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Figure 1: Co-dimension two reconstruction: Starting with an oriented point set, S, we compute coordinate functions, f1 and f2, whose exterior
product of gradients matches the skew symmetric matrix characterizing the samples’ normal space. The intersection of the zero level-sets of
the coordinate functions, F−1(0) = f−1

1 (0) ∩ f−1
2 (0), gives the reconstructed manifold. (Connected components away from regions of high

sampling density are removed.)

Abstract
Screened Poisson Surface Reconstruction creates 2D surfaces from sets of oriented points in 3D (and can be extended to co-
dimension one surfaces in arbitrary dimensions). In this work we generalize the technique to manifolds of co-dimension larger
than one. The reconstruction problem consists of finding a vector-valued function whose zero set approximates the input points.
We argue that the right extension of screened Poisson Surface Reconstruction is based on exterior products: the orientation of
the point samples is encoded as the exterior product of the local normal frame. The goal is to find a set of scalar functions such
that the exterior product of their gradients matches the exterior products prescribed by the input points. We show that this setup
reduces to the standard formulation for co-dimension 1, and leads to more challenging multi-quadratic optimization problems
in higher co-dimension. We explicitly treat the case of co-dimension 2, i.e., curves in 3D and 2D surfaces in 4D. We show that
the resulting bi-quadratic problem can be relaxed to a set of quadratic problems in two variables and that the solution can be
made effective and efficient by leveraging a hierarchical approach.

CCS Concepts
• Computing methodologies → Shape modeling; • Mathematics of computing → Nonlinear equations; Numerical analysis;
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1. Introduction

A central task in geometry processing is the reconstruction of a
surface from point samples. Most of the work in this area considers
two-dimensional surfaces embedded in 3D. Among different ways
to define a surface from point samples (see Section 2), level-set
techniques and, in particular, (screened) Poisson Surface Recon-
struction [KBH06, KH13] have proven to be particularly resilient
to common sampling artifacts such as noise, outliers, and missing
data. The reason for this robustness is that they treat the reconstruc-
tion problem globally (see Section 3 for details).

The aim of this work is to generalize the class of Poisson Surface

Reconstruction methods to oriented d-dimensional manifolds em-
bedded in an n-dimensional space with co-dimension d̄ = n−d > 1.
The input is a sampling S of the manifold, consisting of locations of
the samples and (oriented) frames spanning the d̄-dimensional nor-
mal space. The output is a vector valued function F : Rn→ Rn−d

that represents the manifold as a level-set, i.e.

MS =
{

x ∈ Rn : F(x) = 0
}
. (1)

As in screened Poisson Surface Reconstruction, we solve for the
coordinate functions of F whose gradients span the normal frames
prescribed at the sample points. This poses several challenges.
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When d̄ > 1, there is a continuum of frames that can be used to
represent the same oriented d̄-dimensional normal space at a point.
As the reconstructed manifold should only depend on the oriented
normal space at the samples, we require a representation that is
agnostic to the particular choice of frame.

For a similar reason, there can be a continuum of solutions F
whose gradients span the normal space at the sample points. Often,
this reflects the fact that the underlying optimization is non-convex
making it hard to find solutions that avoid getting trapped in un-
wanted local minima.

Key contributions Our main contributions are choices in rep-
resentation and optimization that lead to a practical extension of
screened Poisson Surface Reconstruction to higher co-dimension,
overcoming the mentioned challenges:

• We argue that the right mathematical tool to deal with the mul-
tiplicity of frames is exterior algebra (see Section 4 for a brief
introduction): we encode the local normal space of the manifold
as an exterior product — making the representation independent
of the particular choice of frame.

• We show that using the exterior product (Section 5), the prob-
lem of solving for the coordinate functions of F reduces to min-
imizing a multi-quadratic energy. The continuous appraoch can
be discretized using a finite basis, and we specifically develop a
discretization for the case d̄ = 2 (Section 6).

• We propose a hierarchical approach for minimizing the energy
that smooths out the energy landscape at coarser resolutions,
keeping the optimization from getting trapped in local minima
and consistently returning the same solution, regardless of initial
guess (Section 7).

We demonstrate the efficacy of our approach in reconstructing
curves in 3D and surfaces in 4D, analyzing run-time performance,
convergence, and stability in the presence of noise (Section 8). We
conclude by offering some discussion and proposing directions for
future work (Section 9).

2. Related Work

For the vast field of curve reconstruction in the plane and surface
reconstruction in 3D, we refer the reader to existing overview liter-
ature [OPP∗21, BTS∗14, Dey06]. We defer a discussion of recon-
structing a surface as the level set of a signed scalar function, i.e.,
d̄ = 1 to the next section. We are unaware of work that extends this
approach to the intersection of level-sets (d̄ > 1). Here we focus on
reconstruction approaches that have been extended to manifolds in
arbitrary dimension and co-dimension.

Subsets of simplicial complexes A classic approach to curve
reconstruction in the plane is based on first triangulating the
set of points and then selecting an appropriate subset of the
edges [KSO04]. For nicely sampled curves one observes that
the Voronoi cells of the points are elongated in direction nor-
mal to the curve [AB99]. While many techniques based on this
observation in 2D fail to generalize to 3D or higher dimension,
the general observation still holds and allows detecting the lo-
cal dimension of the tangent space in higher dimension and co-

dimension [DGGZ02,ACSTD07]. Combining this idea with modi-
fying the weights in a weighted Delaunay triangulation [Aur87,dG-
MMD14] to remove slivers [CDE∗00] leads to a first algorithm
with guarantees [CDR05]. By the authors own admission it is not
practical “mainly because it requires a very dense and noise-free
sample”, but also because of the high computational complexity.

An idea that keeps the complexity mostly dependant on the di-
mension of the manifold, and to a lesser extent the ambient space,
is to compute the Delaunay triangulation in the tangent planes of
the points [BF04]. While this could be used for reconstruction
directly [Fre02], the combination with the above ideas on sliver-
removal leads to a practical algorithm with guarantees [BG10]. No-
tably, it is only linear in ambient dimension (but quadratic in the
number of samples).

All of the above require clean and dense samples. Some toler-
ance to noise can be achieved by appropriately selecting a subset of
the samples, for example using topological persistence [CO08].

Projection operator / ridges of density function A popular ap-
proach in computer graphics and geometric modeling for defining
a surface from surface samples is to use a projection operator: the
operator is defined by repeatedly projecting any point in space onto
a locally estimated tangent plane. The process can be carefully con-
structed so that it satisfies the properties of a projection [Lev04] and
the surface is defined as the set of stationary points.

This idea has been used first for curve reconstruction from points
[Lee00], and later for surfaces in 3D [ABCO∗03]. It generalizes
directly to arbitrary dimension and co-dimension [AA06, SL20].
For well-behaved manifolds and dense enough sampling the pro-
jection can be constructed so that it guarantees homeomorphic re-
construction [CC19]. Likewise, tolerance to some noise can be
proven [FIK∗18]. Relying on a projection operator and only locally
establishing tangent- and/or normal-spaces alleviates the problem
that not all manifolds admit globally smooth frames and even sup-
ports reconstruction of non-orientable manifolds. In contrast, glob-
ally smooth reconstruction potentially deals better with outliers and
missing data, and the signed implicit function significantly simpli-
fies iso-surfacing the zero-level set.

In machine learning, related surface definitions have been used
[DG03], albeit from a different mathematical view-point: the point
set is considered to be a discrete sample of a probability distribution
and the manifold may then be defined as the ridge of an appropri-
ately chosen density function [OE11, GPPVW14].

