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Abstract
We present a novel approach for computing and solving the Poisson equation over the surface of a mesh. As in
previous approaches, we define the Laplace-Beltrami operator by considering the derivatives of functions defined
on the mesh. However, in this work, we explore a choice of functions that is decoupled from the tessellation.
Specifically, we use basis functions (second-order tensor-product B-splines) defined over 3D space, and then
restrict them to the surface. We show that in addition to being invariant to mesh topology, this definition of the
Laplace-Beltrami operator allows a natural multiresolution structure on the function space that is independent of
the mesh structure, enabling the use of a simple multigrid implementation for solving the Poisson equation.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.5]: Boundary
Representations—

1. Introduction

Solving the Poisson equation is a fundamental step in numer-
ous image and mesh processing applications. It facilitatesthe
modeling process by fitting aglobal solution to a set oflo-
cal constraints. Specifically, when the system is constrained
by prescribing gradients, solving the Poisson equation pro-
vides a means for integrating the constraints — returning the
function whose gradients best match the desired differences.

An example application is shown in Figure1. Here, we
back-project color onto a model that was reconstructed from
3D scans containing both depth and color information. Due
to lighting variation across the scans, setting the color ata
vertex to the color of the nearest scan point results in discon-
tinuities at scan transitions (left). Instead, by pulling color
gradientsfrom the closest scans, we obtain a vector field de-
scribing the local change in the texture over the mesh. Solv-
ing the Poisson equation for the color field that best fits these
gradients produces a seamlessly textured surface (right).

In the context of regular grids, solving the Poisson equa-
tion is a straight-forward task. The regularity of the grid pro-
vides a domain that is amenable to both Fourier methods and
multigrid solvers. For meshes, however, solving the Poisson
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Figure 1: Reconstructing colored surfaces from 3D scans: The tex-
ture obtained by pulling colorvaluesfrom the closest scans is shown
on the left, while taking colorgradientsfrom the closest scans and
solving the Poisson equation gives the seamless result on the right.

equation is more challenging: On a mesh, function values
are traditionally associated with vertex positions, so thedef-
inition of the linear system depends not only on the surface
geometry but also on the tessellation. And, the domain of
the mesh is not regularly sampled so Fourier and multigrid
techniques cannot be used to solve the problem efficiently,
necessitating more general-purpose, sparse-matrix solvers.
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To address these concerns, we consider a novel finite-
elements approach that decouples the definition of the Pois-
son system from the surface tessellation. The key behind our
approach is to define a space of 3D functions (independent
of the mesh) and then restrict the functions to the surface.
As with previous finite-element approaches, matrix coeffi-
cients are defined by integrating elements over the triangles
of the mesh, resulting in a system that adapts to the non-
uniformity of the tessellation. However, using restrictions of
3D functions to define the elements has several advantages:

Tessellation Independence: Because the initial space of 3D
functions is chosen independent of the mesh, and because
the system coefficients are defined by integrating over the
surface, our method defines a Poisson system that is agnos-
tic to the tessellation. This results in linear systems whose
eigenvalues can be more robustly estimated without requir-
ing excessive mesh refinement.

Multiresolution Hierarchy : Because restriction of func-
tions to a sub-domain is a linear operation, nesting 3D func-
tions spaces will remain nested after they are restricted to
the surface. As a result function hierarchies used to define
3D multigrid solvers can easily be extended to define multi-
grid solvers over the mesh, providing simple and efficient
methods for solving the Poisson equation.

Regularity: When the initial space of 3D functions is de-
fined over a regular grid, the surface elements inherit the
regularity, providing an opportunity for deriving fast imple-
mentations of a solver. Though not explicitly discussed in
this work, such regularity can be leveraged for paralleliza-
tion (since red-black-type decompositions in 3D will still
satisfy independence after restriction) and for streamingthe
solver (since a stream order derived for the 3D functions car-
ries over to their restrictions).

We begin our discussion with a brief survey of related
work in using the Poisson equation for image and mesh
processing (Section2) and a review of the general finite-
elements approach (Section3). Next, we present our frame-
work for defining and solving the Poisson equation using
the restriction of 3D functions to the mesh surface (Sec-
tion 4). We analyze the utility of our method and present
results for several mesh processing applications, including
spectral analysis, texture back-projection, and functionfit-
ting (Section5). And we conclude by summarizing our work
and discussing directions for future research (Section6).

2. Related Work

The Poisson equation arises in numerous mesh processing
and shape analysis applications. This section briefly reviews
some of the more common applications as well as methods
used to solve the underlying system of equations.

