
February 23, 2004

S2kit:
A Lite Version of SpharmonicKit

Peter J. Kostelec
Daniel N. Rockmore

Department of Mathematics
Dartmouth College
Hanover, NH 03755

S2kit, version 1.0, is a collection of C routines which compute the discrete Fourier transforms of functions
defined on the sphere, S2. Inverse transforms are also provided, as well as convolution routines. This collection,
which may be downloaded from www.cs.dartmouth.edu/~geelong/sphere/, is a “lite” version of Spharmon-
icKit [6], hence the shorter name. (SpharmonicKit may also be downloaded from the same website.) S2kit is
free software and is distributed under the terms of the GNU General Public License.

Some familiarity with SpharmonicKit is assumed. Basically, SpharmonicKit is a collection of routines which
implement discrete Legendre and spherical harmonic transforms by a number of different algorithms. A detailed
development and description of the algorithms implemented in SpharmonicKit may be found in the paper by
Healy et al [4].

S2kit is lite for two reasons. Firstly, unlike SpharmonicKit, it contains only two types of discrete Legendre
transform algorithms: the naive and semi-naive algorithms (as defined in [4] - we will repeat the definitions
later on within this document). Secondly, S2kit absolutely requires that FFTW [3] (version 3) be installed on
the user’s platform. S2kit does not contain any Cooley-Tukey FFT code. This requirement gains the user two
benefits. The routines in FFTW are more efficient than our home-grown code, and, perhaps more importantly,
the user is no longer restricted to doing transforms at powers-of-2 bandwidths.

The code was developed and tested in the GNU/Linux environment. Some of the code has also been
successfully compiled and executed on an SGI running Irix 6.5, and an HP/Compaq AlphaServer running Tru64
V5.1. I do not have access to a Windows machine. However, I do not see there being any reason why the code
won’t compile and run under Windows. A minor modification or two might be required, but I do not believe
anything drastic should be necessary.

This document is structured as follows:

1. Theoretical Background - p. 2

• Definitions of mathematical functions - p. 2

• Definitions of the transforms being done - p. 2

2. The S2kit Package - p. 4

• How to compile - p. 4

• Example routines - p. 4

• File formats: Ordering of samples and coefficients - p. 8

• Major source files; Sample data provided - p. 9

• Memory - p. 10

3. Bibliography - p. 10

We hope this document, while on the terse side, will be sufficient for the user to help get started using the
code. The source code itself has alot of documentation. We repeat what was mentioned earlier. For further
information regarding the algorithms implemented in S2kit , and those contained within SpharmonicKit, the
user is encouraged to consult [4].

Questions concerning S2kit can be sent to the contact person, Peter Kostelec, geelong@cs.dartmouth.edu.

1

http://www.cs.dartmouth.edu/~geelong/sphere/

1 Theoretical Background

There are a great many references for Legendre polynomials and spherical harmonics. One of our favourites
is [7]. For the web-enabled, we mention two. There is mathworld.wolfram.com/LegendrePolynomial.html,
as well as mathworld.wolfram.com/SphericalHarmonic.html.

1.1 Definitions of functions

Legendre polynomials The Legendre polynomials Pl form an orthogonal basis for the space of functions
L2[−1, 1]: ∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ .

A suitably normalized version,

P̃l(x) =

√
2l + 1

2
Pl(x)

form an orthonormal basis. The code uses the normalized version.

Spherical Harmonics The spherical harmonics, Y m
l are related to the associated Legendre functions as

follows:

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)eımφ

=

√
1
2π

P̃m
l (cos θ)eımφ.

They satisfy the orthogonality condition∫ 2π

0

∫ π

0

Y m
l (θ, φ) Ȳ m′

l′ (θ, φ) sin θ dθ dφ = δll′δmm′

where Ȳ m′

l′ (θ, φ) is the complex conjugate of Y m′

l′ (θ, φ).

1.2 Definition of Transforms

Discrete Legendre Transforms Fix a bandlimit B, and sample a function f at the 2B-many locations
θj = π(2j + 1)/4B, where j = 0, 1, . . . , 2B − 1. Let fj denote the jth sample, and wj denote the jth quadrature
weight.

For a given order m > 0, the discrete Legendre transform (DLT) of f is the collection of sums of the
form

f̂(k) =
2B−1∑
j=0

wj fj Pm
k (cos θj) (1)

= 〈w f, Pm
k 〉

for k = m,m + 1, . . . , B − 1. We may write the DLT of f as a matrix-vector product:
Pm

m (cos θ0) Pm
m (cos θ1) ... Pm

m (cos θ2B−1)
Pm

m+1(cos θ0) Pm
m+1(cos θ1) ... Pm

m+1(cos θ2B−1)
...

