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Abstract

Reconstruction of surfaces from huge collections of scdpo@ts often requires out-of-core techniques, and most
such techniques involve local computations that are ndtiees to data errors. We show that a Poisson-based
reconstruction scheme, which considers all points in a glanalysis, can be performed ef ciently in limited
memory using a streaming framework. Speci cally, we iniwal a multilevel streaming representation, which
enables ef cient traversal of a sparse octree by concuiyeatlvancing through multiple streams, one per octree
level. Remarkably, for our reconstruction application,ud siently accurate solution to the global linear system
is obtained using a single iteration of cascadic multigniehich can be evaluated within a single multi-stream
pass. We demonstrate scalable performance on several dagesets.

1. Introduction

We address the robust reconstruction of surfaces from larg ¢
noisy oriented point sets. An important application is 3D__{
scanning, in which data are acquired at sub-millimeter resgs
olution over large-scale models, potentially resultingpii
lions of points LPC 00]. The resulting complexity often ex-
ceeds the available computer memory, thus motivating an
out-of-core reconstruction algorithm. Existing appraegeh Figure 1: Example of curve reconstruction as a sequence of
generally partition the domain into smaller blocks that can three multilevel streaming passes over an adaptive quedtre
be solved locally. However, such partitioning presents sev
eral complications. Ideally, surface complexity shouldatd

to spatially varying point densities, and this is dif culb t
achieve consistently across block boundaries. Most impor-
tantly, the presence of data noise and misalignment makes it
dif cult to robustly reconstruct a surface by only consiuhey
small localized neighborhoods. The fact that Poisson reconstruction has global support

Recent work by Kazhdan et ak§z05 KBHO6] demon- would seem to preclude an easy out-of-core solution. Indeed

) . . not only is the matrixX too large to tin memory, even the
strates that surface reconstruction from oriented poiats c Lo
o . vectorsh andx are too large. Our contribution is to show that
be made more resilient to data errors by casting the problem . . .
. o . the reconstruction process can be implemented ef ciergtly a
as a global Poisson system (Sect®)nlintuitively, the idea

. ; . ) . a sequence o$treamingoperations over out-of-core data.
is to interpret the oriented points as samples of the gradien : : . . .

e . . These operations include the creation of the linear system,
of the model's indicator functiorr (de ned as 1 at points

inside the model, and 0 at points outside). Thus the desired §o|ut|on, and the nalisosurface extraction. The 2D exanpl

indicator function is the one whose Laplacian equals the di- in Figure1 helps to illustrate this streaming process.
vergence of a vector eld& constructed from the oriented In general, a streaming approach is advantageous because
points:Dc = N V. By representing: using bases de ned data is accessed sequentially from disk, and moreover it is

over an adaptive octree, the Poisson equation is discdetize
into a sparse linear systenx= b whose size is proportional
to the complexity of the reconstructed surface. Then, the de
sired model is an isosurface of the resulting indicator .eld
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only loaded once. Such sequential access is typically more Stream processing Much of the streaming work in com-

ef cient because it allows for data prefetching. In compute

puter graphics addresses irregular triangle mesW460B,

graphics, the concept of streaming computation has been ap-ILGS03 IL05, ACSE05 AGLO06]. An interesting challenge

plied to many data types including triangle meshes, point
sets, and tetrahedral meshes, as reviewed in SeZtion

A unique aspect of our problem is the requirement for
an adaptive multiresolution structure, namely an octree,
because a solution over a uniform 3D grid is not scal-
able Kaz03. Interestingly, the operations performed on the
octree have different types of inter-level data dependenci
and consequently no single linear ordering of the octree

nodes is adequate. To overcome these dependencies, we in

troduce anultilevel streamingepresentation, in which each

resolution level is stored as a separate stream. Thus, a pro-
cessing pass sweeps over the octree by concurrently advanc

ing through the multiple streams, of course iterating at a

faster rate through the ner nodes than the coarser ones. De-

pending on the operation, information ows up and/or down

the tree, and computations on coarser levels precede or SUC-qihar out-of-

ceed those on ner levels.

A surprising result is that we are able to solve the sparse
Poisson systerhx = b with suf cient accuracy for our re-
construction application in aingle multi-stream pass. Two
factors make this possible. First, clever scheduling of the
computation across levels lets us realize a cascadic midltig
scheme BK96], which enables fast convergence using only
local updates. Second, the reconstructed indicator foimcti
has high gradient and therefore requires only limited preci
sion due to the subsequent isosurface discretization gsoce

We obtain reconstructions of highly complex models (210
million triangles) on a PC with only 1 GB of memory, and
demonstrate scalable performance.