Processing Images Many image processing techniques
operate in the gradient domain. They extract gradient fields

from one or more images, process the data to construct a de-
sired gradient field, and solve the Poisson equation for the
image whose gradients best fit the constraint field. While
these techniques were developed for images, the fundamen-
tal challenge in extending them to mesh processing is solv-
ing the Poisson equation.

Example applications in image processing have included
removing shadow and lighting by zeroing appropriate gra-
dients [Hor74, FHD02] or by selecting the median of gra-
dients from multiple exposures [Wei01]; tone-mapping high
dynamic range (HDR) images by adaptively attenuating lu-
minance gradients [FLW02]; seamlessly stitching overlap-
ping images by merging their gradients [PGB03, ADA∗04,
LZPW04]; and improving photographic tone management
using gradient constraints [BPD06].

Editing Meshes Recently, the Poisson equation has also
become a key component of mesh editing systems. Using
the translation invariance of differential vertex encoding,
Alexa [Ale03] proposed a method to transfer detail between
models by blending in the differential coordinates and solv-
ing the Poisson equation to get back absolute (Euclidean)
coordinates. The method was later extended by Sorkine et
al. [SCOL∗04] and Lipman et al. [LSCO∗04] to be invariant
to rigid-body transformations by encoding vertex positions
relative to a local frame. Using gradient fields to model co-
ordinate functions, mesh editing has also been performed by
locally adapting the gradients and solving the Poisson equa-
tion for the new coordinate functions [YZX∗04].

Defining Shape Invariants The Laplace-Beltrami opera-
tor’s invariance to isometric deformations has motivated its
use in both deformation-invariant shape matching and intrin-
sic symmetry detection. Using the invariance of its spec-
trum, Reuter et al. [RWP05] obtain a compact shape de-
scriptor that is fixed under rigid-body transformations. In-
corporating the invariance of its eigenvectors as well leads
to a deformation-invariant shape representation [Rus07] —
canonically embedding a shape in a high-dimensional space
by evaluating the eigenfunctions at the mesh vertices. This
embedding was later leveraged to detect a shape’s intrinsic
symmetries [OSG08] using the fact that intrinsic symmetries
become Euclidean symmetries in the embedding space.

Solving the Linear System with Multigrid Multigrid
methods are well known for their efficiency and scalability
in solving large linear systems [Wes04]. They were designed
to overcome the limitations of traditional iterative solvers
(e.g., those based on Gauss-Seidel), which tend to reduce
high-frequency errors more quickly than low-frequency ones
and thus exhibit slow convergence for typical (all-frequency)
problems. Multigrid methods extend the reduction to all fre-
quencies by computing corrections on grids successively
coarsened from the original system [Cha01].

To apply multigrid methods to unstructured meshes,
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mesh simplification techniques are usually employed suc-
cessively to generate different grid levels [KCVS98, RL03,
AKS05,NGH04,SYBwF06]. However, as observed in Ni et
al. [NGH04], these methods can be sensitive to the initial tri-
angulation of the surface, and a low-quality input mesh may
result in lower performance.

In contrast, algebraic multigrid (AMG) methods are
“black-box” solvers that rely solely on the algebraic infor-
mation of the linear system, independent of any geomet-
ric information [RS87]. Although AMG proves to be ro-
bust and scalable on a large class of problems [CFH∗00],
especially those resulting from elliptical partial differen-
tial equations, its notion of algebraic smoothness is lim-
ited in practice by the requirement that the coefficient ma-
trix be an M-matrix [Cha01]. AMG’s successors, element-
based AMG [BCF∗00] and spectral AMGe [CFH∗03], ex-
tend the concept of algebraic smoothness and broaden its
applicability by assuming that the discretization is based
on Ritz-type finite-element methods for partial differential
equations. Nevertheless, this class of methods remains dif-
ficult to apply for certain problems, such as the function-
fitting problem considered in Section5.3.

Leveraging Regularity The facility derived from work-
ing over a regular domain has motivated the use of 3D
grids for encoding the constraints and linear systems de-
fined on irregular surfaces. In the context of fluid dynamics
(e.g. [May84, Pes02, MI05]) the constraint that a fluid not
penetrate the boundary of a solid is encoded by modifying
a linear system, defined over a regular grid, to includeforc-
ing functionsthat reproduce the effect of the boundary. In
the context of potential theory [TW03], Tausch et al. show
that the orthogonality of piecewise-constant elements canbe
used to define a multiscale basis derived from a hierarchical
decomposition of a 3D bounding-cube.

