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Abstract
In this paper we present a novel approach to the surface reconstruction problem that takes as its input an oriented
point set and returns a solid, water-tight model. The idea of our approach is to use Stokes’ Theorem to compute
the characteristic function of the solid model (the function that is equal to one inside the model and zero outside
of it). Specifically, we provide an efficient method for computing the Fourier coefficients of the characteristic
function using only the surface samples and normals, we compute the inverse Fourier transform to get back the
characteristic function, and we use iso-surfacing techniques to extract the boundary of the solid model.
The advantage of our approach is that it provides an automatic, simple, and efficient method for computing the
solid model represented by a point set without requiring the establishment of adjacency relations between samples
or iteratively solving large systems of linear equations. Furthermore, our approach can be directly applied to
models with holes and cracks, providing a method for hole-filling and zippering of disconnected polygonal models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Reconstructing 3D surfaces from point samples is a well
studied problem in computer graphics. The ability to recon-
struct such surfaces provides a method for zippering sam-
ples obtained through scanning, filling in holes in models
with degeneracies, and re-meshing existing models. While
there has been much work in this area, we provide a novel
approach that is based on basic calculus, providing a simple
method for reconstructing solid models from oriented point
sets (point samples with associated normals).

Our approach takes advantage of the fact that an oriented
point set sampled from the surface of a solid model provides
precisely enough information for computing surface inte-
grals. Thus, by formulating the solution of the surface recon-
struction problem in terms of volume integrals, we can apply
Stokes’ Theorem to transform the volume integrals into sur-
face integrals and compute a discrete approximation using
the oriented point samples.

In practice, our approach provides a method for recon-
structing a water-tight model from an oriented point set in
three easy steps: (1) The point-normal pairs are splatted into
a voxel grid. (2) The voxel grid is convolved with an inte-
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gration filter. (3) The reconstructed surface is extracted as an
iso-surface of the voxel grid.

The advantage of our approach is its simplicity: Splat-
ting the oriented point samples into the voxel grid can be
done without necessitating the establishment of adjacency
relations between the samples. Convolving with a filter
can be efficiently performed using the Fast Fourier Trans-
form [FFTW]. And finally, standard methods such as the
Marching Cubes algorithm [LC87] can be used to extract the
reconstructed surface, returning a triangulation that is guar-
anteed to be water-tight.

Figure 1 demonstrates our method for an oriented point
set obtained by sampling the surface of a dinosaur head. The
original model is shown on the left, the samples are shown
in the middle, and the reconstructed model is shown on the
right. Note that even though the points were sampled from
a model which was not water-tight, (there are holes in the
eyes, the nostrils, and the mouth) our method succeeds in re-
turning a seamless mesh that closely approximates the input
data, accurately capturing the fine model details.

Our method addresses the surface reconstruction problem
by approximating integration by a discrete summation and a
direct implementation of our method assumes that the sam-
ples are uniformly distributed over the surface of a model.
However, in many situations, the input samples are not uni-

c© The Eurographics Association 2005.



M. Kazhdan / Reconstruction of Solid Models

Figure 1: The initial model (left), a non-uniform sampling of points
from the model (middle), and the reconstructed water-tight, surface
obtained using our method (right).

formly distributed. To this end, we also present a simple
heuristic method that assigns a weight to each point-normal
pair corresponding to the sampling density about the sample.
We show that this heuristic provides a robust method for as-
signing weights that approximate the regional sampling den-
sity allowing for the reconstruction of surfaces from samples
that are not uniformly distributed. Figure 1 shows an exam-
ple of the use of this method: Though, the samples are not
uniformly distributed over the surface of the original triangu-
lation, with denser sampling in regions of higher curvature,
our weighting method assigns the correct weights to the sam-
ples and the reconstructed surface closely approximates the
input sample in regions of both dense and sparse sampling.

The remainder of this paper is structured as follows: In
Section 2 we review previous work in surface reconstruction.
We present our approach in Section 3 and provide results and
discussion in Section 4. Finally, we conclude in Section 5 by
summarizing our results and discussing possible directions
for future research.

