

Polygon Partitioning

O'Rourke, Chapter 2

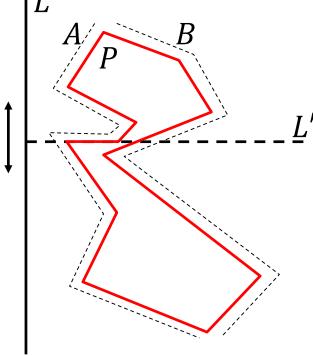
Outline

- Triangle Partitions
- Convex Partitions

Monotonicity

A polygonal P is monotone w.r.t. a line L if its boundary can be split into two polygon chains, A and B, such that each chain is

monotonic w.r.t. L.



Monotonicity

A polygonal P is monotone w.r.t. a line L if its boundary can be split into two polygon chains, A and B, such that each chain is monotonic w.r.t. L.

A polygon *P* is a *monotone mountain* w.r.t. *L* if it is monotone w.r.t. *L* and one of the two chains (the *base*) is a single segment.

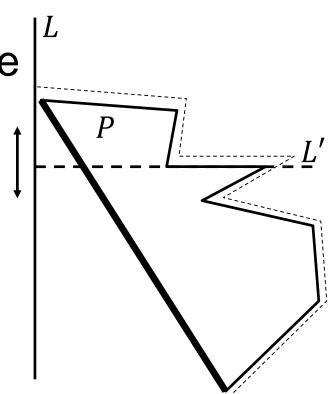
Note: Both endpoints of the base have to be convex

Claim

Every strictly convex vertex of a monotone mountain that is not on the base is an ear tip.

WLOG, we will assume that *L* is vertical and that the base is to the left.

We will first show that the diagonal has to be interior and then that it cannot intersect the polygon.

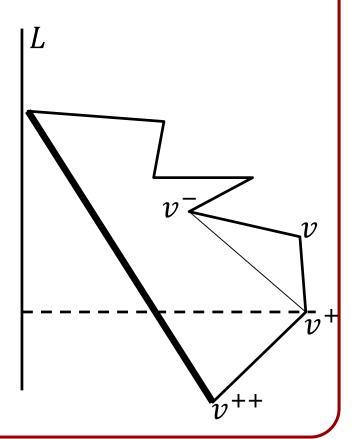


Proofs

Assume $\exists \{v^-, v, v^+\} \subset P$, with v strictly convex, s.t. $\overline{v^-v^+}$ is not an interior diagonal.

 $\overline{v^+v^-}$ cannot be locally exterior because:

• If v^+ is not on the base, then $\overline{v^+v^{++}}$ must be below v^+ . Since v is strictly convex, $\overline{v^+v^-}$ is to the left of $\overline{v^+v}$.



Proofs

Assume $\exists \{v^-, v, v^+\} \subset P$, with v strictly convex, s.t. $\overline{v^-v^+}$ is not an interior diagonal.

 $\overline{v^+v^-}$ cannot be locally exterior because:

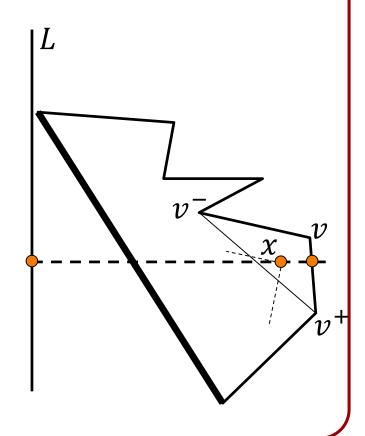
If v⁺ is on the base, then v⁺v⁻ is to the left of v⁺v.
 But it must also be to the right of the base since v⁻ is to the right of the base.



Proofs

Assume $\exists \{v^-, v, v^+\} \subset P$, with v strictly convex, s.t. $\overline{v^-v^+}$ is not an interior diagonal.

- \Rightarrow If v^-v^+ is not an interior diagonal then $\exists x \in P$, reflex, with x interior to Δv^+vv^- .
 - Interior \Rightarrow it cannot lie on the chain $\overline{v^+vv^-}$.
 - Reflex \Rightarrow it is not on the base.
- \Rightarrow The horizontal through x intersects P in three points.



