

FFTs in Graphics and Vision

Correlation of Spherical Functions

Assignment 2

- Only submit the .cpp files with the main function
- To declare an array, the size of the array needs to be a constant expression. The following code is not legal:

```
void function( int res )
         int values[res];
         // do something
Instead, do something like:
   void function( int res )
         int *values = new int[res];
         // do something
         delete[] res;
```

Outline

- Math Review
- Spherical Correlation

Dimensionality:

Given a complex n-dimensional array $\mathbf{a} \in \mathbb{C}^n$ representing regular samples of a function on the circle, we can express the array in terms of its Fourier decomposition:

$$\mathbf{a} = \frac{1}{\sqrt{2\pi}} \sum_{j} \hat{\mathbf{a}}_{j} \cdot e^{-\frac{ik2\pi j}{n}}$$

Dimensionality:

How many complex exponentials do we use?

Because the array is of dimension n, we need n Fourier coefficients to capture all the data:

$$\mathbf{a} = \frac{1}{\sqrt{2\pi}} \sum_{j=-n/2}^{\infty} \hat{\mathbf{a}}_{j} \cdot e^{\frac{-ik2\pi j}{n}}$$

$$\mathbf{a} = \frac{1}{\sqrt{2\pi}} \sum_{j=-n/2}^{n/2-1} \hat{\mathbf{a}}_{j} \cdot e^{\frac{-ik2\pi j}{n}}$$

Dimensionality:

How many complex exponentials do we use?

Because the array is of dimension n, we need n Fourier coefficients to capture all the data:

The value of the largest frequency is often referred to as the *bandwidth* of the function.

$$\mathbf{a} = \frac{1}{\sqrt{2\pi}} \sum_{j=-n/2}^{n/2-1} \hat{\mathbf{a}}_j \cdot e^{-\frac{ik2\pi j}{n}}$$

Dimensionality:

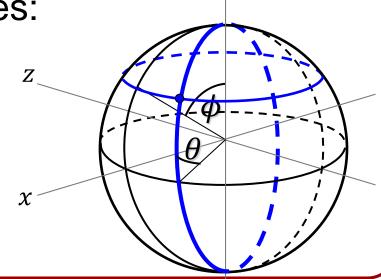
We represent a spherical function by an $n \times n$ grid whose entries are the regular samples of the function along the lines of latitude and longitude:

$$\mathbf{f}_{jk} = f(\cos\theta_j \cdot \sin\phi_k , \cos\phi_k , \sin\theta_j \cdot \sin\phi_k)$$

where θ_i and ϕ_k are the angles:

$$\theta_j = \frac{2\pi j}{n}$$

$$\phi_k = \frac{\pi(2k+1)}{2n}$$



Dimensionality:

We can express the spherical function as a sum of spherical harmonics:

$$\mathbf{f} = \sum_{l} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot Y_{l}^{m}$$

Dimensionality:

How many frequencies should we use?

As in the case of functions on a circle, we use a bandwidth that is half the resolution:

$$\mathbf{f} = \sum_{l} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot Y_{l}^{m}$$

$$\mathbf{f} = \sum_{l=0}^{n/2-1} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot Y_{l}^{m}$$

Dimensionality:

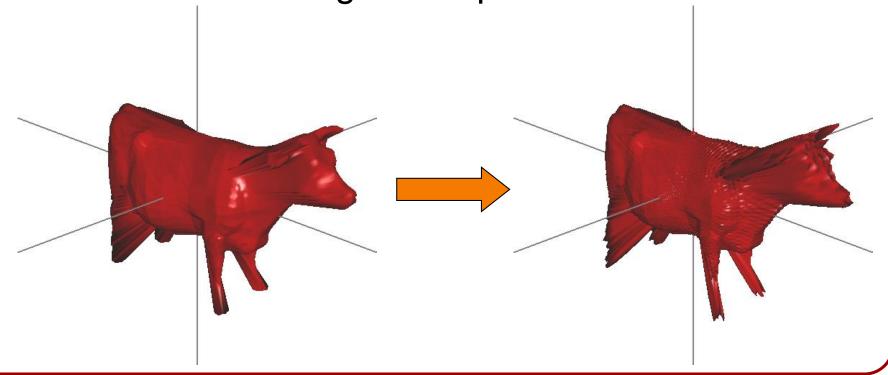
$$\mathbf{f} = \sum_{l=0}^{n/2-1} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot Y_l^m$$

In this case, the number of coefficients is:

$$\sum_{l=0}^{n/2-1} (2l+1) = \left(\frac{n}{2}\right)^2$$

Dimensionality:

Since we go from n^2 spherical samples to $(n/2)^2$ spherical harmonic coefficients, there is a loss of information at the higher frequencies:



<u>Multi-dimensional FFT</u>:

To compute a multi-dimensional FFT we leverage the fact that the d-dimensional basis vectors can be expressed as the product of 1D basis vectors:

$$\zeta^{l_1,\dots,l_d}(\theta_1,\dots,\theta_d) = \sqrt{\frac{1}{(2\pi)^d} \cdot e^{il_1\theta_1} \cdots e^{il_d\phi_d}}$$

Multi-dimensional FFT:

$$\zeta^{l_1,\dots,l_d}(\theta_1,\dots,\theta_d) = \sqrt{\frac{1}{(2\pi)^d} \cdot e^{il_1\theta_1} \cdots e^{il_d\phi_d}}$$