2. Related Work

The importance of the surface reconstruction problem has
motivated a large body of research in computer graphics
and previous approaches can be broadly grouped into one of
three categories: (1) Methods that address the surface recon-
struction problem through the use of computational geome-
try techniques, (2) methods that address the surface recon-
struction problem by directly fitting a surface to the point
samples, and (3) methods that address the surface recon-
struction problem by fitting a 3D function to the point sam-
ples and then extracting the reconstructed surface as an iso-
surface of the implicit function.

In general, the computational geometry based meth-
ods proceed by computing either the Delaunay trian-
gulation of the point samples or the dual Voronoi di-
agram and using the cells of these structures to de-
fine the topological connectivity between the point sam-
ples [Bo84, EM94, ABK98, AC∗00, ACK01, DG03]. The
advantage of these types of approaches is that the complexity
of the reconstructed surface is on the order of the complex-
ity of the input samples. Moreover, for many of these recon-
struction methods, it is possible to bound the quality of the
reconstruction if the sampling density is known. However,
these methods suffer from two limitations: First, they require
the computation of the Delaunay triangulation which can be

inefficient for large point samples. Second, these methods
tend to perform less effectively when the point samples are
not uniformly distributed over the surface of the model.

Surface fitting methods approach the reconstruction prob-
lem by deforming a base model to optimally fit the input
sample points [TV91, CM95]. These approaches represent
the base shape as a collection of points with springs between
them and adapt the shape by adjusting either the spring stiff-
nesses or the point positions as a function of the surface in-
formation. As with the computational geometric approaches,
these methods have the advantage of generating a surface re-
construction whose complexity is on the order of the size of
the input samples. However, these methods tend to be re-
strictive as the topology of the reconstructed surface needs
to be the same as the topology of the base shape, limiting the
class of models that can be reconstructed using this method.

The third class of approaches taken in reconstruct-
ing surfaces uses the point samples to define an
implicit function in 3D and then extracts the re-
constructed surface as an iso-surface of the function,
[HD∗92, CL96, Wh98, CB∗01, DM∗02, OBS04, TO04].
The advantage of these types of approaches is two-fold:
First, the extracted surface is always guaranteed to be
water-tight, returning a model with a well-defined interior
and exterior, and second, the use of an implicit function does
not place any restrictions on the topological complexity
of the extracted iso-surface, providing a reconstruction
algorithm that can be applied to many different 3D models.
In general, this type of approach has the limitation that
the complexity of the reconstruction process is a function
of the resolution of the voxel grid, not the output surface,
and many of these approaches use hierarchical structures
to localize the definition of the implicit function to a thin
region about the input samples, thereby reducing both the
storage and computational complexity of the reconstruction.

3. Approach

The goal of our work is to provide a method that takes as
its input an oriented point set sampled from the surface of a
model and returns a water-tight reconstruction of the surface.
Our approach is to construct the characteristic function of
the solid defined by the point samples – the function whose
value is one inside of the solid and zero outside of it – and
then to extract the appropriate iso-surface.

To compute the characteristic function of the solid we
compute its Fourier coefficients. In practice, one would com-
pute the Fourier coefficients by integrating the complex
exponentials over the interior of the model. However, by
Stokes’ Theorem, we can express this volume integral as a
surface integral, only using information about the positions
and the normals of points on the boundary. Since this is pre-
cisely the information provided as the input to our method
we have sufficient information to compute the Fourier coef-
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ficients of the characteristic function, allowing us to use the
inverse Fourier transform to compute its values.

We begin our discussion by reviewing Stokes’ theorem.
Next, we provide a method for expressing each of the Fourier
coefficients of the characteristic function in terms of a sur-
face integral. Then, we provide an efficient method for com-
puting the Fourier coefficients and describe a method for se-
lecting the iso-value to be used for the iso-surface extrac-
tion. Finally, we provide a simple heuristic for addressing
the problem of non-uniformly sampled input data.