Similar to Tausch et al., our approach leverages the reg-
ularity of a 3D grid to define basis elements for solving a
linear systems. However, in this work, we show how the
finite-elements setting can be formulated even in the case of
higher-order (non-orthogonal) elements, allowing us to ex-
tend the approach to the discretization of surface PDEs.

3. A Brief Review of Finite Elements

In this section, we review the finite-elements approach. We
show how a choice of elements can be used to define the
Laplace-Beltrami operator and how a nesting hierarchy of
elements can be used to guide a multigrid approach for solv-
ing the Poisson system.

3.1. Defining the Poisson Equation

Given a manifoldM and a functionf : M →R, solving the
Poisson equation amounts to finding the functionu : M →R

whose Laplacian is equal tof :

∆M u = f , (1)

where∆M is the Laplace-Beltrami operator (the generaliza-
tion of the Laplacian to the manifoldM ).

Since the space of functions onM is infinite-dimensional,
the problem is made tractable by constraining the functions
f andu to reside within a finite-dimensional subspaceF .
Additionally, since the Laplacian does not necessarily map
F back into itself, the formulation of the Poisson equation
is adapted by replacing the condition “the Laplacian ofu
equalsf ” with the condition “the projection ontoF of the
Laplacian ofu equalsthe projection ontoF of f”.

Formally, the condition that the projections be equal re-
quires that the inner product of the Laplacian ofu with
b equal the inner product off with b, for any test func-
tion b(p) ∈ F . However, whenF is the span of elements
{b1(p), . . . ,bn(p)}, a sufficient condition is that the inner
products with thebi are equal:

∫

M

∆M u(p) ·bi(p)dp=
∫

M

f (p) ·bi(p)dp. (2)

In this finite-elements setting, solving the Poisson equa-
tion amounts to finding the linear combination of elements,
u(p) = ∑ηibi(p), which satisfy Equation2, and the Poisson
equation reduces to then×n system:

LM η = φ (3)

whereη = [η1, . . . ,ηn]
T are the coefficients ofu, and the

matrix LM and vectorφ = [φ1, . . .φn]
T are defined in terms

of the dot-products:

LM
i j =

∫

M

∆M bi(p) ·b j (p)dp

φi =
∫

M

f (p) ·bi(p)dp.

(4)

Evaluating the Matrix Coefficients One challenge to ap-
plying Equation4 in practice is that evaluating the surface
Laplacian requires the estimation of mean curvature, a dif-
ferential property that is not well defined for meshes. When
the surface is water-tight, Stokes’s Theorem is used to turna
second derivative into two first derivatives giving:

LM
i j =−

∫

M

〈

∇M bi(p),∇M b j (p)
〉

dp. (5)

This weak formulationonly requires first-order derivatives
to compute the surface Laplacian and hence can be evaluated
without explicitly estimating curvatures.

3.2. The Multigrid Method

The multigrid method is a common technique for solving
the Poisson equation, replacing the global system of equa-
tions with a multiresolution hierarchy of systems that only
require local refinement. It proceeds in two phases:
Restriction: Proceeding from the highest resolution to the
lowest, the solution is relaxed and the restricted residualis
used as a constraint for the lower resolution problem.
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Prolongation: Returning in the opposite direction, the solu-
tion is prolonged into each higher resolution, contributing a
correction term to the previously estimated solution.

Implementing such a solver in the context of finite-
elements requires a nested hierarchy of function spaces,
F1 ⊂ ·· · ⊂ Fd = F , where each spaceFl is spanned by
nl elements and annl+1×nl prolongation matrix describes
how elements at levell are expressed as linear combinations
of elements at levell +1. Using this structure, the prolonga-
tion matrix describes the injection of the solution from the
coarser space into the finer, and the transpose of the prolon-
gation operator defines the dual operator that restricts con-
straints from the finer level into the coarser one.

4. The Restricted 3D Laplace-Beltrami Operator

To implement a multigrid solver, we must choose a space of
functions over which to define the linear system and create a
nesting hierarchy supporting multigrid.

4.1. Approach

In traditional mesh-processing applications, the elements are
defined as tent functions over the mesh vertices. These func-
tions are piecewise linear and are supported within the one-
ring of the vertex. Using these in the weak formulation of
Equation5, one obtains the well-known cotangent-weight
Laplace-Beltrami operator. Though the elements adapt to the
sizes of the triangles, the linear system remains tied to the
topology of the mesh representation and does not directly
support a multigrid structure.