Parametric curves and surfaces A common theme in CAGD
is fitting a spline curve or surface to given point data. This is
done essentially by defining a distance between the parametric
curve or surface to the samples and then optimizing the con-
trol points to minimize this distance measure. For curves this has
been done in application domains using the idea of active con-
tour models [CnRT∗00, SKG15]. The idea has been extended to
3D [PL03,PLH02] and it seems that it could also be used in higher
dimensions and co-dimension.
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3. Background: Implicit Surface Reconstruction

There are different strategies for reconstructing a surface from point
samples. We focus on methods that first approximate the input data
with a level-set of a scalar function and then extract a typically
piecewise linear approximation of the level-set as an explicit sur-
face representation. One approach has been to represent the sur-
face implicitly by a (possibly truncated) signed distance function
[HDD∗92,CL96,CBC∗01,MPS08,NIH∗11,CT11]. While this has
advantages in some applications, for the reconstruction problem it
has been observed that it is useful to ask only that the function has
non-vanishing gradients close to the surface. This avoids spurious
surface components and is the central idea of screened Poisson Sur-
face Reconstruction [KH13].

Screened Poisson Surface Reconstruction Given a set of ori-
ented points S ⊂ R3 ×R3 where each sample s = (s.p,s.n) is
described by its position in R3 and the associated (possibly area-
weighted) outward-facing normal, the screened Poisson Surface
Reconstruction algorithm proceeds in three steps.

First, a sampling density ρ : R3→ R≥0 is estimated and the ori-
ented samples are extended to a target vector-field VS : R3 → R3

by “splatting” the samples’ normals:

VS(q) = ∑
s∈S

κs.p(q) · s.n (2)

with κp a splatting kernel (weighted inversely to density ρ).

Next, the implicit function f : R3 → R is found by minimizing
the combination of gradient-fitting and screening energies:

E( f ) =
∫
R3
∥∇ f −VS∥2 +α ∑

s∈S
f (s.p)2. (3)

Finally, given the function f : R3→ R, the reconstructed mani-
foldMS is obtained by extracting the zero level-set:

MS =
{

p ∈ R3 : f (p) = 0
}
. (4)

Choosing a (finite) function basis, this reduces to solving a linear
system Ax = b where the system matrix A encodes the discrete
Laplacian combined with the mass matrix defined by the samples,
the vector b describes the divergence of VS , and the the solution
vector x gives the coefficients of the implicit function in the basis.
Choosing a B-spline basis, the system is solved efficiently using
a hierarchical solver [BHM00]. Iso-surfacing can be done using
standard techniques [LC87, SW04, KKDH07] to obtain a triangle
mesh approximating the zero level-set of f .

4. Exterior Products

In co-dimension d̄ = 1, we can represent the d-dimensional tan-
gent space at a point uniquely in terms of its outward-facing nor-
mal. In a similar way, for co-dimension d̄ ≥ 2, we would like to
represent the d-dimensional tangent space uniquely in terms of the
d̄-dimensional normals, without explicitly choosing a basis for the
d̄-dimensional normal space. Our desiderata are: (1) The represen-
tation should be linear, and (2) it should uniquely encode the ori-
ented normal frame together with its measure (area, volume, etc.).

We begin by reviewing the necessary concepts for co-dimension
2, i.e., two vectors spanning the normal space, and generalize later.
We focus our review on the case that the vector space is Rn, with
canonical basis (e1, . . . ,en), with the i-th coefficient of ei equal to
1 and all other coefficients equal zero.

Exterior product of two vectors The right concept for our pur-
pose is the exterior product. Given two vectors u,v ∈ Rn, the ex-
terior product u∧v represents the vector area of the parallelogram
spanned by u and v in Rn. It satisfies the following properties:

Anti-symmetry u∧v =−u∧v
(Bi-)linearity (αu+βv)∧w = α(u∧w)+β(v∧w)

It follows that exterior products can be represented in a vector space
with basis ei∧ e j, i < j. Let u = ∑i uiei and v = ∑i viei we have:

u∧v =

(
∑

i
uiei

)
∧

(
∑

j
vie j

)
= ∑

i
∑

j
uiv j(ei∧ e j)

= ∑
i

∑
j>i

(uiv j−u jvi)(ei∧ e j).

(5)

Geometrically, we can think of the coefficients uiv j − u jvi in this
basis as the (signed) areas of the shadows of the parallelogram on
the planes spanned by ei,e j. An algebraic view leads to a conve-
nient implementation: noting that the outer product uvT is bilinear
and taking the difference

u∧v≃ uvT−vuT (6)

yields the anti-symmetry in the form of a skew-symmetric matrix.

Constructing the exterior product of (µv+ νu) and (µ′v+ ν
′u)

results in (µν
′− νµ′)(uvT− vuT). Noting that the scalar term is

the determinant of
( µ ν

µ′ ν
′
)
, the matrix acting on the vectors u and v

by right-multiplication, shows the invariance to the group of trans-
formations that map the plane spanned by the frame onto itself and
preserve the signed area — the matrix group SL(2,R). As before,
a basis can be constructed as eieTj − e jeTi with i < j, spanning all
Rn×n skew-symmetric matrices. The basis has

(n
2
)

elements.

As desired, we can easily perform computation on this space as
the skew-symmetric matrices form a vector space. However, while
every frame with signed area can be uniquely encoded as a skew-
symmetric matrix, not every skew-symmetric matrix is the exterior
product of two vectors. In fact, the non-zero exterior products are
precisely the skew symmetric matrices with rank 2.

Linearization One of the challenges in working with the exterior
product is that it is bi-linear in the input, making quadratic energies
in the exterior product difficult to optimize. An obvious lineariza-
tion results from fixing one of the two vectors and considering the
energy as a function of the other one.

Exterior product spaces All of the concepts above extend natu-
rally to co-dimension d̄ > 2. The geometric picture is that we en-
code the oriented vector measure of a parallelepiped spanned by d̄
vectors v1, . . . ,vd̄ ∈Rn as the signed measures of the shadows onto
d̄-dimensional linear subspaces spanned by d̄-tuples of canonical
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basis vectors. We denote this space as
∧d̄ Rn. It is spanned by the

basis ei1 ∧·· ·∧ eid̄ , with i1 < .. . < id̄ .

Anti-symmetry now means that if the positions of any two ele-
ments in the product are transposed, the sign changes. To explain
what this entails we use a multi-dimensional index i = (i1, . . . , id̄).
A permutation π of the indices can be encoded as an orthogonal
matrix in {0,1}d̄×d̄ and signπ is the determinant of this matrix.
Intuitively, signπ equals +1 if the number of transpositions in π is
even, otherwise it is −1. With this notation, the anti-symmetry is
characterized by the property that for any permutation π, we have:

v1∧·· ·∧vd̄ = sign(π)
(

vπ(1)∧·· ·∧v
π(d̄)

)
. (7)

The algebraic construction now requires tensor products and d̄-
th order tensors (generalizations of square matrices with more than
two indices). The tensor product v1⊗ ·· · ⊗ vd̄ is multilinear and
generates all possible d̄-wise products of the entries of the vec-
tors. We can represent the exterior product of d̄ vectors as an anti-
symmetric d̄-th order tensor, similar to the representation by skew
symmetric matrices, as

v1∧·· ·∧vd̄ ≡∑
π

signπ

(
vπ(1)⊗·· ·⊗v

π(d̄)

)
. (8)

In practice, it suffices to store only the entries with multi-indices
i for which i1 < .. . < id̄ . Entries with repeated index i j = ik are
necessarily zero because of anti-symmetry. This means it suffices
to store

(n
d̄
)

coefficients.

