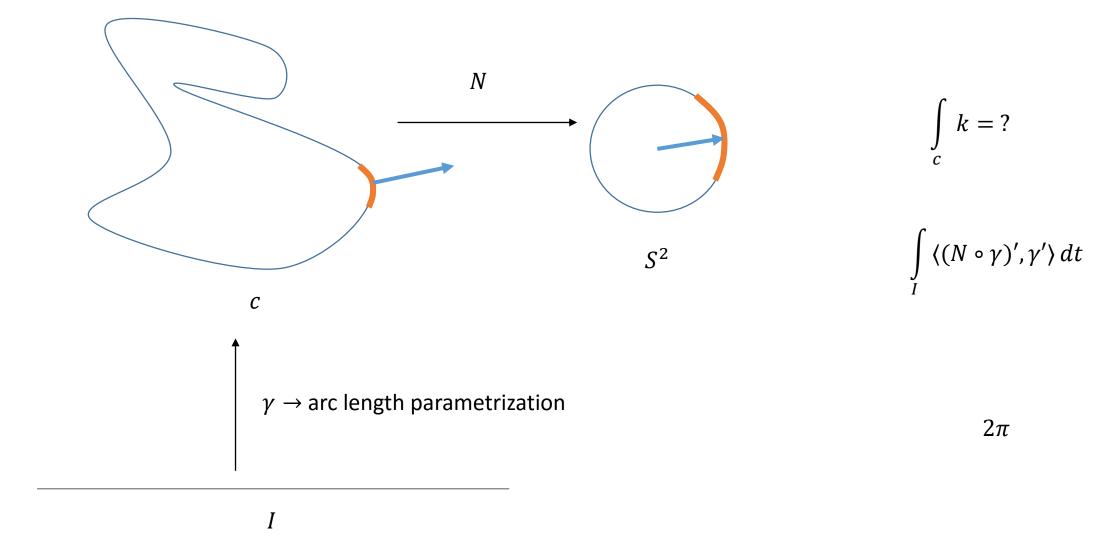
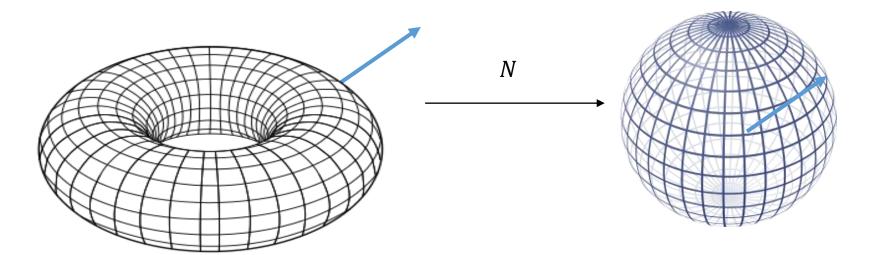
Lecture 5

Introduction to Geometry Processing
Spring 2017
Johns Hopkins University

Gauss-Bonnet Theorem (Simple Closed Curve)



Gauss-Bonnet Theorem (Genus 1 Surface)