Then, the $(l_1, ..., l_d)$ -th Fourier coefficient of a function $f(\theta_1, ..., \theta_d)$ is:

$$\begin{split} \hat{\mathbf{f}}_{l_1,\dots,l_d} &= \int \cdots \int f(\theta_1,\dots\theta_d) \cdot \overline{\zeta^{l_1,\dots,l_d}(\theta_1,\dots\theta_d)} d\theta_d \cdots d\theta_1 \\ &= \sqrt{\frac{1}{(2\pi)^d}} \int \cdots \left(\int f(\theta_1,\dots\theta_d) \cdot e^{-il_d\theta_d} d\phi_d \right) \cdots e^{-il_1\theta_1} d\theta_1 \end{split}$$

Multi-dimensional FFT:

$$\hat{\mathbf{f}}_{l_1,\dots,l_d} = \sqrt{\frac{1}{(2\pi)^d}} \int \cdots \left(\int f(\theta_1,\dots\theta_d) \cdot e^{-il_d\theta_d} d\phi_d \right) \cdots e^{-il_1\theta_1} d\theta_1$$

This can be computed by performing a successive set of 1D Fourier transforms.

Note that the only facts we used were that the basis functions are separable and orthonormal.

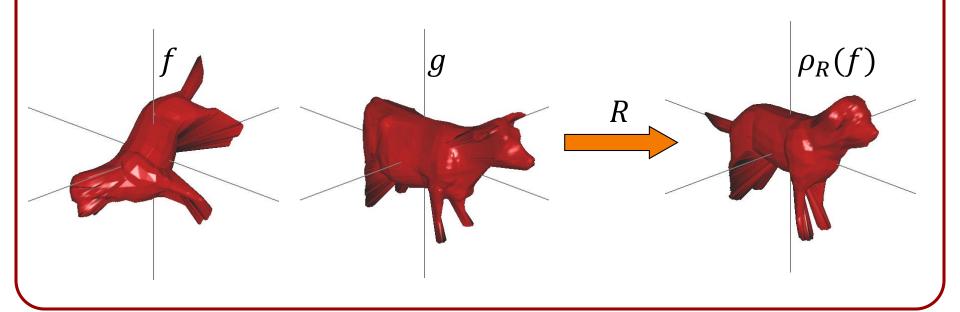
Outline

- Math Review
- Spherical Correlation

Goal

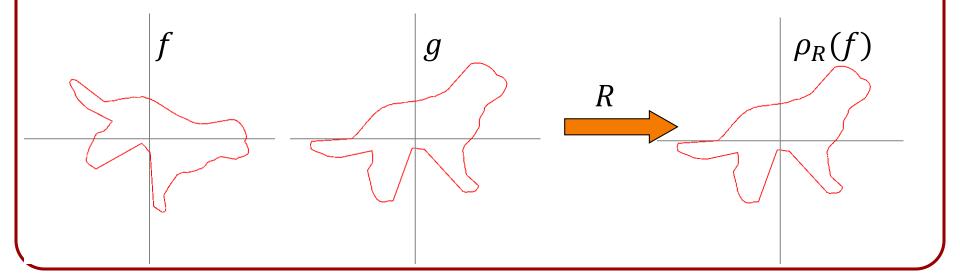
Given real-valued functions on the sphere f and g, find the rotation R that optimally aligns f to g:

$$R = \underset{R \in SO(3)}{\operatorname{arg min}} \|\rho_R(f) - g\|^2$$



Recall

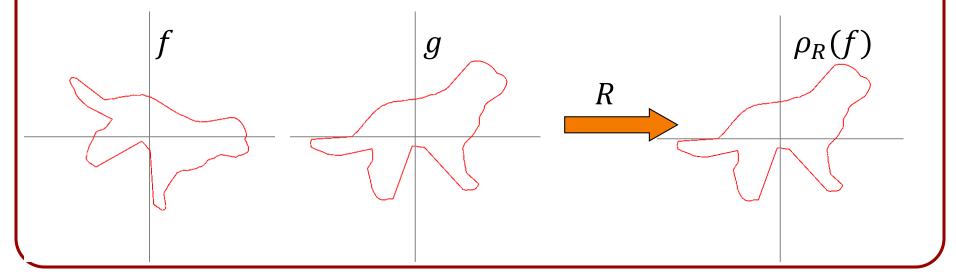
Given real-valued functions on the circle f and g, we would like to find the rotation R that optimally aligns f to g.



Reduction to a Moving Dot-Product

Expressing the norm in terms of the dot-product, we get:

$$\begin{split} \|\rho_R(f) - g\|^2 &= \langle \rho_R(f) - g, \rho_R(f) - g \rangle \\ &= \langle \rho_R(f), \rho_R(f) \rangle + \langle g, g \rangle - \langle g, \rho_R(f) \rangle - \langle \rho_R(f), g \rangle \\ &= \|f\|^2 + \|g\|^2 - 2\langle \rho_R(f), g \rangle \end{split}$$

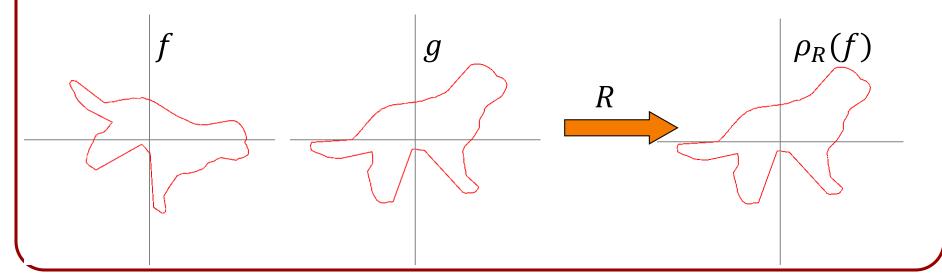


Reduction to a Moving Dot-Product

Expressing the norm in terms of the dot-product, we get:

$$\|\rho_R(f) - g\|^2 = \|f\|^2 + \|g\|^2 - 2\langle \rho_R(f), g \rangle$$

⇒ Finding the rotation minimizing the norm is equivalent to finding the rotation maximizing the dot-product.

