
Harmonic 3D Shape Matching

Michael Kazhdan, and Thomas Funkhouser ∗

Princeton University

1 Introduction

With the advent of the world wide web, the number of available 3D
models has increased substantially and the challenge has changed
from “How do we generate 3D models?” to “How do we find
them?” In this sketch we describe a new 3D model matching and
indexing algorithm that uses spherical harmonics to compute dis-
criminating similarity measures without requiring repair of model
degeneracies or alignment of orientations. It provides 46–245%
better performance than related shape matching methods during
precision-recall experiments, and it is fast enough to return query
results from a repository of 20,000 models in under half a second.

2 Model Representation and Matching

The main challenge in designing a model matching algorithm is
to find a computational representation of shape for which an in-
dex can be built and geometric matching can be performed effi-
ciently. Generally speaking, the following properties are desirable
for a shape representation. It should be: (1) quick to compute, (2)
concise to store, (3) easy to index, (4) invariant under similarity
transforms, and (5) independent of 3D object representation, tessel-
lation, genus, or topology.
Previous work in defining shape representations for matching can
be classified into two broad categories. The first class of represen-
tations use methods such as PCA to align the model into a canoni-
cal coordinate frame and then define the shape representation with
respect to this orientation. Such methods include, among others,
Moments [Elad et al. 2001] and Extended Gaussian Images [Horn
1984]. The second class of methods define representations that are
invariant under rotation and include methods such as Shape His-
tograms [Ankerst et al. 1999] and Shape Distributions [Osada et al.
2001]. In our experiments we have found that PCA based methods
are unstable as a result of multiplicity of eigenvalues and sensitiv-
ity to outliers. The shape representation that we have designed is
both rotation invariant and discriminating, characterizing a shape in
terms of the clustering of mass on different concentric spheres.
The steps for computing the harmonic shape representation are out-
lined in Figure 1: (1) Given a model, we rasterize its polygons into
a 64× 64× 64 voxel grid, (assigning a voxel a value of 1 if it was
within one voxel of a point on the boundary, and a value of 0 oth-
erwise). The model is aligned so that its center of mass is at the
center of the grid, and so that its bounding sphere has radius 32.
(2) Treating it as a function defined in three-space, we decompose
the voxel grid into 32 spherical functions by restricting the voxel
grid to spheres with radii 1 through 32. (3) We decompose each of
these functions as a sum of its first 16 harmonic components, analo-
gous to a Fourier decomposition into different frequencies. (4) Us-
ing the fact that rotations do not change the norm of the harmonic
components, we define the signature of each spherical function as
a list of these 16 norms. (5) Finally, we combine these different
signatures to obtain a 32× 16 signature for the 3D model. The re-
sultant rotation invariant signature is a two-dimensional grid where
the value of the (i, j)-th index is equal to the norm of the j-th order
component of the spherical function on the sphere of radius i.
To compare two harmonic representations, we simply compute the
Euclidean distance between them. Thus, finding the K closest mod-
els to a query is equivalent to solving the nearest-neighbor problem
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Figure 1: Computing the Harmonic Shape Representation

in a 32× 16 dimensional space. Although this problem is known
to be hard in the worst case, we can build a search algorithm that
works efficiently in practice by taking advantage of the multireso-
lution nature of the harmonic decomposition to guide a dimension
reduction indexing method.

3 Results
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We compared the shape clas-
sification performance of our
method to five existing methods,
using a test database of 1890
models provided by Viewpoint.
The models were clustered into
85 classes based on functional
similarities. The smallest class
had 5 models, the largest 143,
and 610 models did not fit into
any meaningful class. The other
methods tested were: Moments,
Extended Gaussian Images, Shape Histograms, and D2 Shape Dis-
tributions. The figure on the right shows the precision vs. recall
graphs for each method. Note that our method has precision val-
ues on average 42 % higher than D2, 60 % higher than Shape His-
tograms, 126 % higher than EGIs, and 245 % higher than moments.

4 Conclusion

In summary, this sketch investigates a new method for model
matching and indexing. The main research contribution is a new
shape representation that allows for efficient, robust, and discrimi-
nating querrying of models in large databases.
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ANKERST, M., KASTENMÜLLER, G., KRIEGEL, H.-P., AND SEIDL, T. 1999. 3d

shape histograms for similarity search and classification in spatial databases. In
Proc. SSD, 207–226.

ELAD, M., TAL, A., AND AR, S. 2001. Content based retrieval of vrml objects - an
iterative and interactive approach. EG Multimedia (September), 97–108.

HORN, B. 1984. Extended gaussian images. Proc. of the IEEE 72, 12 (December),
1671–1686.

OSADA, R., FUNKHOUSER, T., CHAZELLE, B., AND DOBKIN, D. 2001. Matching
3d models with shape distributions. Shape Modeling International (May).