In this work we propose an alternate approach in which
3D functions are chosen independent of the mesh, then re-
stricted to the surface to define the elements of the system.
The advantages of this approach are two-fold. First, the re-
sulting definition of a Laplace-Beltrami operator is agnostic
to the surface tessellation and only depends on the geometry.
Second, since nesting function spaces remain nested after re-
striction to a domain, an initial choice of nesting 3D spaces
is guaranteed to result in a nesting hierarchy of restricted
function spaces that support a multigrid solver.

There are several practical issues to implementing our
method. Of course, we must choose appropriate nesting sets
of 3D functions. In addition, we must compute the integrals
defining the matrix and constraint coefficients of the system,
and we need a simple way to index the function spaces to
support efficient restriction and prolongation operations.

4.2. Choosing the 3D Elements

To define the 3D function space, we use the span of trivari-
ate, tensor-product B-splines, centered on a 3D grid of reso-
lution 2d×2d×2d [CS97]. In addition to having local sup-
port, resulting in a sparse linear system, this choice of 3D
functions provides a nested set of function spaces under grid
subdivision, allowing for a multigrid solver.

Since the support of B-splines grows with degree, it is
natural to consider lower order B-splines. Here, we use sec-
ond order B-splines. As a result, each B-spline is supported
within its voxel’s immediate neighbors, and we obtain a pro-
longation operator expressing thel -th level B-spline as the
combination of 4× 4× 4 B-splines at level(l + 1), where
the prolongation stencil is defined as the tensor-product of
the 1D stencils,14(1 3 3 1).

4.3. Computing the Integrals

Defining the coefficients of the Poisson system in Equation4
requires computing integrals of products of the restrictedB-
splines and their derivatives. To compute the coefficients,we
can either integrate over the triangle mesh or perform Monte
Carlo integration over a uniformly distributed set of samples.

Integrating over the triangles To compute the integrals,
we observe that the restriction of a second-order B-spline to
the interior of a voxel is polynomial. By splitting the trian-
gles of the mesh so that each is contained within a single
voxel, we can reduce the problem to integrating polynomi-
als over the subdivided triangles. This remains true for the
surface gradients as they can be obtained by projecting the
3D gradients onto the tangent space:

∇M b(p) = ∇b(p)−〈∇b(p),~NM (p)〉~NM (p)〉,

where~NM (p) is the normal atp. Since the 3D gradient,
∇b(p), is polynomial and since the normal is constant in the
triangle, the surface gradient,∇M b(p), is also polynomial.

Using trivariate B-splines of degree two, the restriction of
elements to a triangle are sixth-degree polynomials. Since
the system coefficients involve products of elements, the in-
tegrands will have degree at most 12. Thus, we can use Tay-
lor’s 32-point cubature formula [Tay08] to compute the co-
efficients of the system efficiently.

Summing over point samples Given a uniformly dis-
tributed set of oriented point samples(pi ,ni) over the mesh
M , (i.e.pi ∈M andni =~NM (pi)) we can also approximate
the integrals with a finite sum, giving:

LM
i j ≈

|M |

N

N

∑
k=1
−

〈

∇bi(pk)−〈∇bi (pk),nk〉nk,∇b j (pk)
〉

φ j ≈
|M |

N

N

∑
k=1

f (pk) ·b j (pk)

Though less accurate than integrating over the triangles, the
Monte Carlo approach can be used even when the restric-
tions of the constraint functions to the triangles cannot be
expressed as a low-degree polynomial.

4.4. Indexing the Functions

In the regular 3D multigrid setting, the second-order ele-
ments at depthl can be indexed by a 2l ×2l ×2l voxel grid,
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and the multiresolution set of elements can be indexed by a
complete octree of depthd.

Although we could set up our Poisson equation using all
of the 3D elements, only elements that overlap the model
surface contribute to the system, since integrals computed
against non-overlapping elements (or their derivatives) are
guaranteed to be zero. Thus, to index our system, it suffices
to construct a sparse octreeOM where any node whose im-
mediate neighbors do not overlap the shapeM is pruned
from the tree. We then index the elements by the tree nodes,
settingbo(p) to be the element centered ato ∈ OM and
scaled by the width ofo, settingηo andφo to be the coef-
ficients associated with elementbo, and settingLM

o,o′ to be
the coefficients obtained by integrating:

LM
o,o′ =−

∫

M

〈∇M bo(p),∇M bo′(p)〉dp.

Restriction and Prolongation Since the nesting of spaces
is independent of the surface, computing the restriction and
prolongation of an element associated with a node at levell
only requires finding the appropriate neighborhood of nodes
in levelsl−1 andl +1 and updating their associated function
coefficients. For restriction, this requires updating the coef-
ficient associated with the parent of the node and (some of)
the coefficients stored in the parent’s immediate neighbors.
For prolongation, this requires updating the coefficients of
the eight children and their immediate neighbors.