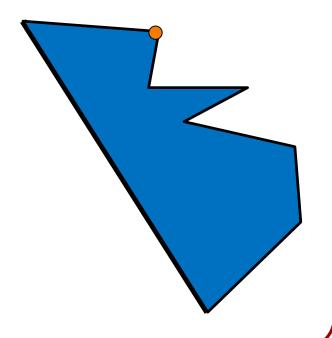
Approach:

- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.

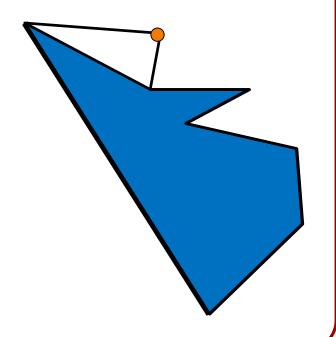
Note:

We can induct because when we remove an ear, we do not violate the monotonicity of the chain.

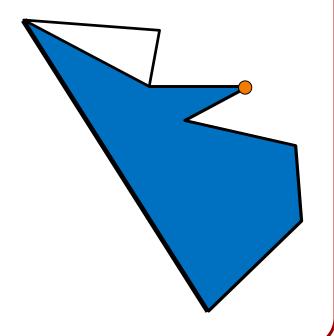
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



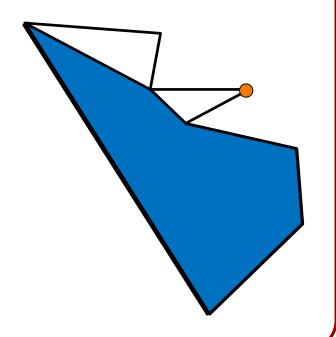
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



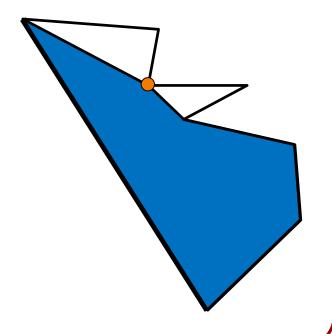
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



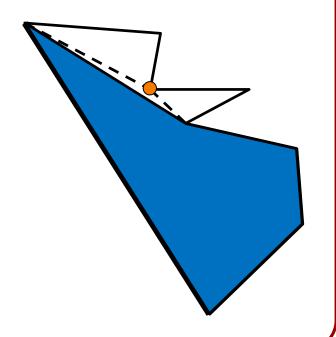
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



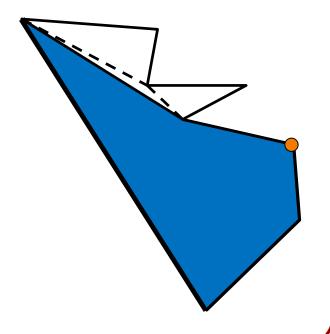
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



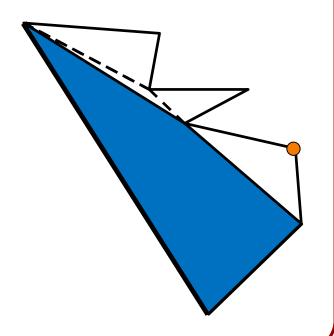
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



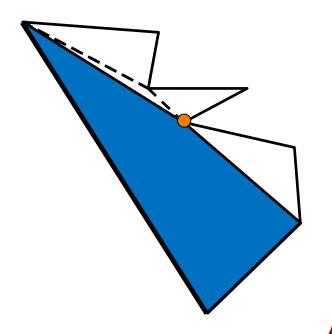
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



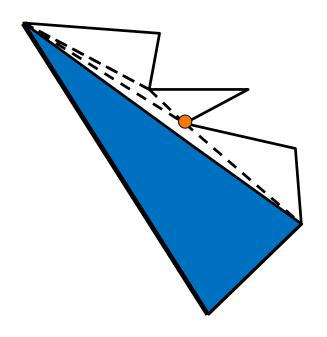
- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.



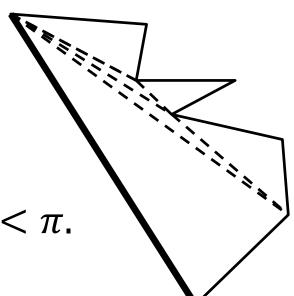
Approach:

- 1. Find a convex vertex not on the base.
- 2. Remove it.
- 3. Go to step 1.

To do this, we need to be able to quickly identify the next convex vertex.

