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Abstract

We present a novel approach for computing and solving thesBoi equation over the surface of a mesh. As in
previous approaches, we define the Laplace-Beltrami opetat considering the derivatives of functions defined
on the mesh. However, in this work, we explore a choice oftifume that is decoupled from the tessellation.
Specifically, we use basis functions (second-order tepsmitict B-splines) defined over 3D space, and then
restrict them to the surface. We show that in addition to genvariant to mesh topology, this definition of the
Laplace-Beltrami operator allows a natural multiresolori structure on the function space that is independent of
the mesh structure, enabling the use of a simple multigrjlementation for solving the Poisson equation.

Categories and Subject Descriptotaccording to ACM CCS) Computer Graphics [I.3.5]: Boundary
Representations—

1. Introduction

Solving the Poisson equation is a fundamental step in numer-
ous image and mesh processing applications. It facilitages
modeling process by fitting global solution to a set ofo-

cal constraints. Specifically, when the system is constrained
by prescribing gradients, solving the Poisson equation pro
vides a means for integrating the constraints — returnieg th
function whose gradients best match the desired diffeence

An example application is shown in Figute Here, we
back-project color onto a model that was reconstructed from
3D scans containing both depth and color information. Due
to lighting variation across the scans, setting the cola at
vertex to the color of the nearest scan point results in disco
tInUIt.IeS at scan transitions (left). Insteaq, by puIIlrtg(]r Figure 1: Reconstructing colored surfaces from 3D scans: The tex-
gra,d',enISfrom the closest ?Cans' we obtain a vector field de- ture obtained by pulling colovaluesfrom the closest scans is shown
scribing the local change in the texture over the mesh. Solv- o the left, while taking cologradientsfrom the closest scans and
|ng the POISSOﬂ equat|on fOI’ the CO|0I’ er|C| that beSt fItSEIheS so|ving the Poisson equation gives the seamless resu|m@hﬁ_
gradients produces a seamlessly textured surface (right).

In the context of regular grids, solving the Poisson equa- equation is more challenging: On a mesh, function values

tion is a straight-forward task. The regularity of the grid are traditionally associated with vertex positions, sodéf
vides a domain that is amenable to both Fourier methods and INition of the linear system depends not only on the surface

multigrid solvers. For meshes, however, solving the Poisso  980Metry but also on the tessellation. And, the domain of
the mesh is not regularly sampled so Fourier and multigrid

techniques cannot be used to solve the problem efficiently,
T Post-Doctoral Fellow of the Research Foundation - Flanders necessitating more general-purpose, sparse-matrixrsolve
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To address these concerns, we consider a novel finite- from one or more images, process the data to construct a de-
elements approach that decouples the definition of the Pois- sired gradient field, and solve the Poisson equation for the
son system from the surface tessellation. The key behind our image whose gradients best fit the constraint field. While
approach is to define a space of 3D functions (independent these techniques were developed for images, the fundamen-
of the mesh) and then restrict the functions to the surface. tal challenge in extending them to mesh processing is solv-

As with previous finite-element approaches, matrix coeffi-

cients are defined by integrating elements over the triangle

of the mesh, resulting in a system that adapts to the non-
uniformity of the tessellation. However, using restriooof

3D functions to define the elements has several advantages:

Tessellation IndependenceBecause the initial space of 3D

ing the Poisson equation.

Example applications in image processing have included
removing shadow and lighting by zeroing appropriate gra-
dients Hor74, FHDOZ or by selecting the median of gra-
dients from multiple exposure¥\fei01]; tone-mapping high
dynamic range (HDR) images by adaptively attenuating lu-

functions is chosen independent of the mesh, and becauseminance gradientsHLWO02]; seamlessly stitching overlap-

the system coefficients are defined by integrating over the

ping images by merging their gradienBGB03 ADA*04,

surface, our method defines a Poisson system that is agnos1.ZPW04; and improving photographic tone management

tic to the tessellation. This results in linear systems whos
eigenvalues can be more robustly estimated without requir-
ing excessive mesh refinement.

Multiresolution Hierarchy : Because restriction of func-
tions to a sub-domain is a linear operation, nesting 3D func-
tions spaces will remain nested after they are restricted to
the surface. As a result function hierarchies used to define
3D multigrid solvers can easily be extended to define multi-
grid solvers over the mesh, providing simple and efficient
methods for solving the Poisson equation.

