

Convex Hulls (3D)

O'Rourke, Chapter 4

Outline

- Polyhedra
 - Polytopes
 - Euler Characteristic
- (Oriented) Mesh Representation

Definition:

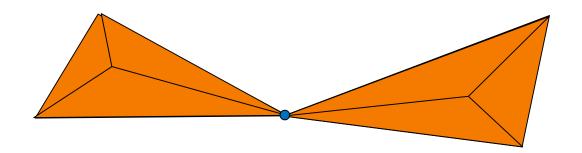
A *polyhedron* is a solid region in 3D space whose boundary is made up of planar polygonal faces comprising a connected 2D manifold.

The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

- Intersections are proper:
 - » Elements don't overlap, or
 - » They share a single vertex, or
 - » They share an edge and the two vertices

The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

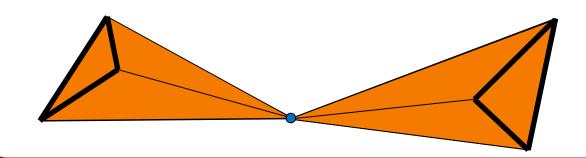
- Intersections are proper
- Locally manifold:
 - » Edges around a vertex can be sorted to match their incidence on faces.



The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

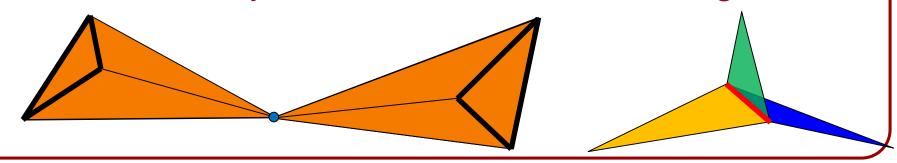
- Intersections are proper
- Locally manifold:

Alternatively, the subgraph of the dual obtained by restricting to the adjacent faces (the link) is connected.



The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

- Intersections are proper
- Locally manifold:
 - » Edges around a vertex can be sorted to match their incidence on faces.
 - » Exactly two faces meet at each edge.



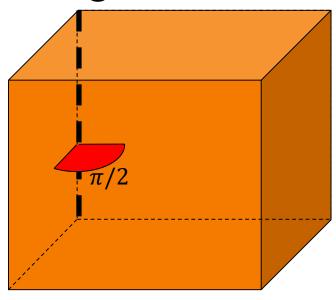
The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

- Intersections are proper
- Locally manifold
- Globally connected

Definition

Definition:

Given an edge on a polyhedron, the dihedral angle of the edge is the internal angle between the two adjacent faces.



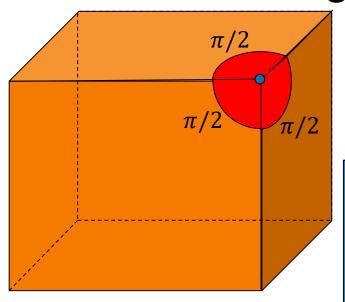
Aside:

The dihedral angle is a discrete measure of mean curvature.

Definition

Definition:

Given a vertex on a polyhedron, the deficit angle at the vertex is 2π minus the sum of angles around the vertex.



$$\Rightarrow \pi/2$$

Aside:

The deficit angle is a discrete measure of Gauss curvature.

Polytopes

A convex polyhedron is a *polytope*:

- Non-negative mean curvature:
 All dihedral angles are less than or equal to π.
 (Necessary and sufficient.)
- Non-negative Gaussian curvature: Sum of angles around a vertex is at most 2π . (Necessary but not sufficient).

Definition:

A regular polygon is a polygon with equal sides and equal angles.

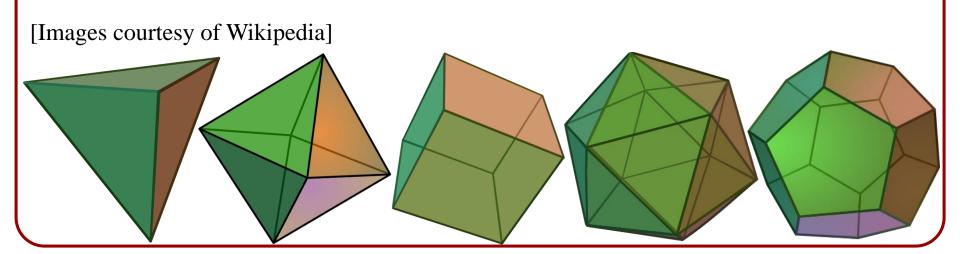
Definition:

A regular polygon is a polygon with equal sides and equal angles.

A regular polyhedron is a convex polyhedron, with all faces congruent regular polygons and vertices having the same valence.

Claim:

The five platonic solids are the only regular polyhedra.