Recall:

Strictly convex \Leftrightarrow interior angle $< \pi$.

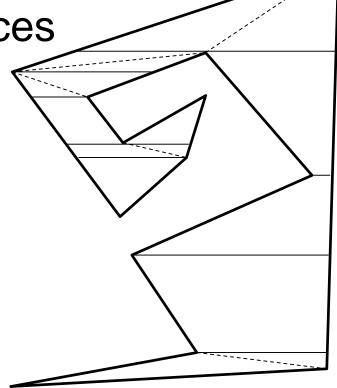


- MonotoneMountainTriangulation(P):
 - $-B \leftarrow FindBase(P)$
 - $-C \leftarrow LinkConvexVertices(P B)$
 - while $C \neq \emptyset$:
 - *v* ← First(*C*)
 - output($\Delta v^- vv^+$)
 - $P \leftarrow P \{v\}$
 - if $(v^+ \notin C \text{ AND } v^+ \notin B)$
 - if($\angle v^+ < \pi$) v.addAfter(v^+)
 - if $(v^- \notin C \land AND \lor v^- \notin B)$
 - if($\angle v^- < \pi$) v.addBefore(v^-)
 - $C \leftarrow C \{v\}$

Approach:

Compute a trapezoidalization of P.

 Connect supporting vertices that don't come from the same side.



Claim:

Such a partition generates pieces that are

monotone mountains.

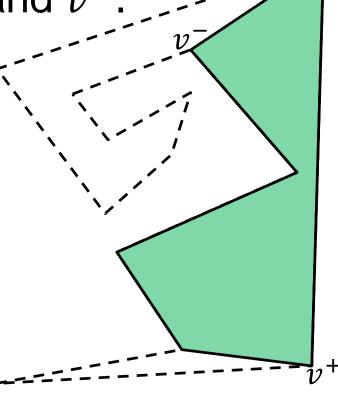
Proof:

This algorithm removes all interior cusps, so the partition pieces are monotone.

Proof:

Given a piece, we can find its topmost vertex v, with neighbors v^- and v^+ .

Assume v^+ is lower than v^- .



Proof:

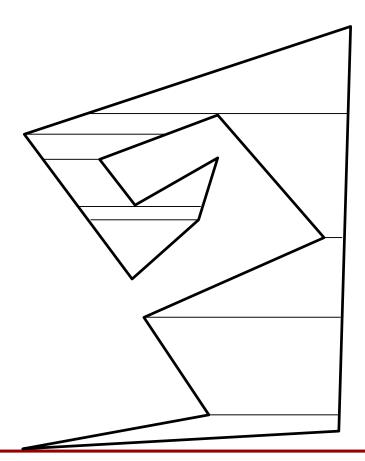
Following the chain down v^- , we get to the last vertex, $w \in P$, above v^+ .

There is a trapezoid supported by w and v^+ .

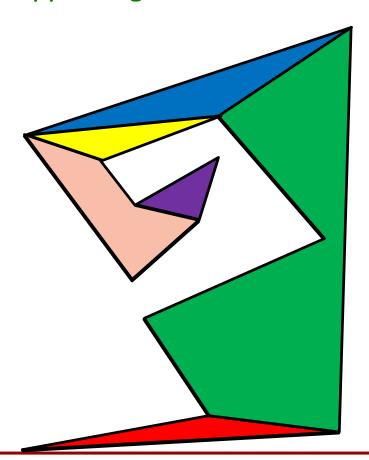
Since w and v^+ are on different \dot{v} sides of the trapezoid, the diagonal to v^+ must be added.

 $\Rightarrow v^+$ is a partition endpoint

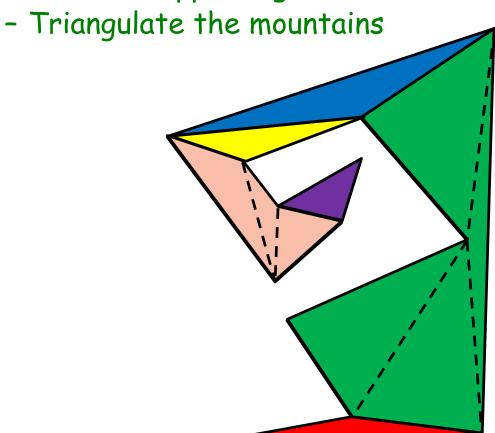
- Triangulate(P):
 - Construct a trapezoidalization



- Triangulate(P):
 - Construct a trapezoidalization
 - Connect supporting vertices from different sides.