As in the two-dimensional case, the space of anti-symmetric d̄-th
order tensors uniquely encodes the d̄-frames with signed measure,
sometimes referred to as d̄-blades, but also contains elements that
have no corresponding d̄-frame.

Exterior product fields

We remark that the above discussion extends directly to vector-
fields on Rn by applying the exterior product point-wise. For exam-
ple, given vector-fields v⃗1, . . . , v⃗d̄ : Rn → Rn, the exterior product
defines an anti-symmetric tensor field on Rn:(⃗

v1∧·· ·∧ v⃗d̄
)
(p)≡ v⃗1(p)∧·· ·∧ v⃗d̄(p).

5. Generalizing Screened Poisson Surface Reconstruction

In this section we describe the generalization of screened Pois-
son Surface Reconstruction (sPSR) to the reconstruction of co-
dimension d̄ ≥ 2 manifolds. For simplicity, we focus on the case
d̄ = 2, though our discussion extends to higher co-dimension. Fig-
ure 1, gives a visualizations of our process.

To simplify notation, we overload the operator ⟨·, ·⟩ (and corre-
spondingly ∥ · ∥2) so that for scalar-fields, vector-fields, and skew-
symmetric matrix fields, it denotes the integral of the product, the
dot-product, and the Frobenius-dot-product (respectively) over Rn.

5.1. Overview of the approach

As in sPSR, we start with oriented samples S ⊂ Rn× (Rn×Rn),
where each sample is described by its position in n-dimensional

space and two vectors describing the (weighted) oriented normal
space at that point. Our goal is to solve for a vector-valued func-
tion F = ( f1, f2) : Rn→ R2 with the property that at every sample
s = (p,n1,n2) the gradients∇ f1|s.p and∇ f2|s.p describe the same
normal space as the vectors s.n1 and s.n2. In the language of exte-
rior products, we want∇ f1|s.p∧∇ f2|s.p = s.n1∧ s.n2.

To achieve this, we proceed as in sPSR, estimating the sampling
density ρ : Rn→R≥0 and extending the samples’ normals to a tar-
get skew-symmetric matrix field: VS : Rn →

∧2Rn by “splatting”
the samples’ skew-symmetric matrices:

VS(q) = ∑
s∈S

κs.p(q) · s.n1∧ s.n2, (9)

with κp a splatting kernel (weighted inversely to density ρ).

Then we solve for the function F = ( f1, f2) minimizing the com-
bination of skew-symmetric-matrix-fitting and screening energies:

E(F)=
∥∥∇ f1∧∇ f2−VS

∥∥2
+α ∑

s∈S

(
f1(s.p)

2 + f2(s.p)
2
)
. (10)

Finally, given the function F : Rn→ R2, the reconstructed man-
ifoldMS is obtained by extracting the zero level-set:

MS =
{

p ∈ Rn : F(p) = 0
}
. (11)

Feasibility Before proceeding, it is natural to ask:

Given a d-dimensional manifoldM⊂Rn, does there ex-
ist F : Rn→Rn−d such thatM= F−1(0), with the gra-
dients of F linearly independent at F−1(0)?

Clearly, for such an F to exist, the manifold must have a trivial
normal bundle. For manifolds of dimension d ≥ 4 this is known
to be more restrictive than orientability (one such example being
complex projective 2-space which, by Whitney’s Embedding Theo-
rem [GP10], can be embedded in Rn for n large enough). For man-
ifolds of dimension d = 1 and d = 3, [Kir89, Sec. VIII, Thm. 1]
shows that this is equivalent to orientability, and the same appears
to hold for d = 2. However, in the general case, there exist closed
manifolds embedded in Rn with trivial normal bundles that cannot
be realized as level-sets of an implicit function [AK85].

It is known that if M has a trivial normal bundle, such an F
can be constructed locally (i.e. in a tubular neighborhood) [Lee12,
Ex. 10-18] and can be extended to a function F : Rn→ Sn−d (e.g.
using the Pontryagin-Thom Collapse Map) [Mil65, Ch. 7, Thm. C].
Furthermore, Milnor’s construction of a function F : Rn → Sn−d

can be transformed into a function F : Rn→ Rn−d such thatM is
a disconnected subset of F−1(0). (See Appendix A.) We leverage
this in Section 5.4, using the local sampling density to select the
connected components of F−1(0) comprising the reconstruction.

Finally, we note that while our approach assumes that the solu-
tionM has a trivial normal bundle, the use of the exterior product
to describe the normal space means we do not require a trivializa-
tion to be given. This is in contrast to [Lee12, Mil65] that use the
framing to define the function in the tubular neighborhood.

© 2023 The Authors.
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5.2. Optimization

The challenge in minimizing the energy in Equation 10 is that the
exterior product ∇ f1 ∧∇ f2 is bi-linear in the functions f1 and f2,
making the fitting energy term bi-quadratic. Thus, minimization re-
quires solving a cubic system in f1 and f2. We address this by al-
ternately linearizing. Concretely, fixing fi, let Fi be the map taking
scalar fields in Rn to skew-symmetric matrix fields:

F1( f ) =∇ f1∧∇ f and F2( f ) =∇ f ∧∇ f2.

This map is linear, so for fixed f2 the energy in f1 is quadratic

E( f1) = ∥F2( f1)−VS∥2 +α ∑
s∈S

(
f1(s.p)

2 + f2(s.p)
2
)

and can be minimized by solving a linear system. Analogously, fix-
ing f1 gives a quadratic energy in f2.

Informal remark

We note that the linearization of the energy has an elegant geo-
metric interpretation. Assume the idealized situation in which f2 is
the indicator function of some co-dimension 1 surface Ω passing
through the co-dimension 2 manifoldMS . Consider the contribu-
tion of points q ∈ Rn to the energy E( f1).

q ̸∈ Ω: In this case VS(q) vanishes because q is away from the
samples and ∇ f1 ∧∇ f2 vanishes regardless of the value of f1 be-
cause f2 is constant away from Ω. That is, points q ̸∈ Ω do not
contribute to the energy, allowing us to replace the domain of inte-
gration in the energy:

E( f1) =
∫

Ω

∥∇ f1∧∇ f2−VS∥2.

q ∈Ω: In this case consider the projection πq : TqRn→ TqΩ, tak-
ing vectors in Rn to their projection onto the tangent space of Ω at
q. Decomposing the gradient of f1 as:

∇ f1 = π(∇ f1)+
(
∇ f1−π(∇ f1)

)
and noting that the second term is parallel to∇ f2, we get:

E( f1) =
∫

Ω

∥π(∇ f1)∧∇ f2−VS∥2 .

Letting N⃗ : Ω→ T Ω be the (unique) tangent vector field on Ω such
that N⃗∧∇ f2 =VS , we can re-write the energy as:

E( f1) =
∫

Ω

∥π(∇ f1)∧∇ f2− N⃗∧∇ f2∥2 =
∫

Ω

∥π(∇ f1)− N⃗∥2.

Noting that N⃗ vanishes for points q ̸∈ MS (since VS vanishes
there) and, up to scale, N⃗ is the normal to MS on Ω (since the
norms of ∇ f2 and VS should be constant on MS ), the lineariza-
tion seeks the function f1 whose projected gradient is the vector
field that vanishes away from MS and is equal to the normal of
MS (on Ω) atMS .

That is, the linearization solves a generalized version of the Pois-
son Reconstruction problem in which the samples S live on a man-
ifold Ω, rather than in Euclidean space.