Regularity: When the initial space of 3D functions is de-
fined over a regular grid, the surface elements inherit the
regularity, providing an opportunity for deriving fast itep
mentations of a solver. Though not explicitly discussed in
this work, such regularity can be leveraged for paralleliza
tion (since red-black-type decompositions in 3D will still
satisfy independence after restriction) and for strearttieg
solver (since a stream order derived for the 3D functions car
ries over to their restrictions).

We begin our discussion with a brief survey of related
work in using the Poisson equation for image and mesh
processing (Sectio) and a review of the general finite-
elements approach (Secti8n Next, we present our frame-
work for defining and solving the Poisson equation using
the restriction of 3D functions to the mesh surface (Sec-
tion 4). We analyze the utility of our method and present
results for several mesh processing applications, inagudi
spectral analysis, texture back-projection, and funcfibn
ting (Sectiorb). And we conclude by summarizing our work
and discussing directions for future research (Sed)on

2. Related Work

using gradient constraint8PD0A4.

Editing Meshes Recently, the Poisson equation has also
become a key component of mesh editing systems. Using
the translation invariance of differential vertex encagin
Alexa [Ale03] proposed a method to transfer detail between
models by blending in the differential coordinates and solv
ing the Poisson equation to get back absolute (Euclidean)
coordinates. The method was later extended by Sorkine et
al. [SCOL*04] and Lipman et al.ILSCO*04] to be invariant

to rigid-body transformations by encoding vertex posiion
relative to a local frame. Using gradient fields to model co-
ordinate functions, mesh editing has also been performed by
locally adapting the gradients and solving the Poisson-equa
tion for the new coordinate function¥ZX*04].

Defining Shape Invariants The Laplace-Beltrami opera-
tor’s invariance to isometric deformations has motivatsd i
use in both deformation-invariant shape matching anchntri
sic symmetry detection. Using the invariance of its spec-
trum, Reuter et al. RWP09 obtain a compact shape de-@
scriptor that is fixed under rigid-body transformations: In
corporating the invariance of its eigenvectors as well dead
to a deformation-invariant shape representatRns0q —
canonically embedding a shape in a high-dimensional space
by evaluating the eigenfunctions at the mesh vertices. This
embedding was later leveraged to detect a shape’s intrinsic
symmetriesPSGO0§ using the fact that intrinsic symmetries
become Euclidean symmetries in the embedding space.

Solving the Linear System with Multigrid ~ Multigrid
methods are well known for their efficiency and scalability
in solving large linear system®jes04. They were designed

to overcome the limitations of traditional iterative satve
(e.g., those based on Gauss-Seidel), which tend to reduce

The Poisson equation arises in numerous mesh processingyion_frequency errors more quickly than low-frequencysone

and shape analysis applications. This section briefly wevie
some of the more common applications as well as methods
used to solve the underlying system of equations.

Processing Images Many image processing techniques
operate in the gradient domain. They extract gradient fields

and thus exhibit slow convergence for typical (all-freqeyen
problems. Multigrid methods extend the reduction to aH fre
quencies by computing corrections on grids successively
coarsened from the original syste@HhaO1.

To apply multigrid methods to unstructured meshes,
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mesh simplification techniques are usually employed suc- whereA , is the Laplace-Beltrami operator (the generaliza-
cessively to generate different grid levelsGVS98 RLO3, tion of the Laplacian to the manifold?).

AKS05 NGHO04, SYBwWF0§. However, as observed in Ni et
al. INGHO04], these methods can be sensitive to the initial tri-
angulation of the surface, and a low-quality input mesh may
result in lower performance.

Since the space of functions oA is infinite-dimensional,
the problem is made tractable by constraining the functions
f andu to reside within a finite-dimensional subspage
Additionally, since the Laplacian does not necessarily map
In contrast, algebraic multigrid (AMG) methods are % back into itself, the formulation of the Poisson equation
“black-box” solvers that rely solely on the algebraic infor  is adapted by replacing the condition “the Laplacianuof
mation of the linear system, independent of any geomet- equalsf” with the condition ‘the projection ontoZ of the
ric information RS87. Although AMG proves to be ro- Laplacian ofu equalsthe projection onta# of f”.
bust and scalable on a large class of proble@EH*00],
especially those resulting from elliptical partial difer
tial equations, its notion of algebraic smoothness is lim-
ited in practice by the requirement that the coefficient ma-
trix be an M-matrix Cha03. AMG'’s successors, element-
based AMG BCF*00] and spectral AMGe CFH*03], ex-
tend the concept of algebraic smoothness and broaden it
applicability by assuming that the discretization is based h _ h
on Ritz-type finite-element methods for partial differanti /// A.qu(p)-bi(pidp= /// f(p)-bip)dp @)
equations. Nevertheless, this class of methods remains dif
ficult to apply for certain problems, such as the function-
fitting problem considered in Secti@n3.