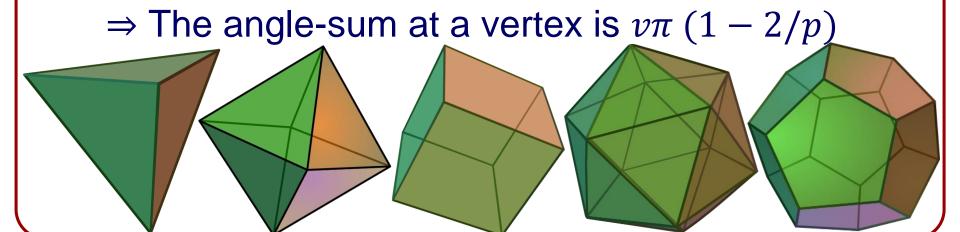


Proof:

Assume each face is p-sided:

- \Rightarrow The sum of angles in a face is $\pi(p-2)$
- \Rightarrow The angle at each vertex is $\pi(1-2/p)$

Assume each vertex has valence v:



Proof:

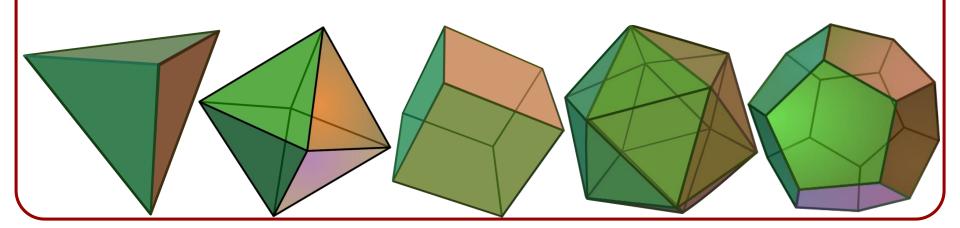
Since the polyhedron is convex:

$$v\pi(1-2/p) < 2\pi \Leftrightarrow v(1-2/p) < 2$$

$$\Leftrightarrow v(p-2) < 2p$$

$$\Leftrightarrow vp-2v-2p < 0$$

$$\Leftrightarrow (p-2)(v-2)-4 < 0$$

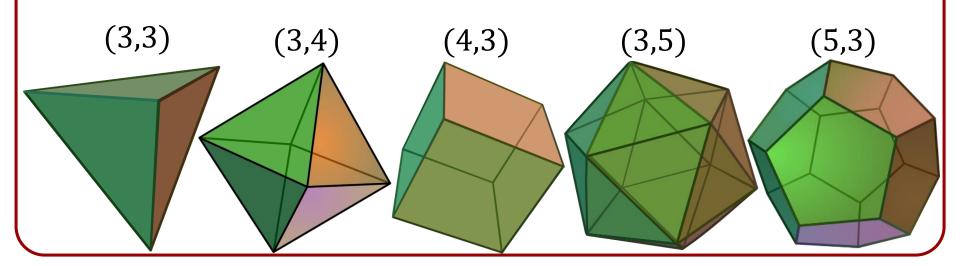


Proof:

Since the polyhedron is convex:

$$(p-2)(v-2)-4<0$$

Since $p, v \ge 3$, valid options are (p, v):



The platonic solids come in dual pairs, where one solid is obtained from the other by replacing faces with vertices:

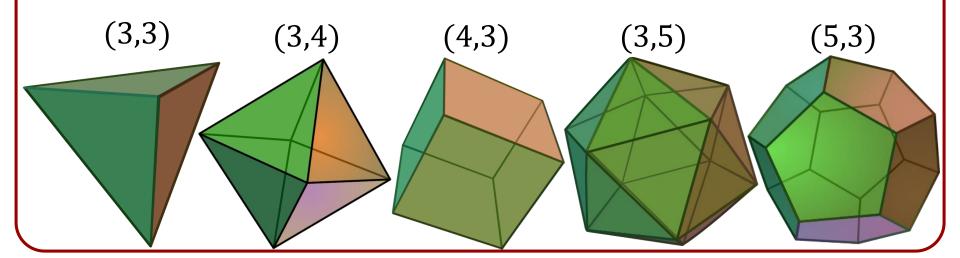
Cube ↔ Octahedron

Icosahedron

→ Dodecahedron

Tetrahedron

→ Tetrahedron



The boundary of a polyhedron can be expressed as a combination of vertices, edges, and faces:

- Intersections are proper
- Locally manifold
- Globally connected

- Geometric

Topological

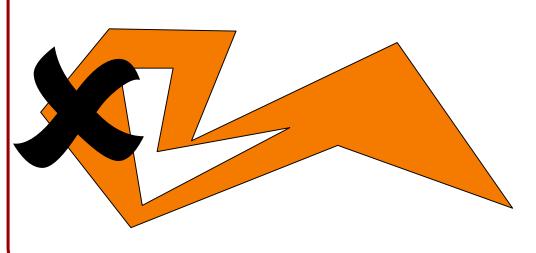
If we ignore the vertex positions, we get a combinatorial structure composed of faces (cells), edges, and vertices.*

[Nivoliers and Levy, 2013]

^{*}These are CW complexes. (And, if faces are triangles, these are simplicial complexes).