Computing the System CoefficientsWe can also use the
octree to efficiently compute the coefficients of the Poisson
system. Because elements are supported within the immedi-
ate neighbors of their associated nodes we can compute the
system matrix and Poisson coefficients at levell by iterating
over the triangles/point-samples, finding the node they reside
in, and updating the coefficients for all pairs of neighbors
(Figure2). Thus, computing the coefficients for the Poisson
equation can be reduced to locating triangles/point-samples
within the tree and identifying neighbors, giving rise to an
overall set-up time ofO(N · d) whereN is the number of
triangles/samples andd is the depth of the tree.

5. Results

To evaluate our approach, we consider three separate appli-
cations. The first focuses on the quality and robustness of the
computed Laplace-Beltrami matrix by comparing the spec-
tra of our octree-based system with that of the traditional,
cotangent-weights formulation. The other applications, tex-
ture back-projection and curvature estimation, demonstrate
the need for an effective Poisson solver in geometry process-
ing and compare the performance of our multigrid solver
with state-of-the-art algebraic multigrid methods. We con-
clude with a brief discussion of limitations.

In all our experiments, the dimension of the system de-
fined using our approach is equal to the number of finest-

LaplaceBeltramiMatrix(OctreeOM , Depth l, MeshM )
Matrix LM ← 0
for all trianglesT ∈M

nodeo = NodeContaining(T , l )
for all pairs of nodes(o′,o′′) ∈ Neighbors(o )

LM
o,o′ +=

∫

T
〈∇M bo′(p),∇M bo′′ (p)〉dp

return LM

PoissonConstraints(OctreeOM , MeshM , Function f)
Vectorφ ← 0
for all trianglesT ∈M

nodeo = LeafNodeContaining(T )
for all nodeso′ ∈ Neighbors(o )

φo′ −=

∫

T
f (p) ·bo′(p)dp

return φ

Figure 2: Algorithms for computing the coefficients of the
Laplace-Beltrami matrix at different levels of the hierarchy
(top) and the coefficients of the constraint vector (bottom).

depth nodes in the octree, while the dimension of the
cotangent-weight system is equal to the number of vertices.
For the analysis of the spectrum, we use an octree of depth
five while for the other applications in this section we use
an octree of depth eight. For the evaluations of the solver,
the images all show the result of a single W-cycle, giving
the dimension of the system, the time for defining the lower-
resolution systems and running the solver, and the RMS er-
ror (when the ground-truth solution is known). Additionally,
with the exception of the normal-fitting experiment, all co-
efficients are computed by using cubature.

5.1. Spectral Analysis

The spectrum of the Laplace-Beltrami operator character-
izes the modes of the surface and plays an essential role in a
variety of applications, including shape matching [RWP05],
mesh editing [Tau95], and signal processing [VL08].

To evaluate the robustness of our approach we com-
pare the spectra obtained from our octree-based Laplace-
Beltrami operator with those obtained from the cotangent-
weight Laplacian. For both, we compute the generalized
eigenvaluesλ and eigenfunctionsfλ such that the projec-
tion of the Laplacian offλ ontoF equals the projection of
λ fλ ontoF . Formally:

LM η = λDM η

whereLM is the Laplace-Beltrami operator andDM is the
mass matrix, withDM

i j =
∫

M bi(p) ·b j (p)dp.

A comparison of the spectra is shown in Figure3. The
original model is shown on the left, overlaid with the spectra
of the Laplace-Beltrami operators computed from different
tessellations. We also show a detailed view of the spectra at
higher frequencies, zooming in on the results obtained us-
ing the cotangent weights (middle) and our restricted finite-
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Figure 3: Using our Laplace-Beltrami operator, we compute a spectrumthat only depends on the geometry of the surface. In
contrast, using the cotangent formulation results in a spectrum sensitive to the tessellation.

elements, drawn on top of the spectrum from the finest-
resolution cotangent-weight Laplacian (right). The sphere
was obtained by recursively subdividing an octahedron. For
the bimba, fish and pulley, we started with a high resolution
model and used QSlim [GH97] to obtain the coarser, water-
tight, tessellations.

As the plots indicate, the cotangent Laplacian is sensi-
tive to the tessellation, only converging to the true spectrum
at finer triangulations. In contrast, the spectrum defined by
our operator remains stable across the different triangula-
tions and is nearly identical to the spectrum of the cotangent
Laplacian at the finest tessellation (shown in dark blue in
the detailed views on the right). Note that for the sphere,
the eigenspaces are known to be multi-dimensional, with
the l -th eigenspace consisting of 2l + 1 spherical harmon-
ics with eigenvaluesl · (l + 1), resulting in the predictable
stair-stepping pattern witnessed in the top plots.