Formally, the condition that the projections be equal re-
quires that the inner product of the Laplacian wfwith
b equal the inner product of with b, for any test func-
tion b(p) € .#. However, when% is the span of elements
{b1(p),...,bn(p)}, a sufficient condition is that the inner
sproducts with thdy; are equal:

In this finite-elements setting, solving the Poisson equa-
tion amounts to finding the linear combination of elements,
u(p) = ¥ nibi(p), which satisfy Equatio®, and the Poisson
Leveraging Regularity The facility derived from work- equation reduces to thex n system:
ing over a regular domain has motivated the use of 3D L‘”n _ 3)
grids for encoding the constraints and linear systems de-
fined on irregular surfaces. In the context of fluid dynamics wheren = [N1,...,nn|T are the coefficients ofi, and the
(e.g. May84, PesO2MI05]) the constraint that a fluid not ~ matrix L/ and vectorp = [¢y,... @] are defined in terms
penetrate the boundary of a solid is encoded by modifying of the dot-products:

a linear system, defined over a regular grid, to incltate- o

ing functionsthat reproduce the effect of the boundary. In L = /%A%bi(p)-bi(mdp

the context of potential theoryTIW03], Tausch et al. show ’ 4)
that the orthogonality of piecewise-constant elementdean @ / f(p)-bi(p)dp.
used to define a multiscale basis derived from a hierarchical M
decomposition of a 3D bounding-cube.

o Evaluating the Matrix Coefficients  One challenge to ap-
Similar to Tausch et al., our approach leverages the reg- plying Equation4 in practice is that evaluating the surface
ularity of a 3D grid to define basis elements for solving & | apjacian requires the estimation of mean curvature, a dif-
linear systems. However, in this work, we show how the ferential property that is not well defined for meshes. When
finite-elements setting can be formulated even in the case of the syrface is water-tight, Stokes’s Theorem is used togurn

higher-order (non-orthogonal) elements, allowing us to ex second derivative into two first derivatives giving:
tend the approach to the discretization of surface PDEs. )
L == | (Cab(p.Oabi(p)dR )

This weak formulationonly requires first-order derivatives

In this section, we review the finite-elements approach. We o compute the surface Laplacian and hence can be evaluated
show how a choice of elements can be used to define the without explicitly estimating curvatures.

Laplace-Beltrami operator and how a nesting hierarchy of
elements can be used to guide a multigrid approach for solv- 3.2. The Multigrid Method
ing the Poisson system.

3. A Brief Review of Finite Elements

The multigrid method is a common technique for solving
3.1. Defining the Poisson Equation the Poisson equation, replacing the global system of equa-
tions with a multiresolution hierarchy of systems that only
require local refinement. It proceeds in two phases:
Restriction: Proceeding from the highest resolution to the
lowest, the solution is relaxed and the restricted resigual
A u=f, Q) used as a constraint for the lower resolution problem.

Given a manifold# and a functionf : .# — R, solving the
Poisson equation amounts to finding the functionZZ — R
whose Laplacian is equal ta
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Prolongation: Returning in the opposite direction, the solu-
tion is prolonged into each higher resolution, contribgitin
correction term to the previously estimated solution.

Implementing such a solver in the context of finite-

elements requires a nested hierarchy of function spaces,

F C - C Fy =%, where each spacé is spanned by

n; elements and an;1 x n; prolongation matrix describes
how elements at levélare expressed as linear combinations
of elements at levdl+ 1. Using this structure, the prolonga-
tion matrix describes the injection of the solution from the

coarser space into the finer, and the transpose of the prolon-

gation operator defines the dual operator that restricts con
straints from the finer level into the coarser one.

4. The Restricted 3D Laplace-Beltrami Operator

To implement a multigrid solver, we must choose a space of

Kazhdartihizging the Laplace-Beltrami Operator

Since the support of B-splines grows with degree, it is
natural to consider lower order B-splines. Here, we use sec-
ond order B-splines. As a result, each B-spline is supported
within its voxel's immediate neighbors, and we obtain a pro-
longation operator expressing th¢h level B-spline as the
combination of 4x 4 x 4 B-splines at leve(l + 1), where
the prolongation stencil is defined as the tensor-product of
the 1D stencils} (133 1).

