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Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a
number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry
and in robotics. I present here a closed-form solution to the least-squares problem for three or more points.
Currently various empirical, graphical, and numerical iterative methods are in use. Derivation of the solution is
simplified by use of unit quaternions to represent rotation. Iemphasize a symmetry property that a solution to this
problem ought to possess. The best translational offset is the difference between the centroid of the coordinates in
one system and the rotated and scaled centroid of the coordinates in the other system. The best scale is equal to the
ratio of the root-mean-square deviations of the coordinates in the two systems from their respective centroids.
These exact results are to be preferred to approximate methods based on measurements of a few selected points.
The unit quaternion representing the best rotation is the eigenvector associated with the most positive eigenvalue of
a symmetric 4 X 4 matrix. The elements of this matrix are combinations of sums of products of corresponding

coordinates of the points.

1. INTRODUCTION

Suppose that we are given the coordinates of a number of
points as measured in two different Cartesian coordinate
systems (Fig. 1). The photogrammetric problem of recover-
ing the transformation between the two systems from these
measurements is referred to as that of absolute orientation.!
It occurs in several contexts, foremost in relating a stereo
model developed from pairs of aerial photographs to a geo-
detic coordinate system. It also is of importance in robotics,
in which measurements in a camera coordinate system must
be related to coordinates in a system attached to a mechani-
cal manipulator. Here one speaks of the determination of
the hand-eye transform.?

A. Previous Work

The problem of absolute orientation is usually treated in an
empirical, graphical, or numerical iterative fashion.!34
Thompson® gives a solution to this problem when three
points are measured. His method, as well as the simpler one
of Schut,® depends on selective neglect of the extra con-
straints available when all coordinates of three points are
known. Schut uses unit quaternions and arrives at a set of
linear equations. I present a simpler solution to this special
case in Subsection 2.A that does not require solution of a
system of linear equations. These methods all suffer from
the defect that they cannot handle more than three points.
Perhaps more importantly, they do not even use all the
information available from the three points.

Oswal and Balasubramanian’ developed a least-squares
method that can handle more than three points, but their
method does not enforce the orthonormality of the rotation
matrix. An iterative method is then used to square up the
result—bringing it closer to being orthonormal. The meth-
od for doing this is iterative, and the result is not the solution
of the original least-squares problem.
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I present a closed-form solution to the least-squares prob-
lem in Sections 2 and 4 and show in Section 5 that it simpli-
fies greatly when only three points are used. This is impor-
tant, since at times only three points may be available. The
solution is different from those described at the beginning of
this section because it does not selectively neglect informa-
tion provided by the measurements—it uses all of it.

The groundwork for the application of quaternions in
photogrammetry was laid by Schut? and Thompson.? In
robotics, Salamin!? and Taylor!! have been the main propa-
gandists. The use of unit quaternions to represent rotation
is reviewed in Section 3 and the appendixes (see also Ref. 2).

B. Minimum Number of Points

The transformation between two Cartesian coordinate sys-
tems can be thought of as the result of a rigid-body motion
and can thus be decomposed into a rotation and a transla-
tion. In stereophotogrammetry, in addition, the scale may
not be known. There are obviously three degrees of freedom
to translation. Rotation has another three (direction of the
axis about which the rotation takes place plus the angle of
rotation about this axis). Scaling adds one more degree of
freedom. Three points known in both coordinate systems
provide nine constraints (three coordinates each), more than
enough to permit determination of the seven unknowns.

By discarding two of the constraints, seven equations in
seven unknowns can be developed that allow one to recover
the parameters. I show in Subsection 2.A how to find the
rotation in a similar fashion, provided that the three points
are not collinear. Two points clearly do not provide enough
constraint.

C. Least Sum of Squares of Errors

In practice, measurements are not exact, and so greater
accuracy in determining the transformation parameters wil]
be sought for by using more than three points. We no longer
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Fig. 1. The coordinates of a number of points is measured in two
different coordinate systems. The transformation between the two
systems is to be found.

expect to be able to find a transformation that maps the
measured coordinates of points in one system exactly into
the measured coordinates of these points in the other. In-
stead, we minimize the sum of squares of residual errors.
Finding the best set of transformation parameters is not
easy. In practice, various empirical, graphical, and numeri-
cal procedures are in use. These are iterative in nature.
That is, given an approximate solution, such a method leads
to a better, but still imperfect, answer. The iterative meth-
od is applied repeatedly until the remaining error is negligi-
ble.

At times, information is available that permits one to
obtain so good an initial guess of the transformation parame-
ters that a single step of the iteration brings one close enough
to the true solution of the least-squares problem to eliminate
the need for further iteration in a practical situation.

D. Closed-Form Solution

In this paper I present a closed-form solution to the least-
squares problem of absolute orientation, one that does not
require iteration. One advantage of a closed-form solution
is that it provides one in a single step with the best possible
transformation, given the measurements of the points in the
two coordinate systems. Another advantage is that one
need not find a good initial guess, as one does when an
iterative method is used.

I give the solution in a form in which unit quaternions are
used to represent rotations. The solution for the desired
quaternion is shown to be the eigenvector of a symmetric 4 X
4 matrix associated with the most positive eigenvalue. The
elements of this matrix are simple combinations of sums of
products of corresponding coordinates of the points. To
find the eigenvalues, a quartic equation has to be solved
whose coefficients are sums of products of elements of the
matrix. It is shown that this quartic is particularly simple,
since one of its coefficients is zero. It simplifies even more
when one or the other of the sets of measurements is copla-
nar,

E. Orthonormal Matrices

While unit quaternions constitute an elegant representation
for rotation, most of us are more familiar with orthonormal
matrices with positive determinant. Fortunately, the ap-
propriate 3 X 3 rotation matrix can be easily constructed
from the four components of the unit quaternion, as is shown
in Subsection 3.E. Working directly with matrices is diffi-
cult because of the need to deal with six nonlinear con-
straints that ensure that the matrix is orthonormal. A
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'closed-form solution for the rotation matrix using manipula-

tions of matrices will be presented in a subsequent paper.
This closed-form solution requires the computation of the
square root of a symimetric 3 X 3 matrix.