3.1. Stokes’ Theorem

Stokes’ Theorem is an extension of the Fundamental The-
orem of Calculus which provides a method for expressing
the integral of a function over the interior of a region as an
integral over the region’s boundary. In our work, we will be
considering a specific instance of Stokes’ Theorem known as
the Divergence Theorem or Gauss’s Theorem. Specifically,
if M ⊂ R

3 is a three-dimensional solid and ~F = (Fx,Fy,Fz) :
R

3 → R
3 is a vector-valued function, the Divergence Theo-

rem expresses the volume integral as a surface integral:
∫

M
∇ ·~F(p)d p =

∫

∂M
〈~F(p),~n(p)〉d p

where ∇ ·~F = ∂Fx/∂x+∂Fy/∂y+∂Fz/∂ z is the divergence
of ~F and~n(p) is the surface normal at the point p.

Our approach is motivated by the observation that if
{~pi,~ni} ⊂ M is a uniformly sampled point set, the volume
integral can be approximated using Monte-Carlo integration:

∫

M
∇ ·~F(p)d p ≈

|M|

N

N

∑
i=1

〈~F(~pi),~ni〉.

In the next section, we show that the surface reconstruction
problem can be reduced to the computation of volume inte-
grals. Using the above Monte-Carlo approximation, we can
compute these volume integrals as a summation over a set
of surface samples, providing a method for reconstructing
surfaces from oriented point sets.

3.2. Defining the Fourier Coefficients

To reconstruct a surface from a set of samples, we will first
construct the characteristic function of the solid model. This
is a function defined in 3D whose value is equal to one inside
the solid and zero outside. Once the characteristic function
is obtained, we can obtain the surface by using iso-surface
extraction. Instead of computing the characteristic function
directly, we first compute its Fourier coefficients and then
compute the inverse Fourier Transform of these coefficients.
Though less direct, this approach is easy to implement be-
cause the Fourier coefficients can be expressed as volume
integrals and hence can be computed from an oriented point
set with a Monte-Carlo approximation of Stokes’ Theorem.

Our goal is to compute the characteristic function by com-
puting its Fourier coefficients. Specifically, if M is a solid
model and χM is its characteristic function, we would like to
compute the coefficients:

χ̂M(l,m,n) =
∫

R3
χM(x,y,z)e−i(lx+my+nz)dxdydz

=
∫

p∈M
e−i(l px+mpy+npz)d p.

(Note that since the function χM is equal to one inside
the model and zero outside, integrating the complex ex-
ponentials against the characteristic function is equivalent
to computing the integral of these functions over the solid
model.) Using the Divergence Theorem, we know that if
~Fl,m,n : R

3 → R
3 is a function such that:

(

∇ ·~Fl,m,n

)

(x,y,z) = e−i(lx+my+nz)

the volume integral can be expressed as the surface integral:

χ̂M(l,m,n) =
∫

M
e−i(l px+mpy+npz)d p =

∫

∂M
〈~F(p),~n(p)〉d p

where~n(p) is the unit normal of the surface ∂M at p.

Since the input to our algorithm is an oriented point set,
we can compute the Fourier coefficients of the character-
istic function using a Monte-Carlo approximation. Specifi-
cally, given the points {~p1, . . . ,~pN} with associated normals
{~n1, . . . ,~nN}, we set:

χ̂M(l,m,n) =
1
N

N

∑
j=1

〈~Fl,m,n(~p j),~n j〉.

In order to be able to evaluate the above summation ex-
plicitly, we need to choose the functions ~Fl,m,n whose diver-
gences are equal to the complex exponentials. Perhaps the
most direct way to do this is to set ~Fl,m,n to be the function:

~Fl,m,n(x,y,z) =







i
l+m+n e−i(lx+my+nz)

i
l+m+n e−i(lx+my+nz)

i
l+m+n e−i(lx+my+nz)






.

The limitation of this type of function is that it is anisotropic,
treating different directions differently. Thus, the obtained
characteristic function does not rotate with the model.