4.3. Computing the Integrals

Defining the coefficients of the Poisson system in Equation
requires computing integrals of products of the restri@ed
splines and their derivatives. To compute the coefficiants,
can either integrate over the triangle mesh or perform Monte
Carlo integration over a uniformly distributed set of saespl

Integrating over the triangles  To compute the integrals,

functions over which to define the linear system and create a e ghserve that the restriction of a second-order B-sptine t

nesting hierarchy supporting multigrid.
4.1. Approach

In traditional mesh-processing applications, the elemarg

defined as tent functions over the mesh vertices. These func-

tions are piecewise linear and are supported within the one-
ring of the vertex. Using these in the weak formulation of
Equation5, one obtains the well-known cotangent-weight
Laplace-Beltrami operator. Though the elements adaptto th
sizes of the triangles, the linear system remains tied to the
topology of the mesh representation and does not directly
support a multigrid structure.

In this work we propose an alternate approach in which

3D functions are chosen independent of the mesh, then re-
stricted to the surface to define the elements of the system.

The advantages of this approach are two-fold. First, the re-
sulting definition of a Laplace-Beltrami operator is agiost

to the surface tessellation and only depends on the geametry

the interior of a voxel is polynomial. By splitting the trian
gles of the mesh so that each is contained within a single
voxel, we can reduce the problem to integrating polynomi-
als over the subdivided triangles. This remains true for the
surface gradients as they can be obtained by projecting the
3D gradients onto the tangent space:

0.b(p) = Ob(p) — (Ob(p),N. (P))N 4 (p)),

whereN 4 (p) is the normal atp. Since the 3D gradient,
Ob(p), is polynomial and since the normal is constant in the
triangle, the surface gradierit, ,b(p), is also polynomial.

Using trivariate B-splines of degree two, the restrictién o
elements to a triangle are sixth-degree polynomials. Since
the system coefficients involve products of elements, the in
tegrands will have degree at most 12. Thus, we can use Tay-
lor's 32-point cubature formulalpy0d to compute the co-
efficients of the system efficiently.

Second, since nesting function spaces remain nestedefterr SUMming over point samples  Given a uniformly dis-

striction to a domain, an initial choice of nesting 3D spaces
is guaranteed to result in a nesting hierarchy of restricted
function spaces that support a multigrid solver.

There are several practical issues to implementing our

method. Of course, we must choose appropriate nesting sets 1

of 3D functions. In addition, we must compute the integrals
defining the matrix and constraint coefficients of the system
and we need a simple way to index the function spaces to
support efficient restriction and prolongation operations

4.2. Choosing the 3D Elements

To define the 3D function space, we use the span of trivari-
ate, tensor-product B-splines, centered on a 3D grid of reso
lution 2 x 24 x 29 [CS97. In addition to having local sup-
port, resulting in a sparse linear system, this choice of 3D
functions provides a nested set of function spaces undgr gri
subdivision, allowing for a multigrid solver.

tributed set of oriented point sampl@s, n;) over the mesh
A, (i.e.p € .4 andn; =N ,(pj)) we can also approximate
the integrals with a finite sum, giving:

M
Lt~ LS (0 ()~ (0B (. mn T (o)
k=1
NAR
a ~ 003 100 bin

k

1

Though less accurate than integrating over the triandtes, t
Monte Carlo approach can be used even when the restric-
tions of the constraint functions to the triangles cannot be
expressed as a low-degree polynomial.

4.4. Indexing the Functions

In the regular 3D multigrid setting, the second-order ele-
ments at depth can be indexed by d % 2' x 2! voxel grid,

(© 2009 The Author(s)
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and the multiresolution set of elements can be indexed by a LaplaceBeltramiMatrixQctree5-# , Depth |, Mesh.#)

complete octree of depth Matrix L7 — 0

Although we could set up our Poisson equation using all forall trianglesT €.7
of the 3D elements, only elements that overlap the model nodeo = NodeContainingl , 1)
surface contribute to the system, since integrals computed for all pairs of nodego’,0") € Neighbors()
against non-overlapping elements (or their derivatives) a L% += / (O0.#by (p),0_xby (p)ydp
guaranteed to be zero. Thus, to index our system, it suffices return L4 T
to construct a sparse octrég” where any node whose im- - - -
mediate neighbors do not overlap the shageis pruned PoissonConstraintSctree-”, Mesh.#, Function f)
from the tree. We then index the elements by the tree nodes, ~ Vectorg — 0
settingbo(p) to be the element centered ate ¢/ and for all trianglesT € ./
scaled by the width 06, settingno and @, to be the coef- nodeo = LeafNodeContainingT )
ficients associated with elemebs, and settind_, to be for all nodeso’ € Neighbors(0)
the coefficients obtained by integrating: @ —= /T f(p) by (p)dp

