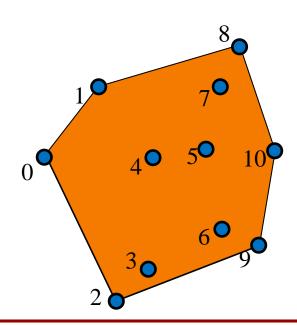
- If it is left of all edges, it is interior.
- Otherwise, there are two transition vertices.
 - »Connect the new point to those vertices.

+

Complexity: $O(n^2)$

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

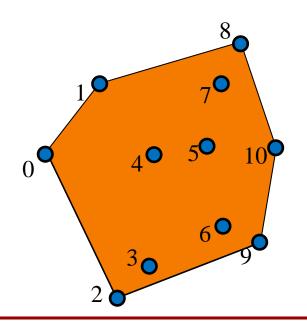


Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must be outside the current hull.

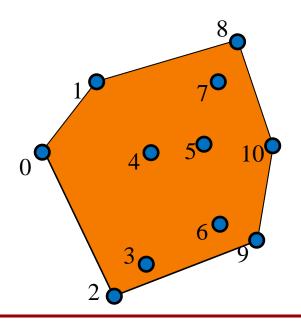


Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

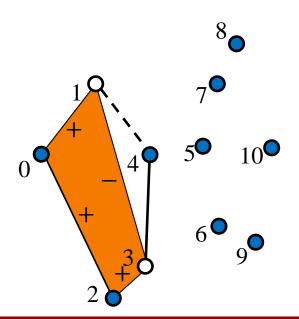
Since the points are sorted, each new point considered must see the previously added point.



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

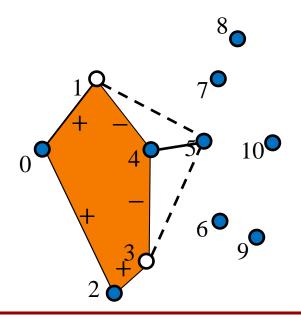
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

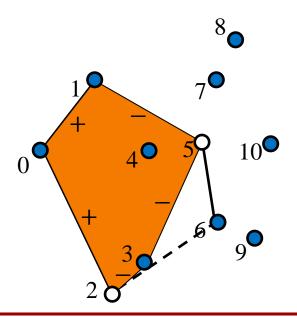
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

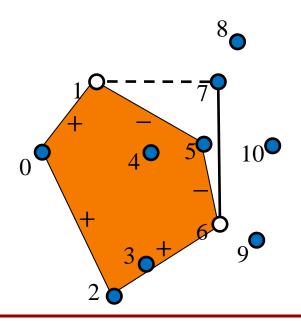
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

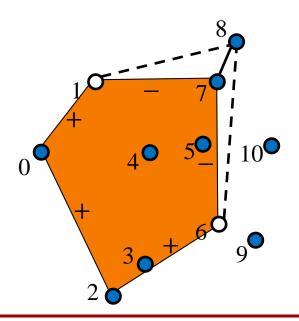
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

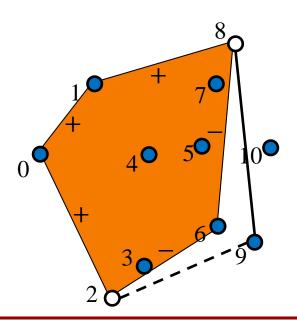
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

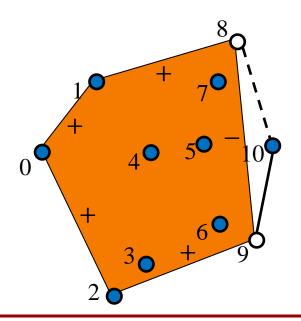
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:



Convex Hull (2D)