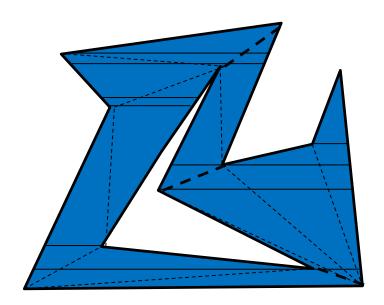


- Triangulate(P):
 - Construct a trapezoidalization
 - Connect supporting vertices from different sides.



Note:

The algorithms for triangulating via monotone polygons and monotone mountains works for polygons with disconnected boundaries.



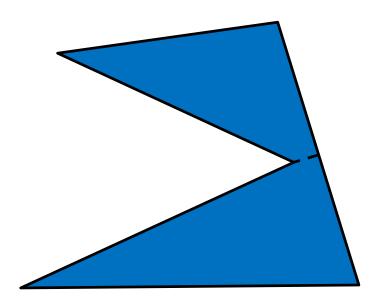
Outline

- Triangle Partitions
- Convex Partitions

Convex Partitions

Definition:

A convex partition by segments of a polygon P is a decomposition of P into convex polygons obtained by introducing arbitrary segments.



Convex Partitions

Definition:

A convex partition by segments of a polygon P is a decomposition of P into convex polygons obtained by introducing arbitrary segments.

A convex partition by diagonals of a polygon *P* is a decomposition of *P* into convex polygons obtained by only introducing diagonals.

Convex Partitions

Definition:

A convex partition by segments of a polygon P is a dec

Challenge:

Obtair Compute a convex partition with the smallest number of pieces.

A convex p Challenge²:

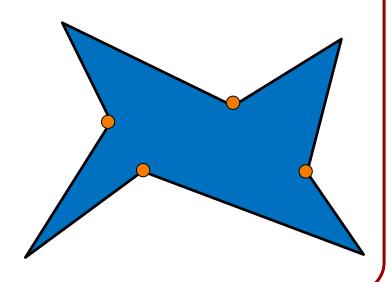
Of a polygor Compute it efficiently of P into convex polygons obtained by only introducing diagonals.

Convex Partitions (by Segments)

Claim (Chazelle):

Assume the polygon P has r reflex vertices. If Φ is the fewest number of polygons required for a convex partition by segments of P then:

$$[r/2] + 1 \le \Phi \le r + 1$$



Convex Partitions (by Segments)

Proof $(\Phi \leq r + 1)$:

For each reflex vertex, add the bisector.

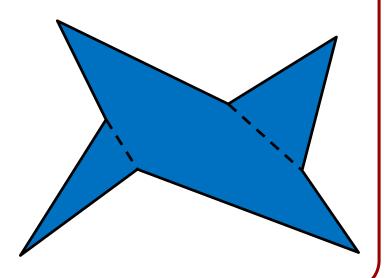
Because the segment bisects, the reflex angle splits into two convex angles. (Angles at the new vertices have to be $< \pi$.)

Doing this for each reflex vertices, gives a convex partition with r+1 pieces.

Convex Partitions (by Segments)

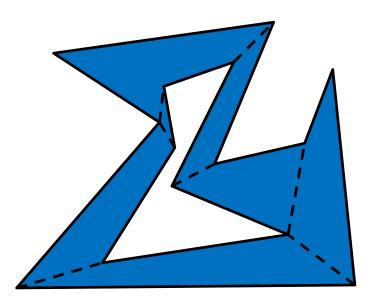
Proof $([r/2] \leq \Phi)$:

Each reflex vertex needs to be split and each introduced segment can split at most two reflex vertices.



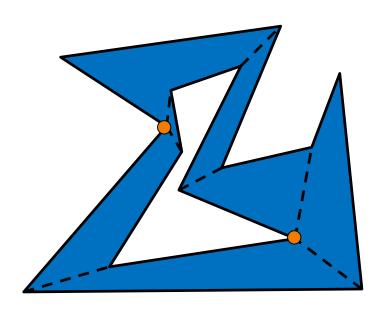
Definition:

A diagonal in a convex partition is *essential* for vertex $v \in P$ if removing the diagonal creates a piece that is not convex at v.