Properties (CW Complex):

- Faces intersect at edges and vertices.
- Edges are topologically line segments and intersect at vertices.
- Interiors of faces have disk-topology and the boundary is a polygon made up of edges.



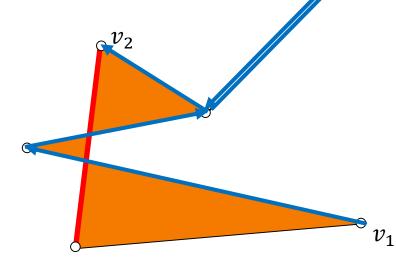
Properties (Manifold):

- Each vertex is on the boundary of some edge.
- Each edge is on the boundary of some face.
- An edge is on the boundary of two faces.
- Edges around a vertex can be sorted.

Note:

Given a topological polygon P, and given an edge $e \in P$ that only occurs once on P:

For any vertices $v_1, v_2 \in P$ there is a path from v_1 to v_2 that doesn't pass through e.

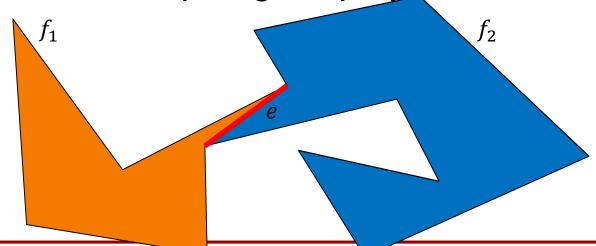


Claim:

If f_1 and f_2 are distinct faces of a topological polyhedron which share an edge e, then:

- replacing f_1 and f_2 with $f_1 \cup f_2$, and
- removing e from the edge list,

we still have a valid topological polyhedron.



Proof (CW Complex):

The edges/vertices of $f_1 \cup f_2$ are in the complex (since e is not on the boundary).

*Since the intersection $f_1 \cap f_2$ is connected and the interiors of f_1 and f_2 have disktopology, the interior of $f_1 \cup f_2$ also has disktopology.

^{*}This is just a sketch of the proof.

Proof (CW Complex):

The boundary of $f_1 \cup f_2$ is connected.

- Let $v \in e$ be an end-point.
- For $v_1, v_2 \in f_1 \cup f_2$, there is a curve connecting v to each v_i that does not contain the edge e.
- Concatenating the two curves we connect v_1 to v_2 along the boundary of $f_1 \cup f_2$.

Proof (Manifold):

The smaller polyhedron still passes through all the vertices.

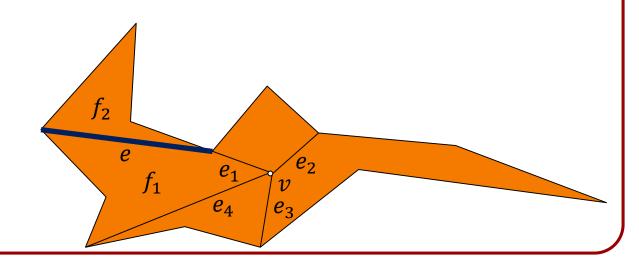
The edge *e* is removed and all other edges remain adjacent to a face.

Proof (Manifold Edges):

The old edges still have only two faces on them (or one face twice).

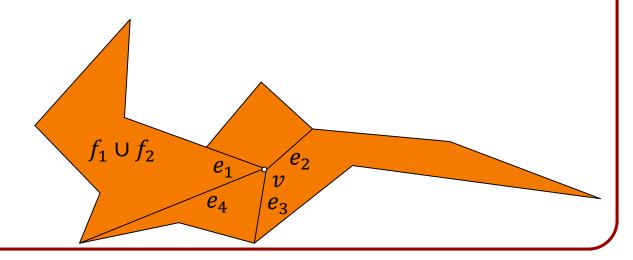
Proof (Manifold Vertices):

If $v \notin e$, we can use the old edge ordering.



Proof (Manifold Vertices):

If $v \notin e$, we can use the old edge ordering.

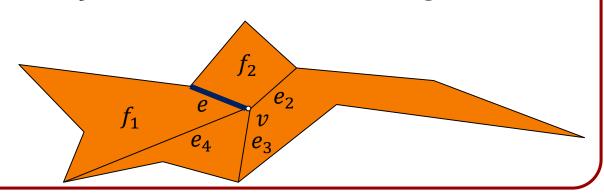


Proof (Manifold Vertices):

If $v \notin e$, we can use the old edge ordering.

If $v \in e$ let $\{e_1, e_2, ..., e_k\}$ be the old ordered edges around v, shifted so that $e_1 = e$.