2. Related Work

Out-of-core surface reconstruction Several surface re-
construction algorithms lend themselves naturally toafut-

core computation because their access patterns are highly

localized. For instance, the range-image volumetric nmgrgi
scheme of Curless and LevoZI[96] can easily be com-

puted independently on blocks of the domain space. For
each block, one conservatively nds the scanned points that

contribute to it. Schemes based on local neighborhood t-
ting such as IDD 92, ABCO 01] could be computed in

a streaming traversal, for instance using the scheme of Pa-

jarola [Pajog. The multilevel partition of unity (MPU) ap-
proach of DBA 03] uses an adaptive octree structure to

blend together estimated implicit surface patches. Its use

of local weights should make it amenable to out-of-core
processing. The ball-pivoting algorithm oBMR 99| is

implemented out-of-core by partitioning the domain into
slices. Our contribution is to consider a global approach

that has been demonstrated to improve resilience to data er-

rors [KBHO06], and to enable this solution over an out-of-core
adaptive octree using a multi-stream scheme.

is to nd a traversal order that minimizes the working
set (bandwidth) of the resulting computation. In practice
though, a simple axis-aligned sweep generally works suf-
ciently well. Streaming operations include surface snmwot
ing, mesh simpli cation, remeshing and, normal estimation
Streaming has also been applied to irregular tetrahedrsthme
compression ILGS0§ and simpli cation [VCL 07]. Pa-
jarola [Paj0g describes stream processing on points. His
streaming scheme is able to nd the k-closest neighborhoods
of the points, to enable processing operations such astgensi
computation, normal estimation, and geometric smoothing.
Isenburg et al.ILSS0§ stream through a set of points to
incrementally construct a Delaunay triangulation. Wherea
prior streaming methods operate at a single resolution@n th
data, we introduce a multiresolution streaming framework.

core processing Cignoni et al CMRS03
introduce an octree-based external memory structurette sto
an irregular mesh out-of-core. They describe how to handle
triangles that span octree cell boundaries. Processing-a su
tree involves loading its adjacent leaf nodes into memory.
Maintaining random access to the octree nodes is bene cial
for view-dependent rendering, as also showrLia(1].

Out-of-core linear solvers Toledo [Tol99] provides a

nice survey of methods for solving linear systems out-of-
core. For sparse systems, most modern methods assume that
the system matrix itself can t in memory. A common ap-
proach is to construct a Cholesky factorization out-ofecor
(e.g. [GR8Y). In our problem, even the solution vector itself

is too large to lie in-core. We must therefore resort to sempl
Jacobi iterative updates. However, we show that doing so in
a cascadic multigrid setting, with a per-block Gauss-Seide
scheme, is able to produce adequate accuracy for surface re-
construction, in a single multi-stream pass.

3. Review of Poisson Surface Reconstruction

We begin by reviewing the method d¢BHO06]. The input is

a set of oriented sampl&where each sample has a position
s:pand normak. The basic idea is to reconstruct a surface
from Sby estimating the indicator function of the model.
Kazhdan et al show that the (smoothed) gradiert obrre-
sponds to a vector el® formed by an integral over the (un-
known) surface, which can be approximated by a summation
over the oriented points. To obtain a least-squares salofio

Nc = V, the divergence operator is applied to both sides, i.e.

N Nc = N V, resulting in a Poisson equation:

Dc=N V: (1)

To represent 3D functions ef ciently, Kazhdan et al create
an octreeD adapted to the distribution of samples, in which
each node 2 O is associated with a tri-quadratic B-spline
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blending functiorFo( p), shifted and scaled to align with the
node's extent (see als8[96)). Expressed in this basis,

c(p= 4 XoFo(p) and V(p)= A ¥oFo(p);  (2)
020 020
the Poisson equation reduces to the sparse symmetric systen
Lx=b; 3)

wherex= fx,gandb = f byg arejOj-dimensional vectors of
octree coef cients, the matrix entries are the inner prasluc
Lo:o0 = hFo; DRy, and the divergence coef cients are
bo= & hFo;N (VooFo)i:
o020
The Laplacian matrik is sparse because the B-spline func-
tionsF are locally supported.

4)

Using a cascadic multigrid solver, Equati@nis trans-
formed into successive linear systetfsxd = b9, one per
octree depthd. The solutions at ner depths only consider
theresidualdivergence not accounted for at coarser depths.
More precisely, the divergence is updated as

b§  bS

o o

a a
d%< d g 0d®

Lo;0%%q0; (5)

whereO9 denotes the set of octree nodes at debth

The octree structur® and vector eldV must be con-
structed to account for the nonuniform distribution of the
samplesS. This involves computing for each samglan es-
timate of its associated widtk(s), or more precisely its area
termw?(s) in the surface integral de niny.