The advantage of our approach is further evidenced by

Cotangent Restricted
Model Low Med. High Low Med. High

Sphere 642 2,562 10,242 504 504 504
Bimba 6,100 12,200 74,764 6,071 6,083 6,083
Fish 3,700 14,800 59,200 3,617 3,619 3,616
Pulley 6,459 19,499 45,676 6,160 6,160 6,161

Table 1: Dimensions of the Laplace-Beltrami operators de-
fined for the different tessellations of the models in Figure3.

considering the dimensions of the Laplace-Beltrami oper-
ators shown in Table1. As the table indicates, using our
method to define the operator, we stably compute the eigen-
values using linear systems that are between 5 and 20 times
smaller than what would be required for a cotangent-weight
Laplacian. Note that the cotangent Laplacian is defined by
associating an element with each vertex, so the dimension
of the operator grows as the triangulation is refined. In con-
trast, since the dimension of our system only depends on the
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number of octree-nodes abutting the surface, the dimension
of our system remains constant across the triangulations.

The exception to this is the pulley model, for which our
octree-based operator fails to define a robust spectrum. We
discuss this case in greater detail at the end of the section.

5.2. Texture Back-Projection

In applications where surfaces are reconstructed from a set
of registered scans, there is often no one-to-one correspon-
dence between reconstructed surface points and points on
the scans. Consequently, it is difficult to re-bind additional
scan information, such as color, to the reconstructed surface.

One simple way to assign color to each vertex in
the reconstructed model is to use the closest input sam-
ple’s color. However, due to varying camera exposure
and differing lighting conditions, color transitions between
scans in overlap regions are not necessarily continuous,
as seen in Figure1 (left). The problems with taking
color from nearby scans can be reduced by computing
a color correction between different images [BR02], cor-
recting color based on laser return intensities and care-
ful calibration (e.g. [XGRD06]), blending color between
different views, or carefully choosing seams between im-
ages. Masked Photoblending [CCCS08] combines many
of these ideas to blend weighted pixels from different
views. Graph cuts are also commonly used in both the im-
age domain (e.g. [Dav98]) and (for texture synthesis) on
meshes [ZHW∗06], to select boundaries that will not be vis-
ible between different images or texture patches. However,
blending can smooth out details, while graph cuts cannot al-
ways completely eliminate discontinuities.

In gradient-domain image-processing [PGB03,LZPW04,
ADA∗04], discontinuities are pushed from the texture to its
derivative where they are less perceptible. Using our solver,
we can extend gradient-domain stitching to meshes. Follow-
ing the approach used in image processing, we define a gra-
dient field over the mesh and solve the Poisson equation to
fit a function to the gradients.

We define a piecewise linear gradient field by first set-
ting the gradients at the vertices of a triangle to the projec-
tion of the color gradients from the nearest scan onto the
triangle’s tangent plane, and then defining the vector field
within the triangle to be the vector field that linearly in-
terpolates the vertex gradients. We obtain the coefficients
η = [η1, . . . ,ηn]

T of the functionu(p) = ∑ηibi(p) whose
gradients most closely match the constraint field~v(p) by
solving the systemLM η = φ , whereφ = [φ1, . . . ,φn]

T are
the integrated inner products of this vector field with the sur-
face gradients of the finite-elements:

φi = −
∫

M

〈~v(p),∇M bi(p)〉dp. (6)

An example stitched color field is shown in Figure1

Figure 4: An input texture map (left), the solution obtained
when the gradients were used as constraints to our Poisson
solver (middle), and the solver error (right).
Dimension: 138,288 ;Times: 2+4(s) ; RMS: 0.0536

(right). Note that even without any intelligent gradient se-
lection, the final color seamlessly transitions across the scan
boundaries without blending artifacts, despite the varying
lighting conditions across the different scans.

To validate the quality of our solver, we also extracted
the gradient field from a known color map and compared
our solution with the original. Figure4 shows the results of
this experiment, with the original color map on the left, our
solution in the middle, and the error on the right. Note that
the depth of our octree (eight) limits the maximum frequency
we can resolve, so our solution exhibits errors near sharp
features like the edges of the stripes in the shirt.

5.3. Function Fitting and Curvature Estimation

Though our focus is on the Poisson equation, the same finite-
elements structure can be used to find the function inF that
best matches a prescribed scalar field. In particular, given
a functiong : M → R, represented either as a (piecewise
polynomial) function over the triangles of the mesh, or as a
set of uniformly sampled values, the projection ofg ontoF

is the functionf ∈F satisfying:
∫

M

f (p) ·b j (p)dp=

∫

M

g(p) ·b j (p)dp.