To avoid this problem, we use functions ~Fl,m,n that do not
depend on the alignment of the coordinate axis:

~Fl,m,n(x,y,z) =







il
l2+m2+n2 e−i(lx+my+nz)

im
l2+m2+n2 e−i(lx+my+nz)

in
l2+m2+n2 e−i(lx+my+nz)






. (1)

Figure 2 demonstrates the differences in the characteristic
function obtained using the different ~Fl,m,n for individual
point samples with different normal orientations (left and
middle) and a point set consisting of 100 points randomly
distributed over the boundary of the square. The middle row
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Figure 2: Characteristic functions obtained from a point with a
90◦ degree normal (left), a point with a 60◦ degree normal (middle),
and a point set sampled from the boundary of a square (right). Re-
constructions are shown using the functions ~Fl,m,n whose coordinate
functions are equal (middle) and functions defined by Equation 1
(bottom). Points with positive value are drawn in white, points with
negative value in black, and points with zero-value in gray.

shows the characteristic function obtained using the func-
tions ~Fl,m,n whose coordinate functions are equal. In this
case, the anisotropic nature of the function results in charac-
teristic functions that do not rotate with the normals, result-
ing in a non-uniform distribution of noise in the reconstruc-
tion of the square. In contrast, the characteristic functions
obtained using Equation 1 (botom) rotate with the normals
and give rise to a smoother reconstruction. (The uniqueness
of the functions ~Fl,m,n is discussed in the Appendix.)

One should note that computing the Fourier Coefficient of
the characteristic function using a Monte-Carlo approxima-
tion of Stokes’ Theorem defines all the Fourier coefficients
of the characteristic function except the constant order term.
Thus, the obtained function is well defined up to an additive
constant. Furthermore, in the case that we do not know the
sampling density (i.e. the surface area associated with each
sample point), the resultant characteristic function is only
well defined up to a multiplicative constant.

3.3. Computing the Fourier Coefficients

While the method described in the previous section provides
a direct way for obtaining the Fourier coefficients of the
characteristic function, it requires a summation over all of
the input samples to compute a single Fourier coefficient.
Thus, in the case that both the number of input samples
and the reconstruction band-width are large, explicitly com-
puting the summation becomes prohibitively slow. In this
section, we show that this summation can be expressed as
a convolution so that the Fast Fourier Transform can be
used to compute the characteristic function efficiently. Con-
sequently, if N is the number of input samples and b is the
reconstruction band-width, using the FFT for surface recon-

struction we obtain a reconstruction algorithm with com-
plexity O(b3 logb + N), (as compared to the O(b3N) com-
plexity of the explicit summation approach).

Our approach is to represent the oriented point set by a
gradient field which is almost everywhere zero except at the
sample locations. At these locations the value of the gradi-
ent field is equal to the normal of the corresponding point
sample. Specifically, we set ~N : R

3 → R
3 to be the function:

~N(~p) =
1
N

N

∑
j=1

δ~p j (~p)~n j

where δ~p is the Kronecker Delta function centered at ~p. The
advantage of this representation is that its Fourier coeffi-
cients are closely related to the Fourier coefficients of the
characteristic function. Specifically, if we set ~l = (l,m,n)
then the ~l-th Fourier coefficients of the characteristic func-
tion and the~l-th Fourier coefficients of the gradient field are:

χ̂M(~l) =
i

N‖~l‖2

N

∑
j=1

e−i〈~l,~p j〉〈~n j,~l〉 ~̂N(~l)=
1
N

N

∑
j=1

e−i〈~l,~p j〉~n j.

Thus, the ~l-th Fourier coefficient of the characteristic func-
tion can be obtained by multiplying the ~l-th Fourier coeffi-
cient of the gradient field by i/‖~l‖2 and taking the dot prod-
uct with the vector~l:

χ̂M(~l) =
i

‖~l‖2
〈~̂N(~l),~l〉.

(Note that, by abuse of notation, ~̂N(~l) is a 3D complex vec-
tor, obtained by computing the Fourier coefficients of each
of the coordinate functions of ~N independently.)

In practice, we implement this reconstruction of the char-
acteristic function by “splatting” the sample normals into a
voxel grid, (where each voxel stores a 3-vector) and then
convolving the “splatting” function with a filter ~F whose
(l,m,n)-th Fourier coefficient is:

~̂F(l,m,n) =
i(l,m,n)

(l2 +m2 +n2)
.

This is an extended notion of the standard convolution. In
general, convolving the point samples with a filter results in
a function that is the sum of the filters centered at each of
the sample points. The result of our extended convolution is
a summation of filters that are not only centered at the sam-
ple points but also aligned with the normals. Intuitively, this
means that the reconstruction of the characteristic function
is performed by taking functions shown in the bottom row
of Figure 2, translating them to align with the sample points
and rotating them to align with the normals.