Using the blending functiofr, a family of kernel den-
sity estimatorK measures the expected number of samples
falling into the ball of radiusv=2 aboutp, for allw> O:
p _sp

w

Kwp)= §F (6)

2S
A discrete seK® of such estimators is implemented within
the octree by associating a density estimator vijite each
node, de ned by having each sam@@ Sdistribute a unit
value into the eight nearest octree nodes at each octrele dept
and setting:

K %p=Kip) & koFo(p):

020d
Using these estimators, the widi(s) associated to each
sample is found by solving fdk(w(s);s:p) = k, where the
user-speci ed desired density adjusts the average number
of point samples per octree node.

@)

The sample widtlw(s) is used both to scale the contribu-
tion of each sample to the surface integvaland to de ne
the spatial extent of that contribution (i.e. the octreeslev
in which it is entered). The vector eld approximating the
gradient of the indicator function

_a WS _ p sp
V=8 6o F e ®)
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Figure 2: lllustration of the multilevel stream structure (top row)
and the corresponding quadtree nodes (bottom rows) at twe mo
ments in time (F 3;4). In-core blocks and nodes are highlighted in
blue.

where the numerator is the area weight and the denominator
normalizes the scaled blending functiBnsuch that it has
unit integral. To implement this using the octree B-spline
basis, the depth of the sample's contribution is de ned as
log,(1=w(s)) and expressed as the log-based interpolation
d=d? d} @ of depthsd; = bdc andd, = dde. The vector

eld coef cients fv,g are then updated by having the sample
splat its normal into the one-ring neighborhood of the nodes
012 0% ando, 2 O% containings, weighted byw?(s)
(29)3a andw?(s) (2%)3(1 a) respectively.

Finally, to obtain the reconstructed surface, an isovaue i
chosen and the corresponding isosurface is extracted using
an adaptation of the Marching Cubes algorithm to the oc-
tree representation. The isovalGas set to the average of
the reconstructed indicator function at the sample pastio
weighted by the samples' area. Approximating the contribu-
tion of the samples falling into nodeby jv,j and evaluating
the indicator function at the center of the node, this gives

_ &0 %%

02070 with = & jvgiFo(0%cente): (9
2020 [¥0] = a MoiFo( ) (9)

o020
4. Our Multi-Stream Octree Representation

In this work, we show that Poisson surface reconstruction
can be performed as a sequence of streaming passes over an
out-of-core octree representation.

Each streaming pass traverses the octree, sweeping along
thex axis. For an octree of height each traversal step is as-
sociated with a sweep index 0i < 2" 1 de ning the sweep
planex = ( 2i + 1)=2". Because streaming computations are
local, only the subset of the octree intersecting or near the
sweep plane needs to be maintained in main memory. Thus
as we advance to sweep index 1, nodes at the back of the
tree (with smallex coordinates) can be removed from mem-
ory, while nodes at the front of the tree need to be loaded in.

To implement a data structure that supports this traversal
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pattern, we must address the fact that the in-core persisten

Within each stream, an “active window” between a head

of nodes depends on their depth, since coarser nodes arepointer and a tail pointer is mapped to physical memory.

maintained in memory longer than ner ones (see Fig)re
This motivates the construction of a multi-stream octrda da

1] with the nodes in
block S 9[j] all centered on the plane= ( 2j + 1)=29+1,
Thus, at the coarsest deptﬁ,0 contains only one block
S 9[0] which in turn contains only one node, namely the oc-
tree root node. At ner depths, each blogk[j] generally
containgd(24) nodes (out of 2 nodes in a complete octree)
because the surface has co-dimension 1.

Figure2 shows a visualization of the multi-stream struc-
ture for a quadtree representation. Each row marked with a
depthd = 0:::4 corresponds to a separate strearfi, and
within a row the rectangles denote the blo&$/[j]. In the
top left diagram, we see the data structure at sweep index
i = 3. The in-core blocks are highlighted in blue, correspond-

To ef ciently update these pointers during the sweep, we
store the offset and extent of all blocks in an index struetur
which forms a complete binary tree of height

Although we exploit virtual memory addressing, we never
rely on the operating system for demand-based paging, as
this can be inef cient. Instead we explicitly manage the
memory mapping. As the head pointer advances through a
stream, the appropriate pages of virtual memory are com-
mitted to physical memory and read from disk. And, as the
tail pointer advances, dirty data is written to disk and mem-
ory pages are uncommitted. Memory management and I/O
are performed asynchronously by a background thread, to
allow for lazy write-back and anticipatory read-ahead. All
I/O is performed at the granularity of 1 MB to maximize
disk bandwidth and minimize disk seek overhead.