5.3. Regularization

Note that if we can find a solution F : Rn → R2 for which the
energy vanishes, then for any M ∈ SL(2,R) the function F ·M
will also have vanishing energy. This is because (1) the exterior
products of gradients is invariant to linear re-combinations of the
coordinate functions which preserve the skew-symmetric matrix
and (2) the screening term will continue to vanish for all linear
re-combinations.

A natural way to select between the multiplicity of solutions is
to prefer those functions F = ( f1, f2) for which (∇ f1,∇ f2) is an
orthogonal frame with equal-length axes — ⟨∇ f1,∇ f2⟩ = 0 and
∥∇ f1∥2 = ∥∇ f2∥2. Incorporating this directly into the energy is
challenging as it would add quartic terms into the optimization.

Instead, we propose incorporating the Dirichlet energy, often
used as a smoothness regularizer, defining the modified energy as
the sum of the energy in Equation 10 and a Dirichlet regularizer:

Ereg(F) = E(F)+β ·
(
∥∇ f1∥2 +∥∇ f2∥2

)
. (12)

As the Dirichlet term is quadratic in F , this does not make the sys-
tem fundamentally more difficult to solve.

We note that while the addition of the Dirichlet energy does in-
troduce a preference for a function F = ( f1, f2) whose coefficients’
gradients are perpendicular and equal length, there remains an am-
biguity due to the action of SO(2), similar to the ambiguity when
defining smooth frames along curves [BWR∗08].

Intuition The idea behind this approach can be understood by
considering the cross-product in R3 (formally the dual of the ex-
terior product). Given a vector n ∈ R3 consider asking for a pair
of vectors v1,v2 ∈ R3 whose cross-product equals n. There exist
many such pairs of vectors and to narrow the solution space we
consider the constrained optimization problem of minimizing

E(v1,v2) = ∥v1∥2 +∥v2∥2 s.t. v1×v2 = n.

Using the fact that ∥n∥ = ∥v1∥ · ∥v2∥ · sin(α) where α is the angle
between v1 and v2, we get:

E(v1,v2) = ∥n∥ ·

(
∥v1∥2

∥n∥ +
∥n∥

∥v1∥2 sin2(α)

)
.

This is minimized when sin(α) = 1 and ∥v1∥ = ∥v2∥ =
√
∥n∥.

That is, when the vectors are orthogonal and equal length.

Relation to sPSR The Dirichlet energy term is not necessary in
sPSR because there the gradient is explicitly constrained to match
VS . In contrast, for higher co-dimensions the constraint is formu-
lated only on the exterior product of the gradients.

5.4. Trimming the level-set

One of the challenges for co-dimension d̄ ≥ 2 is that the zero level-
set of F may be be a superset of the manifold M, with spurious
geometric components outside a tubular neighborhood of M. (In
the case of co-dimension d̄ = 1, sPSR solves for the indicator func-
tion ofM, which does not have this problem.)

Since the reconstruction process estimates the sampling density

© 2023 The Authors.
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ρ :Rn→R≥0, we address this problem by using ρ to trim the level-
set, discarding connected components of the level-set over which
the (maximum) sampling density is low.

F−1(0) f−1
1 (0) f−1

2 (0)

Figure 2: The zero level-set of the function reconstructed from sam-
ples of the (2,7) torus-knot (left column) and the zero level-sets of
the individual coordinate functions (right two columns).

Figure 2 shows a visualization of this for the case of a (2,7) torus-
knot. The zero level-set is shown on the left, visualized as the union
of dilated curves drawn in gray (components for which some part is
near a region of high sampling density) and curves drawn in black
(components for which no part is near a region of high sampling
density). Looking at the level-sets of f1 and f2 individually (right
two columns) it is not surprising that the spurious curves drawn in
black appear. The target curve is highly oscillatory so we expect the
functions f1 and f2 to exhibit similar twisting to ensure that they
intersect along the curve.

This challenge further motivates the need for f1 and f2 to have
equal-length and orthogonal gradients. If the gradients are orthog-
onal and equal length, then for a point p ∈M on the manifold, any
unit normal direction n, and small ε, we have:

∥F(p+ ε ·n)−F(p)∥2 ≈ ε
2 · ∥∇ fi|p∥2 .

This means that as we (locally) move off the manifold at p, we
can expect the deviation of F from zero to grow quickly and inde-
pendently of the direction in which we move, so that the spurious
geometry should not be too close to the target manifold.

5.5. General co-dimension

While this section focused on the particular case of d̄ = 2, the dis-
cussion generalizes directly to higher co-dimension.

Constructing the target anti-symmetric tensor field Given an
oriented point set S ⊂ Rn× (Rn×·· ·×Rn), we can construct the
anti-symmetric tensor field VS : Rn→

∧d̄ Rn by setting:

VS(q) = ∑
s∈S

κs.p(q) · s.n1∧·· ·∧ s.nd̄ .

Defining the energy As above, the goal can be stated as solving
for the function F = ( f1, . . . , fd̄) : Rn→ Rd̄ minimizing:

E(F) =
∥∥∇ f1∧·· ·∧∇ fd̄−VS

∥∥2
+α ∑

s∈S

∥∥F(s.p)
∥∥2

+ · · ·

with the ellipses denoting the Dirichlet regularization energy.

Optimizing As above, this energy is multi-quadratic in the coor-
dinate functions of F . Thus, it can be optimized by alternately fix-
ing all but one coordinate function fi, so that the energy becomes
quadratic in fi, reducing the optimization to a linear solve.

Complexity of the solve Noting that the anti-symmetric tensor
field ∇ f1 ∧ ·· · ∧∇ fd̄ is multi-linear in the coordinate functions,
the energy E(F) is a polynomial of degree 2d̄ in the coordinate
functions. Thus, finding the minimizer of F requires solving a sys-
tem of polynomial equations of degree 2d̄−1, so that the problem
becomes more difficult as the co-dimension is increased.

The case of d̄ = 1 For sPSR, the co-dimension is d̄ = 1 so that∧1Rn≈Rn and the exterior product acts as the identity. In this case
the above expressions for the target vector-field and the energy re-
duce to those in Equations 2 and 3, demonstrating that the proposed
approach generalizes sPSR. In particular, we have 2d̄−1 = 1, cor-
roborating the established result that sPSR reduces surface recon-
struction to the solution of a linear system of equations. We also
note that in the case of co-dimension one, orientable manifolds
necessarily have trivial normal bundles so the requirement that the
normal bundle be trivial does not introduce additional constraints.

6. Discretization and Solution

We next proceed to a discussion of discretization. We focus on the
general problem in this section and discuss our implementation us-
ing the B-spline basis in Section 7.

6.1. Basis and operators

Basis

To discretize the energy in Equation 12 we need to define a discrete
space of real-valued functions F (for representing the solution co-
efficients f1 and f2) and a discrete space of skew-symmetric matrix
fields W (for representing the constraints defined by VS ). We do
this by choosing a basis {φi}N

i=1 to span F and then define the ba-
sis spanningW in terms of the {φi}.

In particular, given a basis {φi}N
i=1 of (weakly differentiable)

functions, we define the skew-symmetric matrix fields:

ω(i, j) =∇φi∧∇φ j.

By anti-symmetry, ω(i, j) = −ω( j,i) so that we need only consider
functions ω(i, j) with i < j. Furthermore, we only need to consider
indices (i, j) for which the supports of φi and φ j overlap (otherwise
ω(i, j) is everywhere zero). Thus, we define:

I =
{
(i, j)

∣∣1≤ i < j ≤ N, supp(φi)∩ supp(φ j) ̸= ∅
}

and take {ωi}i∈I to be the basis spanningW .