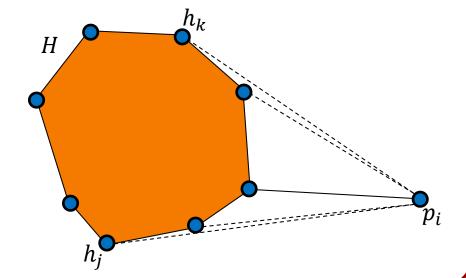
Incremental Algorithm (P)

- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- ∘ for $i \in [3, n)$:
 - » $(h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - **»** Replace(H, $\{h_j, ..., h_k\}$, $\{h_j, p_i, h_k\}$)

Convex Hull (2D)

Incremental Algorithm (P)

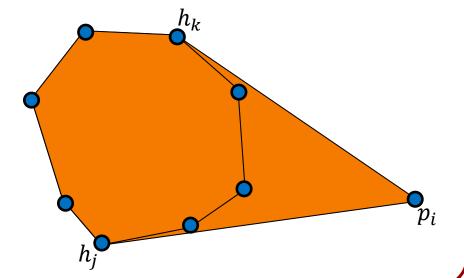
- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - » $(h_i, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - **»** Replace(H, $\{h_{j}, ..., h_{k}\}$, $\{h_{j}, p_{i}, h_{k}\}$)



Convex Hull (2D)

Incremental Algorithm (P)

- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - » $(h_i, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - » Replace(H , $\{h_j, ..., h_k\}$, $\{h_j, p_i, h_k\}$)



Convex Hull (2D)

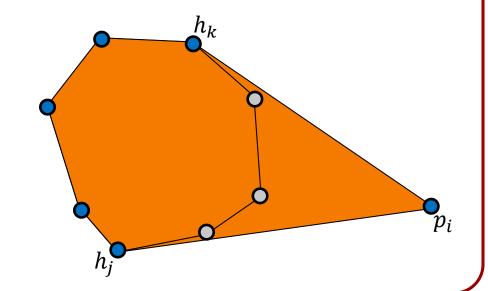
Incremental Algorithm (P)

- SortLexicographically(P) \leftarrow $O(n \log n)$
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- ∘ for $i \in [3, n)$:

 » $(h_i, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \leftarrow O(?)$
 - **»** Replace(H , $\{h_{j}, ..., h_{k}\}$, $\{h_{j}, p_{i}, h_{k}\}$)

Note:

Any vertex traversed to find the transition vertices is removed.



Convex Hull (2D)

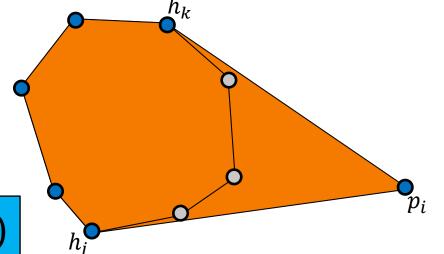
Incremental Algorithm (P)

- SortLexicographically(P) \leftarrow $O(n \log n)$
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- ∘ for $i \in [3, n)$:
 - » $(h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \leftarrow O(n)$
 - **»** Replace(H, $\{h_{j}, ..., h_{k}\}$, $\{h_{j}, p_{i}, h_{k}\}$)

Note:

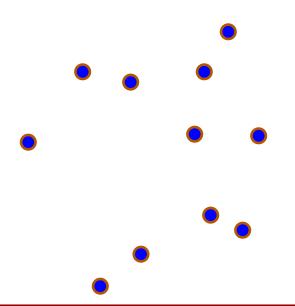
Any vertex traversed to find the transition vertices is removed.