Additionally, we vertically partition the data for each
depth into two separate streamed les that are advanced in

ing to all the quadtree nodes that intersect the sweep-planelockstep, one containing the octree topology, and the other

as shown in the middle diagram. Note that as we advance to
sweep index= 4 (shown in top right and bottom diagrams),
not all streams need to be updated; in this example, it is only
the streams at deptlis= 2;3;4 that are advanced.

At index i, the sweep plane intersects the nodes con-
tained in the blockss 9[bi=2" ¢ 1c], which we denote by
S 9[f4(i)], or simply asS, . More generally, stream pro-
cessing operations may require access to nodes in a smal
neighborhood of the sweep plane. If the operation needs ac-
cess to &-neighborhood at each depth, we maintainan
core octreeQ;x O de ned as the union

1
S
d=0

k

Oix = 4 where S = S dfa()+ j:
= k

Thus Figure2 can be seen to correspond®yg ati = 3;4.

An essential property of the in-core octree is that for any
nodeo?2 S id and any depthi® d, thek-neighborhood of
the ancestor ob at depthd®, denoted\lgo(o), is guaranteed
to be contained ii®;.y, i.e. to be in-core.

As the sweep index is advanced froto i + 1, the in-core
octreeQ; is updated. Speci cally, we compute the set of
depthsD;j, at which the streams need to be advanced:

Di = fdjfq(i) 6 fe(i+ 1)g

and for eactd 2 D;j we can unload the blocg 9[f4(i) K]
and load the bloci 9[f4(i)+ k+ 1] into memory.

Implementation ~ We store each stream in a separate le
and, using a 64-hit operating system, are able to reserve con
tiguous blocks of virtual address space large enough tp full
span the streams. An advantage of using virtual addressing
is that, by simple addition with a base address, a pointer to a
node can be represented by the node's offset in the le.

containing the octree datéio( o, bo, &, Xo). Since the rst

le becomes read-only after creation, it doesn't need to be
written back to disk in subsequent passes, thereby reducing
the 1/0 workload.

5. Streaming Surface Reconstruction

|We now describe how Poisson surface reconstruction can be
decomposed into a sequence of streaming passes (Rgure
The focus here is to demonstrate that, thanks to the compact
support of the basis functioifs, each step of the reconstruc-
tion process involves local computation, and can therddere
implemented as a streaming pass. In Seddiare show how
these individual steps can be combined more ef ciently into
just three passes over the out-of-core data.

The discussion in this section is guided by Tablgvhich
summarizes the extent of the data that needs to be in-core to
process blocks id in each step of reconstruction. The key
property that enables streaming reconstruction is that thi
data extent is always bounded by a neighborhkad each
depth, and therefore all the necessary data is available if w
maintain an in-core octre®;.x as we sweep over indéx

We brie y review the individual steps of the reconstruc-
tion process, providing the value of the neighborh&dbat
de nes the size of the necessary in-core oct@gg.

Points S Surface

Em_-r = —
d it tract.
L—-_‘ compu extract

Figure 3: Sequence of streaming passes through the out-of-core
octree data, as described in the naive implementation df3es.

{Ivol}
vt | Diverg. | {bo
==>| comput. | ==
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Ko}
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Step Read Write
O constr. ¢=h 1) | S ko:S g dd
V constr. ko:S 4. S Fali=fali) [¥o: Sif’l
N v distr. ¥: S bo: S % o d
Gdistr. jvoj: S @ @S % *d
Gaccum. jvoj: S & dxd| g: S
N v accum. |v:S 9 d¥d | bo: S ¢
N V update Xo: Si‘;’z0 d¥d| bo: S @
D solution bo: S;% Xo: S @
Gcomput. Moji X0 @b: S id isovalueG
Isosurface extr. | Xo: S if’z, G surface mesh

Table 1: Read and write operations when processing block
S id in the various multilevel streaming computations.

Preprocessing We rst rotate the point set so that the
dominant axis of its covariance matrix is aligned with the
x-axis. The intent is to reduce the cross-section complexity

encountered during the sweep, and hence the peak memory

size of the in-core octre®;.x. We then uniformly scale and
translate the points so that they t into the unit cube. Fi-
nally, we partition the points into subses S, whosex-
coordinates lie in the range=2" 1;(i+1)=2" 1]. This parti-
tioning process is essentially a binning process, and issmp
mented ef ciently as a single-input, multiple-output stne-
ing operation.

Octree Construction k= 1) At index i we read in the
subset of point§ S For eachs2 S and every deptld,
we re ne the in-core octree so that the nafs) 2 09 con-
taining s and its one-ring neighbors are all presenCiy,

adding new nodes as necessary. We also update the densit)yve

estimator coef cients kog by having each samplesplat a
unit value into the one-ring neighborhoodak(s).