The advantage of this formulation is that the exterior product of
the gradients of two functions in F will reside inW:

∇ f1∧∇ f2 ∈W, ∀ f1, f2 ∈ F .

For simplicity, we will refer to f = ( f1, . . . , fN)⊤ ∈ RN equiva-
lently as the coefficients of the function ∑i fi ·φi and as the function
itself. Similarly we will refer to w ∈ R|I| as both the coefficients
of a skew-symmetric matrix field and the field itself.
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Mass and stiffness matrices

Given the bases {φi}N
i=1 and {ωi}i∈I we obtain the mass and stiff-

ness matrices, MF ,SF ∈RN×N and MW ∈R|I|×|I|, by integrat-
ing the products of basis functions (and their gradients):

MF
i j = ⟨φi,φ j⟩, SF

i j = ⟨∇φi,∇φ j⟩, and MW
ij = ⟨ωi,ωj⟩.

Additionally, given the samples S, we set M̊F ∈ RN×N to be the
mass matrix defined by the samples:

M̊F
i j = ∑

s∈S
φi(s.p) ·φ j(s.p).

The exterior product

Given F = (f1, f2) ∈ RN×2, we denote by WF ∈ R|I| the exterior
product of the gradients of f1 and f2:

(WF)(i, j) = (f1)i · (f2) j− (f1) j · (f2)i.

Lastly, we denote by [F]1 ∈ R|I|×N (resp. [F]2 ∈ R|I|×N ) the ma-
trix taking a function f ∈ RN and returning the exterior product of
the gradient of f1 with the gradient of f (resp. the gradient of f with
the gradient of f2):

([F]i)i j =


(−1)i+0 · (fi)k if i = ( j,k), for some j < k ≤ N
(−1)i+1 · (fi)k if i = (k, j), for some 1≤ k < j

0 otherwise.

The sign (−1)i is required to account for the position of the gradi-
ent of f within the exterior product.

Prolongation

Next, We consider the case of nesting real-valued function spaces,
F̂ ⊂ F , with bases {φ̂1, . . . , φ̂N̂} and {φ1, . . . ,φN}, for which the

nesting is given in terms of a prolongation matrix PF ∈ RN×N̂ .
We show that despite the transition from a linear to a multilinear
system, the classical Galerkin approach carries over in a straight-
forward manner (when solving in a strictly coarse-to-fine fashion).

As above, the basis for scalar fields {φ̂i}N̂
i=1 defines a basis for

skew-symmetric matrix fields {ω̂i}i∈Î . Furthermore, due to the bi-
linear relationship between the bases, the associated space of skew-
symmetric matrix fields Ŵ is contained in W , with the nesting

relationship given by the prolongation matrix PW ∈ R|I|×|Î|:

PW
ij = PF

i1 ji ·P
F
i2 j2 , with i = (i1, i2), j = ( j1, j2).

Formally, this leverages the fact that for any linear map P : F̂ → F
there is a canonical multilinear map ⊗kP :⊗kF̂ → ⊗kF .

In what follows, we will overload notation, dropping the super-
scripts F andW in the mass, stiffness, and prolongation matrices
when the distinction between F andW is contextually clear.

Observation For all F̂ = (f̂1, f̂2) ∈ RN̂×2, prolonging and taking
the exterior product of the gradients is equivalent to taking the ex-
terior product of the gradients and then prolonging:

P ·WF̂ = WP·F̂. (13)

6.2. Discretized energy

Given the target vector-field VS the problem of solving for the co-
efficients function f1, f2 ∈RN becomes the problem of minimizing:

E(F) = W⊤
F ·M ·WF−2 ·W⊤

F ·b+
∥∥VS

∥∥2

+Tr
(

F⊤ ·
(

α · M̊+β ·S
)
·F
)
, (14)

where b ∈ R|I| is the dual representation of the target skew-
symmetric matrix field:

bi = ⟨ωi,VS⟩.

We note that although ∥VS∥2 is not represented in our discretiza-
tion (the target skew-symmetric field VS need not reside inW), its
value does not affect the optimization since it is independent of F.

Hierarchical system Given nesting function spaces F̂ ⊂ F we
define the energy at the coarser resolution in the usual way — pro-
longing to the finer resolution and evaluating Equation 14:

E(F̂)≡ E(P · F̂).

Leveraging the commutativity of the prolongation with the exte-
rior derivative (Equation 13) and the fact that the multilinear mass
matrix still satisfies the Galerkin property — that the coarse mass
matrix is M̂ = P⊤ ·M ·P — it follows that:

E(F̂) = W⊤
F̂ ·M ·WF̂−2 ·W⊤

F̂ ·
(

P⊤ ·b
)
+
∥∥VS

∥∥2

+Tr
(

F̂⊤ ·
(

α · M̊+β ·S
)
· F̂
)
.

Comparing to Equation 14, we see that this is the energy we would
have computed at the coarse resolution if we defined the coarse
constraint vector as the restriction of the finer one, b̂ = P⊤ ·b. That
is, the Galerkin formulation designed for the linear setting extends
naturally to the multi-linear setting.

6.3. Relaxing the system

We leverage the fact that fixing f1 (resp. f2) the energy becomes
quadratic in f2 (resp. f1). For example, fixing f1 the energy in f2, up
to a constant term, becomes:

E(f2) = f⊤2 ·
(
[F]⊤1 ·M · [F]1 +α · M̊+β ·S

)
· f2−2 · f⊤2 · [F]⊤1 ·b,

giving the optimal f2 as the solution:(
[F]⊤1 ·M · [F]1 +α · M̊+β ·S

)
· f2 = [F]⊤1 ·b.

Algorithm 1 summarizes our approach for refining the estimate of
the solution F = (f1, f2).

Algorithm 1: Relax

Require: F ∈ RN×2; α,β ∈ R; M̊,S ∈ RN×N ; M ∈ R|I|×|I|;
b ∈ R|I|

1: f1←
(
[F]⊤2 ·M · [F]2 +α · M̊+β ·S

)−1
· [F]⊤2 ·b

2: f2←
(
[F]⊤1 ·M · [F]1 +α · M̊+β ·S

)−1
· [F]⊤1 ·b
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Hierarchical relaxation

Given nesting spaces of scalar fieldsF0 ⊂ ·· · ⊂FL with associated
prolongation matrices, we define corresponding nesting spaces of
skew-symmetric matrix fieldsW0⊂ ·· · ⊂WL with their associated
prolongation matrices. Then, we relax the system in a coarse-to-fine
manner, first by restricting the dual constraints b to the coarsest res-
olution, then proceeding as in the upstroke of the standard (linear)
multigrid algorithm [BHM00], relaxing at the current level and then
up-sampling the estimated solution to serve as an initial guess for
the next finer level, proceeding until the system is relaxed at the
finest level. Algorithm 2 summarizes our approach for finding the
minimizer of the energy.

Algorithm 2: RelaxHierarchical

Require: α,β ∈ R; K,L ∈ N S ⊂ Rn× (Rn×Rn)
1: VS ← ConstructField(S)
2: bL← Dual(VS)
3: for ℓ← L−1 . . .0:
4: PW

ℓ ← SkewSymmetricProlongation(2ℓ)
5: bℓ← (PW

ℓ )⊤ ·bℓ+1
6: F0← RandomInitialize(20)
7: for ℓ← 0 . . .L:
8: SF

ℓ ← ScalarStiffness(2ℓ)
9: M̊F

ℓ ← ScalarSampleMass(2ℓ,S)
10: MW

ℓ ← SkewSymmetricMass(2ℓ)
11: for k← 1 . . .K:
12: Fℓ← Relax(Fℓ,α,β,M̊

F
ℓ ,SF

ℓ ,MW
ℓ ,bℓ)

13: if ℓ < L:
14: PF

ℓ ← ScalarProlongation(2ℓ)
15: Fℓ+1← PF

ℓ ·Fℓ

16: Return FL

As the energy is bi-quadratic, the implementation of a full multi-
grid solver (i.e. fine-to-coarse, in addition to coarse-to-fine) is more
challenging. We show in the Supplemental that this too can be done,
allowing for the implementation of standard multi-cycle V-, W-,
and F-cycle solvers.