F. Symmetry of the Solution

Let us call the two coordinate systems “left” and “right.” A
desirable property of a solution method is that, when applied
to the problem of finding the best transformation from the
right to the left system, it gives the exact inverse of the best
transformation from the left to the right system. Ishow in
Subsection 2.D that the scale factor has to be treated in a
particular way to guarantee that this will happen. Symme-
try is guaranteed when one uses unit quaternions to repre-
sent rotation.

2. SOLUTION METHODS

As we shall see, the translation and the scale factor are easy
to determine once the rotation is known. The difficult part
of the problem is finding the rotation. Given three noncol-
linear points, we can easily construct a useful triad in each of
the left and the right coordinate systems (Fig. 2). Let the
origin be at the first point. Take the line from the first to
the second point to be the direction of the new x axis. Place
the new y axis at right angles to the new x axis in the plane
formed by the three points. The new z axis is then made to
be orthogonal to the x and y axes, with orientation chosen to
satisfy the right-hand rule. This construction is carried out
in both left and right systems. The rotation that takes one
of these constructed triads into the other is also the rotation
that relates the two underlying Cartesian coordinate sys-
tems. This rotation is easy to find, as we show below.

A. Selective Discarding Constraints

Let the coordinates of the three points in each of the two
coordinate systems be ry, ri2, ri3 and r.;, r. 2 r,3, respec-
tively. Construct

X =re— I
Then
xﬁ'- = x;}" ”Xi"

is a unit vector in the direction of the new x axis in the left-
hand-system. Now let

v = (rg =1y = [(r3— 1) - 2%,

i

1\

Fig. 2. Three points define a triad. Such a triad can be construct-
ed by using the left measurements. A second triad is then con-
structed from the right measurements. The required coordinate
transformation can be estimated by finding the transformation that
maps one triad into the other. This method does not use the
information about each of the three points equally.
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be the component of (r 3 — r;,) perpendicular to x. The
unit vector

v =vy/lyl

is in the direction of the new y axis in the left-hand system.
To complete the triad, we use the cross product

ZI=J;[X}A!,.

This construction is now repeated in the right-hand system
to obtain *,, yr, and z,. The rotation that we are looking for
takes x; into x,, y; into y,, and 2, into z,.

Now adjoin column vectors to form the matrices M; and
M, as follows:

M =xyz),

M, =lxyzl.
Given a vector r; in the left coordinate system, we see that
M,

gives us the components of the vector r; along the axes of the
constructed triad. Multiplication by M, then maps these
into the right-hand coordinate system, so

r,=MMr,
The sought-after rotation is given by
R=MM .

The result is orthonormal since M, and M, are orthonormal,
by construction. The above constitutes a closed-form solu-
tion for finding the rotation, given three points. Note that it
uses the information from the three points selectively. In-
deed, if we renumber the points, we get a different rotation
matrix, unless the data happen to be perfect. Also note that
the method cannot be extended to deal with more than three
points.

Even with just three points we should really attack this
problem by using a least-squares method, since there are
more constraints than unknown parameters. The least-
squares solution for translation and scale will be given in
Subsections 2.C and 2.E. The optimum rotation is found in
Section 4.

B. Finding the Translation
Let there be n points. The measured coordinates in the left
and right coordinate system will be denoted by

{r,;} and f{r.j,

respectively, where i ranges from 1ton. We are looking fora
transformation of the form

r,=sR(r) +r,

from the left to the right coordinate system. Heresisascale
factor, rg is the translational offset, and R(r;) denotes the
rotated version of the vector r;, We do not, for the moment,
use any particular notation for rotation. We use only the
facts that rotation is a linear operation and that it preserves
lengths so that

”R(l':)”2 . " 1‘1"2,

where || r||2 = r - r is the square of the length of the vector r.
Unless the data are perfect, we will not be able to find a
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scale factor, a translation, and a rotation such that the trans-
formation equation above is satisfied for each point. In-
stead there will be a residual error

e;=r,; —sR(r,) — x5

We will minimize the sum of squares of these errors

i |.|e§“2-
=1

(Ishow in Appendix A that the measurements can be weight-
ed without changing the basic solution method.)

We consider the variation of the total error first with
translation, then with scale, and finally with respect to rota-
tion.

C. Centroids of the Sets of Measurements
It turns out to be useful to refer all measurements to the
centroids defined by
n
- 1 - 1
r=— E | 7 r.=—
{ n Li n

n

rm-.
i=1 i=1
Let us denote the new coordinates by
Y=r;=F, ¥, ;=r;—rI.
Note that
n n

Sru=0, Sr,=0

i=1 i=1
Now the error term can be rewritten as
e, =r,;—sR(r') —r,
where
r'y=r,—r,+sR(r).

The sum of squares of errors becomes

n
Z ”r’r,g —sR(r';) — ol

i=1

or

Z ¥, ; = sR(x/;)|I* = 2r’, - Z [¥',; = sR(x", )] + nlIxll

i=1 i=1

Now the sum in the middle of this expression is zero since the
measurements are referred to the centroid. So we are left
with the first and third terms. The first does not depend on
r’y, and the last cannot be negative. The total error is
obviously minimized with r’p = 0 or

r,= ;r = SR(I-'E)

That is, the translation is just the difference of the right
centroid and the scaled and rotated left centroid. We return
to this equation to find the translational offset once we have
found the scale and rotation.

This method, based on all available information, is to be
preferred to one that uses only measurements of one or a few
selected points to estimate the translation.

At this point we note that the error term can be written as
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e, =r,,— sk

since r's = 0. So the total error to be minimized is just

S Iy = R I
=1

D. Finding the Scale
Expanding the total error and noting that

u R(l"u} ”2 = ”rf]',;' ”2’

we obtain

n n n
z Ir M2 —2s z ', R(r') + s Z ey 12,
i=1 i=1

=1
which can be written in the form
S, — 2sD + s%S,,

where S, and S; are the sums of the squares of the measure-
ment vectors (relative to their centroids), while D is the sum
of the dot products of corresponding coordinates in the right
system with the rotated coordinates in the left system.
Completing the square in s, we get

{S\/E el D}'\/S’_;)2 + (S‘.S; by’ Dgl;‘fs;.

This is minimized with respect to scale s when the first term
is zero or s = D/S}, that is,

§= i r’,-_i ‘R(r’u) /i “1"‘;_5"?
i=1 i=1

E. Symmetry in Scale
If, instead of finding the best fit to the transformation,

r,=sR(r) +r,
we try to find the best fit to the inverse transformation,
r = #R(x,) + o,

we might hope to get the exact inverse:

s=1fs, ryp=- = R™\(r,), R=R".