Vector Field Construction (k= 1) At indexi we iterate
over all samples 2 S. For eachs, we evaluate the density
estimatorKd to determine the sample widtt(s), compute
the corresponding depttty andd,, and splat the sample's
(weighted) normal into the one-ring neighborhoafs(s)
ando®(s) to update the vector eld coef cientfv,g.

Becausdr, is supported in a one-ring neighborhoodopf
Kd(s:p) can be evaluated without accesskgofor o°6ZDi;1.

Divergence Computation k = 2)  Since processing a
nodeo2 S 9, we only haveNd(0)  Oj for d® din the
working set, we decompose the divergence computation into
two steps. Following Equatiofy, at sweep indek

We distributedi\éergence to nodes at depitfs d by iterat-
ing overa®2 Ng (0) and addingN (voFo); Foti to bgo.

We accumulatediver(gence from nodes at deptti$< d by
iterating overn?2 Ng (0) and addingN (vgFw); Foi to bp.

Becausdr, is supported in a one-ring neighborhoodoof

¢ The Eurographics Association 2007.

N (vgoFg); Foi & 0 only if 0 2 Ngo(o), and bothby andbg
can be incremented without acceswygofor OOGZ)i;z.

Poisson System Solutionk= 2) The most straightfor-
ward implementation of the cascadic multigrid algorithm
performs two streaming passes for each depth @< h
(from coarsest to nest), rst updating® in the linear sys-
temL9xd = b? using the solution at depti¥'< d, and then
solving the system. We describe such an approach, and later
in Section6 show that it is possible to perforall these b
passes in ainglemultilevel streaming pass.

We updatethe divergence coef cientb, for 02 S id by it-

erating overa® 2 Ngo(o) for all d°< d and subtracting the
valuexqol o0 from by (following Equation5).

We solvefor the values, with 02 S id by performing sev-
eral iterations over the nodes 8 and, for each node,
performing the Jacobi update:

Bo & onod Lo,

Loo

Xo

Becausdr, is supported in a one-ring neighborhoodoof
Lo:oo & O only if 0?2 Ngo(o) so updatindy, and solving for
Xo can be done without accessxgp for oOGZ)i;z.

Computing the Isovalue k= 1) Since processing a node
02 S 9, we only haveNd"(0) O ford® d in the work-

ing set, we decompose the isovalue computation into three
steps. Following Equatio, at sweep indek

We accumulatehe issovalue from nodes at deptti$ d by
iterating over®2 NS'(0) and addingvojFo(0%cente) to g.

distributethe [i’sovalue to nodes at deptti®< d by iter-
ating overa®2 Ng (0) and addingvqoj Fpo(0:centej to geo.

We computehe isovalue by addingyg, to the numerator of
Gand addingv,j to the denominator.

Extracting the Isosurface k= 2) We extract the isosur-
face by iterating over the leaf nodes, computing the value of
¢ at the eight cell corners, solving for the positions@f
crossings along the edges, and extracting the triangulatio

The challenge in implementing the isosurface extraction
is the evaluation ot at the corners of a leaf node2 S 9.
Since the value at a corner can be determined by the values
of X0 2 0% with d°> d, we are not guaranteed to have the
necessary information in-core when processing the wode

To address this challenge we observe that because the
functionsFy are supported in the one-ring neighborhood of
o? for a cornerc 2 o we haveFq(c) & 0 only if eitherd® d
ando2 N¢"(0), ord®> d andc s also a corner af®. Thus,
wheno is the nest node adjacent to cornerc(c) can be
computed using only valuego for 0°2 N%°(0) andd® d.

This observation motivates an algorithm for isosurface ex-
traction that iterates over the leaf nodes from nest to sear
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est and stores the evaluation®fat the corners in a tempo-  and for eachd 2 D;

rary hash table. For a given corneof a leaf nodeo 2 09, Constructing the vector eld fo8 9[f 4(i)]

we check if there is an entry in the hash table corresponding Distributing the divergence f& 9[fq4(i) 3]

to c. If there is not, this implies that there are no nodes at Distributing the isovalue fos 9[f4(i) 3]

depthd®> d containingc as a corner and the valuéc) can Taking into account the size of the write neighborhoods for
be computed using only information associated to nodes in octree construction and divergence distribution, the pass
the one-ring neighborhood of the ancestors of nmde of streaming reconstruction can be implemented by main-