7. Implementation

7.1. Choosing a basis

We discretize the space of scalar fields using the first-order B-spline
basis indexed over the corners of a regular grid. We choose this
basis for two reasons.

1. The regularity of the grid facilitates indexing and enables all of
the linear operators (with the exception of the mass matrix M̊
defined by the samples) to be defined using a stencil, reducing
the cost of system set-up.

2. The basis supports a hierarchical representation, with the space
of scalar-fields defined over a grid of resolution R× ·· · × R
nesting within the space of scalar fields defined over a grid
of resolution 2R× ·· ·× 2R. Denoting by i = (i1, . . . , id) (resp.
j = ( j1, . . . , jd)) the coordinates of a corner of a 2R× ·· ·× 2R

(resp. R×·· ·×R) grid, the prolongation matrix is defined as:

Pij =
d

∏
l=1

π(il , jl) with π(i, j)=


1 if |2 j− i|= 0
1
2 if |2 j− i|= 1
0 otherwise.

7.2. Defining the dual constraints

Given the samples, we define the target skew-symmetric ma-
trix field VS by first multi-linearly splatting the samples’ skew-
symmetric matrices into a grid. That is, for each s ∈ S we find
the grid cell containing s.p and distribute the value s.n1 ∧ s.n2 to
the corners of the cell using the standard multi-linear interpolation
weights. Then we perform two passes of smoothing, replacing the
value at each corner with the average of the values in its one-ring.
Finally, we set VS to be the piecewise-constant skew-symmetric
matrix field whose value within a cell is the average of the values at
the cell’s corners. Thus, considering each cell in turn, the compu-
tation of the dual constraints b ∈ R|I| reduces to the integration of
multi-quadratic polynomials (the dot-product of ωi with a constant
skew-symmetric matrix) over the grid cells.

7.3. Accounting for non-uniform sampling

The splatting of samples to define VS is done taking into account
sampling density [KBH06]. We compute a piecewise-constant den-
sity estimator ρ as above: For each sample s∈S splatting a value of
1 into the corners of the grid, performing two-passes of one-ring av-
eraging, and setting the value in a cell to the average of the corners’
values. In constructing the target skew-symmetric matrix field, we
rescale s.n1∧ s.n2 to have Frobenius norm equal to 1/ρ(s.p) — an
estimate of the d-dimensional volume of sample s — before splat-
ting the exterior product into the grid.

7.4. Solving the system

We solve for F using the hierarchical approach described in Algo-
rithm 2. In Line 12 we invoke Algorithm 1 to alternately update the
coordinate functions within a level. A naïve implementation would
use a direct solver. We could leverage the hierarchy, using a stan-
dard V-cycle solver [BHM00] to efficiently approximate the solu-
tions of the linear systems. However, we have observed that even
this is not necessary as we already have a good initial guess for
Fℓ obtained by prolonging the estimated solution from level ℓ− 1
(Line 15). Thus, for a given level 0≤ ℓ≤ L, the relaxation in Algo-
rithm 1 can be done by performing a small number of Gauss-Seidel
iterations. (We accelerate the computation by using multi-coloring
to parallelize the relaxations.)

7.5. Extracting the level-set

Extracting the level-set from the regular grid is more complex than
the standard Marching Cubes case [LC87, KKDH07] because the
basis functions are multi-linear within a grid cell. We resolve this
by using a piecewise-linear approximation — partitioning grid cells
into simplices, sampling the original function at the vertices of the
simplices, and linearly interpolating within a simplex. Our recur-
sive strategy is an implementation of the generalization of an al-
gorithm for 2-surfaces in 4 dimensions [WB96]. It is possible to
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resolve the recursion [Min03]; and in higher dimension it would
be beneficial to use triangulations with few simplices [BKW21].
We found that our approach was sufficiently efficient to explore the
results with negligible computation times.

Simplicial decomposition

To partition each grid cell we proceed by induction on cell dimen-
sion. For dimensions k = 0 and k = 1 nothing needs to be done
since the k-dimensional cells of the grid are already k-dimensional
simplices. Starting with dimension k = 2, we introduce an addi-
tional vertex at the center of each k-dimensional cell, and connect
the previously obtained (k−1)-dimensional boundary simplices to
the center. For example, with k = 2 we add the center of each 2-
dimensional face to the grid and then triangulate each 2D face by
connecting its boundary edges/simplices to the face center, obtain-
ing four triangles. Similarly, for each 3D cube, we introduce the
center and then iterate over each 2D face, connecting the four pre-
viously obtained triangles to the cube’s center to get 24 tets.

Marching simplices

Having a piecewise-linear representation of the functions over a
simplicial complex we obtain the level-set by inducting on the di-
mension of the simplices.

Base case k = d̄: We iterate over all k-simplices (triangles) in the
simplicial complex, embed each in in Rd̄ using the functions’ val-
ues at the vertices, and test if the embedded simplex contains the
origin. If it does, we introduce an iso-vertex at the location on the
simplex that maps to the origin.

Induction step: For each (k + 1)-dimensional simplex, we iter-
ate over its k-dimensional faces, merging the associated (k− d̄)-
dimensional level-set simplices into (k− d̄ +1)-dimensional level-
set simplices. As the intersection of the level-set with a simplex
is convex, merging can be done by choosing a vertex on a (k− d̄)-
dimensional level-set simplex and connecting it to all other (k− d̄)-
dimensional level-set simplices that do not contain that vertex.

8. Results and Evaluation

We now assess the empirical behavior of our solver. We start by
considering results when reconstructing curves in 3D and surfaces
in 4D. Next, we analyze the convergence of the solver. We con-
clude by examining the robustness in the presence of non-uniform
sampling and noise. Source code implementing the reconstruction
of co-dimension two manifolds has been made publicly available at
https://github.com/mkazhdan/ExteriorPoissonRecon.

With the exceptions of the curve in Figure 1, point samples are
obtained by uniformly randomly sampling parameter space (with
1024 samples for curves and 1024×1024 samples for surfaces) and
visualizations show the entire zero level-set, including connected
components over which the sampling density is low (in black).
Curves are reconstructed at a resolution of 64× 64× 64. Surfaces
are reconstructed at a resolution of 32× 32× 32× 32. Connected
components are removed when all points on the component have a
sampling density of less than two samples per cell.

p = 1 p = 2 p = 3 p = 3

q
=

1
q
=

2
q
=

3
q
=

4
Figure 3: Reconstructed (p,q) torus-knots for varying values of in-
tegers p and q. (When p and q are not relatively prime, the curve
consists of gcd(p,q) separate components. For example, the (2,2),
(3,3), and (4,4) torus-knots are composed of multiple rotations of
the (1,1) torus-knot.)

1◦

-1◦

1◦

-1◦

Figure 4: Reconstructed Hopf tori, with samples obtained using
the parameterization from [Lau18] and visualized via stereographic
projection, with different number of lobes and different frequency
pre-image curves on the sphere. The tori are rendered with per-
vertex Gaussian curvature (measured as the angular deficit in 4D
divided by the vertex area).