LG == [, (C.ubo(p). L.k (p)) dp fotum ¢

Figure 2: Algorithms for computing the coefficients of the
Restriction and Prolongation  Since the nesting of spaces  Laplace-Beltrami matrix at different levels of the hiedayc
is independent of the surface, computing the restrictiah an  (top) and the coefficients of the constraint vector (bottom)
prolongation of an element associated with a node at level
only requires finding the appropriate neighborhood of nodes depth nodes in the octree, while the dimension of the
inlevelsl — 1 andl + 1 and updating their associated function ~ cotangent-weight system is equal to the number of vertices.
coefficients. For restriction, this requires updating thefe For the analysis of the spectrum, we use an octree of depth
ficient associated with the parent of the node and (some of) five while for the other applications in this section we use
the coefficients stored in the parent's immediate neighbors an octree of depth eight. For the evaluations of the solver,

For prolongation, this requires updating the coefficierits o the images all show the result of a single W-cycle, giving
the eight children and their immediate neighbors. the dimension of the system, the time for defining the lower-

resolution systems and running the solver, and the RMS er-
ror (when the ground-truth solution is known). Additioryall
with the exception of the normal-fitting experiment, all co-
efficients are computed by using cubature.

Computing the System CoefficientdMe can also use the
octree to efficiently compute the coefficients of the Poisson
system. Because elements are supported within the immedi-
ate neighbors of their associated nodes we can compute the
system matrix and Poisson coefficients at léugy iterating
over the triangles/point-samples, finding the node thélees  The spectrum of the Laplace-Beltrami operator character-
in, and updating the coefficients for all pairs of neighbors j;es the modes of the surface and plays an essential role in a
(Figure2). Thus, computing the coefficients for the Poisson variety of applications, including shape matchifRyyP0g,

equation can be reduced to locating triangles/point-ses\pl  esh editingTau9d, and signal processing/[.08].
within the tree and identifying neighbors, giving rise to an

5.1. Spectral Analysis

overall set-up time o©D(N -d) whereN is the number of To evaluate the robustness of our approach we com-

triangles/samples ardlis the depth of the tree. pare the spectra obtained from our octree-based Laplace-
Beltrami operator with those obtained from the cotangent-

5. Results weight Laplacian. For both, we compute the generalized

eigenvalues: and eigenfunctiond, such that the projec-
To evaluate our approach, we consider three separate appli-tion of the Laplacian off, onto.# equals the projection of
cations. The first focuses on the quality and robustnessofth A f, onto.#. Formally:
computed Laplace-Beltrami matrix by comparing the spec- 4 = AD# n
tra of our octree-based system with that of the traditional,
cotangent-weights formulation. The other applicatioes; t whereL7 is the Laplace-Beltrami operator abd” is the
ture back-projection and curvature estimation, demotestra mass matrix, witrD;j” = [ 4bi(p)-bj(p)dp.
the need for an effective Poisson solver in geometry precess
ing and compare the performance of our multigrid solver
with state-of-the-art algebraic multigrid methods. We -con
clude with a brief discussion of limitations.

A comparison of the spectra is shown in Fig@eThe
original model is shown on the left, overlaid with the spactr
of the Laplace-Beltrami operators computed from different
tessellations. We also show a detailed view of the spectra at
In all our experiments, the dimension of the system de- higher frequencies, zooming in on the results obtained us-
fined using our approach is equal to the number of finest- ing the cotangent weights (middle) and our restricted finite

(© 2009 The Author(s)
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Figure 3: Using our Laplace-Beltrami operator, we compute a specttiat only depends on the geometry of the surface. In
contrast, using the cotangent formulation results in a spee sensitive to the tessellation.

elements, drawn on top of the spectrum from the finest-
resolution cotangent-weight Laplacian (right). The spher
was obtained by recursively subdividing an octahedron. For
the bimba, fish and pulley, we started with a high resolution
model and used QSIindH97] to obtain the coarser, water-
tight, tessellations.

As the plots indicate, the cotangent Laplacian is sensi-
tive to the tessellation, only converging to the true speutr
at finer triangulations. In contrast, the spectrum defined by
our operator remains stable across the different triangula
tions and is nearly identical to the spectrum of the cotahgen
Laplacian at the finest tessellation (shown in dark blue in
the detailed views on the right). Note that for the sphere,
the eigenspaces are known to be multi-dimensional, with
the |-th eigenspace consisting of 2 1 spherical harmon-
ics with eigenvalues - (I + 1), resulting in the predictable
stair-stepping pattern witnessed in the top plots.