In practice, separate hash tables are associated with thetammg the octre®;;s in the working set at sweep indéx

corners of the front and back of the leaf nodes at each depth.
As the sweep plane is advanced, the front hash table is up-
dated by evaluating the front corners of leaf nodes intérsec
ing the sweep plane and the back corners of leaf nodes im-
mediately in front of the sweep plane. For a cora2ro that

is also a corner of a nod®®2 09 1, we add the value(c)

to the front hash table at depth 1. Finally, after extracting The exhaustive testing of all samples which lie in the span
the isosurface in the current sweep index, we swap the front of Sid can be a computational bottleneck for our system
and back hash tables and clear the front one. It is also at this since it require$ passes through the ordered point set. This

Buffering Samples In addition to maintaining a small
working octree, our method must also address the fact that
to implement the vector eld construction for blo&? the
processing step needs access to each sample which lies in the
span ofS id and has failed the density test at greater depths.

point that vertices are nalized shortcitelsenburg:VIZ03. is unnecessarily expensive since we expect a sample's den-
We write to a block-based streaming mesh format. sity estimate to increase by a factor of four as the depth is

decremented, so the number of samples processed at depth
6. Optimized Implementation d but failing the density test should drop by a factor of four,

while the number of samples that lie in the spaquT’ 1
In the previous section, we showed that the locality of the should only increase by a factor of two.
Poisson reconstruction steps allows for stream processing ) o
In this section, we show how the different streaming passes /& address this concern by associating a sample buffer
can be merged into three multilevel streaming passes, with © each depth and processing the blocks in decreasing depth
the passes de ned as follows: order. Samples are added into the buffer at dépthuring
- . . the octree construction step and are promoted to the buffer
Pass 1 Octree construction, vector eld construction, di- . . . .
o . o at depthd 1 if they fail the density test at depthin the
vergence distribution, and isovalue distribution

. . . vector eld construction step. (Points in the depttbuffer
Pass 2 Isovalue accumulation, divergence accumulation,

. . . . that lie in the span o 9[f4(i)] are removed from the buffer
divergence update, Poisson system solution and isovalue .
computation at the end of the vector eld construction step.)

Pass Slsosgrface.extractlon . . 6.2. Second PaskE 8)
Our approach is motivated by two observations. First, we can

parallelize streaming steps when there are no data dependenAs in the rst pass, we merge the steps in the second pass
cies. Second, even when there are dependencies, we may by pipelining them to resolve data dependencies. However,
able to pipeline the steps, resolving the dependencies with since the consolidation of these steps into a single pass
only a small increase in the size of the working set. forces us to iterate over the depths before iterating over

Due to the data dependencies, three passes are a Iower_sweepindices, the merging of the divergence update with the

bound for our reconstruction algorithm: The ne-to-coarse Eoisson system solution poses ac.hallle.nge. Fora xed swegp
distribution of the divergence elth, (in pass 1) must be - index, we can no longer trgat th_e individual steps as atomic
nalized before the coarse-to- ne cascadic multigrid sofut because this would result in a circular data dependency: the

(in pass 2), and the computation of the isovalue (in pass 2) modi cation off.bog in th? divergence update reqyiriqg ac-
must be nalized before the isosurface extraction (in pgss 3 cess 1o g set in the Poisson system solver, which in turn
requires access fd,g.

6.1. First Passk= 6) We resolve this problem by separately considering the
To merge the processing steps in the rst pass, we must re- pipelining that needs to be performed to resolve the data de-

solve the data dependencies between different steps. We dopendenmes due to sweep index and due to depth.
this by pipelining the steps, delaying execution of latepst

. . Index Dependencies Fixing a depthd and assuming no
to allow earlier steps to nalize the dependent data. P 9 P g

cross-depth data dependencies, we de ne the scheduling as
Using the sizes of the read/write neighborhoods described we did in the rst pass. Iterating over the (depth-relative)
in Tablel, we can resolve the data dependencies in the rst sweep index®, witho i9< 29, we:
pass by iterating over the sweep indices, for éach Accumulate the isovalue f& 9[i9]
Constructing the octree f& N 1[i + 5] Accumulate the divergence f& 9[i9]
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Model |#Pointd h |#Triangleq Time| Peak meny. Stream Res Octree Size Peak Memory Running time

Lucy Statug 95M|12 26.2M| 3.1 138] 5,135 In-core| Streaming In-core| Streaming In-core| Streaming
David Head 216M|13 210M| 32.3 780| 62,464 256 49 48| 309 521 0.50 0.53
Awakening| 391M|13 149M| 26.6 990| 35,840 512| 188 168 442 278| 0.65 0.68]
Awakening| 391M|14 431M| 82.4 2120| 106,496 1024( 818 702| 1285 213| 1.05 1.20

L ) ) 2048 3,695 3,070 4,442 212| 2.65 3.33]
Table 2: Q‘uan_tltatlve rgsults for multl_level streaming r_econstruc 4096 nja| 13,367 n/al 427 n/a 12.6
tions, showing input points, octree height h, output mestmgles, 8192 nla| 39,452 n/a 780 nia 323
total execution time (hours), memory use (MB), and totatesct
stream size (MB). Table 3: Comparison of the data structure size (MB), peak working

set (MB), and running time (hours) for the in-core and stream
reconstruction algorithms over a range of resolutions foe David
Head model. Running the in-core algorithm beyond a resmiutif
2048 was impossible due to its high memory requirements.