One can view this reconstruction of the characteristic
function as an integration. Specifically, we know that inte-
gration acts on the complex exponentials by:

∫

eikθ dθ =
−i
k

eikθ
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so that integration is equivalent to convolution with a filter
whose k-th Fourier coefficient is −ik/‖k‖2. In this context,
multiplication of the~l-th Fourier coefficient of ~N by i~l/‖~l‖2

can be viewed as an integration of the surface gradient field
– a vector field which points in the direction of the surface
normals at the surface points and is zero everywhere else.
Integrating this gradient field, we obtain a function that is
constant almost everywhere, with a sharp change in value at
the sample points so that points interior to the model all have
the same constant value ci and points outside all have the
same constant value co, with co 6= ci. (We make the normals
inward facing so that the value of the characteristic function
is larger inside the model and smaller outside. This gives rise
to the change in sign of the integration filter.)

3.4. Extracting the Iso-Surface

In order to extract an iso-surface from the characteristic
function, we need to choose an appropriate iso-value. We
describe two ways in which this can be done.

First, we can use the fact that the characteristic function
has a value of one inside the solid and a value of zero out-
side of it. This motivates choosing an iso-value equal to 0.5.
Since, as discussed in the previous section, the characteristic
function is only defined up to an additive constant, we would
first need to compute the constant order coefficient, or solid
volume. (This can be done, for example, by using a func-
tion such as ~F0,0,0(x,y,z) =

(x,y,z)
3 .) However, this type of

approach has two limitations: First, it assumes that the sam-
pling density is given so that the ambiguity in the multiplica-
tive scale factor of the characteristic function has been re-
solved. Second, and more important, this method fails to be
robust in the case when the input points are samples from a
model that is not water-tight. In this case, the computed vol-
ume will vary with the translational alignment of the points
and the shape of the reconstructed surface will depend on the
coordinate frame of input samples.

Instead, we can compute the average value of the obtained
characteristic function at the sample positions ~p j . Since we
would like the input points to lie on the reconstructed sur-
face, we simply set the iso-value equal to this average. The
advantage of this approach is that it provides a robust iso-
surfacing value even in the case that input points are obtained
from a model that is not-water-tight.

3.5. Non-Uniform Sampling

In our approach, we compute the characteristic function by
using Stokes’ theorem to transform a volume integral into a
surface integral. We then approximate the surface integral by
a discrete summation over points distributed on the surface
of the model. In order for the approximation to be robust, the
distribution of sample points needs to be uniform. However,
in many applications, the samples may be non-uniform.

In the case that the sampling density about each point is
given, we can address the problem of non-uniformity in the
standard manner – weighing the contribution of each sam-
ple point to the overall integral as a function of the sampling
density. Specifically, we assign a weight to each sample that
is the reciprocal of the regional sampling density and pro-
ceed as before: (1) We scale each normal by the weight of
its sample and splat the weighted normals into a voxel grid,
(2) we convolve the voxel grid with the integration filter, and
(3) we extract the iso-surface at the iso-value equal to the
weighted average of the iso-function at the sample locations.

For the case that we do not know the sampling density a
priori, we propose a simple heuristic for assigning weights to
the samples. Our approach is based on the observation that
the 3D function obtained by summing Gaussians centered
at each of the sample points has the property that the value
of the function is proportional to the local sampling density.
This motivates the following approach for assigning weights
to the samples: We “splat” the samples into a voxel grid –
adding a value of one to each voxel whose position corre-
sponds to the position of a sample – and convolve with a
Gaussian filter. We then assign a weight to each sample point
~p which is the reciprocal of the value of the convolution at ~p.
Since the value of the convolution at a point is proportional
to the local sampling density, the reciprocal is proportional
to the surface area associated to the point, providing the ap-
propriate weighting for the Monte-Carlo integration.

While this method is easy to implement and we find that
it works well in practice, we stress that it is only a heuristic
as it assigns a weight that is inversely proportional to the 3D
sampling density, not the sampling density over the surface.