The advantage of our approach is further evidenced by

Cotangent Restricted
Model Low Med. High| Low Med. High
Sphere| 642 2,562 10,242 504 504 504
Bimba | 6,100 12,200 74,764 6,071 6,083 6,083
Fish 3,700 14,800 59,200 3,617 3,619 3,616
Pulley | 6,459 19,499 45,676 6,160 6,160 6,161

Table 1: Dimensions of the Laplace-Beltrami operators de-
fined for the different tessellations of the models in Figtire

considering the dimensions of the Laplace-Beltrami oper-
ators shown in Tabld. As the table indicates, using our
method to define the operator, we stably compute the eigen-
values using linear systems that are between 5 and 20 times
smaller than what would be required for a cotangent-weight
Laplacian. Note that the cotangent Laplacian is defined by
associating an element with each vertex, so the dimension
of the operator grows as the triangulation is refined. In con-
trast, since the dimension of our system only depends on the

(© 2009 The Author(s)
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number of octree-nodes abutting the surface, the dimension ,

of our system remains constant across the triangulations.

The exception to this is the pulley model, for which our

octree-based operator fails to define a robust spectrum. We

discuss this case in greater detail at the end of the section.

5.2. Texture Back-Projection

In applications where surfaces are reconstructed from a set

of registered scans, there is often no one-to-one correspon

dence between reconstructed surface points and points on

the scans. Consequently, it is difficult to re-bind addision
scan information, such as color, to the reconstructed ceirfa

One simple way to assign color to each vertex in
the reconstructed model is to use the closest input sam-
ple’s color. However, due to varying camera exposure
and differing lighting conditions, color transitions bet@n
scans in overlap regions are not necessarily continuous,
as seen in Figurel (left). The problems with taking
color from nearby scans can be reduced by computing
a color correction between different imagd®3R[0Z], cor-
recting color based on laser return intensities and care-
ful calibration (e.g. KGRDOg]), blending color between
different views, or carefully choosing seams between im-
ages. Masked Photoblendin€CCS08 combines many
of these ideas to blend weighted pixels from different
views. Graph cuts are also commonly used in both the im-
age domain (e.g.0av9qg) and (for texture synthesis) on
meshesZHW*06], to select boundaries that will not be vis-
ible between different images or texture patches. However,
blending can smooth out details, while graph cuts cannot al-
ways completely eliminate discontinuities.

In gradient-domain image-processirgGB03 LZPWO04,
ADA*04], discontinuities are pushed from the texture to its
derivative where they are less perceptible. Using our splve
we can extend gradient-domain stitching to meshes. Follow-

ing the approach used in image processing, we define a gra-

dient field over the mesh and solve the Poisson equation to
fit a function to the gradients.

We define a piecewise linear gradient field by first set-
ting the gradients at the vertices of a triangle to the projec
tion of the color gradients from the nearest scan onto the
triangle’s tangent plane, and then defining the vector field
within the triangle to be the vector field that linearly in-
terpolates the vertex gradients. We obtain the coefficients
n =[n,-..,Nn|" of the functionu(p) = ¥ nibi(p) whose
gradients most closely match the constraint fié(g) by
solving the systeni-” 1 = @, whereg = [@,..., @] are
the integrated inner products of this vector field with the su
face gradients of the finite-elements:

- [, @p.0..b(p) dp

@ (6)

An example stitched color field is shown in Figute

(© 2009 The Author(s)
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Figure 4: An input texture map (left), the solution obtained
when the gradients were used as constraints to our Poisson
solver (middle), and the solver error (right).

Dimension: 138,288 ;Times. 2+4(s) ; RMS: 0.0536

(right). Note that even without any intelligent gradient se
lection, the final color seamlessly transitions across tha s
boundaries without blending artifacts, despite the vayyin
lighting conditions across the different scans.

To validate the quality of our solver, we also extracted
the gradient field from a known color map and compared
our solution with the original. Figuré shows the results of
this experiment, with the original color map on the left, our
solution in the middle, and the error on the right. Note that
the depth of our octree (eight) limits the maximum frequency
we can resolve, so our solution exhibits errors near sharp
features like the edges of the stripes in the shirt.

5.3. Function Fitting and Curvature Estimation

Though our focus is on the Poisson equation, the same finite-
elements structure can be used to find the functioff ithat

best matches a prescribed scalar field. In particular, given
a functiong : .# — R, represented either as a (piecewise
polynomial) function over the triangles of the mesh, or as a
set of uniformly sampled values, the projectiorgainto.#

is the functionf € .# satisfying:

|, 1e-bipdp= [ a(p)-bi(pdp

As in SectiorB, finding the coefficients of requires solving
the linear systend# n = y, wheren is the vector of solu-
tion coefficientsD-# is the mass matrix, angis the vector
of inner products ofy with each of the elements:

vi= [ a(p)-bi(p)dp

And, as with the Poisson equation, we can leverage the mul-
tiresolution structure on the space of functioffsto effi-
ciently solve the linear system using a multigrid solver.