8.1. Curve and surface reconstruction

Visualizations of various (p,q) torus-knots are show in Figure 3
and several Hopf tori are visualized (after stereographic projection
from the 3-sphere into Euclidean 3-space) in Figure 4.

For the curves, our method correctly reconstructs the geometry
even when the curves consist of multiple disconnected components
(gcd(p,q)> 1) and are knotted (p,q ̸= 1). While the spurious level-
set components are generated for the more complex knots there are
far from the input samples and are easily trimmed off.

For the tori we visualize the Gaussian curvature, computed per
vertex in 4D as the the angular deficit divided by the vertex area.
We expect the curvature to be zero because the target surfaces are
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d = 3 d = 4
Time Memory Time Memory

R = 16 0.4 (s) 14 (MB) 93.4 (s) 748 (MB)
R = 32 2.5 (s) 64 (MB) 1300.4 (s) 5522 (MB)
R = 64 21.5 (s) 420 (MB) 23,361.3 (s) 60,698 (MB)
R = 128 188.5 (s) 3331 (MB)
R = 256 1725.3 (s) 25,809 (MB)

Table 1: Run-time and peak memory usage for reconstructing
curves in 3D and surfaces in 4D as a function of resolution, R. Re-
sults were obtained using an Intel Core i7 processor, running at 2.80
GHz, with 64 GB of RAM.

intrinsically flat. In general, we find this corroborated in our visu-
alizations, though the tori exhibit more curvature variation as the
number of lobes and the frequency of the pre-image curve on the
sphere is increased, likely due to the low reconstruction resolution.

Computational complexity

Using a hierarchical solver with a fixed number of relaxations per
level, the cost of the solve is linear in the number of non-zero en-
tries in the system matrix. As we use a first-order B-spline basis
to represent scalar functions, the number of non-zeros is propor-
tional to the number of basis functions. Thus, using a resolution of
R in d dimensions, the complexity (both temporal and spatial) of
reconstructing the geometry is O(Rd). Table 1 shows the empirical
performance for reconstructions in 3D and 4D at different resolu-
tions, which matches the theoretical complexity.

8.2. Solver performance

Unlike sPSR, the case of co-dimension larger than one requires
solving a multi-quadratic system of equations. We examine the
convergence of the solver by considering its behavior with respect
to different optimization schemes and its stability with respect to
choice of initial guess.

Convergence

We reduce the minimization of a multi-quadratic energy to the so-
lution of linear systems by alternately locking one coordinate func-
tion and solving for the other. As the energy is not quadratic, the
updating of the coordinate functions requires multiple passes (pa-
rameter K in Algorithm 2).

While a naïve approach would only iterate at the finest resolu-
tion, we found this to be ineffective for two reasons. First, as with
general iterative Jacobi methods, convergence tends to be slow,
with the local updates requiring many iterations for the constraints
at one point to affect the solution at a point far away. More signifi-
cantly, since the energy we minimize is not convex, naïve iteration
can lead to the solution being trapped at local minima.

We argue that both problems can be addressed by leveraging
the hierarchical structure of the B-spline basis. As with traditional
multigrid, this improves convergence because iterations at coarser
resolutions have more global effect. More significantly, the down-
sampling of the system to coarser resolutions smooths out the en-
ergy landscape, allowing the solver to find a good solution without

getting trapped in local minima with narrow basins of convergence.
(While this does not ensure we find the global minimum, it encour-
ages the solution to be stable. A property we validate below.)

As the solution at a coarser level provides a good guess for the
solution at the next finer level, we argue that the full power of a
linear solver is not necessary and the finer solution can be obtained
with a few passes of Gauss-Seidel relaxation. To this end we com-
pare three implementations.

• Single-solve: Solve for the coordinate functions at the finest level
of the hierarchy.

• Multi-solve: Processing the levels of the hierarchy in a coarse-
to-fine manner, solve for the coordinate functions and prolong
them to the next level.

• Multi-relax: Processing the levels of the hierarchy in a coarse-
to-fine manner, relax the coordinate functions and prolong them
to the next level.

The first two implementations require solving linear systems. As
a direct solver would be too expensive, we take advantage of the
multi-resolution hierarchy, using a standard V-cycle solver instead.
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Figure 5: Energy as a function of alternating iteration passes (left)
and time (right) for reconstructions of the (8,9) torus-knot at reso-
lution 64×64×64 with different solvers.

Figure 5 compares the performance of the different solvers, plot-
ting the energy of the system as a function of the number of al-
ternating relaxation passes and time when reconstructing the (8,9)
torus-knot. For the Single-solve and Multi-solve implementations
results are shown for V-cycle solvers using either 2 or 8 cycles, with
4 Gauss-Seidel relaxations per level.

Examining the non-hierarchical solution (Single-solve) we find
that only alternating at the finest resolution does not converge ef-
ficiently and tends to converge to a solution with a larger energy
(i.e. gets trapped at a local minimum). In contrast, both hierarchical
solutions converge at roughly the same rate. As expected, relaxing
the linearized problem by using a V-cycle solver (Multi-solve) con-
verges in slightly fewer iterations than only relaxing the linearized
problem within a single level (Multi-relax).

We also note that the hierarchical implementation of Multi-solve
results in a good initial guess for the V-cycle solver so that conver-
gence does not require a large number of cycles. In contrast, Single-
solve, for which there is no initial guess, convergences better as the
number of V-cycles is increased.

Considering the energy as a function of time (right), we find a
significant speed-up when using the Multi-relax implementation.
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While there is an overhead to using a V-cycle solver, we believe
that the increased computational cost is mostly due to the fact that
the construction of the linear systems in Algorithm 1 requires mul-
tiplying and summing large matrices — a problem exacerbated by
the difficulty of parallelizing these operations for sparse matrices.

We also explored gradient-descent and (quasi-)Newton methods.
However, we found the behavior to be similar to that of the Single-
solve approach — the approach required many iterations and would
only converge to a local minimum that did not, in general, provide
a good reconstruction. It is only by integrating a hierarchical ap-
proach that we were able to consistently obtain high-quality results.

Stability

As the energy is not convex, the solution we obtain may depend on
the choice of the random initialization (Line 6, Algorithm 2). To
assess this, we reconstructed the (8,9) torus-knot using twenty dif-
ferent initial guesses and computed the Hausdorff distance between
each pair of reconstructed geometries. The distance never exceeded
0.11 voxels, indicating that all the iterations converged to the same
solution. (The maximum distance was even smaller for the Clifford
torus, likely due to the simplicity of the geometry.)

8.3. Robustness

We evaluate the behavior of our solver with respect to non-uniform
sampling and different types of noise.

Non-uniform sampling

Throughout the paper, results are shown with samples generated by
uniformly randomly sampling parameter space. To evaluate the per-
formance of our reconstruction algorithm in the presence of non-
uniform sampling we partitioned the embedding space with a hy-
perplane. Then for a given candidate sample (uniformly randomly
sampled in parameter space), we randomly decide to keep the sam-
ple with a probability depending on which half of the hyperplane
the sample belongs to.

Figure 6 shows a visualizations of the point samples generated
for a curve consisting of two linked circles (top) and the associated
reconstructions (bottom) for different ratios of samples on the two
sides of the hyperplane. Even with a significant change in sampling
density across the hyperplane our method correctly reconstructs the
linked circles, without generating spurious geometry.
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Figure 6: Reconstructions of the two linked circles with non-
uniform sampling. Despite the abrupt change in sampling den-
sity, our approach correctly reconstructs the geometry of the curve,
without introducing additional geometry.
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Figure 7: Reconstructions of the Borromean rings in the presence
of noise (Top: samples, Bottom: reconstructions), for different de-
viations of position (σp) and normal orientation (σα). Positional
displacements are in units of grid cell width. Note that for σp = 1
and σα = 22.5◦, the ends of one of the rings do not close off and
instead exit the bounding cube.