Then e_k and e_2 are consecutive edges on $f_1 \cup f_2$ so $\{e_2, \dots, e_k\}$ is a valid ordering.

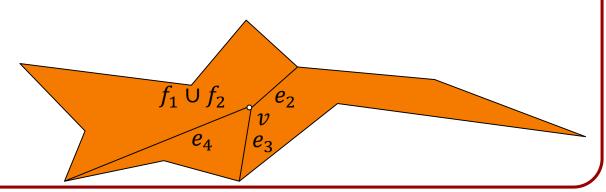


Proof (Manifold Vertices):

If $v \notin e$, we can use the old edge ordering.

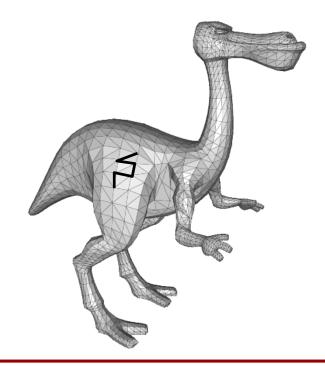
If $v \in e$ let $\{e_1, e_2, ..., e_k\}$ be the old ordered edges around v, shifted so that $e_1 = e$.

Then e_k and e_2 are consecutive edges on $f_1 \cup f_2$ so $\{e_2, \dots, e_k\}$ is a valid ordering.



Curves

A (connected) *curve* on a topological polyhedron is a list of edges such that the ending vertex of one edge is the starting vertex of the next.



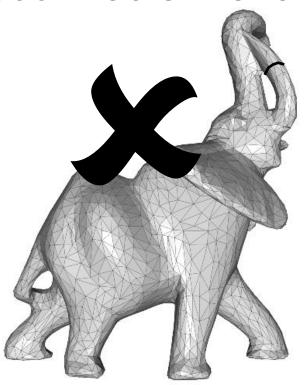
Curves

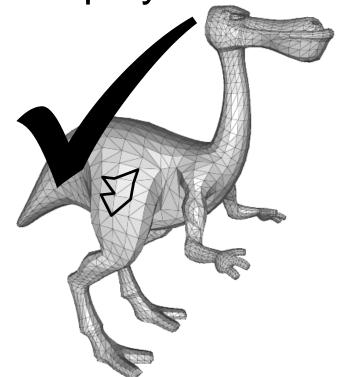
A (connected) *curve* on a topological polyhedron is a list of edges such that the ending vertex of one edge is the starting vertex of the next.

A *closed curve* is a curve whose starting and ending points are the same.

Genus-0 Polyhedra

A polyhedron is *genus-0* (or *simply connected*) if every non-trivial closed curve disconnects the faces of the polyhedron.

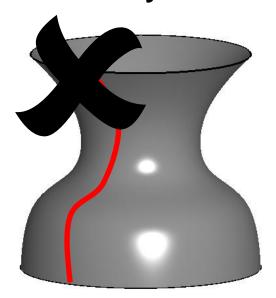


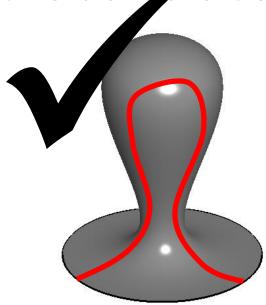


Genus-0 Polyhedra

Aside:

The definition can be extended to surfaces with boundary if we curves that start and end the boundary are also considered closed.





Genus-0 Polyhedra

Equivalently, given a topological polyhedron P we can define the dual graph $P^* = (V^*, E^*)$.

- \Rightarrow A curve $C \subset E$ corresponds to a set of dual edges $C^* \subset E^*$ of the dual.
- $\Rightarrow P$ is genus-0 if removing C^* disconnects P^* .

Genus-0 Polyhedra

- 1. There is a continuous map from a polytope to a sphere.
 - (e.g. Put the center of mass at the origin and normalize the positions.)
- 2. By the Jordan Curve Theorem the sphere is genus-zero.

One Can Show:

⇒ The polytope must also be genus-0.

For a genus-0 polyhedron P, the number of vertices, |V|, the number of edges, |E|, and the number of faces, |F|, satisfy:

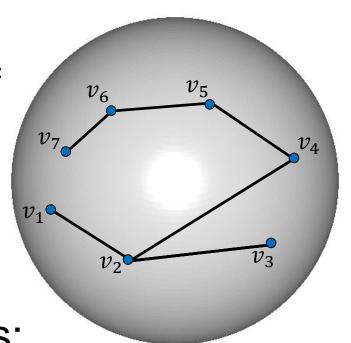
$$|V| - |E| + |F| = 2$$

Base case: |F| = 1

We have:

$$\circ V = \{v_1, \dots, v_n\}$$

*The edges on the boundary of the face form a connected tree (otherwise there is a closed loop and the interior of the face is disconnected).