§
This does not happen with the above formul_atiop. By ex-
changing left and right, we find instead that s = D/S, or

5k z v RO, / Z e, 12,

i=1 i=1

which in general will not equal 1/s, as determined above.
(This is illustrated in an example in Appendix Al.)

One of the two asymmetrical results shown above may be
appropriate when the coordinates in one of the two systems
are known with much greater precision than those in the
other. Ifthe errors in both sets of measurements are similar,
it is more reasonable to use a symmetrical expression for the
error term:

B |
e,———J-;—

Then the total error becomes

r,; = VsR(x',).
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n n n
1 S !
g E I, N7 —2 E r iR +s '2—1 ey 12

i=1 i=1

or
1
T S | 2.0 + SS I+
s

Completing the square in s, we get

1 2
(\[ESf 5 S,) +2(S,S, - D).

This is minimized with respect to scale s when the first term
is zero or s = S,/S}, that is,

n n /2
s=(S I / S iel)
i=1 i=1

One advantage of this symmetrical result is that it allows
one to determine the scale without the need to know the
rotation. Importantly, the determination of the rotation is
not affected by our choice of one of the three values of the
scale factor. In each case the remaining error is minimized
when D is as large as possible. That is, we have to choose the
rotation that makes

n

z ', R(r'y)

i=1

as large as possible.

3. REPRESENTATION OF ROTATION

There are many ways to represent rotation, including the
following: Euler angles, Gibbs vector, Cayley-Klein param-
eters, Pauli spin matrices, axis and angle, orthonormal ma-
trices, and Hamilton’s quaternions.!213 Of these represen-
tations, orthonormal matrices have been used most often in
photogrammetry and robotics. There are a number of ad-
vantages, however, to the unit-quaternion notation. One of
these is that it is much simpler to enforce the constraint that
a quaternion have unit magnitude than it is to ensure that a
matrix is orthonormal. Also, unit quaternions are closely
allied to the geometrically intuitive axis and angle notation.

Here I solve the problem of finding the rotation that maxi-
mizes

n

Z r'i R

i=1

by using unit quaternions. If desired, an orthonormal ma-
trix can be constructed from the components of the resulting
unit quaternion, as is shown in Subsection 3.E. We start
here by reviewing the use of unit quaternions in representing
rotations. Further details may be found in Appendixes A6-
A8. The reader familiar with this material may wish to skip
ahead to Section 4.

A. Quaternions

A quaternion can be thought of as a vector with four compo-
nents, as a composite of a scalar and an ordinary vector, or as
a complex number with three different imaginary parts.
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Quaternions will be denoted here by using symbols with
circles above them. Thus, using complex number rotation,
we have

q‘ = qO & LQx +Jq_) + qu!

a quaternion with real part g and three imaginary parts, gz,
gy, and g..

Multiplication of quaternions can be defined in terms of
the products of their components. Suppose that we let

t=-1, jf=-1, K=-1

ij=k, jR=1i, ki=j;
and

ji=—h, kj = —i, ik=—j
Then, if

r= ro tir, +jry + kr,,
we get

rq = (roGo = r'eGx — Tydy — 242)
+i(rog, + g0+ 1,9, = 1.9,
+jlrogy — req. + 140 + .45
+ k(rog, + r,q, — rya, + r.qo)-

The product gr has a similar form, but six of the signs are
changed, as can readily be verified. Thus rq # gr, in gener-
al. In Subsection 3.B we think of quaternions as column
vectors with four components.

B. Products of Quaternions

The product of two quaternions can also be conveniently
expressed in terms of the product of an orthogonal 4 X 4
matrix and a vector with four components. One may choose
to expand either the first or the second quaternion in a
product into an orthogonal 4 X 4 matrix as follows:

T —Fzii=h, =r,
r r -r T
se x 0 z y | _ a
rq = _ " la=Rg
.i"}. i“z ."'0 .?'I
|__J"z =r, r. To_|
or
.i"n -r ¥ —J"}. -rz
r T r '
wiacR x 0 z y | _ .
gr= _ 7=Rgq
!'y I“z .i"u .?'x
r, .i"'y =TI ry

Note that R differs from IR in that the lower-right-hand
3 X 3 submatrix is transposed. (This again illustrates the
noncommutative nature of multiplication of quaternions.)
Note that the sum of squares of elements of each column (or
row) of IR and IR equals

N et e ri:

which is just the dot product r - r, as we see below.
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C. Dot Products of Quaternions

The dot product of two quaternions is the sum of products of
corresponding components:

P-4 = Podo + Pxds + Py, + P.q,.

The square of the magnitude of a quaternion is the dot
product of the quaternion with itself:
Iql*=q-q.
A unit quaternion is a quaternion whose magnitude equals
1. Taking the conjugate of a quaternion negates its imagi-
nary part; thus
q* = qo— iq, — jq, — ka,.

The 4 X 4 matrices associated with the conjugate of a
quaternion are just the transposes of the matrices associated
with the quaternion itself. Since these matrices are or-
thogonal, the products with their transposes are diagonal:
that is, QQT = ¢ - ¢I, where I is the 4 X 4 identity matrix.
Correspondingly, the product of g and g* is real:

4q* = @2+ 4.2 +q,2+¢D=q-q.
We immediately conclude that a nonzero quaternion has an
inverse
¢t = (1/9-9)q*.
In the case of a unit quaternion, the inverse is just the
conjugate.

D. Useful Properties of Products
Dot products are preserved because the matrices associated
with quaternions are orthogonal; thus

(gp) - (¢7) = (@p) - (@D = @p)T(@r)
and
(@p)T(Q) = pTQTQr = pT(q - PIr.
We conclude that
@p) - @n) =(g- (-7,

which, in the case when q is a unit quaternion, is just p-r. A
special case follows immediately:

() - (B9 = (- P)q-9);
that is, the magnitude of a product is just the product of the
magnitudes. It also follows that

(oq) -7 =p- (Fg*),
a result that we will use later.