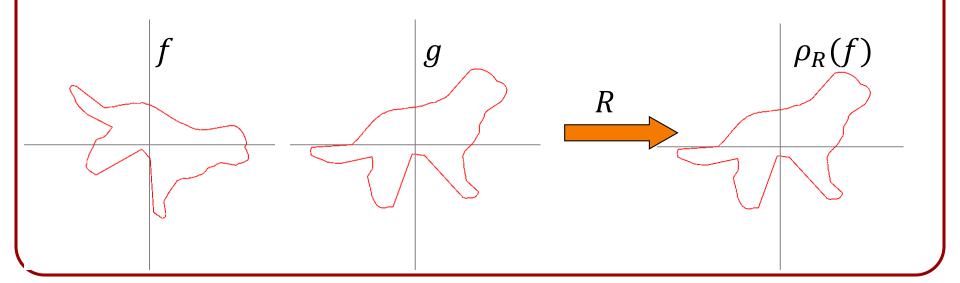


General Approach

If we define the function $D_{f,g}(\alpha)$ giving the dotproduct of the rotation of f by angle α with g:

$$D_{f,g}(\alpha) = \langle \rho_{\alpha}(f), g \rangle$$

we can find the aligning rotation by finding the value of α maximizing $D_{f,q}(\alpha)$.



Brute-Force

To compute $D_{f,g}(\alpha)$, we could explicitly compute the value at each angle of rotation α .

If we represent a function on a circle by the values at n regular samples, this would give an algorithm whose complexity is $O(n^2)$

Fourier Transform

We can do better by using the Fourier transform:

- We can leverage the irreducible representations to minimize the number of multiplications that need to be performed.
- We can use the FFT to compute the Inverse Fourier Transform efficiently.

Given the functions f and g on the circle, we can express the functions in terms of their Fourier decomposition:

$$f(\theta) = \frac{1}{\sqrt{2\pi}} \sum_{k} \hat{\mathbf{f}}_{k} e^{ik\theta}$$
$$g(\theta) = \frac{1}{\sqrt{2\pi}} \sum_{k} \hat{\mathbf{g}}_{k} e^{ik\theta}$$

In terms of this decomposition, the expression for the dot-product becomes:

$$D_{f,g}(\alpha) = \left\langle \rho_{\alpha} \left(\frac{1}{\sqrt{2\pi}} \sum_{k} \hat{\mathbf{f}}_{k} e^{ik\theta} \right), \frac{1}{\sqrt{2\pi}} \sum_{k'} \hat{\mathbf{g}}_{k'} e^{ik'\theta} \right\rangle$$

$$= \left\langle \frac{1}{\sqrt{2\pi}} \sum_{k} \hat{\mathbf{f}}_{k} \cdot \rho_{\alpha} (e^{ik\theta}), \frac{1}{\sqrt{2\pi}} \sum_{k'} \hat{\mathbf{g}}_{k'} e^{ik'\theta} \right\rangle$$

$$= \frac{1}{2\pi} \sum_{k,k'} \hat{\mathbf{f}}_{k} \overline{\hat{\mathbf{g}}_{k'}} \cdot \left\langle \rho_{\alpha} (e^{ik\theta}), e^{ik'\theta} \right\rangle$$

Let $D_{k,k'}(\alpha)$ be the function giving the dot-product of the rotation of the k-th complex exponential by an angle of α with the k'-th complex exponential:

$$D_{k,k'}(\alpha) = \left\langle \rho_{\alpha}(e^{ik\theta}), e^{ik'\theta} \right\rangle$$

Then the equation for the dot-product becomes:

$$D_{f,g}(\alpha) = \frac{1}{2\pi} \sum_{k,k'} \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_{k'}} \cdot \left\langle \rho_{\alpha}(e^{ik\theta}), e^{ik'\theta} \right\rangle$$

$$\downarrow D_{f,g}(\alpha) = \frac{1}{2\pi} \sum_{k,k'} \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_{k'}} \cdot D_{k,k'}(\alpha)$$

$$D_{f,g}(\alpha) = \frac{1}{2\pi} \sum_{k,k'} \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_{k'}} \cdot D_{k,k'}(\alpha)$$

Up to this point, the algorithm looks like:

- \circ Compute the Fourier coefficients of f and g.
- \circ Cross-multiply the Fourier coefficients to get the coefficients of the correlation in terms of the functions $D_{k,k'}(\alpha)$

This doesn't seem particularly promising since it in the second step, we need to perform $O(n^2)$ multiplies – which is no better than brute force.