Complexity: $O(n \log n)$



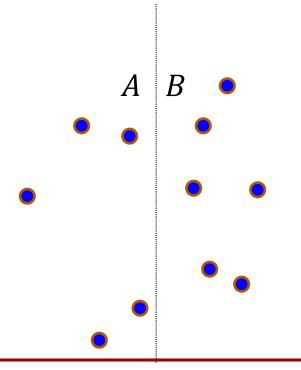
Outline

- Incremental Algorithm
- Divide-and-Conquer



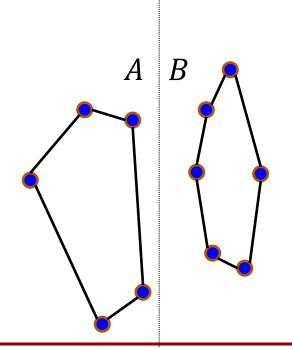
Recursively:

Split the point-set in two.



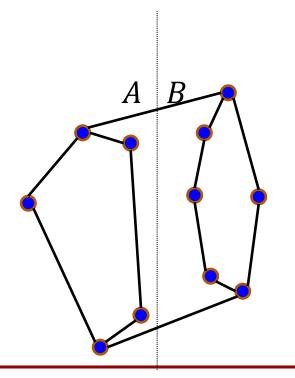
Recursively:

- Split the point-set in two.
- Compute the hull of both halves



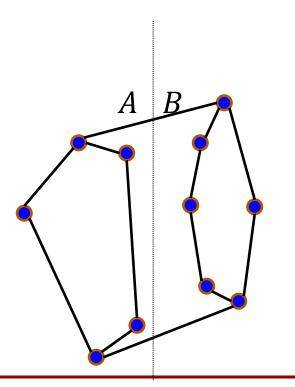
Recursively:

- Split the point-set in two.
- Compute the hull of both halves
- Merge the hulls



Efficiency:

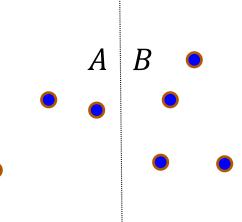
For this to be fast (log-linear), the splitting and merging have to be fast (linear).



Divide And Conquer (Step 1)

Split the point-set in two:

- Sort the points along an axis and choose the (n/2)-th element.
 - »Pre-processing: $O(n \log n)$
 - »Run-time: O(n)
- Use fast median.
 - »Run-time: O(n)



Approach:

- To get the median of a set S, break up the set into subsets of size 5.*
- Compute the median of each subset.
- Compute the median of the medians.
 [Recursive]
- Use that to split S in two and find the biased median of the larger half.
 [Recursive]

*For simplicity, we will assume that |S| is divisible by 5.


```
FastMedian(S = \{x_0, ..., x_{n-1}\}):
    return KthEntry(S, |S|/2)
KthEntry( S = \{x_0, ..., x_{n-1}\}, k):
 \circ if(|S| == 1) return x_0
  Q_i \leftarrow \{x_{5i+0}, ..., x_{5i+4}\}
 ∘ for i \in [0, |S|/5): q_i \leftarrow SlowMedian(Q_i)
 Q \leftarrow \{q_0, ..., q_{|S|/5-1}\}
 \circ ( L , R ) \leftarrow Split( S , FastMedian( Q ) )
 \circ if( |L| < k ) return KthEntry( R , k - |L| )
  \circ else return KthEntry( L , k )
```


O(n) Complexity:

To show that this has linear complexity, we show that every time we recurse on a subset $S' \subset S$, the size of the subset satisfies:

$$|S'| \leq |S| \cdot \varepsilon$$

for some fixed ε < 1.


```
KthEntry(S = \{x_0, ..., x_{n-1}\}, S):

o if(|S| ==1) return x_0

o Q_i \leftarrow \{x_{5i+0}, ..., x_{5i+4}\}

o for i \in [0, |S|/5): q_i \leftarrow \text{SlowMedian}(Q_i)

o Q \leftarrow \{q_0, ..., q_{|S|/5-1}\}

o (L, R) \leftarrow \text{Split}(S, \text{FastMedian}(Q))

o if(|L| < s) return KthEntry(R, s - |L|)

o else return KthEntry(L, s)
```