Positional and directional noise

To assess the robustness of our method in the presence of posi-
tional noise, we displaced a sample’s position by a random 3D off-
set drawn from a normal distribution with standard deviation σp (in
units of grid cell width). For directional noise, we rotated the sam-
ple’s two normals using (separate) random rotations with angles
drawn from a normal distribution with standard deviation σα.

Figure 7 shows reconstructions of the Borromean rings when po-
sitional and angular noise was added to the input samples while
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Figure 8: Reconstructions of the Borromean rings in the presence of
positional noise (σp), comparing our approach to NN-Crust (NNC)
and Tangential Delaunay Complexes (TDC). Positional displace-
ments are in units of grid cell width.

Figure 8 compares our results to the results of Tangential Delaunay
Complexes [BG10] and NN-Crust [DK99]. (Both earlier methods
only use positional information.) Our results parallel those of ear-
lier works on co-dimension 1 reconstruction (e.g. [Kaz05]), with
the output remaining stable in the presence of directional noise,
even as as the angular deviation goes to 45◦, and exhibit more ro-
bustness to positional noise than earlier methods.

A similar resilience
to positional noise is
observed when recon-
structing surfaces in
4D. From left to right,
the inset shows the stereographic projections of 10,000 noisy sam-
ples from a 3-lobed Hopf-torus, the computed Tangential Delaunay
Complex, and our reconstruction at resolution 16× 16× 16× 16.
The standard deviation of the positional noise corresponds to ap-
proximately half a voxel width. Because it is interpolatory, the Tan-
gential Delaunay complex reproduces the noise, outputting a non-
manifold mesh for which almost 80% of the (projected) faces self-
intersect. In contrast, our method generates a smooth and manifold
mesh without any self-intersection. (As stereographic projection is
not isometric, the samples are not uniform when mapped 3D.)

Spot noise

Finally, we evaluate the robustness of our method in the presence of
spot noise by randomly synthesizing samples within the samples’
bounding box. Figure 9 shows the results of one such experiment

for the reconstruction of the two linked circles. As the figure shows,
our approach correctly reconstructs the geometry even as the num-
ber of noisy samples matches the number of curve samples, with
spurious geometric components generated away from the samples
removed using the density estimator. Only in the cases of extreme
noise (right two columns) is spurious geometry not trimmed off,
due to high sampling density away from the curve.

9. Discussion

We presented an extension of screened Poisson Surface Recon-
struction, supporting the reconstruction of manifolds in general di-
mension and co-dimension. In doing so, we have shown that sPSR
can be understood as the simplest instance of a broader class of
variational problems that reduce manifold reconstruction to the so-
lution of a polynomial system of equations, with polynomial degree
growing with co-dimension. We have demonstrated that the ap-
proach works in co-dimension d̄ = 2, robustly reconstructing com-
plex curves in 3D and surfaces in 4D.

As our approach is to solve for a d̄-valued map whose zero-level-
set is the desired manifold, our approach is restricted to reconstruct-
ing those manifolds with trivial normal bundles. However, knowing
that a manifold has a trivial normal bundle does not specify what
that trivialization is. Our approach takes in an anti-symmetric ten-
sor at each sample point, describing the orientation of the manifold
without prescribing the trivialization itself. As such, in solving for
the implicit function, we implicitly select a trivialization of the nor-
mal bundle. In this context, one can view the incorporation of the
Dirichlet energy as biasing the reconstruction towards the selection
of a smooth trivialization.

Limitations: Trimming

As discussed in Section 5.1, given a closed manifold with trivial
normal bundle, we are only guaranteed the existence of an implicit
function F :Rn→Rn−d containing the manifoldM as a connected
subset of the zero level-set. The implicit function F may have addi-
tional level-set components away from the target manifold, neces-
sitating trimming.

The trimming value should depend on the (maximum) expected
sampling density, which itself depends on the number of samples
and the resolution of the grid. In our experiments we assume that
(for each connected component of the manifold) there are at least
two samples falling within the same grid cell and set the parameter
to 2. This correctly removes all spurious geometry for results in
Figures 1-8 and most of the results in Figure 9.

Limitations: Dirichlet Regularization

While empirically we have found that the regularizer in Equa-
tion 12 improves the quality of reconstruction, in principle it could
preclude the generation of a good solution. This could be the case
when the manifold exhibits complex twisting, requiring the coor-
dinate functions of F to change quickly as well — a property in
opposition to Dirichlet regularization.
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Figure 9: Reconstructions of the two linked circles using 1024 samples in the presence of added random noise. Reconstruction starts to break
down when the size of the added random noise reaches the input sample size.

The inset shows an exam-
ple of this for the trefoil knot,
comparing the winding in-
duced by correct coordinate
functions [Sta12] on the left
(the zero level-set equals the knot) with the winding induced by
coordinate functions obtained using our approach on the right (the
zero level-set contains spurious geometry that was trimmed off).
Visualizing the gradient of one of the coordinate functions around
the knot as a ribbon, we see that the correct solution introduces
more torsion (with the ribbon winding three times around the curve)
than our Dirichlet-regularized solution (for which the ribbon only
winds around once).

Future work

We would like to continue exploring both theoretical and practical
aspects of this work.

From the theoretical side, we would like to better understand the
types of manifolds we can reconstruct and the energies we should
incorporate to better guide us in finding “good” answers within the
family of possible solutions. For example, we would like to con-
sider replacing the global Dirichlet regularizer that is integrated
over the entire domain with one that is only evaluated at the sam-
ples — encouraging the selection of a smooth normal frame for
the manifold without otherwise constraining the implicit function.
We would also like to consider incorporating the quadratic energy
∑i ∥VS ∧∇ fi∥2 into our optimization. Though it does not encour-
age the gradients of the coordinate functions to span the normal
space, it does encourage the gradients of the individual coordinate
functions to lie in the normal space.

From the performance side, it would be natural to incorporate
some of the machinery already established for sPSR. For example,
using an octree discretization we should be able to reduce the com-
plexity from O(Rn) to O(Rd).
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Appendix A: Extending Milnor’s Construction

In [Mil65, Ch. 7, Thm. C], Milnor shows that if M ⊂ Rn is a
closed, (n− d)-dimensional, embedded manifold with trivial nor-
mal bundle, it is possible to construct a continuous implicit func-
tion F̃ : Rn→ Sn−d such that F̃−1(0) =M. It is straight-forward
to turn such a function into a function F : Rn → Rn−d containing
M as a disconnected subset of F−1(0). (With some abuse of no-
tation, we use “0” to denote both the South pole in Sn−d and the
origin in Rn−d , and we use “∞” to denote the North pole in Sn−d .)

To see this, set F = π ◦R ◦ F̃ with π : Sn−d→ Rn−d the stereo-
graphic projection and R : Sn−d→ Sn−d the map that fixes the lower
hemisphere and reflects the upper hemisphere into the lower hemi-
sphere — R(x1, . . . ,xn−d ,xn−d+1) = (x1, . . . ,xn−d ,−|xn−d+1|).

Since R(∞) = R(0) = 0 and π(0) = 0, the zero level-set of F is:

F−1(0) = F̃−1(0) ∪ F̃−1(∞).

Since F̃ is continuous, it follows that F̃−1(∞) is disconnected from
F̃−1(0) =M as desired.
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