SIGGRAPH2015 **Xroads** of **Discovery**

Variance Analysis for Monte Carlo Integration *Adrien Pilleboue¹, *Gurprit Singh¹, David Coeurjolly², Michael Kazhdan³, Victor Ostromoukhov^{1,2}

*Joint first Authors, ¹Université Lyon 1, ²CNRS/LIRIS UMR 5205, ³Johns Hopkins University

Monte Carlo Integration

f(x)

 $\int_{[0,1]^2} f(x) dx$

Monte Carlo Integration

 $\int_{[0,1]^2} f(x) dx \approx \frac{1}{N} \sum_{i=1}^N f(x_i)$

Light Simulation: on Surface

Light Simulation: on Surface

Light Simulation: Participating Media

Regular Sampling Pattern

Euclidean

Spherical

Hemispherical

Purely Random Sampling PatternEuclideanSphericalHemispherical

Jittered Sampling Pattern

Euclidean

Spherical Hemispherical

Poisson Disk Sampling Pattern

Euclidean

Spherical Hemispherical

Ambient Occlusion

Geometric Aliasing

Image Plane

Ambient Occlusion

Geometric Aliasing

Image Plane

Error: Structure Artifacts

Hemisphere

Same Hemispherical pointset at all hitpoints

Image Plane

Error: Structures to Noise

No rotation

With rotation

Homogeneous Sampling Pattern

Statistically invariant properties over the domain

Homogeneous Sampling Pattern

Homogeneous Sampling Pattern

Statistically invariant properties over the domain

Widesense stationary [Dippe and Wold 1985]

Homogeneous Sampling Pattern

Statistically invariant properties over the domain

Widesense stationary [Dippe and Wold 1985]

All sampling patterns derived from white noise

Regular Samples

Regular

Realisation 1

Realisation 2

Homogenization by Random Translation

Realisation 3

Homogenized

Multiple realisations

Homogenization by Random Translation

Realisation 1

Realisation 2

Jittered Samples

Realisation 3

Homogenized

Multiple realisations

Homogeneous Samples

Homogenization by Random Rotation

Regular

Realisation 2

Realisation 1

Realisation 3

Homogenized

Multiple realisations

Error in Terms of Variance

$Error = Bias^2 + Variance$

Error in Terms of Variance

Bias

Homogeneous Sampling:

$Error = Bias^2 + Variance$

Zero

Error in Terms of Variance

Homogeneous Sampling:

Bias

Implies:

$Error = Bias^2 + Variance$

Zero

Error = Variance

Nature of Noise

Purely Random

Jittered

MSE: 3.95x10⁻⁴

(96 hemispherical samples)

Regular

Image Plane

Regular

Variance in Integration

2

Homogeneous Sampling Patterns

Variance in Integration

2

Homogeneous Sampling Patterns

How can we characterize sampling patterns ?

Previous Work on Fourier Analysis of Sampling Patterns

Many prior works [Dippé and Wold 1985], [Cook 1986], [Ulichney 1987]

Previous Work on Fourier Analysis of Sampling Patterns

Many prior works [Dippé and Wold 1985], [Cook 1986], [Ulichney 1987]

Error relates to the frequency content of samples, [Durand 2011]

Previous Work on Fourier Analysis of Sampling Patterns

- Error relates to the frequency content of samples, [Durand 2011]
 - [Subr and Kautz 2013]

Many prior works [Dippé and Wold 1985], [Cook 1986], [Ulichney 1987]

Relates variance directly to the variance of Samples' Fourier Coefficients

Regular Sampling Pattern

Samples

Purely Random Sampling Pattern

Samples

Poisson Disk Sampling Pattern

Samples

Jittered Sampling Pattern

Samples

Radial Averging of Power Spectrum

2

Frequency

З

Variance in Integration

 \mathbf{O}

Homogeneous Samples + Frequency content (Power Spectra)

$Var(\mathbf{I}_N) = \frac{\mu(\mathcal{T}^a)\mu(S^{a-1})}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$

$Var(\mathbf{I}_N) = \frac{\mu(\mathcal{T}^d)\mu(S^{d-1})}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$

 $Var(\mathbf{I}_N) = \frac{\mu(\mathcal{T}^d)\mu(S^{d-1})}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) d\rho$

 $Var(\mathbf{I}_N) = \frac{\mu(\mathcal{T}^d)\mu(S^{d-1})}{N} \int_0^\infty \rho^{d-1} \mathcal{P}_{\mathbf{S}}(\rho) \mathcal{P}_{\mathbf{F}}(\rho) d\rho$

 $Var(I_N) = \frac{\mu(\mathcal{T}^d)\mu(S^{d-1})}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$