<u>Claim</u>:

o The subsets L and R defined by: (L, R) ← Split(S, FastMedian(Q)) have the property that |L|, $|R| \le 4|S|/5$

Claim:

o The subsets L and R defined by: (L, R) ← Split(S, KthEntry(Q)) have the property that |L|, $|R| \le 4|S|/5$

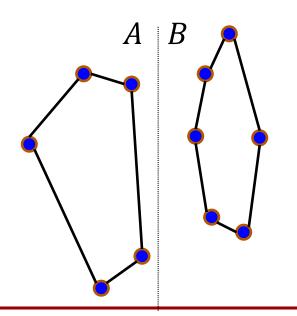
Proof:

- \circ Set q = FastMedian(Q)
- The subset of $q_i \in Q$ with $q_i < q$ makes up 50% of Q.
 - » The subset of $p \in Q_i$ with $p < q_i$ makes up 40% of Q_i .
 - \Rightarrow Since the subset $\{p \in S | p < q_i < q\}$ is in L, the set L contains at least one fifth of the points in S.
- The subset of $q_i \in Q$ with $q_i \ge q$ makes up 50% of Q...

Divide And Conquer (Step 2)

Compute the hull of the halves:

- If the subset has less than 6 points, apply the incremental algorithm,
- Otherwise recurse.



Divide And Conquer (Step 3)

Merging the hulls (lower tangent)*:

- Find the edge from A to B connecting the right-most point on A to the left-most point on B.
- Move CW on A and CCW on B, while A and B are not entirely above the edge.

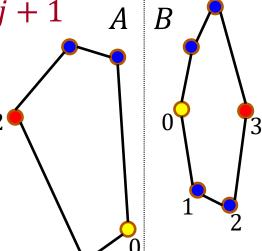
*Assuming general position


```
Merge (A, B):
  A ← SortCWFromRight(A)
  ∘ B ← SortCCWFromLeft(B)
  \circ (i,j) \leftarrow (0,0)
  o while( true )
     » if (Right(\overrightarrow{a_i}\overrightarrow{b_j}, a_{i+1})): i \leftarrow i+1
     » else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
     » else: break
```



```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- $\circ B \leftarrow SortCCWFromLeft(B)$
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - » if (Right($\overrightarrow{a_ib_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break




```
Merge ( A , B ):

\circ A \leftarrow SortCWFromRight(A)

\circ B \leftarrow SortCCWFromLeft(B)

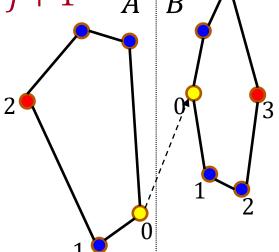
\circ (i,j) \leftarrow (0,0)

\circ while(true)

\Rightarrow if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1

\Rightarrow else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
```

» else: break




```
Merge (A, B):
 A ← SortCWFromRight(A)
 ∘ B ← SortCCWFromLeft(B)
 \circ (i,j) \leftarrow (0,0)
 o while( true )
    » if (Right(\overline{a_i b_i}, a_{i+1})): i \leftarrow i+1
    » else if(Right(\overline{a_ib_j}, b_{j+1})): j \leftarrow j+1 A B
    » else: break
```

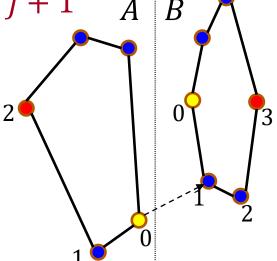


```
Merge (A, B):
 A ← SortCWFromRight(A)
 ∘ B ← SortCCWFromLeft(B)
 \circ (i,j) \leftarrow (0,0)
 o while( true )
    » if (Right(\overline{a_i b_i}, a_{i+1})): i \leftarrow i+1
    » else if(Right(\overline{a_ib_j}, b_{j+1})): j \leftarrow j+1 A B
    » else: break
```



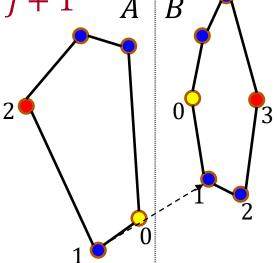
```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - \Rightarrow if (Right($\overline{a_i b_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break




```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - \Rightarrow if (Right($\overline{a_i b_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break