Pm
B−1(cos θ0) Pm

B−1(cos θ1) ... Pm
B−1(cos θ2B−1)

 ·

w0f0

w1f1

...
w2B−1f2B−1

 =

f̂(m)

f̂(m + 1)
...

f̂(B − 1)

 . (2)

We will call evaluating (2) directly, as is, the Naive algorithm. This is what the naive routines of S2kit do.

2

http://mathworld.wolfram.com/LegendrePolynomial.html
http://mathworld.wolfram.com/SphericalHarmonic.html

Now, the discrete cosine transform (DCT), if normalized right, has the following appealing property. Let
C denote the DCT matrix. The orthogonality of C implies 〈Ca, Cb〉 = 〈a, b〉.

As explained in Section 2.4 of [4], the DCT of the Legendre polynomial Pk has at most k +1 many non-zero
coefficients. Therefore,

f̂(k) = 〈wf, Pm
k 〉

=
2B−1∑
j=0

wj fj Pm
k (cos θj)

=
2B−1∑
j=0

[C(wf)]j [CPm
k]j

=
k∑

j=0

[C(wf)]j [CPm
k]j . (3)

While we may be abusing the notation somewhat, the idea should be clear: doing the sum (3) in the cosine
domain means we only need to add at most k + 1 terms. The Semi-naive algorithm is precisely this: send
things to the cosine domain and sum there. Previous work [1] has shown the semi-naive algorithm to be both
stable and faster than the naive algorithm. In matrix lingo, taking the DCT of the rows of the matrix in (2)
results in a lower-triangular matrix. So we are saving operations in the long run ... after taking the DCT of the
weighted data, and assuming the DCTs of the Pm

l s have been precomputed. The semi-naive routines in S2kit
do this.

Admittedly, we are glossing over some details, but this is the idea. Indeed, we are saving even a few more
operations because a degree k Legendre polynomial has only (k+1)/2 many non-zero DCT coefficients. So from
2B-many terms in the summation, we go to k + 1 many terms, and in fact to (k + 1)/2 many terms. Again, for
a more complete description, see [4].

Discrete Spherical Harmonic Transforms Let f(θ, φ) ∈ L2(S2) have bandwidth B. We sample the
function on the equiangular 2B × 2B grid θj = π(2j + 1)/4B, φk = 2πk/2B, where j = 0, 1, . . . , 2B − 1 and
k = 0, 1, . . . , 2B − 1. (So we are sampling at twice the bandwidth.) The quadrature weights we denote, as
before, wj . The Discrete Spherical Harmonic Transform of f is the collection of sums of the form

f̂(l,m) =
√

2π

2B

2B−1∑
j=0

2B−1∑
k=0

wj f(θj , φk) e−ımφkPm
l (cos θj)

=
√

2π

2B

2B−1∑
j=0

wjP
m
l (cos θj)

2B−1∑
k=0

e−ımφk f(θj , φk) (4)

for all |m| ≤ l < B.
Note how (4) is written. It illustrates how one may perform the spherical harmonic transform. First do

a bunch of “regular” FFTs, followed by a bunch of discrete Legendre transforms. This is an example of the
“Separation of Variables” technique. For further information, see the paper by Maslen and Rockmore [5].

A naive spherical harmonic transform routine in S2kit does the DLT portion naively, while a semi-
naive spherical harmonic transform routine in S2kit does the DLTs over in the cosine domain.

Convolution on the Sphere Let f, h ∈ L2(S2). From [2], we have that the transform of the convolution of
f and h is a pointwise product of their transforms:

(f ∗ h)̂ (l,m) = 2π

√
4π

2l + 1
f̂(l,m) ĥ(l, 0) (5)

3

2 The S2kit Package

In this section, we cover such topics as what the package includes, some of the conventions observed (mostly
having to do with the format of input and output arrays of the test routines), and how to compile the routines
in the first place.

2.1 How To Compile

Recall that S2kit requires FFTW. While this might be a nuisance for some, it does enable one to do discrete
Legendre and spherical harmonic transforms at arbitrary, i.e. non powers-of-2, bandwidths.