 $Var(I_N) = \frac{\mu(\mathcal{T}^d)\mu(S^{d-1})}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) d\rho$

$Var(\mathbf{I}_N) = \frac{\mu(S^2)}{N} \sum_{l=1}^{\infty} (2l+1) \breve{\mathcal{P}}_{\mathbf{S}}(l) \breve{\mathcal{P}}_{\mathbf{F}}(l)$

$Var(\mathbf{I}_N) = \frac{\mu(S^2)}{N} \sum_{l=1}^{\infty} (2l+1) \breve{\mathcal{P}}_{\mathbf{S}}(l) \breve{\mathcal{P}}_{\mathbf{F}}(l)$

Variance: Product of $\tilde{\mathcal{P}}_{s}(\cdot)$ and $\tilde{\mathcal{P}}_{F}(\cdot)$

Variance: Product of $\mathcal{P}_{\mathbf{S}}(\cdot)$ and $\mathcal{P}_{\mathbf{F}}(\cdot)$

Euclidean

 $Var(I_N) \propto \frac{1}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$

Variance: Product of $\tilde{\mathcal{P}}_{s}(\cdot)$ and $\tilde{\mathcal{P}}_{F}(\cdot)$

Euclidean

$Var(I_N) \propto \frac{1}{N} \int_{0}^{\infty} \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d} ho$

 $Var(I_N) \propto rac{1}{N} \sum_{l=1}^{\infty} (2l+1) ec{\mathcal{P}_S(l)} ec{\mathcal{P}_F(l)}$ Spherical

Dependence on Number of Samples

Dependence on Number of Samples

Dependence on Number of Samples

Euclidean

Euclidean

Euclidean Ps(p)

where, c_F and c'_F are constants

[Brandolini et al 2001, Mean square decay of Fourier transforms in euclidean and non euclidean spaces]

Integrand Power Spectrum

36

b = 0

 $\alpha \sqrt[d]{N}$

 $O\left(\frac{1}{N}\right)$

 $\widetilde{\mathcal{P}}_{\mathbf{S}}(\rho)$

 $Var(I_N)$

b = degree of the polynomial

d = dimensions

N = number of samples

 $\alpha \sqrt[d]{N}$

 $O\left(\frac{1}{N}\right)$

 $\mathcal{P}_{\mathbf{S}}(\rho)$

 $Var(I_N)$

 $\alpha \sqrt[d]{N}$

O

 $\frac{1}{\sqrt[d]{N^b}}$ d = dimensions N = num

N = number of samples

 $\alpha \sqrt[d]{N}$

 $O\left(\frac{1}{N}\right)$

 $\mathcal{P}_{\mathbf{S}}(\rho)$

 $Var(I_N)$

 $\alpha \sqrt[d]{N}$

O

$b \ge 1$

$O\left(\frac{1}{N\sqrt[d]{N}}\right)$

 $\alpha \sqrt[d]{N}$

d = dimensions

N = number of samples

 $\alpha \sqrt[d]{N}$

 $O\left(\frac{1}{N}\right)$

 $\mathcal{P}_{\mathbf{S}}(\rho)$

 $Var(I_N)$

 $\alpha \sqrt[d]{N}$

O

$b \ge 1$

 $\alpha \sqrt[d]{N}$

d = dimensions

N = number of samples

O

 $b \to \infty$

 $\alpha \sqrt[d]{N}$

Convergence Rate Analysis

Power Spectrum

Convergence rate

 $\langle N \sqrt{N} /$

Convergence Rate Analysis

Power Spectrum

Convergence rate

Convergence Rate Analysis

Jittered vs Poisson Disk Sampling

Why is jittered sampling better than Poisson Disk sampling ?

Poisson Disk

Power Spectra

Jittered

Poisson Disk $O\left(\frac{1}{N}\right)$

Constant Offset

Power Spectra: Low Frequency Region

Jittered $O\left(\frac{1}{N\sqrt{N}}\right)$

CCVT [Balzer et al. 2009]

Variance Convergence Rate: 0

CCVT [Balzer et al. 2009]

Our mathematical model can be used to tailor new sampling patterns.