Vectors can be represented by purely imaginary quaterni-
ons. Ifr = (x,7y,2)T, we can use the quaternion

r=0+ix+jy+kz

(Similarly, scalars can be represented by using real quaterni-
ons.) Note that the matrices IR and IR associated with a
purely imaginary quaternion are skew symmetric. That is,
in this special case,

RT=-R and R7=-R.
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E. Unit Quaternions and Rotation
The length of a vector is not changed by rotation, nor is the

angle between vectors. Thus rotation preserves dot prod-’

ucts. Reflection also preserves dot products but changes
the sense of a cross product—a right-hand triad of vectors is
changed into a left-hand triad. Only rotations and reflec-
tions preserve dot products. Thus we can represent rota-
tions by using unit quaternions if we can find a way of
mapping purely imaginary quaternions into purely imagi-
nary quaternions in such a way that dot products are pre-
served, as is the sense of cross products. (The purely imagi-
nary quaternions represent vectors, of course.)

Now we have already established that multiplication by a
unit quaternion preserves dot products between two quater-
nions. That is,

(gp)-(gr)=p-T,
provided that ¢ - ¢ = 1. We cannot use simple multiplica-
tion to represent rotation, however, since the product of a
unit quaternion and a purely imaginary quaternion is gener-
ally not purely imaginary.
What we can use, however, is the composite product

¥ =i
which is purely imaginary. We show this by expanding
grg* = (QAq* = QT(Qr) = (QTQ)r,

where @ and @ are the 4 X 4 matrices corresponding to q
Then we note that
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angle 8 about the axis defined by the unit vector @ = (w;, w,,
w,)T can be represented by the unit quaternion

. A 2

q = cos % + sin e (lw, + jw, + kw,).
Thus the imaginary part of the unit quaternion gives the
direction of the axis of rotation, whereas the angle of rota-

tion can be recovered from the real part and the magnitude
of the imaginary part.

G. Composition of Rotations

Consider again the rotation ¥ = grg*. Suppose that we now
apply a second rotation, represented by the unit quaternion
p. We have

i = BB = BB
It is easy to verify that (¢*p*) = (pg)*. So we can write
i = GG,

The overall rotation is represented by the unit quaternion
pqg. Thus composition of rotations corresponds to multipli-
cation of quaternions.

It may be of interest to note that it takes fewer arithmetic
operations to multiply two quaternions than it does to multi-
ply two 3 X 3 matrices. Also, calculations are not carried out
with infinite precision. The product of many orthonormal
matrices may no longer be orthonormal, just as the product

of many unit quaternions may no longer be a unit quaternion
because of the limitation of the arithmetic used. It is, how-

. 0

0 (g’+ar-g2-¢)
0 2(q,q, + 909.)

0 2(g,9; = 9o4y)

G-¢
Q7q =

So # is purely imaginary if ¥ is. Now @ and @ are orthonor-
mal if g is a unit quaternion. Then g - ¢ = 1, and so the
lower-right-hand 3 X 3 submatrix of @TQ must also be ortho-
normal. Indeed, it is the familiar rotation matrix R that
takes rinto r’:

¥ =.Rr.

In Appendix A6 it is shown that cross products are also
preserved by the composite product grg*, so that we are
dealing with a rotation, not a reflection (equivalently, we can
demonstrate that the determinant of the matrix above is
+1).

Note that

(—@)r(=g*) = grq*
so that -q: represents the same rotation as does q

F. Relationship to Other Representations

The expansion of QTQ given above provides an explicit
method for computing the orthonormal rotation matrix R
from the components of the unit quaternion g. I give in
Appendix A8 a method to recover the unit quaternion from
an orthonormal matrix. It may be helpful to relate the
quaternion notation to others with which the reader may be
familiar. It is shown in Appendix A7 that a rotation by an

2(QIQy . QI]Qz)
(g’ - a2+ 9,2 ¢,)
2(q.q, + g49,)

0 0
2(g.9. + 909,)
2(g,9, = 909,)
(9’ - .’ - g2 + ¢}

ever, trivial to find the nearest unit quaternion, whereas it is
quite difficult to find the nearest orthonormal matrix.

4. FINDING THE BEST ROTATION

We now return to the problem of _absolute orientation. We
have to find the unit quaternion g that maximizes

S 671,67 -7
i=1

Using one of the results derived above, we can rewrite this in
the form

z (qr) - (7).
=1

Suppose that v';; = (x’1;, ¥ 2°1) T while ¥, = (x5, ¥'ris
z'.))T; then

!
0 —=xy =y -2y

'
o= Xy 0 Z’u _y,!',i * & .
qr’u"’ ’ Bt , Q—IRuQ-
Y 20 0 X
!
2 Y X0
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while

0 _x!r,i bt ;r.i e
X 0 =zl ¥l .
’ : ,ri"J q= IR'r.fq'
Yri Y 0 X

i
i Yri Xpi 0

Note that IR,; and *#IR;; are skew symmetric as well as
orthogonal. The sum that we have to maximize can now be
written in the form

> (Ry4) - (R,9)

i=1

or
n
> "R R,G;
i=1
that is,
q.T ZRUTIRJ'J q-
i=1
or

n
q'f(z N.-)c,: - NG,
i=1

where N; = +R;TR,; and N = ¥ ;1" N;. It is easy to
verify that each of the N; matrices is symmetric, so N must
also be symmetric.

A. Matrix of Sums of Products
It is convenient at this point to introduce the 3 X 3 matrix

n
= T
M= Z r’LirtrJ—

i=1

whose elements are sums of products of coordinates mea-
sured in the left system with coordinates measured in the
right system. It turns out that this matrix contains all the
information required to solve the least-squares problem for
rotation. We may identify the individual elements by writ-
ing M in the form

Sxx Sxy sz
M= S}’x Syy SJ'Z 4
Szx Szy Szz
where

— ' r
Sex = 2 X% ri

i=1 i=1

and soon. Then
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Thus the 10 independent elements of the real symmetric
4 X 4 matrix N are sums and differences of the nine elements
of the 3 X 3 matrix M. Note that the trace, sum of diagonal
elements of the matrix N, is zero. (This takes care of the
10th degree of freedom.)

B. Eigenvector Maximizes Matrix Product

It is shown in Appendix A3 that the unit quaternion that
maximizes

q"Ng

is the eigenvector corresponding to the most positive eigen-
value of the matrix N.