But, using the Fourier decomposition, we know that the space of functions on a circle of frequency k are:

- Fixed by rotation (i.e. a sub-representation)
- Perpendicular to the space of functions of frequency k' (for $k \neq k'$)

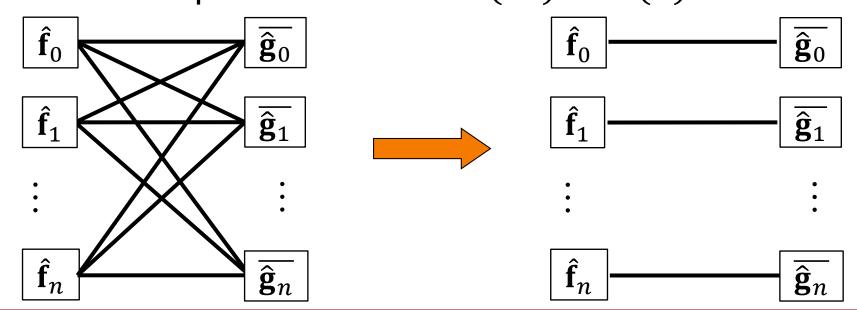
Thus, for $k \neq k'$, we know that:

$$D_{k,k'}(\alpha) = \left\langle \rho_{\alpha}(e^{ik\theta}), e^{ik'\theta} \right\rangle = 0$$

So the expression for the correlation becomes:

$$D_{f,g}(\alpha) = \frac{1}{2\pi} \sum_{k} \hat{\mathbf{f}}_{k} \overline{\hat{\mathbf{g}}_{k}} \cdot D_{k}(\alpha)$$

Reducing the number of cross-multiplications that need to be performed from $O(n^2)$ to O(n):



At this point, we have an expression for the correlation as a linear sum of the function $D_k(\alpha)$:

$$D_{f,g}(\alpha) = \frac{1}{2\pi} \sum_{k} \hat{\mathbf{f}}_{k} \overline{\hat{\mathbf{g}}_{k}} \cdot D_{k}(\alpha)$$

To evaluate the correlation at α we need to get the value of each of the $D_k(\alpha)$, and take the linear combination, using weights $\frac{1}{2\pi} \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_k}$.

That, is evaluating the correlation at any single angle requires O(n) computations and evaluating at all angles would take $O(n^2)$.

Set $\mathbf{c} \in \mathbb{C}^n$ to be the *n*-dimensional array:

$$\mathbf{c}_k = \frac{1}{2\pi} \; \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_k}$$

and set $\mathbf{a} \in \mathbb{C}^n$ to be the *n*-dimensional array:

$$\mathbf{a}_k = D_{f,g} \left(\frac{2k\pi}{n} \right)$$

Then we get:

$$\mathbf{a} = \begin{pmatrix} D_0(0) & \cdots & D_{n-1}(0) \\ \vdots & \ddots & \vdots \\ D_0\left(\frac{2(n-1)\pi}{n}\right) & \cdots & D_{n-1}\left(\frac{2(n-1)\pi}{n}\right) \end{pmatrix} \cdot \mathbf{c}$$

Set $\mathbf{c} \in \mathbb{C}^n$ to be the *n*-dimensional array:

$$\mathbf{c}_k = \frac{1}{2\pi} \; \hat{\mathbf{f}}_k \overline{\hat{\mathbf{g}}_k}$$

and set $\mathbf{a} \in \mathbb{C}^n$ to be the *n*-dimensional array:

$$a_{1}=D_{c}\left(\frac{2k\pi}{m}\right)$$

Th

To get the desired expression for the correlation, we need to do a matrix vector multiply!

$$\mathbf{a} = \begin{pmatrix} \vdots & \ddots & \vdots \\ D_0 \left(\frac{2(n-1)\pi}{n} \right) & \cdots & D_{n-1} \left(\frac{2(n-1)\pi}{n} \right) \end{pmatrix} \cdot \mathbf{c}$$

Computing this change of basis amounts to computing the Inverse Fourier Transform.

$$D_k(\alpha) = \langle e^{ik(\theta - \alpha)}, e^{ik\theta} \rangle = e^{-ik\alpha}$$

Algorithm for Circular Functions

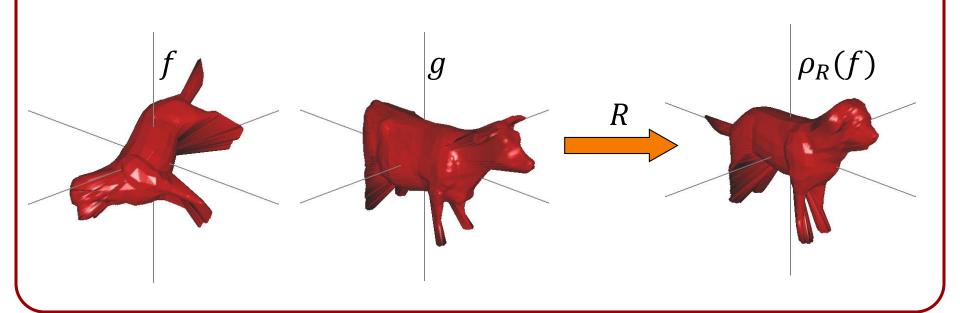
In sum, we get an algorithm for computing the value of the correlation of f with g:

- 1. Compute the Fourier coefficients of f and g: $O(n \log n)$
- 2. Cross-multiply the Fourier coefficients: O(n)
- 3. Compute the inverse Fourier transform: $O(n \log n)$