250

Construction Solver Surface Extraction

—Natural Pose
—PCA Aligned

200 L [

]
—

-
@
<)

Figure 4: Comparing the results of the in-core algorithm (left: h
11; 4,442 MB peak memory) and streaming algorithm (right; 183;
780 MB peak memory).
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Update the divergence f& 9[i9] 0

Solve the Poisson system fsrd[i¢ 3]
Compute the isovalue f& 9[i4 4]

0 15 2 25 3 35

Time (Hours)
Figure 5: Memory use over time for a depth 12 reconstruction of
Depth Dependencies To resolve the depth-related depen-  the Lucy statue using two different poses of the model.
dencies we offset the values idfso that values required at
ner depths are guaranteed to have been set at coarser ONeS.yatasets, as summarized in TaBleAll results use a target

Analyzing the size of the read/write neighborhoods shows of k = 2 samples per octree node.
that the dependencies can be resolved if the indices satisfy
the propertyi® 1 b i9=2c+ 6. Expressing? as an offset
from the nest index,i9 = f4(i" 1)+ d9, and initializing
with d" 1= 0, we obtain a recursive expression for the off-
sets@¥= f11;:::;11;10;9;6;0g. Thus, setting” =i 3,
the second reconstruction pass can be implemented by main-
taining the octre®;.g in the working set at sweep indéx

Figure6 shows a surface reconstruction of the Michelan-
gelo's David statue from an input of 216M oriented points
from raw scan data. The output surface of 210M triangles
was generated at maximum octree deptth3, and required
only 780 MB of memory. In contrast, the in-core Poisson re-
construction of KBHO06] only produced a 20M triangle ap-
proximation of this same model (at depth 11), and required

In practice, we can further reduce the memory require- 4.4 GB of memory. Figurd shows a close-up visual com-
ments by observing that processing at the nest depths re- parison.
quires a narrower window size. This allows us to maintain a

i ) As another example of our algorithm's ability to recon-
working octree with fewer stream blocks at the nest depths.

struct large models, Figuré presents a reconstruction of
Figure1 shows an example of the three streaming passes Michelangelo's Awakening statue from 391M points from
for the reconstruction of 2D point set, showing the state of raw scan data. At a maximum depthtef14, our streaming
the reconstruction at different sweep indices (indicatgd b ~solution produced a mesh of 431M triangles in 82 hours. Al-
the arrows). As can be seen, the offsetting of the pipeline though the storage required for the out-of-core data stract
steps in the second pass forces coarser nodes to be solvedvas 104 GB, our reconstruction algorithm never required
ahead of the sweep line, resulting in a lower resolution re- more than 2.1 GB of working memory. Reconstructions at
construction emerging to the right of the sweep index. this resolution allow us to clearly see ne detail such as
chisel markings that could not be seen at lower resolutions.

7. Results
Scalable Memory Use Each of our three multilevel

Large Datasets To evaluate our method, we have re- streaming passes only maintains a small window on the en-
constructed highly detailed surfaces from large scanned tire data structure at any one time. Fig@&examines how
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Figure 6: Views of our reconstruction of the head of Michelangelo's/idaMaximum tree depth was 13, with a target of 2 samples pden

Figure 7: Views of our reconstruction of Michelangelo's Awakenirgfge. Maximum tree depth was 14 with a target of 2 samples que.n

the maximum size of these windows varies with output res- plots memory use over time through each of the three multi-
olution. By comparison, the curve for the in-core algorithm level streaming passes during the reconstruction of thg Luc

grows so quickly that it exits the graph on the upper left. statue. The two different plot curves show how the sweep
Table 3 shows the octree size and peak memory use as plane orientation can affect performance. The red curve cor

a function of the resolutionr = 2") of the octree. As ex- responds to using the x-axis as the sweep direction, with the

pected, the total octree size has comple@(yz) since the statue oriented in its original vertical pose; in this otéen

surface has co-dimension 1. However, using the streaming Eonl’ the |nters|ept|op of the S|E rface with the S\f/vggg ;;/IlaBmeT(I:qa
reconstruction, the size of the in-core window only scates a ble arge, resulting m; ptea _merz:)ryduse_ 0 t princi ’ | dl.a
O(r), allowing the streaming algorithm to process datasets ue curve corresponas 1o using the dominant principal di-

that far exceed a system's main memory capacity. re(?tlon of the pomt. set as the sweep direction; such orien-
tation reduces the intersection of the sweep plane with the
The unexpectedly large memory use for the coarser reso- syrface, resulting in a peak memory use of only 138 MB.
lutions is due to the buffering of points that occurs during o

tree construction. When the tree is arti cially restricteda
small depth, many more points fall into the bidraversed
at each sweep step. However, this is an atypical scenario.