The eigenvalues are the solutions of the fourth-order poly-
nomial in X that we obtain when we expand the equation

det(N = A\) =0,

where I is the 4 X 4 identity matrix. We show in what
follows how the coefficients of this polynomial can be com-
puted from the elements of the matrix N.

Once we have selected the largest positive eigenvalue, say,
Am, we find the corresponding eigenvector &, by solving the
homogeneous equation

[N =, lle,, = 0.

I show in Appendix A5 how the components of &, can be
found by using the determinants of submatrices obtained
from (N — Apl) by deleting one row and one column at a
time.

C. Nature of the Closed-Form Solution

We can now summarize the algorithm. We first find the
centroids r; and r. of the two sets of measurements in the left
and the right coordinate system. The centroids are sub-
tracted from all measurements so that, from now on, we deal
only with measurements relative to the centroids. For each
pair of coordinates we compute the nine possible products
XXy X'y, .. .272% of the components of the two vectors.
These are added up to obtain S,,, S,,,..., S;;. These nine
totals contain all the information that is required to find the
solution.

We now compute the 10 independent elements of the 4 X 4
symmetric matrix N by combining the sums obtained above.
From these elements, in turn, we calculate the coefficients of
the fourth-order polynomial that has to be solved to obtain
the eigenvalues of N. There are closed-form methods for
solving quartics, such as Ferrari’s method, which splits the
quartic into two quadratics.!21415 We.pick the most posi-
tive root and use it to solve the four linear homogeneous
equations to obtain the corresponding eigenvector. The
quaternion representing the rotation is a unit vector in the
same direction. (If desired, an orthonormal 3 X 3 matrix
can now be constructed from the unit quaternion, using the
result in Subsection 3.E.)

At this point, we compute the scale by using one of the

Sy +8,,+8.) S-S, S = Sa.
e R R Y
Su = S, Sy+Sy, (=S, +8,,-5.)

Sxy TR 'Syx Szx b sz Syz + Szy

Sey = Sz
See + S
S,. + S,y

(=S, = S,y + S.,)
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three formulas given for that purpose in Subsections 2.D and
2 E. If we choose the symmetric form, we actually do not
need to know the rotation for this step. The scale is then
just the ratio of the root-mean-square deviations of the two
sets of measurements from their respective centroids.

Finally, we compute the translation as the difference be-.

tween the centroid of the right measurements and the scaled
and rotated centroid of the left measurements.

While these calculations may be nontrivial, there is no
approximation involved—no need for iterative correction.
(Also, the basic data extracted from the measurements are
the same as those used by existing iterative schemes.)

D. Coefficients of the Quartic—Some Details
Suppose that we write the matrix IV in the form

h j
f i
c g
g d
where a = Syx + Syy + S:z,e = Sy: = Sz, h = Sox — S,.,and so
on. Then

det(N—-M\) =0
can be expanded in the form
A+ A3 + A%+ e d +¢p =0,
where
c;=a+btc+d,
¢y = (ac = h?) + (be -+ (ad = j» + (bd — i)
+ (cd + g + (ab — &%),
¢, = [~bled — g% + f(df — gi) — i(fg — ci)
—a(ed — g% + h(dh — gj) — j(gh = ¢Jj)
— a(bd — i?) + e(de = ij) — j(ei — bj)
— a(be — f2) + e(ce — fh) — h(ef — bh)],
cp = (ab— e?)(ed — g% + (eh — af)(fd — gi)
+ (ai — ej)(fg — ci) + (ef — bh)(hd - gj)
+(bj — ei)(hg = ¢j) + (hi — fi)*
(These expressions may be rewritten and simplified some-
what.) It is easy to see that ¢z = 0 since it is the trace of the

matrix N. (This makes it easier to solve the quartic, since
the sum of the four roots is zero.) Furthermore,

¢y = —2(S,,2 + 8,2+ S,.* +8,.}
+8,2+8,2+ S.2+8.,2+85.5,
and so c» is always negative. (This means that some of the

roots must be negative while others are positive.) Note that
¢y = =2 Tr(MTM). Next we find that
¢, =8(5,,5,,S:;, + SyySexSi: + S..S.,8S,,)

= 8(S,:8,,Su: + S3:SexSy + 50yS:S:s)-

This may be either positive or negative. It turns out to be
zero when the points are coplanar, as we shall see below.
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This always happens when there are only three points.
Note that ¢; = —8 det(M), while ¢o = det(N).

5. POINTS IN A PLANE

If one of the two sets of measured points lies in a plane, the
corresponding centroid must also lie in the plane. This
means that the coordinates taken relative to the centroid lie
in a plane that passes through the origin. The components
of the measurements then are linearly related. Suppose, for

‘concreteness, that it is the right set of measurements that is

so affected. Let n, be a vector normal to the plane. Then

r.-n.=0
or
& i 2T - =0,
This implies that
(Sexr Seyy Si)T o1, =0,
(Syxr Syy Sy2)T -1, =0,
(S0 S50 S;)T +m, =0,
or
Mn, =0.

We conclude that M is singular. Now ¢; = —8 det(M), and
hence ¢; = 0. The same reasoning applies when all the
points in the left set of measurements are coplanar.

This means that the quartic is particularly easy to solve.
It has the simple form ;

A+ A2+ ¢y = 0.
If we let u = A2, we obtain
W+ e tcy=0,
and the roots are just
p = Yc,? — 4cg)'2 — ¢,

Now c; is negative, so we get two positive roots, say, p+ and
#—. The solutions for A are then

A=tJuy, A=Efu

The most positive of the four solutions is
hm = [1":2(‘,:22 i 400) 1/2 021112_

This simple method applies when the points all lie in a plane.
In particular, if we are given three points this will always be
the case. So we find a simple least-squares solution to this
case that is normally treated in an approximate fashion by
selectively discarding information, as we did in Subsection
2.A.

A. Special Case—Coplanar Points

When both sets of measurements are exactly coplanar (as
always happens when there are only three) the general solu-
tion simplifies further. This suggests that this case may be
dealt with more directly. We could attack it by using unit
quaternions or orthonormal matrices. For variety we argue



Berthold K. P. Horn

this case geometrically. (Also, we make use of a dual inter-
pretation: we consider the measurements to represent two
sets of points in one coordinate system.)