Then there are n-1 edges:

$$|V| - |E| + |F| = n - (n - 1) + 1 = 2$$

*This is just a sketch of the proof.

Induction: Assume true for |F| = n - 1

Find $e \in E$ shared by two distinct faces.

If no such *e* exists, then all faces are adjacent to themselves, which contradicts the assumption that the polyhedron is connected.

Induction: Assume true for |F| = n - 1

Find $e \in E$ shared by two distinct faces. Remove e and merge the two adjoining faces.

Claim:

The new polyhedron, P', is still genus-0.

Proof (P' is genus-zero):

Let C be a non-trivial curve on P'.

- \Rightarrow C is a non-trivial curve on P with $e \notin C$.
- \Rightarrow f_1 and f_2 are in the same component.
- \Rightarrow C disconnects $f_1 \cup f_2$ from a face g on P.
- \Rightarrow C disconnects $f_1 \cup f_2$ from g in P'.

Induction: Assume true for |E| = n - 1

Find $e \in E$ shared by two distinct faces. Remove e and merge the two adjoining faces.

P' is genus-0 with |E|-1 edges, |F|-1 faces, and |V| vertices.

By the induction hypothesis we have:

$$|V| - (|E| - 1) + (|F| - 1) = 2$$

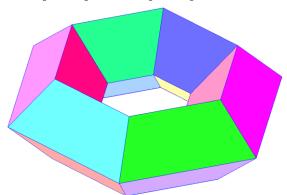
$$|V| - |E| + |F| = 2$$

$$|V| - |E| + |F| = 2$$

More Generally:

If a polygon mesh is genus-g (g is the number of handles) then:

$$|V| - |E| + |F| = 2 - 2g$$
.



$$|V| = 24$$
, $|E| = 48$, $|F| = 24$

[Wikipedia: Toroidal Polyhedron]

Implication:

The number of faces and edges is linear in the number of vertices.

Proof:

Assume all faces are triangles. (Triangulating only increase |F| and |E|.)

Since each edge is shared by two triangles: |E| = 3|F|/2

Using Euler's Formula:

$$|V| - |E| + |F| = 2$$
 \updownarrow
 $|F| = 2|V| - 4 \text{ and } |E| = 3|V| - 6$

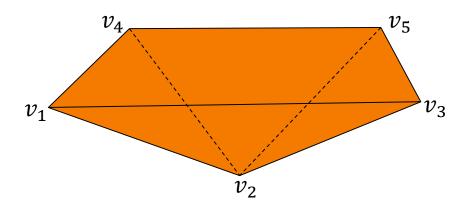
Outline

- Polyhedra
- (Oriented) Mesh Representation
 - Face-vertex data-structure
 - Winged-edge data-structure

Face-Vertex Lists:

Most often (e.g. ply, obj, etc. formats) polygon meshes are represented using vertex and face lists:

- **Vertex Entry**: (x, y, z) coordinates.
- Face Entry: Count and CCW indices of the vertices.



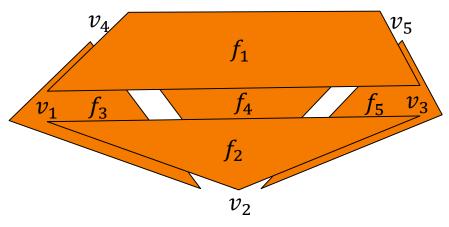
Face-Vertex Lists:

Most often (e.g. ply, obj, etc. formats) polygon meshes are represented using vertex and face lists:

- **Vertex Entry**: (x, y, z) coordinates.
- Face Entry: Count and CCW indices of the vertices.

Vertex List					
ld	x	y	Z		
1	-1	-1	0		
2	0	0	-1		
3	1	-1	0		
4	-1	1	0		
5	1	1	-1		

Face List					
ld	#	lr	ndi	ce	S
1	4	1	3	5	4
2	3	1	2	3	
3	3	4	2	1	
4	3	5	2	4	
5	3	3	2	5	



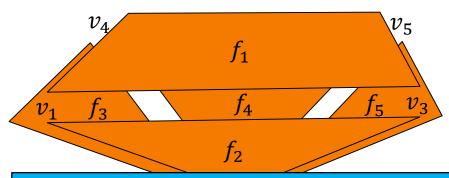
Face-Vertex Lists:

Most often (e.g. ply, obj, etc. formats) polygon meshes are represented using vertex and face lists:

- **Vertex Entry**: (x, y, z) coordinates.
- Face Entry: Count and CCW indices of the vertices.