As in Section3, finding the coefficients off requires solving
the linear systemDM η = γ , whereη is the vector of solu-
tion coefficients,DM is the mass matrix, andγ is the vector
of inner products ofg with each of the elements:

γ j =
∫

M

g(p) ·b j (p)dp.

And, as with the Poisson equation, we can leverage the mul-
tiresolution structure on the space of functionsF to effi-
ciently solve the linear system using a multigrid solver.

We briefly describe two ways to use this method to solve
for the (mean) curvature of a model.

Differentiating a Normal Field One approach for com-
puting the curvature is to solve for an approximate normal
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Figure 5: Fitting a function to the normals, we get a smooth
vector field (left) that we can differentiate to get the mean
curvatures (middle). The fitting error is shown on the right.
Dimension: 559,839 ;Times: 11+17(s) ;RMS: 0.0071

field by finding the linear combination of elements that best
fits the sampled normals. Differentiating the normal field
along the tangent directions and projecting the gradients
back into the tangent space, we obtain a 2× 2 matrix that
approximates the curvature tensor, and whose trace and de-
terminant approximate the mean and Gaussian curvatures.
(Since the original field is defined by interpolating the per-
vertex normals and then normalizing, the vector field we fit
is not locally polynomial and we approximate the integrals
as a sum over uniform samples.)

Figure5 illustrates this type of curvature estimation. The
normal field is shown on the left, with red, green, and blue
values at a point set in correspondence to thex-, y-, andz-
components of the normals. Mean curvatures are shown in
the middle, with blue corresponding to negative curvature
values and red corresponding to positive values. Error in the
reconstruction of the normal field is shown on the right.

Computing the Laplacian of the Coordinate Function
An alternate approach leverages the fact that the Laplacian
of the coordinate functions is equal to the mean-curvature
vector. Though we cannot compute the coordinate functions’
Laplacians (as their derivatives are discontinuous), we can
use the weak formulation and compute the inner products of
the coordinate functions’ gradient with the gradients of the
elements. Thus, we can solve for the mean curvature vector
by solving the linear systemDM η = φ , whereDM is the
mass matrix used to project the Laplacian of the coordinate
functions onto the spaceF , η is the vector of solution coef-
ficients, andφ is the vector of integrated dot-products:

φi =−
∫

M

〈

∇MC(p),∇M bM
i (p)

〉

dp,

whereC(p) = p is the coordinate function.

Figure6 shows the resulting mean-curvature values, with
the original mesh on the left and the mean curvature on
the right. (Gray indicates zero mean curvature, red is posi-
tive, and blue is negative.) Since the coordinate functionsare
piecewise linear, the mean curvature is derived from a piece-
wise constant normal field, and the resulting values are zero
on the interior of the faces. It is only near triangle bound-
aries that the mean-curvature is non-zero, effectively rep-

Figure 6: A piecewise linear surface (left) and the mean
curvature (right) obtained by solving for the function that
best approximates the Laplacian of the coordinate functions.
Dimension: 612,035 ;Times: 12+19(s) ;RMS: (N/A)

resenting the projection of a “delta-like” function onto the
band-limited space of functions spanned by the elements.

5.4. Comparison with Algebraic Multigrid Solvers

To evaluate our solver’s efficiency, we compare our perfor-
mance to two different configurations of the state-of-the-art
BoomerAMG solver [HY00]. The first (AMG1) is the classi-
cal AMG solver from Ruge and Stueben [RS87], which uses
a sequential coloring algorithm to derive coarsened grids.
This proves to have good convergence, but the resulting grids
have relatively high complexity. We set the strength thresh-
old to 0.25, which is the typical value for Laplacian oper-
ators. The second (AMG2) is the best-tuned configuration
for BoomerAMG. We adopt the [GMS06] coarsening option
and fully tune its parameters to ensure the best performance.
To make a fair comparison, we ran these algorithms in a sin-
gle thread using Gauss-Seidel smoothers.