First, the plane containing the left measurements has to
be rotated to bring it into coincidence with the plane con-
taining the right measurements (Fig. 3). We do this by
rotating the left measurements about the line of intersection
of the two planes. The direction of the line of intersection is
given by the cross product of the normals of the two planes.
The angle of rotation is that required to bring the left normal
to coincide with the right normal, that is, the angle between
the two normals.

At this point, the remaining task is the solution of a least-
squares problem in a plane. We have to find the rotation
that minimizes the sum of squares of distances between
corresponding left and (rotated) right measurements. This
second rotation is about the normal to the plane. The angle
is determined by the solution of the least-squares problem.

The overall rotation is just the composition of the two
rotations found above. It can be found by multiplication of
unit quaternions or multiplication of orthonormal vectors,
as desired. The solution is simpler than the general one
because the rotation to be found by the least-squares meth-
od is in a plane, so it depends on only one parameter, not
three, as does rotation in the general case (see Fig. 4).

We start by finding normals to the two planes. We can
use the cross products of any pair of nonparallel vectors in
the plane:

n=rp Xy, n=r, X,

(The normals can also readily be expressed in terms of three
cross products of three of the original measurements rather
than two measurements relative to the centroid.) We next
construct unit normals #; and A, by dividing n; and n, by
their magnitudes. The line of intersection of the two planes
lies in both planes, so it is perpendicular to both normals. It
is thus parallel to the cross product of the two normals. Let

a=nXn,.

(This can be expanded either as a weighted sum of the two
vectors r’;; and ¥’j or as a weighted sum of the two vectors
r',; and r'y2.) We find a unit vector  in the direction of the
line of intersection by dividing a by its magnitude.

The angle ¢ through which we have to rotate is the angle
between the two normals. So

cos¢ =R+ R, sing=[~Xnl
(Note that0 < ¢ < 7.)

We now rotate the left measurements into the plane con-
taining the right measurements. Let r”;; be the rotated
version of r’;;. 'The rotation can be accomplished by using
Rodrigues’s formula, the unit quaternion

Go = cos% + sin%(iax + ja, + ka,),
or the corresponding orthonormal matrix, say, Rq.
B. Rotation in the Plane

We now have to find the rotation in the plane of the right-
hand measurements that minimizes the sum of squares of
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distances between corresponding measurements. That is,
we wish to minimize

n
Z ﬁl"m' = 1‘”1;”2-

i=1

Let «; be the angle between corresponding measurements.
That is,

’ o
T

Y =
rer’icos e =r e’y

and
r’,lfr”;.‘- sin a; = (r’”- X r”“) . ﬁ"
where

’Jm' . ||r’m-l|, ?'”f_,‘ = ”1'”;_;" = ”l'!:_jﬂ-
Note that r’,; X r”}; is parallel to #,, so the dot product
with A, has a magnitude

”1",‘;' X l'”;.;"

but a sign that depends on the order of r’,; and r”;; in the
plane.

Using the cosine rule for triangles, or by expanding the
term above, we find that the square of the distance between
corresponding measurements is

(r’,.l-)a + {r”“)2 oy 2erl£r”Ilf COo8 O.'l'-

Fig.3. When the two sets of measurements each lie in a plane, the
rotation decomposes conveniently into rotation about the line of
intersection of the two planes and rotation about a normal of one of
the planes. (In this figure the two coordinate systems have been
aligned and superimposed.) .

s
o o)
Fig. 4. The second rotation, when both sets of measurements are
coplanar, is about the normal of one of the planes. The rotation
that minimizes the sum of errors is found easily in this special case
since there is only one degree of freedom.
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When the left measurements are rotated in the plane
through an angle #, the angles o; are reduced by 6. So to
minimize the sum of squares of distances we need to maxi-
mize

z o7 cosle; — 6)
i=1

or
C cosf + Ssiné,
where
n n
C= Z rp i’ cos o = Z (', -x")
i=1 i=1
and

n n
§= s sina = (z - ) 4,
i=1

i=1
This expression has extrema where
Csinf=8cosé

or
—S...._ cosd =4 _q_ .
JST+C? VST+ C?

The extreme values are + SZ + C2 So for a maximum we
chose the pluses. (Note that S and C may be positive or
negative, however.)

The second rotation is then about the axis /i, by an angle 6.
It can be represented by the unit quaternion

sinf = %

. el g .
g, = cos % + sin (in, + jn, + kn,)
or the corresponding orthonormal matrix, say, R,.

The overall rotation is the composition of the two rota-
tions; that is,

q. v épéa or R - RpRa'

This completes the least-squares solution for the case in
which both the left and the right sets of measurements are
coplanar. Note that, in practice, it is unlikely that the
measurements would be exactly coplanar even when the
underlying points are, because of small measurement errors,
unlessn = 3.

The above provides a closed-form solution of the least-
squares problem for three points. The special case of three
points is usually treated by selectively neglecting some of the
information, as discussed earlier. The answer then depends
on which pieces of information were discarded. The method
described above, while more complex, uses all the informa-
tion. (The number of arithmetic operations is, of course,
not a significant issue with modern computational tools.)

By the way, in the above it may have appeared that trigo-
nometric functions needed to be evaluated in order for the

components of the unit quaternions to be obtained. In fact,

we only need to be able to compute sines and cosines of half-

angles given sines and cosines of the angles. But for —r <8
=7
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cos 8/2 = [(1 + cos 8)/2]"2,
while
sin 8/2 = sin 8/[2(1 + cos 8)]'/2

(As usual, it is best to know both the sine and the cosine of an
angle.)

While unit quaternions constitute an elegant notation for
representing rotation, much of the previous work has been
based on orthonormal matrices. An orthonormal rotation
matrix can be constructed easily from the components of a
given unit quaternion, as shown in Subsection 3.E.

6. CONCLUSION

I have presented a closed-form solution for the least-squares
problem of absolute orientation. It provides the best rigid-
body transformation between two coordinate systems given
measurements of the coordinates of a set of points that are
not collinear. The solution given uses unit quaternions to
represent rotations. The solution simplifies when there are
only three points. Ialso gave an alternative method for this
special case.

I showed that the best scale is the ratio of the root-mean-
square deviations of the measurements from their respective
centroids. The best translation is the difference between
the centroid of one set of measurements and the scaled and
rotated centroid of the other measurements. These exact
results are to be preferred to ones based only on measure-
ments of one or two points. The unit quaternion represent-
ing the rotation is the eigenvector-associated with the-most
positive eigenvalue of a symmetric 4 X 4 matrix. The corre-
sponding orthonormal matrix can be easily found.