To compile the routines in S2kit ,

1. In the Makefile, set the variables FFTWINC and FFTWLIB so the compiler knows where to find the FFTW
header file and library, e.g.

FFTWINC = -I/net/misc/geelong/local/linux/include

FFTWLIB = -L/net/misc/geelong/local/linux/lib -lfftw3

The default setting for each is blank, i.e.

FFTWINC =

FFTWLIB =

When you define them, don’t forget the -lfftw3 at the end of FFTWLIB !!!

2. Make sure the variable CFLAGS is defined the way you like. These options are passed to the compiler. The
default setting is

CFLAGS = -O3 $FFTWINC

3. Type

make all

to compile all the test routines in the package.

Within S2kit, the default rigor of the FFTW plans is FFTW ESTIMATE. This may be changed, at your descretion.
The test routines may also be individually made. In Section 2.2 we list and describe the test routines the

above steps compile.

2.2 The Test Routines

Here are the example routines compiled with make all. If you forget how the arguments go, just type the
command and it will return them to you. Hopefully, the examples will provide a sufficient introduction as to
how you may adapt the routines for your own use.

First, here are the routines having to do with discrete Legendre transforms.

• test naive: Does a naive DLT. To test speed and stability, does X-many inverse-forward naive transforms
(X defined by the user) on randomly generated Legendre coefficients. The order m and bandwidth B are
both provided by the user. Returns error and timing statistics.
Usage: test naive m bw loops. E.g.

gallant 12: test_naive 0 7 10
bw = 7 m = 0
loops = 10
Average r-o error: 2.9643e-15 std dev: 1.8091e-15
Average (r-o)/o error: 2.0464e-14 std dev: 3.3774e-14

4

average forward time = 0.0000e+00
average inverse time = 0.0000e+00
gallant 13:

• test semi: Does a semi-naive DLT. Just like test naive. To test speed and stability, does X-many
inverse-forward semi-naive transforms (X defined by the user) on randomly generated Legendre coefficients.
The order m and bandwidth B are both provided by the user. Returns error and timing statistics.
Usage: test semi m bw loops. E.g.

gallant 13: test_semi 11 107 1000
bw = 107 m = 11
loops = 1000
Average r-o error: 5.7328e-14 std dev: 1.0441e-14
Average (r-o)/o error: 1.9845e-11 std dev: 3.8895e-10

average forward time = 2.2000e-04
average inverse time = 1.1000e-04
gallant 14:

Now those routines dealing with discrete spherical harmonic transforms.

• test s2 semi fly: To test speed and stability; does X-many inverse-forward spherical harmonic trans-
forms at bandwidth B; the DLT portion of the algorithm is done semi-naively. The spherical coefficients
are randomly generated. To make it easy on the memory, the associated Legendre functions (and their
DCTs) are computed on the fly, as needed by the algorithm. Returns error and timing statistics. Errors
may also be saved.
Usage: test s2 semi fly bw loops [error file].

NOTE: The spherical transform routines FST semi fly and InvFST semi fly, both in FST semi fly.c,
contain the argument cutoff which defines at which (if any) order m the DLT is done naively and not
semi-naively, for orders m′ ≥ m. The default behavior in the test routine is to semi-naive at all orders.

NOTE 2: The routines also contain the argument dataformat. If the signal is known to be real valued,
the Fourier coefficients satisfy certain symmetries, i.e. f̂(l, m) = (−1)m

f̂(l, m), where the bar denotes
conjugate. By setting dataformat to 1, the code can take advantage of this (to achieve greater efficiency).
The default setting is 0.

gallant 1233: test_s2_semi_fly 123 3
about to enter loop

inv time = 3.3000e-01
forward time = 3.2000e-01
r-o error = 0.000000000001
(r-o)/o error = 0.000000000003

inv time = 3.3000e-01
forward time = 3.2000e-01
r-o error = 0.000000000001
(r-o)/o error = 0.000000000009

inv time = 3.3000e-01
forward time = 3.2000e-01
r-o error = 0.000000000001
(r-o)/o error = 0.000000000033

Program: test_s2_semi_fly

5

Bandwidth = 123
Total elapsed cpu time : 1.9500e+00 seconds.
Average cpu forward per iteration: 3.2000e-01 seconds.
Average cpu inverse per iteration: 3.3000e-01 seconds.
Average r-o error: 9.6791e-13 std dev: 2.4459e-14
Average (r-o)/o error: 1.4983e-11 std dev: 1.5595e-11

gallant 1234:

• test s2 semi memo: Just like test s2 semi fly, except that all the necessary associated Legendre func-
tions (and their DCTs) are precomputed prior to doing the spherical transforms. This being the case, this
routine requires more memory than the “on the fly” version. The timing results do not include the time
spent precomputing the DCTs of the Legendres. There are also cutoff and dataformat parameters in
the routines FST semi memo and InvFST semi memo which both live in FST semi memo.c.
Usage: test s2 semi memo bw loops [error file]. E.g. (compare these timings with the “on the fly”
- it’s the same problem size):

gallant 1234: test_s2_semi_memo 123 3
Generating seminaive_naive tables...
Generating trans_seminaive_naive tables...
about to enter loop

inv time = 6.0000e-02
forward time = 5.0000e-02
r-o error = 0.000000000001
(r-o)/o error = 0.000000000006

inv time = 5.0000e-02
forward time = 6.0000e-02
r-o error = 0.000000000001
(r-o)/o error = 0.000000000003

inv time = 6.0000e-02
forward time = 5.0000e-02
r-o error = 0.000000000001
(r-o)/o error = 0.000000000006

Program: test_s2_semi_memo
Bandwidth = 123
Total elapsed cpu time : 3.3000e-01 seconds.
Average cpu forward per iteration: 5.3333e-02 seconds.
Average cpu inverse per iteration: 5.6667e-02 seconds.
Average r-o error: 9.4423e-13 std dev: 1.1306e-13
Average (r-o)/o error: 4.7985e-12 std dev: 1.6718e-12

gallant 1235:

• test s2 semi memo for: Does a forward spherical harmonic transform, using the semi-naive DLT. Pre-
computes all necessary associated Legendre functions prior to transforming. Requires from the user the
name of a plain text file containing function samples. Will write the computed coefficients to an output
file named by the user. There are two possible orderings of the coefficients: “code-ordered” (i.e. suitable
for input into another S2kit spherical routine), or pretty “human-ordered,” i.e.

for l = 0 : bw - 1

6

for m = -l : l
print coefficient of degree l, order m

The default ordering is “code-ordered.” Don’t worry - ordering of function samples and “code-ordered”
coefficients will be explained in Section 2.3.
Usage: test s2 semi memo for sampleFile outputFile bw [output format]

The output format argument is optional. Default value is 0 for code-ordered coefficients, 1 for human-
ordered. E.g.

gallant 1244: test_s2_semi_memo_for yMix_bw17.dat cMix_bw17.dat 17 1
Generating seminaive_naive tables...
forward time = 0.0000e+00
about to write out coefficients
finished writing coefficients
gallant 1245:

• test s2 semi memo inv: Just like test s2 semi memo for but does an inverse spherical harmonic trans-
form. Requires from the user the name of a plain text file containing function coefficients in code-ordered
format (the default output format for test s2 semi memo for).
Usage: test s2 semi memo inv coeffsFile outputFile bw. E.g.

gallant 1248: test_s2_semi_memo_inv cMix_bw17.dat samples_bw17.dat 17
Generating seminaive_naive tables...
Generating trans_seminaive_naive tables...
inv time = 0.0000e+00
about to write out samples
finished writing samples
gallant 1249:

Now some application-type examples.

• test conv semi fly: Convolves two real-valued functions defined on the sphere. Requires from the user
the names of two files containing the function samples. Output is a file containing the samples of the
convolved result. Uses the semi-naive DLT, and computes on the fly, as needed, the associated Legendre
functions.
Usage: test conv semi fly signal file filter file output file bw

In the notation of (5), the first (“signal”) file contains the samples of f , and the second (“filter”) file
contains the samples of h. E.g.

gallant 1259: test_conv_semi_fly s64.dat f64.dat c64.dat 64
Reading signal file...
Reading filter file...
Calling Conv2Sphere_semi_fly()
Writing output file...
gallant 1260:

• test conv semi memo: Just like test conv semi fly but precomputes all necessary associated Legendre
functions prior to transforming. Uses the semi-naive DLT.
Usage: test conv semi memo signal file filter file output file bw. E.g.

gallant 1263: test_conv_semi_memo s64.dat f64.dat c64.dat 64
Reading signal file...
Reading filter file...
Calling Conv2Sphere_semi_memo()
Writing output file...
gallant 1264:

7

2.3 File Formats

We now describe the formats of the sample and coefficient files which the (relevant) test routines expect and
produce. In what follows, we assume the function f ∈ L2(S2) has bandlimit B.