Goal

Given real-valued functions on the sphere f and g, find the rotation R that optimally aligns f to g:

$$R = \underset{R \in SO(3)}{\operatorname{arg min}} \|\rho_R(f) - g\|^2$$



Expanding the Norm

Given real-valued functions on the sphere f and g, find the rotation R that optimally aligns f to g:

$$R = \underset{R \in SO(3)}{\operatorname{arg min}} \|\rho_R(f) - g\|^2$$

Expanding the norm, we get:

$$\|\rho_R(f) - g\|^2 = \|f\|^2 + \|g\|^2 - 2\langle \rho_R(f), g \rangle$$

Expanding the Norm

$$\|\rho_R(f) - g\|^2 = \|f\|^2 + \|g\|^2 - 2\langle \rho_R(f), g \rangle$$

Thus, to find the rotation minimizing the norm of the difference, we need to find the rotation maximizing the dot-product:

$$D_{f,g}(R) = \langle \rho_R(f), g \rangle$$

Brute-Force

Again, we can try to compute the value of the dotproduct using a brute force algorithm:

For each rotation R, we could compute the dotproduct of the rotated function $\rho_R(f)$ with g.

If n is the resolution of the spherical function, the "size" of a spherical function is $O(n^2)$ and the "size" of the space of rotations is $O(n^3)$.

This means that a brute force algorithm would take on the order of $O(n^5)$ time.

Approach

As in the case of functions on a circle, we will take a two step approach:

- 1. We will use the irreducible representations to minimize the number of cross multiplications.
- 2. We will compute an efficient change of basis.

Expanding the functions f and g in terms of their spherical harmonic decompositions, we get:

$$f(\theta, \phi) = \sum_{l=0}^{b} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} Y_l^m(\theta, \phi)$$
$$g(\theta, \phi) = \sum_{l=0}^{b} \sum_{m=-l}^{l} \hat{\mathbf{g}}_{lm} Y_l^m(\theta, \phi)$$

Expanding the dot-product in terms of the spherical harmonics, we get:

$$D_{f,g}(R) = \left| \rho_R \left(\sum_{l=0}^b \sum_{m=-l}^l \hat{\mathbf{f}}_{lm} Y_l^m(\theta, \phi) \right), \sum_{l'=0}^b \sum_{m'=-l'}^{l'} \hat{\mathbf{g}}_{l'm'} Y_{l'}^{m'}(\theta, \phi) \right|$$

Using the linearity of ρ_R , we can pull the linear summation outside of the rotation:

$$D_{f,g}(R) = \left| \sum_{l=0}^{b} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \rho_{R} (Y_{l}^{m}(\theta, \phi)), \sum_{l'=0}^{b} \sum_{m'=-l'}^{l'} \hat{\mathbf{g}}_{l'm'} Y_{l'}^{m'}(\theta, \phi) \right|$$

Expanding the dot-product in terms of the spherical harmonics, we get:

$$D_{f,g}(R) = \left| \sum_{l=0}^{b} \sum_{m=-l}^{l} \hat{\mathbf{f}}_{lm} \rho_{R} (Y_{l}^{m}(\theta, \phi)), \sum_{l'=0}^{b} \sum_{m'=-l'}^{l'} \hat{\mathbf{g}}_{l'm'} Y_{l'}^{m'}(\theta, \phi) \right|$$

Using the conjugate-linearity of the inner product, we can pull out the linear summation:

$$D_{f,g}(R) = \sum_{l,l'=0}^{b} \sum_{m=-l}^{l} \sum_{m'=-l'}^{l'} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{l'm'}} \cdot \left\langle \rho_R \left(Y_l^m(\theta, \phi) \right), Y_{l'}^{m'}(\theta, \phi) \right\rangle$$

$$D_{f,g}(R) = \sum_{l,l'=0}^{b} \sum_{m=-l}^{l} \sum_{m'=-l'}^{l'} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{l'm'}} \cdot \left\langle \rho_R \left(Y_l^m(\theta, \phi) \right), Y_{l'}^{m'}(\theta, \phi) \right\rangle$$

Recall that:

- 1. Rotations of *l*-th frequency functions are *l*-th frequency functions
- 2. The space of l-th frequency functions is orthogonal to the space of l'-th frequency functions (for $l \neq l'$)

We get:

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m\,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot \left\langle \rho_R \left(Y_l^m(\theta, \phi) \right), Y_l^{m'}(\theta, \phi) \right\rangle$$

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot \left\langle \rho_R \left(Y_l^m(\theta, \phi) \right), Y_l^{m'}(\theta, \phi) \right\rangle$$

Set $D_l^{m,m'}$ to be the functions on the space of rotations defined by:

$$D_l^{m,m'}(R) = \left\langle \rho_R(Y_l^m), Y_l^{m'} \right\rangle$$

This gives:

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot D_{l}^{m,m'}(R)$$

The $D_l^{m,m'}$ are called Wigner-D functions.

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot D_{l}^{m,m'}(R)$$

Thus, given the spherical harmonic coefficients of f and g, we can express the correlation as a sum of the functions $D_l^{m,m'}$ by cross-multiplying the harmonic coefficients within each frequency.

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot D_{l}^{m,m'}(R)$$

The problem is that this expression for the correlation is not easy to evaluate.