The solutions presented here may seem relatively com-
plex. The ready availability of program packages for solv-
ing polynomial equations and finding eigenvalues and eigen-
vectors of symmetric matrices makes implementation
straightforward, however.

APPENDIXES

Al. The Optimum Scale Factor Depends on the Choice
of the Error Term

Consider a case in which there is no translation or rotation
(Fig. 5). We are to find the best scale factor relating the sets
of measurements in the left coordinate system to those in the
right. If we decide to scale the left measurements before
matching them to the right ones, we get an error term of the
form

E, = 2(c — sa)® + 2(d — sb)?,
where s is the scale factor. This error term is minimized
when

__ _ac+bd
i a2+ b

If, instead, we decide to scale the right measurements before
matching them to the left ones, we get an error term of the
form

E = 2(a — s¢)? + 2(b — 5d)?,
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o}
i

'Fig. 5. Three different optimal scale factors can be obtained by
choosing three different forms for the error term. In general, a
symmetric form for the error is to be preferred.

where s is the new scale factor. This error term is minimized
when

ac+bd.
et + d?

s=

The equivalent scaling of the left coordinate system is 1/s or
' ¢+ d?

s:s =
™ ac+ bd

In general, 5;, # sy, 50 these two methods violate the symme-
try property sought for. If we use the symmetric form

E, = 2(‘;? e \/Ea)z + 2(% d- ch)z,

we obtain instead

S_S o 02+d2 11’2
RGN PEIITY B

Note that S,y is the geometric mean of S;, and S,; and that
the expression for S,y does not depend on products of mea-
surements in the left coordinate system with measurement
in the right coordinate system. If there is no strong reason
to do otherwise, the symmetric form is to be preferred, al-
though the method presented in this paper for determining
the best rotation applies no matter how the scale factor is
chosen.

AZ2. Weighting the Errors
The expected errors in measurements are not always equal.
In this case it is convenient to introduce weights into the sum
of errors so that one minimizes

n

Z w;lleillz,

i=1

where w; is some measure of confidence in the measurements
of the ith point. The method presented in this paper can
easily accommodate this elaboration. The centroids be-
come weighted centroids:

n n
T = Z wir; z w;
i=1 i=1

and
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= ft n
r*=zwirr; / w;.
The translation is computed by using these centroids, as
before. Computation of the best scale is also changed only

slightly by the inclusion of weighting factors:

SR (Z wille, ) / i w:ﬂr';,;“z)m.

i=1 i=1

The only change in the method for recovering rotation is
that the products in the sums are weighted, that is,

n
— ; s T
M= E wr'pr

i=1

80

n
—_ ' '
S,, = Z WXy % s

i=1

and soon. Once the elements of the matrix M are found, the
solution proceeds exactly as it did before the introduction of
weights.

A3. Maximizing the Quadratic Form g7Ng

To find the rotation that minimizes the sum of squares of
errors, we have to find the quaternion ¢ that maximizes
gTNq subject to the constraint that g-¢ = 1. The symmetric
4 X 4 matrix N will have four real eigenvalues, say, A, As,. . .,
M. A corresponding set of orthogonal unit eigenvectors &,
és,. . ., &4 can be constructed such that

Né; = \é¢; for i=12,...,4.

The eigenvectors span the four-dimensional space, so an
arbitrary quaternion ¢ can be written as a linear combina-
tion in the form

q‘ b alél + ﬂ'zéz + ﬂ3é3 + “4éd-

‘Since the eigenvectors are orthogonal, we find that

q°-q'r=:x12+a22+a32+cx42.

We know that this has to equal one, since q is a unit quaterni-
on. Next, note that

NG = a8, + aghots + aghgds + Ay
since &, &s,. . ., &4 are eigenvectors of N. We conclude that
GTNG = ¢ - (NG) = a2\, + apPhg + asPhg + a2,

Now suppose that we have arranged the eigenvalues in order,
so that

A= A= A A,
Then we see that _
dTNd =< aﬁ)\l + ay?h + Iﬂ!32’\1 +a\ = 7\1_

so that the quadratic form cannot become larger than the
most positive eigenvalue. Also, this maximum is attained
when we chose ¢y = land a2 = a3 = ay = 0, that is, ¢ = &,.
We conclude that the unit eigenvector corresponding to the
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most positive eigenvalue maximizes the quadratic form
gqTNg. (The solution is unique if the most positive eigenval-
ue is distinct.)

A4. Finding the Eigenvector
There are iterative methods available for finding eigen-
values and eigenvectors of arbitrary symmetric matrices.
One can certainly apply these algorithms to the problem
presented here. We are, however, dealing only witha 4 X 4
matrix, for which noniterative methods are available. We
have already mentioned that the eigenvalues may be found
by applying a method such as that of Ferrari to the quartic
equation obtained by expanding det(N — AJ) = 0.

Once the most positive eigenvalue, say, A, has been deter-
mined, we obtain the corresponding eigenvector &,, by solv-
ing the homogeneous equation

(N =\, Deé, =0.

This can be accomplished by arbitrarily setting one compo-
nent of &, to 1, solving the resulting inhomogeneous set of
three equations in three unknowns, and then scaling the
result.

If the component of &, chosen happens to be small, nu-
merical inaccuracies will tend to corrupt the answer. For
best results, this process is repeated by setting each of the
components of &, to 1 in turn and choosing the largest of the
four results so obtained. Alternatively, the four results can
be added up, after changing signs if necessary, to ensure that
they all have the same sense. In either case, the result may
be scaled so that its magnitude is 1. The inhomogeneous
equations can be solved by using Gaussian elimination (or
even Cramer’s rule).

A5. Using the Matrix of Cofactors
The method for finding an eigenvector (given an eigenvalue)
described in the previous appendix can be implemented in
an elegant way by using the cofactors of the matrix (N — AJ).
A cofactor of a matrix is the determinant of the submatrix
obtained by striking a given row and a given column. There
are as many cofactors as there are elements in a matrix since
there are as many ways of picking rows and columns to
strike. The cofactors can be arranged into a matrix. The
element in the ith row and jth column of this new matrix is
the determinant of the submatrix obtained by striking the
ith row and jth column of the original matrix.