Function Samples For a spherical transform, a function f , with bandlimit B, is sampled on the 2B × 2B
grid θj = π(2j + 1)/4B, φk = 2πk/2B, where j = 0, 1, . . . , 2B − 1 and k = 0, 1, . . . , 2B − 1.

Since f can be complex-valued, the samples within the plain text file are arranged in the following, inter-
leaved, order (so one number per line):

real part of f(θ0, φ0)
imaginary part of f(θ0, φ0)

real part of f(θ0, φ1)
imaginary part of f(θ0, φ1)

...
real part of f(θ0, φ2B−1)

imaginary part of f(θ0, φ2B−1)
real part of f(θ1, φ0)

imaginary part of f(θ1, φ0)
real part of f(θ1, φ1)

imaginary part of f(θ1, φ1)
...

real part of f(θ2B−1, φ2B−1)
imaginary part of f(θ2B−1, φ2B−1)

As written, the test routine test s2 semi memo for expects the input samples to be in this interleaved
format, even if your function is strictly real-valued. In that case, every other entry in your sample file
would be 0. Also as written, the samples the test routine test s2 semi memo inv produces are written in this
same ordering.

The exception to the interleaving are the two convolution routines. Since they assume the functions you are
convolving are real-valued, the input sample files are expected to have just the real parts of the sample values.
You do not have to interleave the 0s as you would for test s2 semi memo for. The output of the convolution
routines also just the real parts of the results (since the input is real-valued, so should the output).

Function Coefficients As with the samples, the coefficients are arranged in interleaved real/imaginary for-
mat. To set some notation, f̂(l,m) is the coefficient of degree l and order m. The coefficients will be ordered
according to m (read the table from left to right, top to bottom):

f̂(0, 0) f̂(1, 0) f̂(2, 0) . . . f̂(B − 1, 0)
f̂(1, 1) f̂(2, 1) . . . f̂(B − 1, 1)

...
f̂(B − 2, B − 2) f̂(B − 1, B − 2)

f̂(B − 1, B − 1)
f̂(B − 1,−(B − 1))

f̂(B − 2,−(B − 2)) f̂(B − 1,−(B − 2))
...

f̂(2,−2) . . . f̂(B − 1,−2)
f̂(1,−1) f̂(2,−1) . . . f̂(B − 1,−1)

8

Hopefully you can see the pattern. In some sense, this is natural. This ordering is the code-ordered format
mentioned earlier.

In case things are a little unclear, here is the function (called seanindex in the source code) which, given a
bandwidth B, degree l and order m, gives the index of f̂(l,m) within the C array (note that the first element
in an array has index 0, the second element index 1, and so on). So the location of f̂(l,m) is

m ∗B − ((m ∗ (m− 1))/2) + (l −m)) if m ≥ 0
((B − 1) ∗ (B + 2))/2) + 1 + (((B − 1) + m) ∗ (B + m)/2) + (l − |m|) if m < 0

2.4 Major Files; Data Provided

The following source files within S2kit contain the functions the user will most likely want to use. The test rou-
tines discussed previously provide examples of how to use these functions. The source code includes instructions
as to how to use the functions, e.g. function arguments.

2.4.1 The Files

We will try to list these files in some logical order, but no promises!

• primitive.c: Functions which define the 3-term recurrence coefficients, as well as sample locations and
initializing the recurrence, i.e. definition for Pm

m .

• makeweights.c: Code which computes the quadrature weights. See [2] for a proof/derivation of the
formula, at least for a slightly different grid. Adapting the formula for the grid used in S2kit and Sphar-
monicKit is straightforward.

• plms.c: Functions for computing the associated Legendre functions via the 3-term recurrence. Used for
the naive algorithm.

• cosplms.c: Functions for computing the associated Legendre functions and their discrete cosine trans-
forms. Used for the semi-naive algorithm.

• naive synthesis.c: Despite its name, this file contains code which implements the forward (analysis)
and inverse (synthesis) naive DLT.

• seminaive.c: Functions which implement the forward and inverse semi-naive DLT.

• FST semi fly.c: Functions for computing the forward and inverse spherical harmonic transforms, as well
as convolution, assuming the associated Legendre functions are computed on the fly.

• FST semi memo.c: Functions for computing the forward and inverse spherical harmonic transforms, as well
as convolution, assuming the associated Legendre functions are precomputed prior to any transforming.