To compute the value at a particular rotation R, we need to:

- Evaluate $D_l^{m,m'}(R)$ at every frequency l and every pair of indices $-l \le m, m' \le l$,
- And then take the linear sum weighted by the product of the harmonic coefficients

$$D_{f,g}(R) = \sum_{l=0}^{b} \sum_{m m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot D_{l}^{m,m'}(R)$$

That is, for each of $O(n^3)$ rotations, we would need to evaluate:

$$\sum_{l=0}^{O(n)} (2l+1)^2 = O(n^3)$$

different functions.

This is worse than brute force method since it requires $O(n^6)$ while brute force requires $O(n^5)$.

What is that we really want to do?

We would like to take a function expressed as a linear sum of the $D_l^{m,m'}$ and get an expression of the function, "regularly" sampled at n^3 rotations.

As in the case of circular correlation, this amounts to a change of basis. Only in the spherical case:

- The vectors themselves are of dimension n^3
- So the matrices are of $n^3 \times n^3 = n^6$.

If we represent rotations in terms of the triplet of Euler angles $(\theta, \phi, \psi) \in [0, 2\pi) \times [0, \pi] \times [0, 2\pi)$:

$$R(\theta,\phi,\psi) = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi \end{pmatrix}$$

Rotation sending Rotation about $(0,1,0) \rightarrow p = \Phi(\theta,\phi)$ the *y*-axis by ψ

what do the function $D_l^{m,m'}(R(\theta,\phi,\psi))$ look like?

Recall that the spherical harmonics can be expressed as a complex exponential in θ times a "polynomial" in $\cos \phi$:

$$Y_l^m(\theta, \phi) = P_l^m(\cos \phi) \cdot e^{im\theta}$$

So a rotation by an angle of α about the y-axis acts on the (l, m)-th spherical harmonics by:

$$\rho_{R_{\mathcal{V}}(\alpha)}(Y_l^m) = e^{-im\alpha} \cdot Y_l^m$$

Thus, writing out the functions $D_l^{m,m'}$ as functions of the Euler angles, we get:

$$\begin{split} D_{l}^{m,m'}(\theta,\phi,\psi) &= \left\langle \left(\rho_{R_{y}(\theta)} \circ \rho_{R_{z(\phi)}} \circ \rho_{R_{y(\psi)}}\right) (Y_{l}^{m}), Y_{l}^{m'} \right\rangle \\ &= \left\langle \rho_{R_{z(\phi)}} \left(\rho_{R_{y(\psi)}} (Y_{l}^{m})\right), \rho_{R_{y}^{-1}(\theta)} \left(Y_{l}^{m'}\right) \right\rangle \\ &= \left\langle \rho_{R_{z(\phi)}} \left(e^{-im\psi} \cdot Y_{l}^{m}\right), e^{im'\theta} \cdot \left(Y_{l}^{m'}\right) \right\rangle \\ &= e^{-im\psi} \cdot e^{-im'\theta} \left\langle \rho_{R_{z(\phi)}} (Y_{l}^{m}), Y_{l}^{m'} \right\rangle \end{split}$$

$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im\psi} \cdot e^{-im'\theta} \left\langle \rho_{R_{Z(\phi)}}(Y_l^m), Y_l^{m'} \right\rangle$$

Denoting:

$$d_l^{m,m'}(\phi) = \left\langle \rho_{R_z(\phi)}(Y_l^m), Y_l^{m'} \right\rangle$$

we can express the functions $D_l^{m,m'}$ as:

$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im'\theta} \cdot d_l^{m,m'}(\phi) \cdot e^{-im\psi}$$

$$d_{l}^{m,m'}(\phi) = \sum_{k} (-1)^{k} \frac{\sqrt{(l+m)! \cdot (l-m)! \cdot (l+m')! \cdot (l-m')!}}{(l-m'-k)! \cdot (l+m-k)! \cdot k! \cdot (k+m'-m)!} \cos^{2l+m-m'-2k} \left(\frac{\phi}{2}\right) \cdot \sin^{2k+m'-m} \left(\frac{\phi}{2}\right)$$

The $d_l^{m,m'}$ are sometimes called Wigner-small-d functions.

$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im'\theta} \cdot d_l^{m,m'}(\phi) \cdot e^{-im\psi}$$

The advantage of this representation is that the basis functions are separable so instead of doing a single $O(n^3 \times n^3)$ we need to do $3n^2$ different $O(n \times n)$ matrix multiplies.

We can make things even faster noting that in two of the dimensions we are performing a Fourier transform.

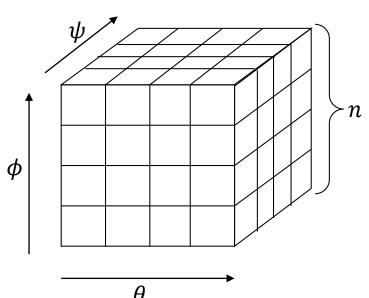
$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im'\theta} \cdot d_l^{m,m'}(\phi) \cdot e^{-im\psi}$$

We can think of the sampled correlation function as an $n \times n \times n$ grid, whose (p,q,r) -th entry corresponds to the value of the correlation at the Euler angle $(\theta_v, \phi_a, \psi_r)$

$$\theta_p = \frac{2\pi p}{n}$$

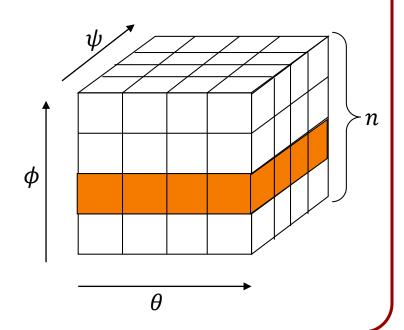
$$\phi_q = \frac{\pi(2q+1)}{2n}$$

$$\psi_r = \frac{2\pi r}{n}$$



$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im'\theta} \cdot d_l^{m,m'}(\phi) \cdot e^{-im\psi}$$

Fixing the angle ϕ , we restrict ourselves to a 2D slice of the correlation values.



$$D_l^{m,m'}(\theta,\phi,\psi) = e^{-im'\theta} \cdot d_l^{m,m'}(\phi) \cdot e^{-im\psi}$$

Fixing the angle ϕ , we restrict ourselves to a 2D slice of the correlation values.