4. Results and Discussion

In order to determine how well our method works in practice,
we ran our reconstruction approach on oriented point sets
obtained by sampling triangulated models and compared the
obtained reconstruction with the initial model. Specifically,
we designed our experiments to evaluate the quality of the
reconstruction as a function of the number of samples, the
band-width of the reconstruction, the presence of holes and
missing data, non-uniform sampling, and the addition of po-
sitional and normal noise.

4.1. Experimental Results

To evaluate the effect of sample size and band-width on the
quality of the reconstruction, we obtained samples by ran-
domly choosing points on the surface of the Stanford Bunny,
where the probability of choosing a position from within a
specific triangle was proportional to the area of the triangle
(as in [OF∗01]) and the normal of the point was set to the
normal of the triangle from which the position was sampled.
The original model is shown in Figure 3, with an inset show-
ing that the original model has holes in its base and therefore
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Figure 3: The original model from which the test samples were
obtained. The inset shows a view of the base of the model, indicating
that the model is not water-tight.

Figure 4: Reconstructed surfaces of the Stanford bunny with differ-
ent numbers of surface samples (N) and different band-widths (b).

does not define a solid volume. The results of reconstruction
experiments at different sample sizes (N) and different band-
widths (b) are presented in Figure 4 and Tables 1 and 2.

As Figure 4 indicates, our method returns a model that
approximates the input and smoothly fills in the holes where
data is missing. The image also shows that the accuracy of
reconstruction increases with sample size and band-width.

b = 32 b = 64 b = 128

N = 1000
T=12,384
s=0.16

T=51,112
s=1.07

T=206,448
s=8.05

N = 10,000
T=11,952
s=0.18

T=49,776
s=1.11

T=201,804
s=8.04

N = 100,000
T=11,880
s=0.52

T=49,508
s=1.44

T=200,668
s=8.60

Table 1: The size T , in triangles, and compute time s, in seconds,
for reconstruction of the Stanford bunny as a function of the number
of samples (N) and band-width (b).

b = 32 b = 64 b = 128 Error

N = 1000 0.43% 0.30% 0.29% RMS
3.11% 2.35% 2.37% Maximum

N = 10,000 0.32% 0.12% 0.06% RMS
2.42% 1.17% 0.68% Maximum

N = 100,000 0.31% 0.10% 0.04% RMS
2.33% 0.70% 0.37% Maximum

Table 2: The distance, as a percentage of model size, of the initial
model from the reconstructed surface as a function of the number of
samples (N) and band-width (b).

The computational complexity and the complexity of the
reconstructed surfaces are described in Table 1. Because our
reconstruction algorithm runs in O(b3 log(b)+ N) time and
because the triangle count is quadratic in the sampling reso-
lution, we find that doubling the band-width results in com-
putation time that is roughly eight times larger and a recon-
structed model with four times the number of triangles. Ad-
ditionally, the table highlights the fact the limiting factor in
the reconstruction is the computation of the forward and in-
verse Fourier transforms, so that changing the number of in-
put samples does not markedly affect computation time.

To evaluate how well our method reconstructs the sur-
face of the model, we randomly sampled the initial model
at 100,000 points and computed the distance from these test
points to the reconstructed models. Table 2 gives the accu-
racy of the reconstructed models shown in Figures 4 in terms
of the root mean square (RMS) and maximum distance of
these models from the test points (with the distance given as
a percentage of the voxel resolution). As expected, the ta-
ble indicates that the quality of the reconstruction improves
when the sample size and reconstruction band-width are in-
creased. The table also shows that the RMS errors does not
exceed the size of a voxel and, when the surface is recon-
structed at sufficiently high resolution, the maximum error is
also smaller than a voxel. Thus, our method provides a fast,
water-tight reconstruction, with sub-voxel accuracy. (Note
that since the bunny model has holes, water-tight reconstruc-
tions must introduce surface patches that are not present in
the initial model. As a result, symmetrizing the error metric
by sampling points on the reconstruction and measuring the
distance to the initial model would result in an inaccurate
measure of reconstruction accuracy.)

