
Search and Intersection

O’Rourke, Chapter 7

Anouncements

• Assignment 2 has been graded

• Assignment 3 has been posted

Outline

• Polygon Intersection
 Segment Intersection

• Convex Polygon Intersection

Polygon Intersection

Given polygons 𝑃 and 𝑄, in the worst case

they can intersect in 𝑂(𝑃 ⋅ 𝑄) positions.

Can we compute the intersection in

an output sensitive manner?

Given a set of line segments, find crossings.

Approach:

Assume general position.

Use sweep line algorithm.

Segment Intersection

𝑎
𝑏 𝑐

𝑑

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑎1, 𝑐1, 𝑏1, 𝑑1, 𝑐2 , 𝑎2, 𝑑2, 𝑏2)
𝐿 = ∅

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑐1, 𝑏1, 𝑑1, 𝑐2 , 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑎)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑏1, 𝑑1, 𝑎𝑐, 𝑐2 , 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑎, 𝑐)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑎𝑏, 𝑑1, 𝑎𝑐, 𝑐2, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑎, 𝑏, 𝑐)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑑1, 𝑎𝑐, 𝑐2, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑏, 𝑎, 𝑐)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑎𝑐, 𝑐2, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑏, 𝑎, 𝑐, 𝑑)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑐2, 𝑎𝑑, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑏, 𝑐, 𝑎, 𝑑)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑎𝑑, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑏, 𝑎, 𝑑)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑏𝑑, 𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑏, 𝑑, 𝑎)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑎2, 𝑑2, 𝑏2)
𝐿 = (𝑑, 𝑏, 𝑎)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑑2, 𝑏2)
𝐿 = (𝑑, 𝑏)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = (𝑏2)
𝐿 = (𝑏)

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

𝑄 = ∅
𝐿 = ∅

Sweep line algorithm:

• Initialize queue with end-points sorted by height.

• Initialize list of events.

• Advance:

 Add/remove segments

 Adjust event list

 Test for neighboring

intersections

 Adjust queue

Segment Intersection

𝑎
𝑏 𝑐

𝑑

With the right data-structures, this has complexity

𝑂(𝑛 + 𝑘 log 𝑛), with 𝑘 the number of intersections.

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝑄 = (𝑞1, 𝑝1, 𝑝4, 𝑝7, 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)
𝐿 = ∅

𝑝2

𝑝1

𝑝2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝑄 = (𝑝1, 𝑝4, 𝑝7, 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)
𝐿 = (∅ − 𝑞12 − 𝑄 − 𝑞41 − ∅)

𝑝1

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝑄 = (𝑝71𝑞12, 𝑝4, 𝑝7 , 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝71 − ∅ − 𝑞12 − 𝑄 − 𝑞41 − ∅)

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝑄 = (𝑝4, 𝑝71𝑞41, 𝑝7 , 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑝71 − 𝑄 − 𝑞41 − ∅)

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑝45 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑝71 − 𝑄 − 𝑞41 − ∅)
𝑄 = (𝑝71𝑞41, 𝑝7, 𝑝45𝑞12, 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5
𝑝7

𝑞1

𝑞2

𝑞3

𝑞4

𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑝45 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑞41 − 𝑃 − 𝑝71 − ∅)
𝑄 = (𝑝7, 𝑝45𝑞12, 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5

𝑞1

𝑞2

𝑞3

𝑞4

𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑝45 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑞41 − 𝑃 − 𝑝67 − ∅)
𝑄 = (𝑝45𝑞12, 𝑝5, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5

𝑞1

𝑞2

𝑞3

𝑞4

𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑞12 − 𝑄 − 𝑝45 − 𝑃𝑄 − 𝑞41 − 𝑃 − 𝑝67 − ∅)
𝑄 = (𝑝5, 𝑝34𝑞12, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑞1

𝑞2

𝑞3

𝑞4

𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑞12 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑞41 − 𝑃 − 𝑝67 − ∅)
𝑄 = (𝑝34𝑞12, 𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝5
𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑞1

𝑞2

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑝34 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑞41 − 𝑃 − 𝑝67 − ∅)
𝑄 = (𝑞4, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑞4

𝑝5
𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑞1

𝑞2

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑝34 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑞34 − 𝑃 − 𝑝67 − ∅)
𝑄 = (𝑝67𝑞34, 𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑞4

𝑝5
𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝2

𝑝3

𝑝6

𝑞2

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑞12 − 𝑃𝑄 − 𝑝34 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑝67 − 𝑄 − 𝑞34 − ∅)
𝑄 = (𝑞2, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝1

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝2

𝑝3

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑞23 − 𝑃𝑄 − 𝑝34 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑝67 − 𝑄 − 𝑞34 − ∅)
𝑄 = (𝑝34𝑞23, 𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝6