We briefly describe two ways to use this method to solve
for the (mean) curvature of a model.

Differentiating a Normal Field  One approach for com-
puting the curvature is to solve for an approximate normal
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Figure 5: Fitting a function to the normals, we get a smooth
vector field (left) that we can differentiate to get the mean
curvatures (middle). The fitting error is shown on the right.
Dimension: 559,839 ;Times: 11+17(s) ; RMS: 0.0071

field by finding the linear combination of elements that best
fits the sampled normals. Differentiating the normal field

along the tangent directions and projecting the gradients
back into the tangent space, we obtain & 2 matrix that

Kazhdartihizging the Laplace-Beltrami Operator

Figure 6: A piecewise linear surface (left) and the mean
curvature (right) obtained by solving for the function that
best approximates the Laplacian of the coordinate funstion
Dimension: 612,035 ;Times: 12+19(s) ; RMS: (N/A)

resenting the projection of a “delta-like” function ontceth
band-limited space of functions spanned by the elements.

5.4. Comparison with Algebraic Multigrid Solvers

approximates the curvature tensor, and whose trace and de-

terminant approximate the mean and Gaussian curvatures.

(Since the original field is defined by interpolating the per-
vertex normals and then normalizing, the vector field we fit
is not locally polynomial and we approximate the integrals
as a sum over uniform samples.)

Figure5 illustrates this type of curvature estimation. The
normal field is shown on the left, with red, green, and blue
values at a point set in correspondence toxhe-, andz
components of the normals. Mean curvatures are shown in
the middle, with blue corresponding to negative curvature
values and red corresponding to positive values. Erroren th
reconstruction of the normal field is shown on the right.

Computing the Laplacian of the Coordinate Function

An alternate approach leverages the fact that the Laplacian
of the coordinate functions is equal to the mean-curvature
vector. Though we cannot compute the coordinate functions’
Laplacians (as their derivatives are discontinuous), we ca
use the weak formulation and compute the inner products of
the coordinate functions’ gradient with the gradients & th
elements. Thus, we can solve for the mean curvature vector
by solving the linear syste# n = ¢, whereD# is the
mass matrix used to project the Laplacian of the coordinate
functions onto the spac#, n is the vector of solution coef-
ficients, andp is the vector of integrated dot-products:

a=—[ (0.4CP.0.5" () dp
whereC(p) = pis the coordinate function.

Figure6 shows the resulting mean-curvature values, with
the original mesh on the left and the mean curvature on
the right. (Gray indicates zero mean curvature, red is posi-
tive, and blue is negative.) Since the coordinate functares
piecewise linear, the mean curvature is derived from a piece
wise constant normal field, and the resulting values are zero
on the interior of the faces. It is only near triangle bound-
aries that the mean-curvature is non-zero, effectively rep

To evaluate our solver’s efficiency, we compare our perfor-
mance to two different configurations of the state-of-the-a
BoomerAMG solver HY0O]. The first (AMG1) is the classi-

cal AMG solver from Ruge and StuebdR$87, which uses

a sequential coloring algorithm to derive coarsened grids.
This proves to have good convergence, but the resulting grid
have relatively high complexity. We set the strength thresh
old to 0.25, which is the typical value for Laplacian oper-
ators. The second (AMG?2) is the best-tuned configuration
for BoomerAMG. We adopt thegMS0§ coarsening option
and fully tune its parameters to ensure the best performance
To make a fair comparison, we ran these algorithms in a sin-
gle thread using Gauss-Seidel smoothers.

Table 2 shows the results of the experiment, giving the
dimension of the system (defined by the number of nodes
at the finest depth of the tree), the time for defining the

Model AMG1 AMG2 | Ours
Rooster Setug Out of Out of 30.7
(1,062,919) Solvg memory | memory | 76.6
Male Setup 14.1 1.8 3.9
(138,288) Solve) 26.4 13.1 8.5
Cow Setup 19.7 2.5 54
(189,914) Solve| 39.0 17.2| 11.4
Cow* Setup 13.3 2.1 5.4
(189,914) Solve| 37.8 16.7 | 13.8
Pulley Setup| Out of 11.1| 18.2
(669,975) Solve| memory 69.1 | 34.7
Pulley* Setup 74.9 9.1| 18.2
(669,975) Solve| 171.6 65.4 | 42.1

Table 2: A comparison of setup and solve time (in seconds)
required by AMG and our multigrid solver to reach a relative
residual norm ob x 103, The asterisk denotes experiments
in which soft constraints were introduced and the numbers
in parentheses give the dimension of the system.