Vertex List						
ld	x	y	Z			
1	-1	-1	0			
2	0	0	-1			
3	1	-1	0			
4	-1	1	0			
5	1	1	-1			

Face List					
ld	#	lr	ndi	ce	S
1	4	1	3	5	4
2	3	1	2	3	
3	3	4	2	1	
4	3	5	2	4	
5	3	3	2	5	



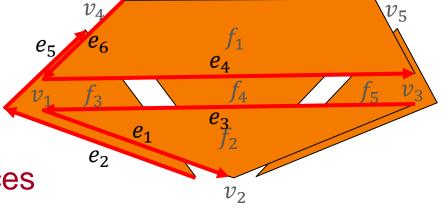
Limitation:

- Variable sized rows
- No explicit connectivity

Winged-Edge List:

Common representation for connectivity querying, represented using vertex, half-edge, and face lists:

- Vertex Entry:
 - (x, y, z) coordinates
 - » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:
 - » in/out wing h.e. indices
 - » opposite h.e. index
 - » end vertex index
 - » face index



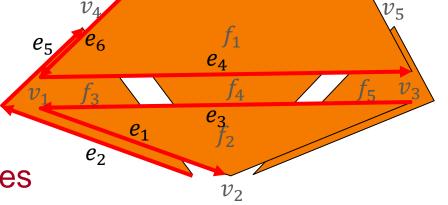
	Vertex List							
ld	x	y	Z	h				
1	-1	-1	0	4				
2	0	0	-1	2				
3	1	-1	0	3				
4	-1	1	0	6				
5	1	1	-1					

Mesh Representation

e List:

presentation for connectivity querying, using vertex, half-edge, and face lists:

- Vertex Entry:
 - (x, y, z) coordinates
 - » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:
 - » in/out wing h.e. indices
 - » opposite h.e. index
 - » end vertex index
 - » face index



Vertex List						
ld	x	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

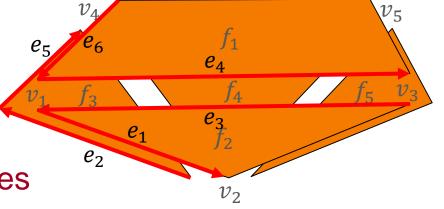
]	Face	List
	ld	h
	1	4
	2	3
	3	5
	4	
	5	

Representation

tion for connectivity querying, ertex, half-edge, and face lists:

Vertex Entry:

- (x, y, z) coordinates
- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- o Half-Edge Entry:
 - » in/out wing h.e. indices
 - » opposite h.e. index
 - » end vertex index
 - » face index



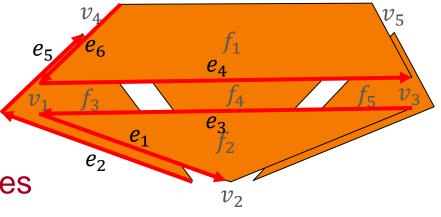
Vertex List						
ld	X	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List						
ld	0	Wi	W _o	V	f	
1	2	3		2	2	
2	1		5	1	3	
3	4		1	1	2	
4	3	6		3	1	
5	6	2		4	3	
6	5		4	1	1	

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:
 - » in/out wing h.e. indices
 - » opposite h.e. index
 - » end vertex index
 - » face index



Vertex List							
ld	X	y	Z	h			
1	-1	-1	0	4			
2	0	0	-1	2			
3	1	-1	0	3			
4	-1	1	0	6			
5	1	1	-1				

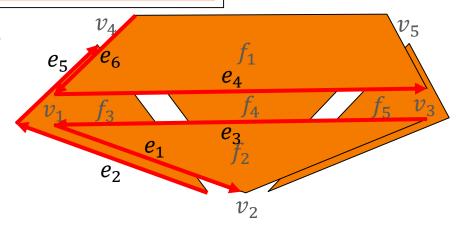
Face List					
ld	h				
1	4				
2	3				
3	5				
4					
5					

Half-Edge List					
ld	0	Wi	W _o	V	f
1	2	3		2	2
2	1		5	1	3
3	4	•••	1	1	2
4	3	6		3	1
5	6	2		4	3
6	5		4	1	1

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Find CCW vertices around v_1 :



Vertex List						
ld	X	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

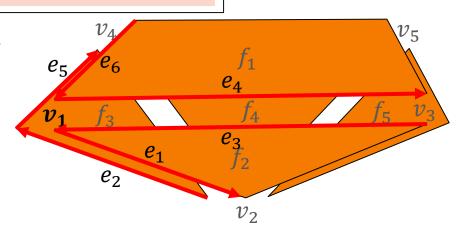
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List					
ld	0	Wi	W _o	V	f
1	2	3		2	2
2	1		5	1	3
3	4		1	1	2
4	3	6		3	1
5	6	2		4	3
6	5		4	1	1

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Find CCW vertices around v_1 :



Vertex List						
ld	X	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

Face	List
ld	h
1	4
2	3
3	5
4	
5	

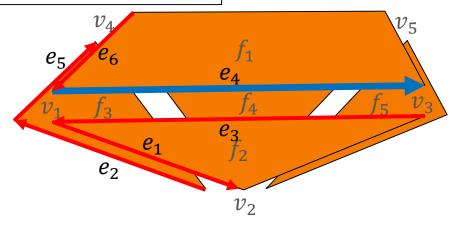
Half-Edge List						
ld	0	Wi	W _o	V	f	
1	2	3		2	2	
2	1		5	1	3	
3	4		1	1	2	
4	3	6		3	1	
5	6	2		4	3	
6	5		4	1	1	