Novel Contributions

Frequency analysis of spherical and hemispherical samples using spherical harmonics

Novel Contributions

using spherical harmonics to design new sampling patterns

Frequency analysis of spherical and hemispherical samples

Unified closed form variance expression that can be used

Novel Contributions

Frequency analysis of spherical and hemispherical samples using spherical harmonics
Unified closed form variance expression that can be used to design new sampling patterns
Analysis tool to theoretically compute and bound variance convergence rates of any stochastic sampler

Extend our mathematical framework to adaptive sampling strategies

Future Work

Future Work

strategies

deterministic sampling patterns

Extend our mathematical framework to adaptive sampling

Explore how we can extend our mathematical model to

Extend our mathematical framework to adaptive sampling strategies

Explore how we can extend our mathematical model to deterministic sampling patterns

Use our framework to construct new sampling patterns with the best convergence speed and with lowest variance even for small number of samples

Future Work

Our tools will be made public very soon.

http://liris.cnrs.fr/variance

ANR excellence chair (ANR-10-CEXC-002-01)

DigitalSnow/DigitalFoam programs(ANR-11-BS02-009 and PALSE/2013/21)

Acknowledgements

- David Kazhdan
- Kartic Subr
- Mathieu Desbrun and Katherine Breeden
- Jonathan Dupuy and Nicolas Bonneel
- Jean-Claude lehl, Vincent Nivoliers and Brian Wyvill
- Anonymous reviewers

Thank you for your attention.

 $Var(I_N) \propto \frac{1}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$ $Var(I_N) \propto \frac{1}{N} \sum_{l=1}^{\infty} (2l+1) \breve{\mathcal{P}}_{\mathbf{S}}(l) \breve{\mathcal{P}}_{\mathbf{F}}(l)$

Power spectra behavior at low frequencies matters !

Thank you for your attention.

 $Var(I_N) \propto \frac{1}{N} \int_0^\infty \rho^{d-1} \breve{\mathcal{P}}_{\mathbf{S}}(\rho) \breve{\mathcal{P}}_{\mathbf{F}}(\rho) \mathsf{d}\rho$ $Var(I_N) \propto \frac{1}{N} \sum_{l=1}^{\infty} (2l+1) \breve{\mathcal{P}}_{\mathbf{S}}(l) \breve{\mathcal{P}}_{\mathbf{F}}(l)$

Power spectra behavior at low frequencies matters !

Convergence Rate Analysis

Light Simulation: on Surface

Light Simulation: on Surface

Sphere

Light Source

Light Simulation: Participating media

Structural Artifacts

Ambient Occlusion

Image Plane

Ambient Occlusion

Structural Artifacts

Image Plane

Euclidean 2D

Spherical

Regular samples

Structural Artifacts

Image Plane

Jittered Sampling Pattern

Samples

Power Spectrum

0

C

ower

Radial averging of Power Spectrum

2

Frequency

З

For a given number of samples

Dependence on Number of Samples

Dependence on Number of Samples

For a given number of samples

Increase in number of samples

Dependence on Number of Samples

Dependence on Number of Samples

Integrand Power Spectrum

Scaled Power Spectrum

Frequency

Increase in number of samples

Low Frequency zone

Integrand Power Spectrum

Shifted Power Spectrum

Frequency

Increase in number of samples

Regular Sampling Pattern

00

Samples

Power Spectrum

0	0	0	0			0	0
ଚ୍ଚ	ଚ	ଡ	<mark>с</mark> о	<mark>с</mark> о	<mark>с</mark> о	<mark>с</mark> о	ଡ଼
O	0	0	O	O	O	O	O
0	0	0	0	0	Ο	0	Ο
0	0	0	Ο	Ο	0	Ο	0
Ο	•	0	0	0	0	0	0
0	0	0	O	Ο	Ο	0	0
0	•	•	0	0	0	0	0

Paris Chapter SIGGRAPH2015 **Xroads of Discovery**

Variance Analysis for Monte Carlo Integration *Adrien Pilleboue¹, *Gurprit Singh¹, David Coeurjolly², Michael Kazhdan³, Victor Ostromoukhov^{1,2}

*Joint first Authors, ¹Université Lyon 1, ²CNRS/LIRIS UMR 5205, ³Johns Hopkins University

Previous Work

Previous Work

Durand [2011] A Frequency analysis of Monte-Carlo and other numerical integration schemes

Error relates to the frequency content of samples

Previous Work

Durand [2011] A Frequency analysis of Monte-Carlo and other numerical integration schemes

Subr and Kautz [2013] Fourier analysis of stochastic sampling strategies

for assessing bias and variance in integration

Error relates to the frequency content of samples

Relates variance directly to the variance of Samples' Fourier Coefficients

Integrand Power Spectrum

Brandolini et al. [2001] Mean square decay of Fourier transforms in euclidean and non euclidean spaces.

where, c_F and c'_F are constants

Convergence Rate Analysis

 $O\left(\frac{1}{N\sqrt{N}}\right)$

 $O\left(\frac{1}{N}\right)$

Power Spectrum Bounds

Poisson Disk

Power Spectrum Bounds

Poisson Disk

With Bounds