Claim:

If v is a reflex vertex, it can have at most two essential diagonals.

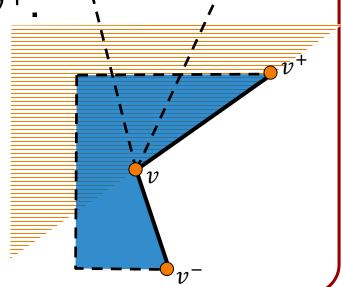


Proof:

Given a reflex vertex v, let v^- and v^+ be the vertices immediately before and after v in P.

There can be at most one essential segment in the half-space to the right of $\overrightarrow{vv^+}$.

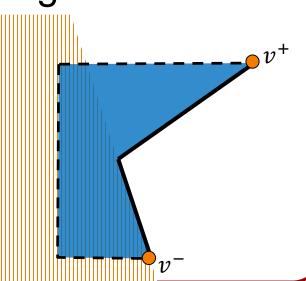
(If there were two, we could remove the one closer to $\overrightarrow{vv^+}$.)



Proof:

Given a reflex vertex v, let v^- and v^+ be the vertices immediately before and after v in P.

Similarly, there can be at most one essential segment in the half-space to the right of \overrightarrow{vv} .

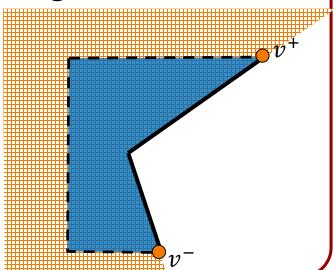


Proof:

Given a reflex vertex v, let v^- and v^+ be the vertices immediately before and after v in P.

Similarly, there can be at most one essential segment in the half-space to the right of \overrightarrow{vv} .

Since the two half-spaces cover the interior of the vertex there are at most two essential vertices at v.



Algorithm (Hertl & Mehlhorn):

Start with a triangulation and remove inessential diagonals.

Claim:

This algorithm is never worse than $4 \times$ optimal in the number of convex pieces.

Proof:

When the algorithm terminates, every remaining diagonal is essential for some (reflex) vertex.

Each reflex vertex can have at most two essential diagonals.

 \Rightarrow There can be at most 2r + 1 pieces in the partition.

Since at least $\lceil r/2 \rceil + 1$ are required, the result is within

 $4 \times optimal$.

Convex Partitions

Why do we care?

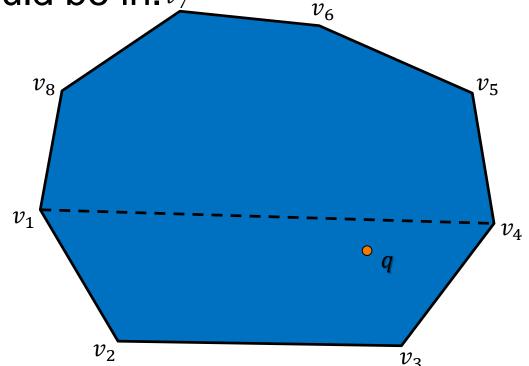
Convex polygons are easier to intersect against.

For a polygon with *n* vertices:

- Testing if a point is inside is $O(\log n)$.
- Testing if a line intersects is $O(\log n)$.
- Testing if two polygons intersect is $O(\log n)$.

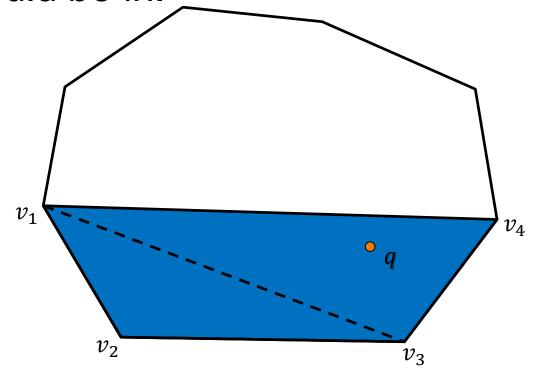
Algorithm:

Recursively split the polygon in half and test the half the point could be in. v_7



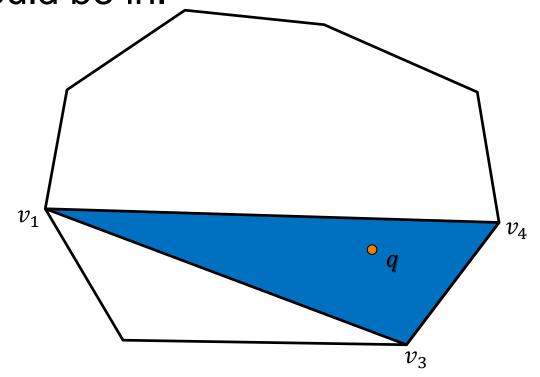
Algorithm:

Recursively split the polygon in half and test the half the point could be in.