```
Merge (A, B):
 A ← SortCWFromRight(A)
 ∘ B ← SortCCWFromLeft(B)
 \circ (i,j) \leftarrow (0,0)
 o while( true )
    » if (Right(\overline{a_i b_i}, a_{i+1})): i \leftarrow i+1
    » else if(Right(\overline{a_ib_j}, b_{j+1})): j \leftarrow j+1 A B
    » else: break
```



```
Merge (A, B):
 A ← SortCWFromRight(A)
 ∘ B ← SortCCWFromLeft(B)
 \circ (i,j) \leftarrow (0,0)
 o while( true )
    » if (Right(\overline{a_i b_i}, a_{i+1})): i \leftarrow i+1
    » else if(Right(\overline{a_ib_j}, b_{j+1})): j \leftarrow j+1 A B
    » else: break
```



```
Merge ( A , B ):

\circ A \leftarrow SortCWFromRight(A)

\circ B \leftarrow SortCCWFromLeft(B)

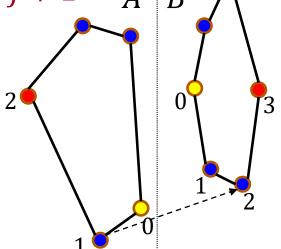
\circ (i,j) \leftarrow (0,0)

\circ while(true)

\Rightarrow if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1

\Rightarrow else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
```

» else: break

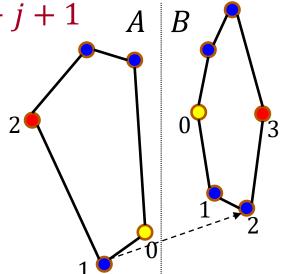



```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - » if (Right($\overrightarrow{a_ib_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_ib_j}$, b_{j+1})): $j \leftarrow j+1$
 - » else: break

Need to show this terminates:

- 1. at the lower tangent
- 2. in linear time.



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

First we show that if this is true, then:

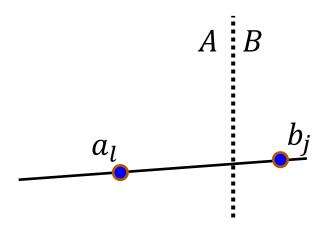
- The algorithm must terminate in linear time because:
 - » i won't pass the left-most vertex of A.
 - » j won't pass the right-most vertex of B.
- The algorithm terminates at the lower tangent.

Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

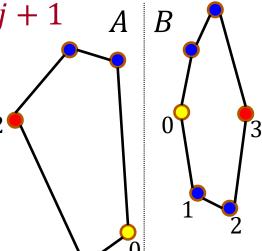
1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.