To evaluate the robustness of our method in the presence
of larger aberrations, we ran our algorithm on an oriented
point set that was uniformly sampled from part of a model of
human head. Figure 5 shows the surface from which the sam-
ples were taken (top row) and the reconstruction returned by
our method (bottom row). In this experiment, the sample
size was set to N = 100,000 and the reconstruction band-
width was set to b = 128. Although the input samples only
come from a fraction of the surface, the figure shows that our
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Figure 5: Reconstructed surfaces of a human face using samples
from a 3D model. Views of the original model are shown in the top
row. Views of the reconstructed, water-tight model are shown in the
bottom row.

method returns a solid model that accurately fits the input
samples while providing a reasonable reconstruction of the
surface in the regions where no samples could be provided.

Figure 6 shows the reconstructions for a point set that was
uniformly sampled from the surface of the toes of Michelan-
gelo’s David model (N = 100,000, b = 128). The initial
model is shown on the left, with a crack between the first two
toes resulting from the scanner’s inability to see the region.
Using our method to reconstruct the surface of the model by
assigning uniform weights to each sample point gives rise to
the surface shown in the middle column. While this surface
accurately approximates the data and results in a water-tight
reconstruction, it introduces a topological handle connect-
ing the first two toes. By assigning weights to the samples
that are inversely proportional to the regional sampling den-
sity, as described in Section 3.5, we obtain a new reconstruc-
tion (right column) that gives more weight to the points near
the boundary of the crack. This forces the reconstruction to
maintain the surface orientation near the missing data and
results in a reconstruction that does not have the topological
artifact introduced when uniform weights are used.

To evaluate the performance of our method in the pres-
ence of non-uniform sampling, we generated an oriented
point set by randomly sampling 100,000 points from the sur-
face of the “Happy Buddha” model, Figure 7(a), where the
probability of choosing a point was a function of the sur-
face curvature. An image of the point set is shown in Fig-
ure 7(b), with sparse sampling in low curvature regions (e.g.
the stomach and the base of the pedestal) and dense sam-
pling in high curvature regions. Figure 7(c) shows the re-
construction obtained using uniform weighting which over-
integrates the high curvature areas, resulting in a poor recon-
struction in planar regions. In contrast, Figure 7(d) shows the
reconstruction obtained when we use our weighting method
to assign weights to the samples. As the figure indicates,

Figure 6: The toes of Michelangelo’s David model (left) and the re-
constructions obtained using uniform weights (middle) and weights
that are inversely proportional to the sampling density (right).

Figure 7: Reconstructions from a non-uniform point set. The ini-
tial Buddha model (a), the point set sampled as a function of sur-
face curvature (b), the reconstructed surface obtained using uniform
point weighting (c), and the surface reconstructed using our weight
assignment method (d).

the reconstructions closely approximates the initial surface
(Figure 7(a)), indicating that though our weight assignment
method is a heuristic, it gives a good approximation to the
true sampling density and results in robust reconstructions.

Finally, to test how well our method performs in the pres-
ence of noise, we sampled a cow model at 100,000 points
and added noise to both the position and normal of each
sample. Noise was added to each sample by randomly dis-
placing the position by a fixed distance and randomly chang-
ing the direction of the normal by a fixed angle. The recon-
structed cow models are shown in Figure 8. The rows show
the change in the reconstructed model as the positional noise
is increased and the columns show the change as the angular
noise is increased. The results in the image indicate that our
reconstruction method is robust in the presence of both po-
sitional and angular error. In particular, the figure shows that
our method reconstructs all but the features of the model that
are smaller than the displacement size. For example, when
a displacement value of 1/32-nd of the bounding radius is
used (right column), the body of the cow is reconstructed,

c© The Eurographics Association 2005.



M. Kazhdan / Reconstruction of Solid Models

Figure 8: Reconstructions of a cow model where varying amounts
of noise were added to the position and the normals of the samples.

but the legs and horns, whose widths are smaller the size of
the displacement, can no longer be reconstructed. More im-
portantly, these results show that our method remains robust
in the presence of significant normal error. This is particu-
larly important in practical settings, because though the po-
sitions of the sample points may be accurately obtained with
3D scanners, the normals, which are differential properties
of the surface, are often more noisy.