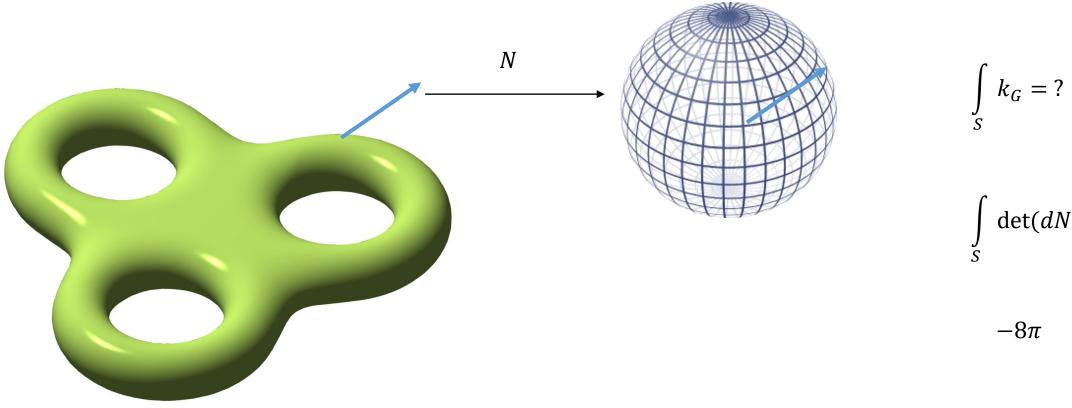


$$\int_{S} k_G = ?$$

$$\int_{S} \det(dN)$$

0

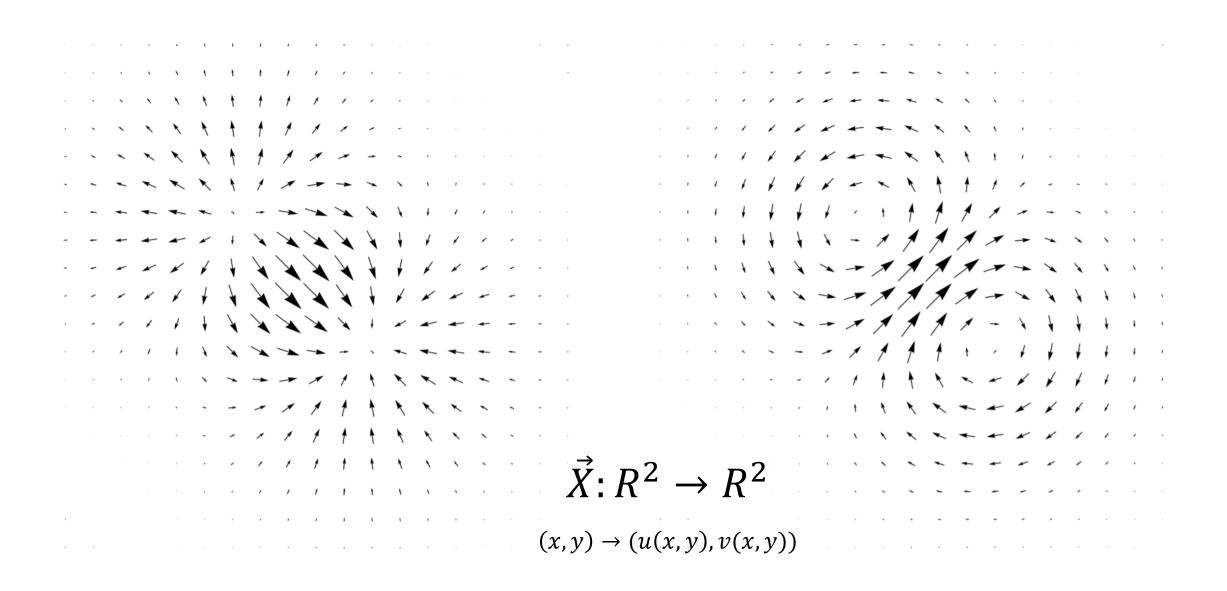
Gauss-Bonnet Theorem (Genus 3 Surface)



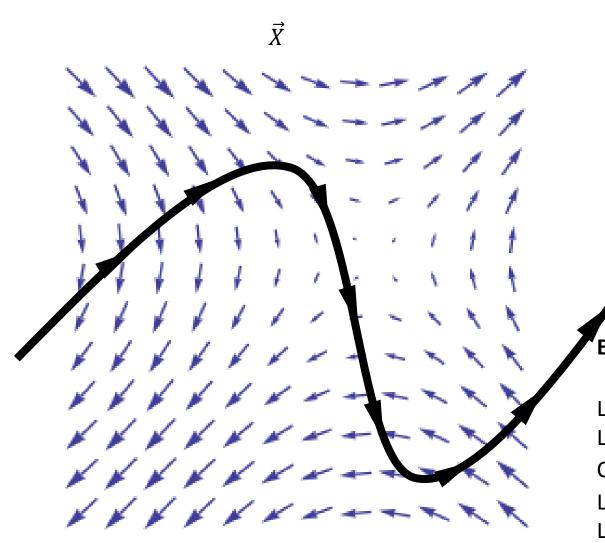
$$\int\limits_{S} \det(dN)$$

In general, $\int_S k_G = 2\pi(2-2g)$, where g is the number of holes (also called genus)!