The matrix of cofactors has an intimate connection with
the inverse of a matrix: the inverse is the transpose of the
matrix of cofactors, divided by the determinant. Let

N,=N-\,
then
det(N)N, ™1 = (N7,

where N is the matrix of cofactors of N. Next, we note that
the determinant is the product of the eigenvalues and that
the eigenvalues of (N — AI) are equal to the eigenvalues of N
minus A, So .

det®™,) = [T = -

j=1
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We will also need the result that the eigenvalues of the
inverse of a matrix are the (algebraic) inverses of the eigen-
values of the matrix itself. So, if we write for an arbitrary

quaternion
n
q= Z A
i=1

we obtain

Combining these results, we see that

zn: ﬁ (N = Nae; = (N)7g.

i=1 =1

We remove all terms but one from the sum on the left-hand
side by setting A = A,. This gives us

H O = Mg, = (N, )7q.

j=m
The left-hand side is a multiple of the sought after eigenvec-
tor é,. This will be nonzero as long as the arbitrary quater--
nion ¢ has some component in the direction &, that is, am, =
0 (and provided that the most positive eigenvalue is dis-
tinct). It follows from consideration of the right-hand side
of the expression above that each column of (N,,)7, and

thence each each row of N, _, must be parallel to é,.

All that we need to do then is to compute the matrix of
cofactors of (N — A,J). Each row of the result is parallel to
the desired solution. We may pick the largest row or add up
the rows in the fashion described at the end of the previous
appendix. Note that we could have saved ourselves some
computation by generating only one of the rows. It may
happen, however, that this row is zero or very small.

The matrix of cofactors, by the way, can be computed
easily by using a modified Gaussian elimination algorithm
for inverting a matrix.

A6. Quaternions as Sums of Scalar and Vector Parts
We found it convenient to treat quaternions as quantities
with three different imaginary parts (and occasionally as
vectors with four components). At other times it is useful to
think of quaternions as composed of a scalar and a vector
(with three components).

Thus

q =qo+ig, +jq, +ka,
can be represented alternatively in the form
g=q+gq,

where ¢ = gpand q = (g, gy, g:)7. The rules for multiplica-

tion of quaternions given earlier can then be written in the

more compact form
p=rs—r-s, p=rs+sr+rXs,

when p = rs and

p=p+p.

r=r+r, s=s+s,
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The results simplify if r and s are purely imaginary, that is, if
r=0ands = 0. Inthisspecial case

p=-r-s, p=r Xs.

Now let us apply the composite product with a unit quater-
nion g tor, s, and p. That is, let

r=qrg*,

#e0

§ =qsq*, P =4qpg*.
Clearly

F's' = (@rg*)(gsg*) = (an(g*q)(sq*) = q(rs)g*,
so consequently :
—-r'-8’'=-r-s

Also, ' X ¢’ is the result of applying the composite product
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The relationships presented here allow us to convert easily

betwgen axis and angle and unit-quaternion notations for
rotations. We have

@ =q/lall
and

sinf=2gllql, cos®=1(q%— lql?.

A8. Unit Quaternion from Orthonormal Matrix
We have shown in Subsection 3.E that the orthonormal
matrix corresponding to the unit quaternion

q:= QO+iQx+Jq_y+kQZ

is

(@ + 4 — g, — 2.}
R= 2(g,9, + 9092
2(Q2Qx e QOQy)

2(qrqz + qOQy}
2(qy9; = 909x) .
p— qu — qyﬂ + qz2)

2{qqu = qoq.)
(qﬂz 5 sz + q_yz e QZz)

2(9:‘5’3, + qDQz) (QDE

with the unit quaternion to r X s. Thus dot products and
cross products are preserved. Consequently, the composite
product with a unit quaternion can be used to represent
rotation.

A7. Unit Quaternion from Axis and Angle

Suppose that a vector r is taken into r’ by a rotation of angle
6 about an axis (through the origin) given by the unit vector
@ = (wy, Wy, w,)T. Analysis of the diagram (Fig. 6) leads to
the celebrated formula of Rodrigues:

r' = cos fr + sin 6@ X r + (1 = cos )@ - x)w.

We would like to show that this transformation can also be
written in the form

F = qrq*,

where the quaternions, expressed in terms of scalar and
vector parts, are

r=0+r, r=0+r,
and
q = cos(6/2) + sin(6/2)a.

Strgightforward manipulation shows that, if the scalar part
of ris zero and ¢ is a unit quaternion, then the composite
product grg* has zero scalar part and vector part

r'=(¢*-q-q)r+2qq Xr +2(q-r)q.
If we now substitute
q = cos(6/2), q =sin(0/2)e
and use the identities
2 sin(#/2)cos(6/2) = sin 8,
cos*(8/2) — sin®(8/2) = cos 8,

we obtain the formula of Rodrigues.

At times it is necessary to obtain the unit quaternion corre-
sponding to a given orthonormal matrix. Let r; be the
element of the matrix R in the ith row and the jth column.

The following combinations of the diagonal terms prove
useful:

1+rtrggtry= 4q02,
147y = ry = ryy = 4q,%
1=ry +ry—ry =4g,’,
1=ry = rop ¥ ryy =4,

We evaluate these four expressions to ascertain which of qo,

xs. - -, Gz is the largest. This component of the quaternion

is then extracted by taking the square root (and dividing by
2). We may choose either sign for the square root since —q
represents the same rotation as +q.

Next, consider the three differences of corresponding off-
diagonal elements

Fig.6. The rotation of a vector r to a vector r’ can be understood in
terms of the quantities appearing in this diagram. Rodrigues's
formula follows.
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Fag = Fag = 440G,
rig — ra = 44e4,,
Tg1 — Tz = 444,
and the three sums of corresponding off-diagonal elements
roq + g = 49,4,
rap t 3 = 49,4,
rig+ ra = 4q.4,.

Three of these are used to solve for the remaining three
components of the quaternion using the one component
already found. For example, if go turned out to be the
largest, then q., gy, and g, can be found from the three
differences yielding 4q90q:, 4q0q,, and 4qog..

We select the largest component to start with in order to
ensure numerical accuracy. If we chose to solve first for gq,
for example, and it turned out that g, were very small, then
gx, Gy, and g would not be found with high precision.
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