Table 2 shows the results of the experiment, giving the
dimension of the system (defined by the number of nodes
at the finest depth of the tree), the time for defining the

Model AMG1 AMG2 Ours

Rooster Setup Out of Out of 30.7
(1,062,919) Solve memory memory 76.6
Male Setup 14.1 1.8 3.9
(138,288) Solve 26.4 13.1 8.5
Cow Setup 19.7 2.5 5.4
(189,914) Solve 39.0 17.2 11.4
Cow∗ Setup 13.3 2.1 5.4
(189,914) Solve 37.8 16.7 13.8
Pulley Setup Out of 11.1 18.2
(669,975) Solve memory 69.1 34.7
Pulley∗ Setup 74.9 9.1 18.2
(669,975) Solve 171.6 65.4 42.1

Table 2: A comparison of setup and solve time (in seconds)
required by AMG and our multigrid solver to reach a relative
residual norm of5×10−3. The asterisk denotes experiments
in which soft constraints were introduced and the numbers
in parentheses give the dimension of the system.
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lower-resolution systems, and the time to solve for a so-
lution whose ratio of ending to starting residual norms is
smaller than 5×10−3. Except the rooster model, which was
computed from an octree of depth nine, we used a tree of
depth eight for all the experiments. As the table indicates,
our simple multigrid solver remains competitive with state-
of-the-art AMG implementations for small systems, and out-
performs both AMG implementations for larger ones.

We do not compare at function fitting as the AMG solvers
failed to converge on these experiments. We believe this
is because the mass matrix has non-negative values along
its diagonal, which (as noted in Ruge and Steuben [RS87])
results in a highly oscillating algebraic error that violates
AMG’s assumption of an algebraically smooth residual.

5.5. Discussion of Limitations

Though constructing the Laplace-Beltrami operator by re-
stricting 3D functions has several advantages, it also has the
property of supplanting geodesic distances with Euclidean
ones, at the resolution of the basis functions. This has two
important consequences. First, if Euclidean distance is not
a good estimate of geodesic distance at some coarse resolu-
tion of our octree, the benefit of operating at that resolution
within our multigrid solver will be reduced, increasing the
time required for the solver to converge. Second, and more
important, if the Euclidean distance approximation is poor
even at the finest level, the solver may have difficulty con-
verging to the correct result. This is especially the case for
models with narrow cross-sections, such as the pulley model,
in which the support of individual basis elements is larger
than the separating distance of disjoint (and geodesically-
distant) patches of the surface. We believe this to be the
cause of the instability of the Laplace-Beltrami spectrum in
the case of the pulley in Figure3, bottom.

In practice, we have found that these effects are more pro-
nounced in gradient-fitting applications, where the value at
a point is influenced by constraints defined over the entire
surface, than they are for value fitting. Figure7 shows an ex-
ample in which the Poisson equation was used to fit a vector
to thegradientof the surface normals (left). In these cases,
the thin regions near the lip of the pulley, and the inter-
penetrating surfaces at the base and end of the cow’s tail
result in erroneous estimations of the normal field (middle).

Though this is an inherent limitation of our method, we
have found that in practice the instability can be addressed
by introducing a small regularization term to localize the so-
lution of the system. Specifically, we replace the Poisson
equation with the screened Poisson equation ([BCCZ08]),
adding a small constraint on the values of the solution:

LM η = φ =⇒ (LM +αDM )η = φ +αψ,

whereψ is the vector of inner products defining the value
constraints. Since the effects of the regularization are pre-
dominantly low-frequency, using this approach only requires

Figure 7: Examples of how the Poisson solver can fail due
thin regions in the surface (middle) and how regularization
can help alleviate the problem (right).
Dimension: 189,914 ;Times: 4+ 6(s) ; RMS: 0.3073→0.0962
Dimension: 669,975 ;Times: 13+18(s) ;RMS: 0.0435→0.0024

a very coarse estimate of the solution – something readily
available in applications such as texture back-projection.

The right side of Figure7 shows the results of applying
this type of regularization, and we see that even using a soft
constraint on the values (α ≈ 1/20) the errors becomes im-
perceptible in the case of the pulley, and are restricted to the
non-manifold regions in the case of the cow.

6. Conclusion

We have presented a novel approach for defining and solv-
ing the Poisson equation over the surface of a mesh. By us-
ing the restriction of nested subspaces of 3D functions, we
have shown how to design a finite-elements setting that eas-
ily supports a multigrid solver. We have demonstrated the
robustness of our operator by analyzing its spectrum and
demonstrated its utility in a number of signal processing ap-
plications. Finally, we have also shown that the multigrid
solver it defines is competitive with state-of-the-art solvers.

In the future, we would like to continue evaluating the
system and solver, investigating questions including the con-
ditioning of the Laplace-Beltrami operator and mass matrix,
the sensitivity of the system to spatially adjacent but geodesi-
cally distant points, and the implications of the multiresolu-
tion hierarchy on challenges such as computing the lower-
frequencies of the Laplace-Beltrami spectrum.
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