(© 2009 The Author(s)
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lower-resolution systems, and the time to solve for a so-
lution whose ratio of ending to starting residual norms is
smaller than 5 1073. Except the rooster model, which was
computed from an octree of depth nine, we used a tree of
depth eight for all the experiments. As the table indicates,
our simple multigrid solver remains competitive with state
of-the-art AMG implementations for small systems, and out-
performs both AMG implementations for larger ones.

We do not compare at function fitting as the AMG solvers
failed to converge on these experiments. We believe this

is because the mass matrix has non-negative values along

its diagonal, which (as noted in Ruge and SteutiR87)
results in a highly oscillating algebraic error that vielsit
AMG'’s assumption of an algebraically smooth residual.

5.5. Discussion of Limitations

Though constructing the Laplace-Beltrami operator by re-
stricting 3D functions has several advantages, it alsoti&as t

property of supplanting geodesic distances with Euclidean
ones, at the resolution of the basis functions. This has two
important consequences. First, if Euclidean distance is no

Kazhdantihizting the Laplace-Beltrami Operator

LO®

Figure 7: Examples of how the Poisson solver can fail due
thin regions in the surface (middle) and how regularization
can help alleviate the problem (right).

Dimension: 189,914 ;Times. 4+ 6(s) ; RMS: 0.3073—0.0962
Dimension: 669,975 ;Times: 13+18(s) ; RMS: 0.0435-0.0024

mlo
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a very coarse estimate of the solution — something readily
available in applications such as texture back-projection

The right side of Figur& shows the results of applying
this type of regularization, and we see that even using a soft

a good estimate of geodesic distance at some coarse resoluconstraint on the values(~ 1/20) the errors becomes im-

tion of our octree, the benefit of operating at that resotutio
within our multigrid solver will be reduced, increasing the
time required for the solver to converge. Second, and more
important, if the Euclidean distance approximation is poor
even at the finest level, the solver may have difficulty con-

perceptible in the case of the pulley, and are restrictedeo t
non-manifold regions in the case of the cow.

6. Conclusion

verging to the correct result. This is especially the case fo \We have presented a novel approach for defining and solv-
models with narrow cross-sections, such as the pulley model ing the Poisson equation over the surface of a mesh. By us-
in which the support of individual basis elements is larger ing the restriction of nested subspaces of 3D functions, we
than the separating distance of disjoint (and geodesically have shown how to design a finite-elements setting that eas-
distant) patches of the surface. We believe this to be the ily supports a multigrid solver. We have demonstrated the

cause of the instability of the Laplace-Beltrami spectram i
the case of the pulley in Figu& bottom.

In practice, we have found that these effects are more pro-

nounced in gradient-fitting applications, where the value a
a point is influenced by constraints defined over the entire
surface, than they are for value fitting. Figdrshows an ex-

robustness of our operator by analyzing its spectrum and
demonstrated its utility in a number of signal processing ap
plications. Finally, we have also shown that the multigrid
solver it defines is competitive with state-of-the-art sobs

In the future, we would like to continue evaluating the
system and solver, investigating questions including tre c

ample in which the Poisson equation was used to fit a vector ditioning of the Laplace-Beltrami operator and mass matrix

to thegradientof the surface normals (left). In these cases,
the thin regions near the lip of the pulley, and the inter-

the sensitivity of the system to spatially adjacent but gsod
cally distant points, and the implications of the multileso

penetrating surfaces at the base and end of the cow’s tail tion hierarchy on challenges such as computing the lower-

result in erroneous estimations of the normal field (middle)

Though this is an inherent limitation of our method, we

have found that in practice the instability can be addressed

by introducing a small regularization term to localize the s
lution of the system. Specifically, we replace the Poisson
equation with the screened Poisson equati®@C{209),
adding a small constraint on the values of the solution:

L’n=¢ = (L7+aD?)n=q+ay,

where  is the vector of inner products defining the value
constraints. Since the effects of the regularization aee pr
dominantly low-frequency, using this approach only regsiir

(© 2009 The Author(s)
Journal compilatiorf© 2009 The Eurographics Association and Blackwell Publighital.

frequencies of the Laplace-Beltrami spectrum.
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