Vector Fields



Line Integral



Given any parametrization $\gamma: I \to c$, the line intergral of field \vec{X} along c is given by:

$$\int_{C} \vec{X} \cdot ds := \int_{I} \langle \gamma'(t), \vec{X}(\gamma(t)) \rangle dt$$

Exercise

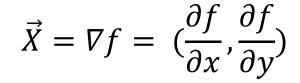
Let $\vec{X}(x,y) = (2x + y, x)$

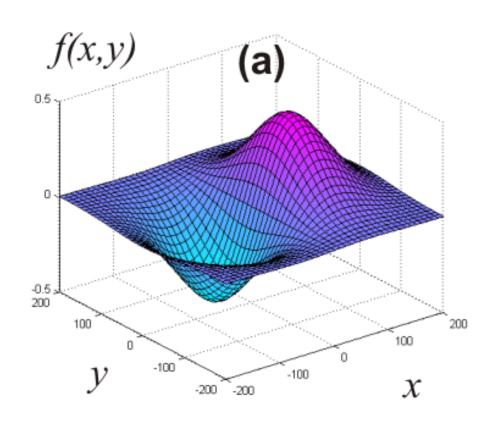
Let c be the unit circle traversed in anti-clockwise orientation. Compute the line integral of \vec{X} along c.

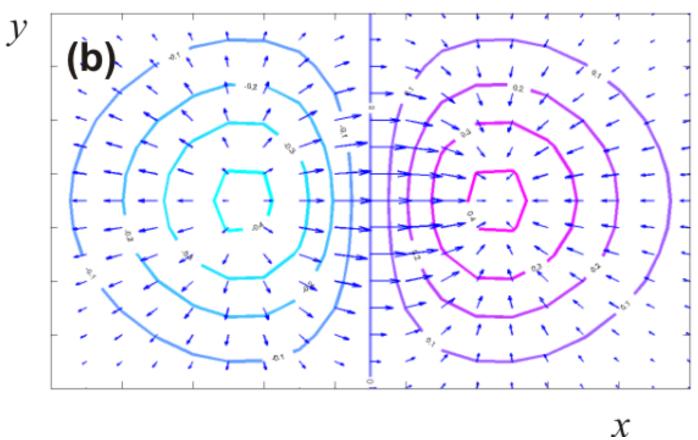
Let
$$\vec{X}(x, y) = (-(2y + x), y)$$

Let c be the unit circle traversed in anti-clockwise orientation. Compute the line integral of \vec{X} along c.

Gradient field

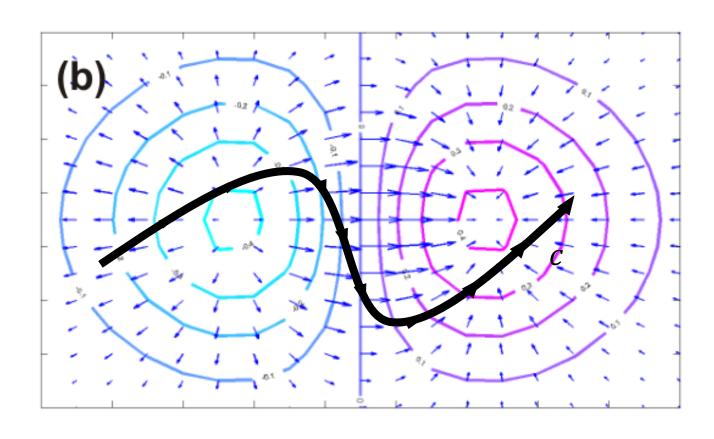






Gradient field

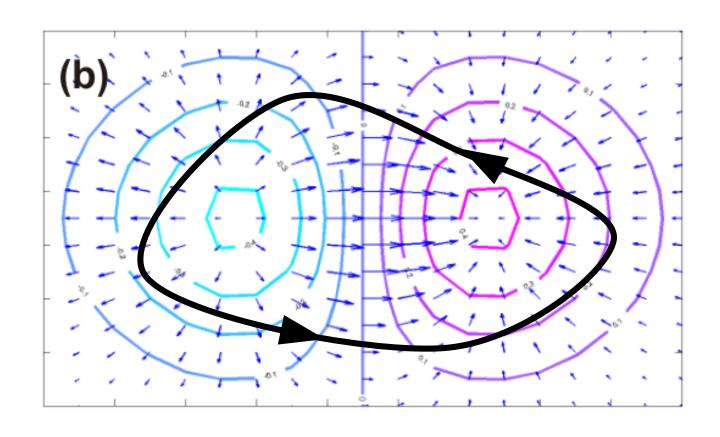
Given a curve c from point p to q and $\vec{X} = \nabla f$. What can you say about the line integral of \vec{X} along c?



$$\int_{c} \nabla f \cdot ds = f(q) - f(p)$$

Gradient field

Given a closed curve c and $\vec{X} = \nabla f$. What can you say about the line integral of \vec{X} along c?



$$\int_{c} \nabla f \cdot ds = 0$$

Can you find f(x, y) such that $\vec{X} = \nabla f = (2x + y, x)$?