On this 2D slice, the values of the correlation are:

$$D_{f,g}^{\phi}(\theta,\psi) = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot D_{l}^{m',m}(\theta,\phi,\psi)$$

$$= \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot e^{-im'\theta} \cdot d_{l}^{m,m'}(\phi) \cdot e^{-im\psi}$$

$$D_{f,g}^{\phi}(\theta,\psi) = \sum_{l=0}^{b} \sum_{m \, m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot e^{-im'\theta} \cdot d_{l}^{m,m'}(\phi) \cdot e^{-im\psi}$$

That is, for fixed ϕ we get a 2D function which is the sum of complex exponentials, with (m, m') Fourier coefficient defined by:

$$\left(\widehat{\mathbf{D}}_{f,g}^{\phi}\right)_{mm'} = \sum_{l=\max(|m|,|m'|)}^{b} \widehat{\mathbf{f}}_{l,-m} \cdot \overline{\widehat{\mathbf{g}}_{l,-m'}} \cdot d_{l}^{-m,-m'}(\phi)$$

⇒ We can get the values in this 2D slice by running the 2D inverse FFT.

$$D_{f,g}^{\phi}(\theta,\psi) = \sum_{l=0}^{b} \sum_{m \, m'=-l}^{l} \hat{\mathbf{f}}_{lm} \cdot \overline{\hat{\mathbf{g}}_{lm'}} \cdot e^{-im'\theta} \cdot d_{l}^{m,m'}(\phi) \cdot e^{-im\psi}$$

This allows us evaluate the correlation on a slice by slice basis.

For every sampled value of ϕ :

We compute the Fourier coefficients:

$$\left(\widehat{\mathbf{D}}_{f,g}^{\phi}\right)_{mm'} = \sum_{l=\max(|m|,|m'|)}^{b} \widehat{\mathbf{f}}_{l,m} \cdot \overline{\widehat{\mathbf{g}}_{l,-m'}} \cdot d_{l}^{-m,-m'}(\phi)$$

And then we compute the 2D inverse FFT.

Since we sample ϕ at n different values, there are n different 2D slices.

For each slice there are $n \times n$ different Fourier coefficients, requiring O(n) calculations per coefficient:

$$\left(\widehat{\mathbf{D}}_{f,g}^{\phi}\right)_{mm'} = \sum_{l=\max(|m|,|m'|)}^{b} \widehat{\mathbf{f}}_{l,m} \cdot \overline{\widehat{\mathbf{g}}_{l,-m'}} \cdot d_{l}^{-m,-m'}(\phi)$$

Since we sample ϕ at n different values, there are n different 2D slices.

For each slice there are $n \times n$ different Fourier coefficients, requiring O(n) calculations per coefficient.

And each inverse FFT takes $O(n^2 \log n)$ time.

Thus, the computational complexity becomes:

- $O(n^4)$ for computing all the 2D slice Fourier coefficients
- $O(n^3 \log n)$ to compute all the 2D inverse FFTs.

Since we sample ϕ at n different values, there are n different 2D slices.

For each slice there are $n \times n$ different Fourier coefficients, requiring O(n) calculations per

CO

Ar

In particular, we can do much better than the brute force algorithm

Thus, the computational complexity becomes:

- $O(n^4)$ for computing all the 2D slice Fourier coefficients
- $O(n^3 \log n)$ to compute all the 2D inverse FFTs.

General Overview

To make the computation of the correlation efficient, we used the fact that in two of the three coefficients – θ and ψ – the functions $D_l^{m,m'}$ could be expressed as complex exponentials.

This allowed us to replace the $n^2 \times n^2$ matrix multiplication in two of the variables by an $O(n^2 \log n)$ inverse FFT.

In the third variable $-\phi$ – we still end up doing a full $n \times n$ matrix multiplication:

$$n^3 \times n^3 \rightarrow \underbrace{n^2 \cdot (n \times n)}_{\phi} + \underbrace{\left(n^2 \log n\right) \cdot n}_{\theta, \psi}$$

General Overview

In practice, the change of basis in ϕ can also be performed using an FFT like approach, giving rise to an algorithm with complexity $O(n \log^2 n)$.

Thus, the total complexity of computing the correlation drops down to $O(n^3 \log^2 n)$.

Aligning 3D Functions

What kind of penalty hit do we pay for aligning functions defined in 3D?