Will show that i won't pass the left-most vertex, a_l .




```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - » if (Right($\overline{a_i b_j}$, a_{i+1}): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break



Claim:

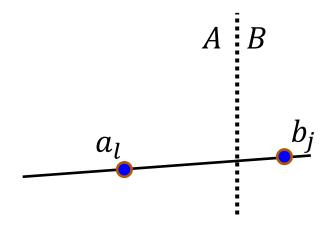
If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overline{a_i b_j}$.

Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_l b_j}$, a_{l+1})==false

Where can a_{l-1} be?



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.

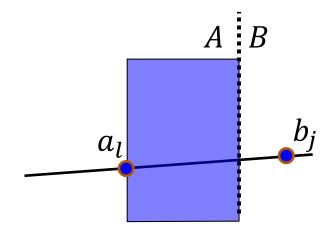
Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_lb_j}$, a_{l+1})==false

Where can a_{l-1} be?

Because a_l is left-most:

$$a_{l-1} \in \{p | p^x > a_l^x\}$$



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.

Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_l b_j}$, a_{l+1})==false

Where can a_{l-1} be?

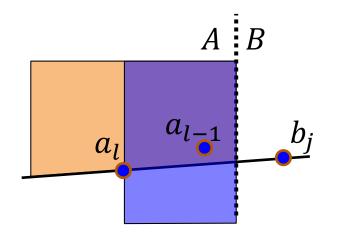
Because a_l is left-most:

$$a_{l-1} \in \{p | p^x > a_l^x\}$$

Because the claim holds:

$$a_{l-1} \in \{p | \text{Left}(\overrightarrow{a_l b_i}, p)\}$$

Note that $l \neq 0$ because l indexes the left-most vertex in A while 0 indexes the right-most.



Claim:

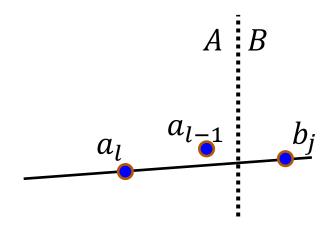
If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overline{a_i b_j}$.

Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_lb_j}$, a_{l+1})==false

Where can a_{l+1} be?



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overline{a_i b_j}$.

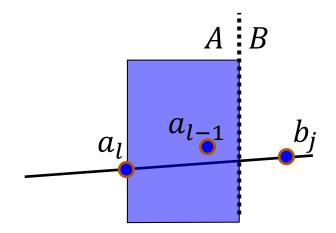
Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_l b_j}$, a_{l+1})==false

Where can a_{l+1} be?

Because a_l is left-most:

$$a_{l+1} \in \{p | p^x > a_l^x\}$$



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.

Will show that i won't pass the left-most vertex, a_l .

$$\Leftrightarrow$$
 Right($\overrightarrow{a_l b_j}$, a_{l+1})==false

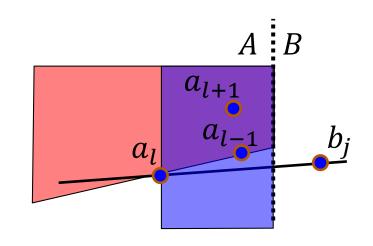
Where can a_{l+1} be?

Because a_l is left-most:

$$a_{l+1} \in \{p | p^x > a_l^x\}$$

Because a_l is convex:

$$a_{l+1} \in \{p | \text{Left}(\overrightarrow{a_l a_{l-1}}, p)\}$$



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

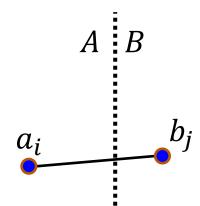
Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent. Case $i \neq 0$:



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

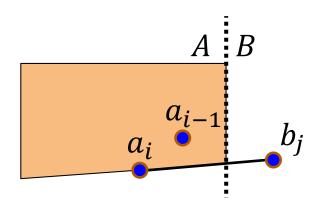
- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overrightarrow{a_i b_j}$ is a lower tangent.

Case $i \neq 0$:

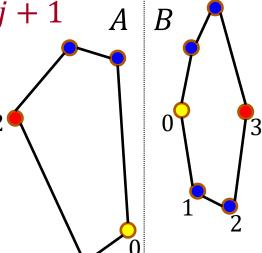
By claim #1:

$$a_{i-1} \in \{p | \text{Left}(\overrightarrow{a_i b_i}, p)\}$$




```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - \Rightarrow if (Right($\overline{a_i b_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

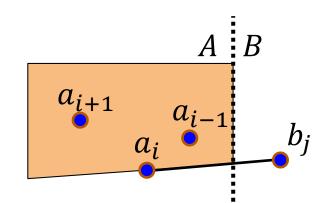
Case $i \neq 0$:

By claim #1:

$$a_{i-1} \in \{p | \text{Left}(\overrightarrow{a_i b_j}, p)\}$$

Because we terminated:

$$a_{i+1} \in \{p | \text{Left}(\overrightarrow{a_i b_j}, p)\}$$



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

Case $i \neq 0$:

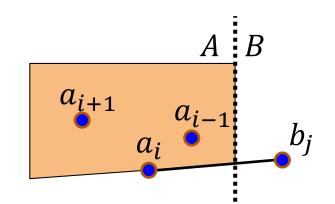
By claim #1:

$$a_{i-1} \in \{p | \text{Left}(\overrightarrow{a_i b_j}, p)\}$$

Because we terminated:

$$a_{i+1} \in \{p | \text{Left}(\overrightarrow{a_i b_i}, p)\}$$

 $\Rightarrow \overrightarrow{a_i b_i}$ is a lower tangent of A.

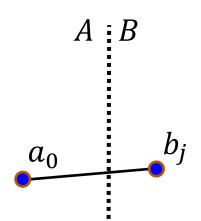


Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent. Case i = 0:



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

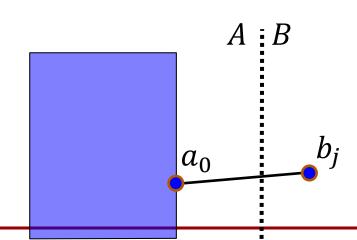
- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

Case i = 0:

Because a_0 is right-most:

$$a_1 \in \{p | p^x < a_0^x\}$$



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

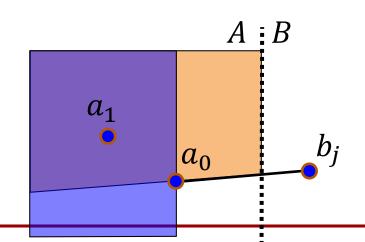
Case i = 0:

Because a_0 is right-most:

$$a_1 \in \{p | p^x < a_0^x\}$$

Because we terminated:

$$a_1 \in \{p | \text{Left}(a_0 b_j, p)\}$$



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

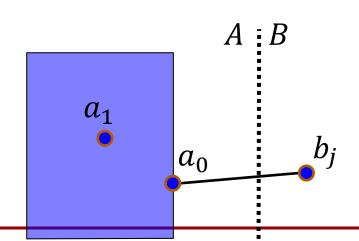
- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overrightarrow{a_i b_j}$ is a lower tangent.

Case i = 0:

Because a_0 is right-most:

$$a_{n-1} \in \{p | p^x < a_0^x\}$$



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

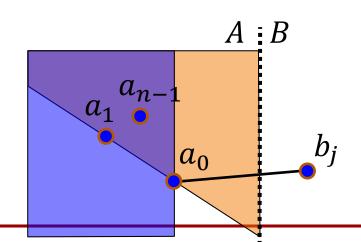
Case i = 0:

Because a_0 is right-most:

$$a_{n-1} \in \{p | p^x < a_0^x\}$$

Because *A* is convex:

$$a_{n-1} \in \{p | \text{Left}(\overrightarrow{a_1 a_0}, p)\}$$



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Will show that at termination, $\overline{a_i b_j}$ is a lower tangent.

Case i = 0:

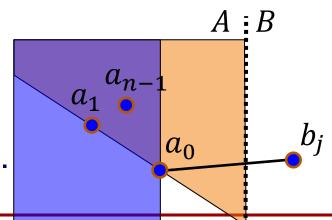
Because a_0 is right-most:

$$a_{n-1} \in \{p | p^x < a_0^x\}$$

Because *A* is convex:

$$a_{n-1} \in \{p | \text{Left}(\overrightarrow{a_1 a_0}, p)\}$$

 $\Rightarrow \overline{a_0 b_j}$ is a lower tangent of A.