2.4.2 The Data

Included in the S2kit distribution are the following function samples. They can be used to verify that things
are working as they should.

• y20 bw8.dat: The real and imaginary parts of Y 0
2 sampled on the bandwidth B = 8 grid.

• y31 bw8.dat: The real and imaginary parts of Y 1
3 sampled on the bandwidth B = 8 grid.

• y43 bw23.dat: The real and imaginary parts of (
√

2 + πı)Y 3
4 sampled on the bandwidth B = 23 grid.

• yMix bw17.dat: The real and imaginary parts of Y 1
1 + (3 − 2ı)Y −2

5 sampled on the bandwidth B = 17
grid.

• s64.dat: Real-valued data; samples on the bandwidth B = 64 grid. Basically, it’s a noisy bump on the
sphere.

9

• f64.dat: Real-valued data; samples on the bandwidth B = 64 grid. It’s a smooth, rotationally symmetric
bump centered at the north pole. In the convolution routines, this would be the filter file you would use
with the signal file s64.dat.

• s128.dat and f128.dat: Just like s64.dat and f64.dat, except at bandwidth B = 128.

2.5 Memory

In the table below we give approximately how much memory, in megabytes, is required to hold all the associated
Legendre functions you need for a full forward spherical transform. (This figure does not include other memory,
e.g. to hold arrays as “scratch space, etc etc, but it does constitute the bulk of it, especially as the bandwidth
grows.) We give figures for both “pure” semi-naive and “pure” naive spherical transforms. A mix of both (e.g.
semi-naive DLTs through order m, naive DLTs for remaining orders) will be somewhere in the middle.

If you want to do forward and inverse spherical transforms, precomputing all the Legendres in both cases,
multiply by 2.

Bandlimit Pure Naive Pure Semi-naive
8 < 1 < 1
16 < 1 < 1
32 < 1 < 1
64 2 < 1
128 16 3
256 128 22
512 1026 171
1024 8200 1368

To provide some comparison between precomputing and computing on the fly, the routine test s2 semi fly
uses a grand total of 22 megabytes for a bandwidth bw = 1024 transform. However, the transform will take
awhile to run. E.g. On our 2.4 Ghz Xeon, the forward transform takes about 40 seconds, and the inverse
transform about 45 seconds. Your mileage may vary.

3 Bibliography

Here are the references. Enjoy!

References

[1] G. A. Dilts, Computation of spherical harmonic expansion coefficients via FFTs, Journal of Computational
Physics, 57(3) (1985), 439-453.

[2] J. R. Driscoll and D. Healy, Computing Fourier transforms and convolutions on the 2-sphere. (extended
abstract) in Proc. 34th IEEE FOCS, (1989) 344-349; Adv. in Appl. Math., 15 (1994), 202-250.

[3] FFTW is a free collection of fast C routines for computing the Discrete Fourier Transform in one or more
dimensions. It includes complex, real, symmetric, and parallel transforms, and can handle arbitrary array
sizes efficiently. FFTW is available at www.fftw.org/.

[4] D. Healy Jr., D. Rockmore, P. Kostelec and S. Moore, FFTs for the 2-Sphere - Improvements and Variations,
The Journal of Fourier Analysis and Applications, 9(4) (2003), p. 341-385. An earlier version of this paper
may be downloaded from www.cs.dartmouth.edu/~geelong/sphere/.

[5] D. Maslen and D. Rockmore, Generalized FFTs, in Proceedings of the DIMACS Workshop on Groups and
Computation, June 7-10, 1995, L. Finkelstein and W. Kantor (eds.) (1997), 183-237. This paper may also
be obtained at www.cs.dartmouth.edu/~rockmore/dimacs-0.ps. A pdf version is also available. Simply
replace the .ps with .pdf in the url.

10

http://www.fftw.org/
http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.cs.dartmouth.edu/~rockmore/dimacs-0.ps

[6] SpharmonicKit is a freely available collection of C programs for doing Legendre and scalar spherical trans-
forms. Developed at Dartmouth College by S. Moore, D. Healy, D. Rockmore and P. Kostelec, it is available
at www.cs.dartmouth.edu/~geelong/sphere/

[7] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

11

http://www.cs.dartmouth.edu/~geelong/sphere/

	Theoretical Background
	Definitions of functions
	Definition of Transforms

	The S2kit Package
	How To Compile
	The Test Routines
	File Formats
	Major Files; Data Provided
	The Files
	The Data

	Memory

	Bibliography