Algorithm:

Recursively split the polygon in half and test the half the point could be in.




```
\begin{split} &\text{InConvexPolygon(}\ q\ , \{v_1, \dots, v_n\}\ )\\ &\circ \text{ if(}\ n == 3\ )\\ &\quad \text{``return InTriangle(}\ q\ , \{v_1, v_2, v_3\}\ );\\ &\circ \text{ if(}\ \text{Left(}\ v_1, v_{n/2}\ , p\ )\ )\\ &\quad \text{``return InConvexPolygon(}\ q\ , \{v_{n/2}, \dots, v_1\}\ );\\ &\circ \text{ else}\\ &\quad \text{``return InConvexPolygon(}\ q\ , \{v_1, \dots, v_{n/2}\}\ ); \end{split}
```


 v_{i+1}

 v_i

Note:

Given a convex polygon P, a line segment L, and vertices $v_i, v_i \in P$ on the same side of L.*

If the vector $\overrightarrow{v_i v_{i+1}}$ points v_j away from L, then L can only intersect P along the chain $\{v_j, v_{j+1}, \dots, v_i\}$.

Otherwise, L can only intersect P along the chain $\{v_i, v_{i+1}, \dots, v_i\}$.

*Assume, WLOG that v_i is closer to L than v_i .

Algorithm:

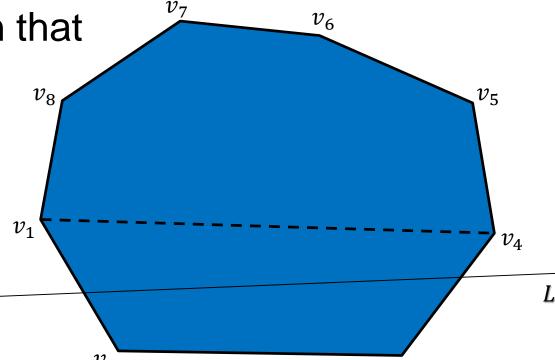
Recursively split the polygon in half.

If the split points are on the same side, test the

half of the polygon that

could intersect.

Otherwise there is an intersection.



Algorithm:

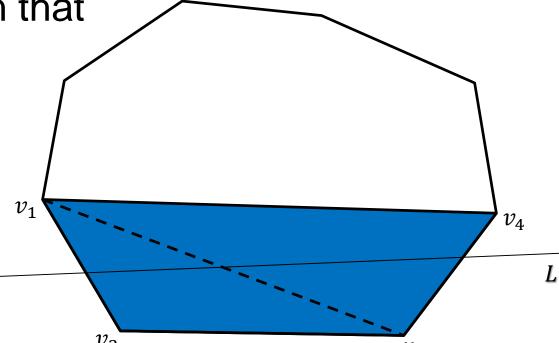
Recursively split the polygon in half.

If the split points are on the same side, test the

half of the polygon that

could intersect.

Otherwise there is an intersection.




```
IsectConvexPolygon(\{l_1, l_2\}, \{v_1, ..., v_n\})
    \circ if( n == 3 )
       » return IsectTriangle(\{l_1, l_2\}, \{v_1, v_2, v_3\};
    \circ if( Left( l_1 , l_2 , v_1 )!=Left( l_1 , l_2 , v_{n/2} ) )
       »return true:
    o else
       *if( Dist( \{l_1, l_2\}, v_1) \times Dist( \{l_1, l_2\}, v_{n/2} )
           - if( Dist(\{l_1, l_2\}, v_1) \Dist(\{l_1, l_2\}, v_2)
             • return IsectConvexPolygon( \{l_1, l_2\} , \{v_{n/2}, \dots, v_1\} );
           - else
             • return IsectConvexPolygon( \{l_1, l_2\} , \{v_1, \dots, v_{n/2}\} );
       »else...
```