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction, (i,j) = (0,0):

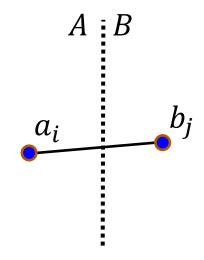
Both parts of the claim are trivially satisfied.

Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

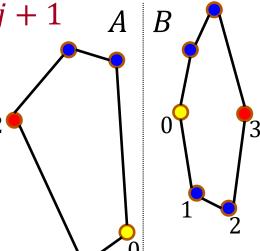
- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction, $(i, j) \rightarrow (i + 1, j)$:




```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - \Rightarrow if (Right($\overline{a_i b_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$ $A \mid B$
 - » else: break



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction #1, $(i,j) \rightarrow (i+1,j)$:

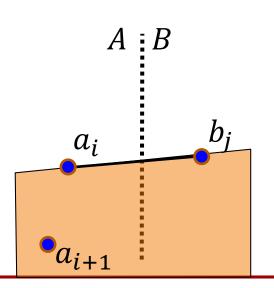
Since we advance on A:

$$a_{i+1} \in \left\{ p \middle| \operatorname{Right}\left(\overrightarrow{a_i b_j}, p\right) \right\}$$

Or, equivalently:

$$a_i \in \left\{ p \middle| \text{Left}\left(\overrightarrow{a_{i+1}b_j}, p\right) \right\}$$

⇒ Claim #1 remains true.



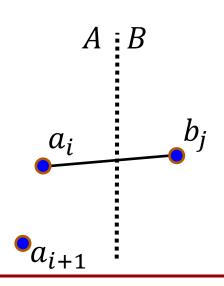
Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction #2, $(i,j) \rightarrow (i+1,j), j=0$:

Claim #2 remains true.



Claim:

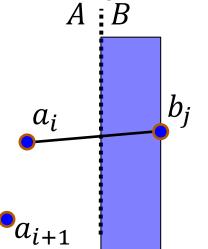
If edge $\overline{a_ib_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction #2, $(i,j) \rightarrow (i+1,j), j \neq 0$:

As b_0 is left-most and we terminate before the right-most:

$$b_{j-1} \in \{p | p^x < b_i^x\}$$



Claim:

If edge $\overline{a_ib_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

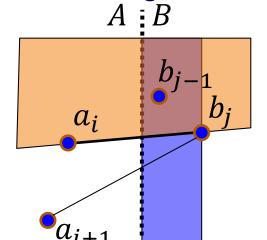
Proof by induction #2, $(i,j) \rightarrow (i+1,j), j \neq 0$:

As b_0 is left-most and we terminate before the right-most:

$$b_{j-1} \in \left\{ p \middle| p^x < b_j^x \right\}$$

By the induction hypothesis:

$$b_{j-1} \in \left\{ p \middle| \text{Left}\left(\overrightarrow{a_i b_j}, p\right) \right\}$$



Claim:

If edge $\overline{a_i b_i}$ connects A and B, then:

- 1. Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
- 2. Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by induction #2, $(i,j) \rightarrow (i+1,j), j \neq 0$:

As b_0 is left-most and we terminate before the right-most:

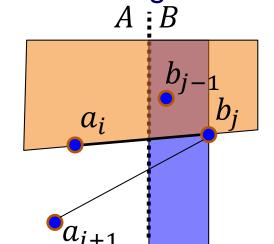
$$b_{j-1} \in \{ p | p^x < b_j^x \}$$

By the induction hypothesis:

$$b_{j-1} \in \left\{ p \middle| \text{Left}\left(\overrightarrow{a_i b_j}, p\right) \right\}$$

$$\Rightarrow b_{j-1} \in \left\{ p \middle| \text{Left} \left(\overrightarrow{a_{i+1}} \overrightarrow{b_j}, p \right) \right\}$$

Claim #2 remains true.



Complexity:

Both split and the merge run in O(n).

 \Rightarrow The divide-and-conquer runs in $O(n \log n)$.