The graph also shows that the three multilevel stream-
ing passes have similar memory requirements and running
times. The graph curves do not include the preprocess oper-
Memory use is further highlighted in Figurg which ations of orienting, scaling, and binning the points. Hoarev
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Figure 8: The peak working set in our 3 multilevel streaming

passes, and in the in-core algorithm (far left), for a randere

constructions of the head of Michelangelo's David.
Figure 10: Comparison of reconstructing the indicator function of
a cow silhouette from its Laplacian using a single-resontstream-
ing solver (top), a traditional conjugate-gradient solvgmiddle),
and a cascadic multigrid solver using multilevel stream(ibgttom).

level, the resulting surface mesh is still very accurately on
11% of the vertices have an error greater than 0.1 voxels, and
the maximum error is 0.842 voxels.

8. Discussion

Solving the Poisson system in streaming fashion is a chal-

lenging task since it involves a global linear system in whic

Laplacian values at one point affect the solution at poiats f
Figure 9: The cumulative distribution of geometric error for a away. The key ingredient that enables an effective stregmin

depth 12 reconstruction of the Lucy statue when comparetido t  golution is the use of a cascading multigrid approach.
in-core algorithm of KBHO§. ] o )
To demonstrate the importance of multigrid, Figure

shows the quality of solutions to a 2D Poisson problem us-
this preprocess is negligible as it requires only about 1% of ing three different techniques. The rst row shows the re-
the total execution time and uses less memory than the mul- constructions obtained with 1, 4, 16, and 64 iterations of
tilevel streaming passes. a block-based Gauss-Seidel solver that streams through the
column blocks of the image, much like one of thiagle-
level streaming passes described in SecttrAs shown
in the second row, even if we replace the Gauss-Seidel
solver with the more ef cient (but non-streaming) conjugrat
gradient solver, the convergence is still too slow, reqgit
least 64 passes through the data to obtain an approximate so-
lution. In contrast, a cascadic multigrid solver (bottoryo
quickly converges to the indicator function.

Computation Times Table 3 reveals that our streaming
algorithm is time-competitive with the in-core algorithre-d
spite the large amount of 1/O. The streaming overhead is
small because the overall process is compute-bound and the
stream read-ahead prevents stalls in computation.

Streaming Solver Accuracy Because our streaming
solver computes only an approximate solution to the Pois-
son equation, the numerical accuracy of the solution could  For general problems, a multigrid solver typically reqaire
impact the geometric accuracy of the resulting surface mesh several Gauss-Seidel iterations per level, which would in-
(This topic is further discussed in Secti®n To test geomet- volve several streaming passes, but remarkably for our re-
ric accuracy, we compare the surface mesh generated by ourconstruction problem a single pass is usually suf ciente Th
streaming algorithm to that generated by the in-core algo- intuition is that, in the context of surface reconstructithre
rithm of [KBHO06]. Figure9 graphs the cumulative distribu-  Poisson solutiorc approximates an indicator function, and
tion of mesh vertices as a function of their geometric error, is thus only used to identify the boundary between interior
measured as the distance in voxel units to the nearest pointand exterior. Because the indicator function is a binargfun
on the reference surface. Despite the fact that our stream-tion whose value is either 0 or 1, and the isovalue is approx-
ing cascadic multigrid performs only a single sweep at each imately Q5, the reconstruction is suf ciently accurate if it
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never differs by more than:® from the indicator function.
As shown in the bottom left reconstruction of Figli@(and
also earlier in Figur®), this relaxed error condition can be
met with just one iteration per level of the cascadic multi-
grid solver, allowing us to perform a single streaming pass
at each level. And, one of our key algorithmic contributions

is to show that all such passes can be combined into a single

multilevel streaming pass.

9. Conclusion and Future Work

Streaming computation is an effective tool for processing

huge out-of-core datasets. We have shown that such a frame-{ILGS03]

work can be extended to multiresolution computation, in-
cluding global Poisson solution over an adaptive octree
structure in the context of surface reconstruction.

Avenues for future work include:

Application of multilevel streaming to out-of-core pro-
cessing of multi-gigapixel images.

Support for multicore parallel processing.
Generalization to processing of higher-dimensional
datasets such as 4D time-varying volumes.
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