𝑞2

𝑝1

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝2

𝑝3

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑞23 − 𝑄 − 𝑝56 − 𝑃𝑄 − 𝑝67 − 𝑄 − 𝑞34 − ∅)
𝑄 = (𝑝6, 𝑝2, 𝑞3, 𝑝3)

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝2

𝑝3

𝑞3
𝐿 = (∅ − 𝑝12 − 𝑃 − 𝑝34 − ∅ − 𝑞23 − 𝑄 − 𝑞34 − ∅)
𝑄 = (𝑝2, 𝑞3, 𝑝3)

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝐿 = (∅ − 𝑝23 − 𝑃 − 𝑝34 − ∅ − 𝑞23 − 𝑄 − 𝑞34 − ∅)
𝑄 = (𝑞3, 𝑝3)

𝑝2

𝑝3

𝑞3

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝐿 = (∅ − 𝑝23 − 𝑃 − 𝑝34 − ∅)
𝑄 = (𝑝3)

𝑝2

𝑝3

𝑞3

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝐿 = ∅
𝑄 = ∅

𝑝2

𝑝3

𝑞3

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

Sweep line algorithm:

A similar approach gives polygon intersection.

Need to track:

 Span labels

 Polygon chains

Polygon Intersection

𝑝2

𝑝3

𝑞3

𝑝6

𝑝4

𝑞1

𝑞4

𝑝5
𝑝7

𝑝1

𝑞2

This has complexity 𝑂(𝑃 + |𝑄| + 𝑘 log(𝑃 + 𝑄)),
with 𝑘 the number of intersections.

Outline

• Polygon Intersection

• Convex Polygon Intersection

Convex Polygon Intersection

Notation:

Given a (directed) edge 𝑓 = (𝑎, 𝑏) we refer to 𝑏 as

the head of 𝑓.

Given edges 𝑒 and 𝑓 we say that 𝑒 is interior /

exterior to 𝑓 if the head of 𝑒 is left / right of 𝑓.

Given edges 𝑒 and 𝑓 we say that 𝑒 aims at 𝑓 if:
 (𝑒,𝑓) is CW and 𝑒 is exterior to 𝑓, or

 (𝑒,𝑓) is CCW and 𝑒 is interior to 𝑓.

𝑒
𝑓

𝑒

𝑒

𝑒

Convex Polygon Intersection

Given convex polygons 𝑃 and 𝑄, find the

(convex) intersection 𝑃 ∩ 𝑄.

Approach:

Find intersections between 𝑃 and 𝑄 and track

which polygon is interior

between successive

crossings. 𝑃

𝑄

𝑃 ∩ 𝑄

Convex Polygon Intersection

Given convex polygons 𝑃 and 𝑄, find the

(convex) intersection 𝑃 ∩ 𝑄.

Greedy Algorithm:

Advance an edge 𝑒 if it aims at the line

through the other edge 𝑓.

• Choose edges 𝑒 ∈ 𝑃 and 𝑓 ∈ 𝑄.

• While not done:
 If neither/both edge aim at each other:

» If 𝑓 interior to 𝑒: 𝑒 + +

» Else if 𝑒 interior to 𝑓: 𝑓 + +

» Else: exit(“Can’t happen”)
 Else if 𝑒 aims at 𝑓: 𝑒 + +

 Else if 𝑓 aims at 𝑒: 𝑓 + +

𝑃

𝑄

𝑃 ∩ 𝑄

Convex Polygon Intersection

𝑓

𝑒

𝑓

𝑒 𝑓

𝑒

𝑒

𝑓

𝑓

𝑓

𝑓𝑓
𝑒𝑒

𝑒

𝑒
𝑒

𝑓

𝑒

• Choose edges 𝑒 ∈ 𝑃 and 𝑓 ∈ 𝑄.

• While not done:
 If neither/both edge aim at each other:

» If 𝑓 interior to 𝑒: 𝑒 + +

» Else if 𝑒 interior to 𝑓: 𝑓 + +

» Else: exit(“Can’t happen”)
 Else if 𝑒 aims at 𝑓: 𝑒 + +

 Else if 𝑓 aims at 𝑒: 𝑓 + +

Convex Polygon Intersection

𝑃

𝑄

𝑃 ∩ 𝑄

𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

Claim:

This algorithm outputs the correct solution and

iterates at most 2(𝑃 + 𝑄) times.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

Sub-Claim 1:

The algorithm finds at least one intersection point.*

Convex Polygon Intersection

*Assume 𝑃 and 𝑄 intersect non-degenerately.

(i.e. At most one point of intersection in the interior of an edge.)

𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

Proof (Sub-Claim 1):

Assume to the contrary.

After 𝑃 + |𝑄| iterations we will have completed a

cycle of either 𝑃 or 𝑄, w.l.o.g. assume 𝑄.