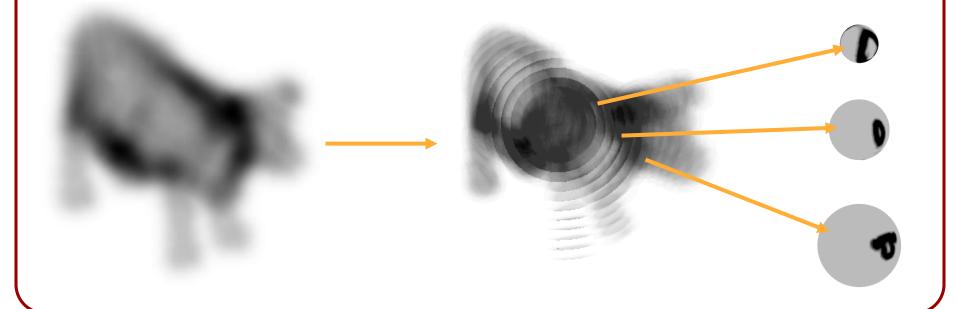
Given two functions F and G defined on the unit ball (i.e. (x, y, z) with $||(x, y, z)|| \le 1$) we would like to compute the distance between the functions at every rotation:

$$\|\rho_R(F) - G\|^2 = \|F\|^2 + \|G\|^2 - 2\langle \rho_R(F), G \rangle$$

Using the fact that rotations fix spheres about the origin, we express the functions as a set of spherical functions:

$$F^{r}(\theta, \phi) = F(r \cdot \cos \theta \cdot \sin \phi, r \cdot \cos \phi, r \cdot \sin \theta \cdot \sin \phi)$$

$$G^{r}(\theta, \phi) = G(r \cdot \cos \theta \cdot \sin \phi, r \cdot \cos \phi, r \cdot \sin \theta \cdot \sin \phi)$$



The value of the correlation then becomes:

$$\langle \rho_R(F), G \rangle = \int_0^1 \langle \rho_R(F^r), G^r \rangle \cdot r^2 dr$$

Thus, if we express each radial restriction in terms of its spherical harmonics:

$$F^{r} = \sum_{l=0}^{b} \sum_{m=-l}^{l} \widehat{\mathbf{F}}_{lm}(r) \cdot Y_{l}^{m} \qquad G^{r} = \sum_{l=0}^{b} \sum_{m=-l}^{l} \widehat{\mathbf{G}}_{lm}(r) \cdot Y_{l}^{m}$$

we get:

$$\langle \rho_R(F), G \rangle = \int_0^1 \left(\sum_{l=0}^b \sum_{m,m'=-l}^l \widehat{\mathbf{F}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot D_l^{m,m'}(R) \right) r^2 dr$$

$$\langle \rho_R(F), G \rangle = \int_0^1 \left(\sum_{l=0}^b \sum_{m,m'=-l}^l \widehat{\mathbf{F}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot D_l^{m,m'}(R) \right) r^2 dr$$

This implies that we can compute the correlation, by performing a correlation for each radial restriction and then take the (area weighted) sum.

Assuming that we sample the radius at O(n) different values, this would given an algorithm with complexity $O(n^5)$ / $O(n^4 \log^2 n)$.

We can do better.

The functions $D_l^{m,m'}$ do not depend on the radius, so we can pull them out of the integral:

$$\langle \rho_R(F), G \rangle = \int_0^1 \left(\sum_{l=0}^b \sum_{m,m'=-l}^l \widehat{\mathbf{F}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot D_l^{m,m'}(R) \right) r^2 dr$$

$$\langle \rho_R(F), G \rangle = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \left(\int_0^1 \widehat{\mathbf{f}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot r^2 dr \right) \cdot D_l^{m,m'}(R)$$

$$\langle \rho_R(F), G \rangle = \sum_{l=0}^b \sum_{m,m'=-l}^l \left(\int_0^1 \widehat{\mathbf{f}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot r^2 \, dr \right) \cdot D_l^{m,m'}(R)$$

The advantage of this expression, is that by gathering values across different radii first, we only need to perform a single change of basis.

$$\langle \rho_R(F), G \rangle = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \left(\int_0^1 \widehat{\mathbf{f}}_{lm}(r) \cdot \widehat{\mathbf{G}}_{lm'}(r) \cdot r^2 dr \right) \cdot D_l^{m,m'}(R)$$

Algorithm: (Assuming O(n) radial samples)

1. Compute the spherical harmonic transform of each radial restriction: $O(n) \cdot O(n^2 \log^2 n)$

$$\langle \rho_R(F), G \rangle = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \left(\int_0^1 \widehat{\mathbf{f}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot r^2 dr \right) \cdot D_l^{m,m'}(R)$$

Algorithm: (Assuming O(n) radial samples)

- 1. Compute the spherical harmonic transform of each radial restriction: $O(n) \cdot O(n^2 \log^2 n)$
- 2. Cross multiply intra-frequency harmonic coeffs. and sum over the radii: $O(n) \cdot O(n^3)$

$$\langle \rho_R(F), G \rangle = \sum_{l=0}^{b} \sum_{m,m'=-l}^{l} \left(\int_0^1 \widehat{\mathbf{F}}_{lm}(r) \cdot \overline{\widehat{\mathbf{G}}_{lm'}(r)} \cdot r^2 dr \right) \cdot D_l^{m,m'}(R)$$

Algorithm: (Assuming O(n) radial samples)

- 1. Compute the spherical harmonic transform of each radial restriction: $O(n) \cdot O(n^2 \log^2 n)$
- 2. Cross multiply intra-frequency harmonic coeffs. and sum over the radii: $O(n) \cdot O(n^3)$
- 3. Do the change of basis: $O(n^3 \log^2 n) / O(n^4)$
- \Rightarrow In 3D, correlations can be done in $O(n^4)$ time.