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:

Find CCW vertices around v_1 : v_3



Vertex List						
ld	x	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

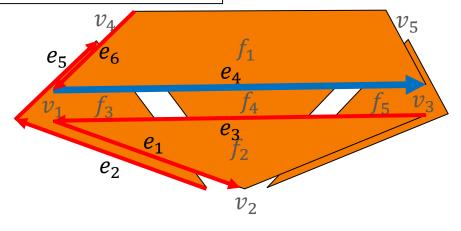
Face	List
ld	h
1	4
2	3
3	5
4	
5	

	Half-Edge List						
ld	0	Wi	W _o	V	f		
1	2	3		2	2		
2	1		5	1	3		
3	4		1	1	2		
4	3	6		3	1		
5	6	2		4	3		
6	5		4	1	1		

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Find CCW vertices around v_1 : v_3



Vertex List							
ld	x	y	Z	h			
1	-1	-1	0	4			
2	0	0	-1	2			
3	1	-1	0	3			
4	-1	1	0	6			
5	1	1	-1				

]	Face	List
	ld	h
	1	4
	2	3
	3	5
	4	
	5	

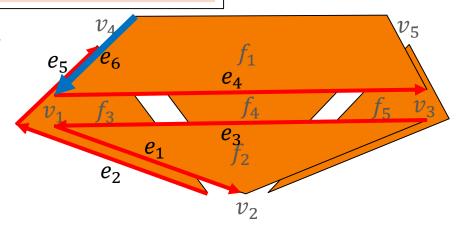
Half-Edge List						
ld	0	Wi	W _o	V	f	
1	2	3		2	2	
2	1		5	1	3	
3	4		1	1	2	
4	3	6		3	1	
5	6	2		4	3	
6	5		4	1	1	

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:

Find CCW vertices around v_1 : v_3



Vertex List					
ld	x	y	Z	h	
1	-1	-1	0	4	
2	0	0	-1	2	
3	1	-1	0	3	
4	-1	1	0	6	
5	1	1	-1		

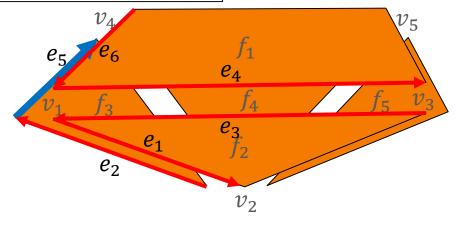
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List					
ld	0	Wi	W _o	V	f
1	2	3		2	2
2	1		5	1	3
3	4		1	1	2
4	3	6		3	1
5	6	2		4	3
6	5		4	1	1

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:



	Vertex List					
ld	x	y	Z	h		
1	-1	-1	0	4		
2	0	0	-1	2		
3	1	-1	0	3		
4	-1	1	0	6		
5	1	1	-1			

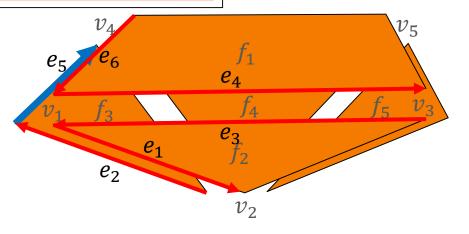
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List					
ld	0	w _i	W _o	V	f
1	2	3		2	2
2	1		5	1	3
3	4		1	1	2
4	3	6		3	1
5	6	2		4	3
6	5		4	1	1

ity querying, and face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:



Vertex List					
ld	x	y	Z	h	
1	-1	-1	0	4	
2	0	0	-1	2	
3	1	-1	0	3	
4	-1	1	0	6	
5	1	1	-1		

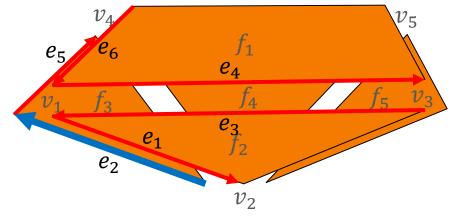
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List					
ld	0	w _i	W _o	V	f
1	2	3		2	2
2	1		5	1	3
3	4		1	1	2
4	3	6		3	1
5	6	2		4	3
6	5		4	1	1

ity querying, Ind face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:



Vertex List					
ld	x	y	Z	h	
1	-1	-1	0	4	
2	0	0	-1	2	
3	1	-1	0	3	
4	-1	1	0	6	
5	1	1	-1		

Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List							
ld	0	w _i	W _o	V	f		
1	2	3		2	2		
2	1		5	1	3		
3	4		1	1	2		
4	3	6		3	1		
5	6	2		4	3		
6	5		4	1	1		

ity querying, nd face lists:

- Outgoing h.e. index
- **Face Entry**:
 - » h.e. index
- **Half-Edge Entry**:

v_2 Example:

Vertex List								
ld	X	y	Z	h				
1	-1	-1	0	4				
2	0	0	-1	2				
3	1	-1	0	3				
4	-1	1	0	6				
5	1	1	-1					

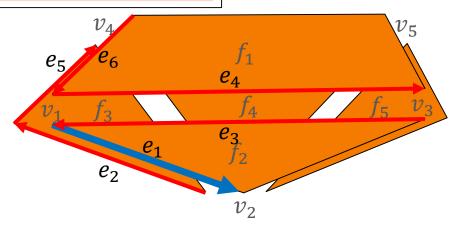
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List							
ld	0	w _i	W _o	V	f		
1	2	3		2	2		
2	1		5	1	3		
3	4		1	1	2		
4	3	6		3	1		
5	6	2		4	3		
6	5		4	1	1		

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:



Vertex List								
ld	X	y	Z	h				
1	-1	-1	0	4				
2	0	0	-1	2				
3	1	-1	0	3				
4	-1	1	0	6				
5	1	1	-1					

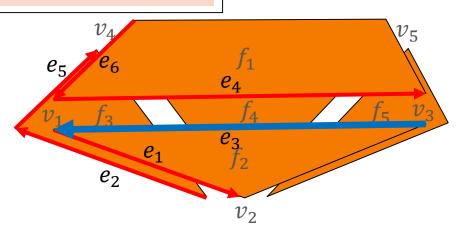
Face	List
ld	h
1	4
2	3
3	5
4	
5	

Half-Edge List							
ld	0	Wi	W _o	V	f		
1	2	3		2	2		
2	1		5	1	3		
3	4		1	1	2		
4	3	6		3	1		
5	6	2		4	3		
6	5		4	1	1		

ity querying, nd face lists:

- » Outgoing h.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:



Vertex List								
ld	x	y	Z	h				
1	-1	-1	0	4				
2	0	0	-1	2				
3	1	-1	0	3				
4	-1	1	0	6				
5	1	1	-1					

Face	List
ld	h
1	4
2	3
3	5
4	
5	

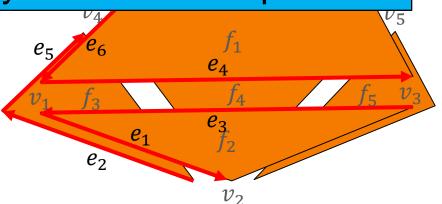
Half-Edge List							
ld	0	Wi	W _o	V	f		
1	2	3		2	2		
2	1		5	1	3		
3	4		1	1	2		
4	3	6		3	1		
5	6	2		4	3		
6	5		4	1	1		

ity querying, Ind face lists:

Computational complexity is linear in output size.

- » Outgoing n.e. index
- Face Entry:
 - » h.e. index
- Half-Edge Entry:

Example:




```
GenerateHalfEdge(V,F,_V,_E,_F)
```

- _V.resize(v.size()), _F.resize(F.size())
- o for(i=0 ; i<V.size() ; i++) _V[i].p = V[i].p</pre>
- unordered_map< long long, int > fMap
- ConstructFaceMap(F, fMap)
- _E.resize(fMap.size())
- SetVertexAndFaceIndices(fMap,_V,_E,_F)
- SetHalfEdges(fMap, F, _E)


```
ConstructFaceMap(F, fMap)
```

- o for(f=0;f<F.size();f++)</pre>
 - » for(v=0 ; v<F[f].size() ; v++)</pre>
 - long long key = F[f][v] < 32 | F[f][v+1]
 - fMap[key] = f

Assuming that:

- Indexing is modulo the face size
- We don't lose precision due to casting/shifting.

SetVertexAndFaceIndices(fMap,_V,_E,_F)

- o int count = 0
- o for(iter i=fMap.begin(); i!=fMap.end(); i++)
 - \Rightarrow int v = i.key >> 32, f = i.value
 - » _E[count].v = v , _E[count].f = f
 - \sim _V[v].he = _F[f].he = i.value = count++

Note that the values of the face map are over-written with the edge indices.


```
SetHalfEdges(fMap, F, _E)
     for(f=0; f<F.size(); f++)
    » for( v=0 ; v<F[f].size() ; v++ )</pre>
          long long key = F[f][v] < 32 | F[f][v+1]
          long long oKey = F[f][v+1] << 32 \mid F[f][v]
          long long nKey = F[f][v+1] < 32 | F[f][v+2]
        E[fMap[key]].o = fMap[oKey]
       - E[fMap[key]].w2 = fMap[nKey]
       - E[fMap[nKey]].w1 = fMap[key]
```