⇒ At some edge 𝑓 ∈ 𝑄 the polygon 𝑃 passes from

outside 𝑄 to inside.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 1 (𝑒 is exterior):

• If 𝑒 does not aim at 𝑓:

⇒ 𝑓 is interior and (𝑓, 𝑒) is CW

⇒ 𝑓 cannot aim at 𝑒

⇒ Advance 𝑒

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄
𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 1 (𝑒 is exterior):

• If 𝑒 does not aim at 𝑓:

⇒ 𝑓 is interior and (𝑓, 𝑒) is CW

⇒ 𝑓 cannot aim at 𝑒

⇒ Advance 𝑒

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒 𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 1 (𝑒 is exterior):

• If 𝑒 does not aim at 𝑓:

⇒ 𝑓 is interior and (𝑓, 𝑒) is CW

⇒ 𝑓 cannot aim at 𝑒

⇒ Advance 𝑒

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑓

𝑒

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 1 (𝑒 is exterior):

• If 𝑒 does not aim at 𝑓: advance 𝑒

• If 𝑒 aims at 𝑓: advance 𝑒

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 1 (𝑒 is exterior):

• If 𝑒 does not aim at 𝑓: advance 𝑒

• If 𝑒 aims at 𝑓: advance 𝑒

⇒ Until 𝑒 crosses 𝑓 we

advance 𝑒.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒
𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• If 𝑒 aims at 𝑓:

⇒ 𝑓 is interior and (𝑓, 𝑒) is CCW

⇒ 𝑓 cannot aim at 𝑒

⇒ Advance 𝑒

⇒ Until 𝑒 is exterior,

advance 𝑒.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• If 𝑒 aims at 𝑓:

⇒ 𝑓 is interior and (𝑓, 𝑒) is CCW

⇒ 𝑓 cannot aim at 𝑒

⇒ Advance 𝑒

⇒ Until 𝑒 is exterior,

advance 𝑒.

⇒ Back to case 1.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄
𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• If 𝑒 does not aim at 𝑓:

Claim:

In this case the edges meet

at the next intersection.

Whichever edge

gets to the next

intersection first

waits for the other.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑓

𝑒

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• If 𝑒 does not aim at 𝑓:

 If 𝑓 is interior:

⇒ 𝑓 aims at 𝑒

⇒ Advance 𝑓

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑓

𝑒

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• If 𝑒 does not aim at 𝑓:

 If 𝑓 is interior:

⇒ 𝑓 aims at 𝑒

⇒ Advance 𝑓

⇒ Until 𝑓 is exterior,

advance 𝑓.

⇒ At that point, 𝑒 and 𝑓 aim away from each other

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• Until the next intersection:

⇒ 𝑒 only advances if 𝑓 is interior

Note:

If 𝑒 advances and 𝑓 is

exterior then 𝑒 aims

at 𝑓 and 𝑓 does not

aim at 𝑒.

But this cannot be.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• Until the next intersection:

⇒ 𝑒 only advances if 𝑓 is interior

⇒ If 𝑒 advances to the

intersection, 𝑓 must

have been interior

before.

⇒ 𝑓 is exterior after.

⇒ 𝑒 waits until 𝑓 arrives.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior):

• Until the next intersection:

⇒ 𝑒 only advances if 𝑓 is interior

⇒ If 𝑓 advances to the

intersection, 𝑓 must

be interior.

⇒ 𝑓 waits until 𝑒
arrives.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

𝑃 passes from outside 𝑄 to inside at 𝑓.

Case 2 (𝑒 is interior to 𝑓):

• If 𝑒 does not aim at 𝑓:

⇒ 𝑒 and 𝑓 advance to the next intersection point.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄

𝑒

𝑓

Sub-Claim 2:

Once a point of intersection has been found, the

next intersection will be found (without skipping).

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄
𝑒

𝑓

Proof (Sub-Claim 2):

W.l.o.g, assume that 𝑒 is interior.

⇒ 𝑒 does not aim at 𝑓.

⇒ As above, 𝑒 and 𝑓 advance to the next

intersection.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄
𝑒

𝑓

Proof (Sub-Claim 2):

W.l.o.g, assume that 𝑒 is interior to 𝑓.

⇒ 𝑒 does not aim at 𝑓.

⇒ As above, 𝑒 and 𝑓 advance to the next

intersection.

Convex Polygon Intersection
𝒂𝒊𝒎(𝒆, 𝒇) ¬𝒂𝒊𝒎(𝒆, 𝒇)

𝒂𝒊𝒎(𝒇, 𝒆) exterior 𝒇

¬𝒂𝒊𝒎(𝒇, 𝒆) 𝒆 exterior

𝑃

𝑄

𝑃 ∩ 𝑄
𝑒

𝑓

Thus, we find an intersection within the

first 𝑃 + 𝑄 iterations and find the rest

within the next 𝑃 + 𝑄 iterations.