4.2. Discussion

4.2.1. Memory Requirements

One limitation of our approach is its memory requirements.
If we would like to obtain a high detail reconstruction of a
model, it is necessary to generate a large voxel grid. Specifi-
cally, if we would like to reconstruct a model at band-width
b it is necessary to perform forward and inverse FFTs on
a 2b× 2b× 2b voxel grid. Assuming that the values of the
voxels are stored at floating point precision this implies that,
given the memory limitations of commodity computers, our
method cannot reconstruct a surfuce using a voxel grid with
resolution larger than 512×512×512.

4.2.2. Translation, Additivity, and Noise

An important feature of our method is that it commutes with
translation and is additive. That is, (1) the implicit function
obtained from a translated point set is equal to the transla-
tion of the implicit function obtained from the initial point
set, and (2) the implicit function obtained from the union of
two subsets is equal to the sum of the implicit functions ob-
tained from each subset independently. A property that any
such method satisfies is that if we can model the noise acting
on the samples by a probability distribution, then the implicit
function obtained from noisy samples will approximate the

convolution of the noise model with the implicit function ob-
tained from noise-free samples. For example, if the sampling
noise is Gaussian, the reconstructed characteristic function
of the noisy samples will approximate a smoothed version
of the characteristic function of the noise-free samples. As a
result, the surface reconstructed from samples with Gaussian
noise will resemble a smoothed version of the initial model.

4.3. Comparison to Related Methods

Our method differs from much of the previous work in sur-
face reconstruction in that the fitting of the reconstructed sur-
face to the samples requires a simple global optimization.
Specifically, due to the additive nature of the reconstruc-
tion process, we fit the characteristic function to the sam-
ple points on a point-by-point basis without considering the
proximity of adjacent points. Then, to extract the iso-surface,
we optimize by simply setting the iso-value equal to the av-
erage of the characteristic function at the sample points.

In order to evaluate the effects of our global optimization
on the accuracy of retrieval, we compared the reconstruc-
tions obtained using our method with the reconstructions
obtained using Radial Basis Functions [CB∗01, RBF] and
Multi-Level Partition of Unity Implicits [OB∗03, MPU].

To compare these methods we ran the reconstruction algo-
rithm on point sets obtained from water-tight models of a hu-
man pelvis and the Armadillo Man. In the first experiment,
the point sets were non-uniformly sampled from the surface
of the model and in the second experiment, the points were
uniformly sampled from the surface of the model and then
noise was added to the samples prior to the reconstruction.
The results of our experiments are shown in Figures 9 and 10
and the complexity and accuracy of the reconstructions are
described in Table 3. In both experiments, the points sets
consisted of N = 100,000 samples and the surfaces were re-
constructed at a band-width of b = 128. The accuracy of a re-
construction was measured by uniformly sampling 100,000
points from both the initial model and the reconstructed sur-
face and computing the distances of the points sampled from
the initial surface to the reconstructed surface and the dis-
tances of the points sampled from the reconstructed surface
to the initial surface.

The results from the pelvis experiment demonstrate that
all three methods return accurate reconstructions of the
model, despite the non-uniformity in the sampling and the
large genus of the model. Furthermore, as the results in Ta-
ble 3 indicate, even though our optimization step is a simple
averaging operation that results in faster reconstruction, the
lack of explicit local optimizations does not give rise to a
less accurate reconstruction. Thus our method returns a re-
construction that has the same resolution and accuracy as
competing reconstructions but runs in less time.

The difference in the approaches becomes amplified in the
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Figure 9: A non-uniform sampling of points from the human pelvis
(a) and the reconstructions obtained using Radial Basis Functions
(b), Partition of Unity Implicits (c), and our method (d).

Figure 10: The armadillo-man model (a) and reconstructions from
a noisy point sample obtained using Radial Basis Functions (b),
Partition of Unity Implicits (c), and our method (d). The inset shows
a magnification of the model’s face, showing that the local nature of
previous reconstruction approaches results in noisy reconstructions.

Armadillo Man experiment when noise is added to the sam-
ples. In the results of this experiment, the local optimiza-
tions of the Radial Basis Function and Partition of Unity ap-
proaches give rise to surfaces that strive to interpolate the
samples and are themselves noisy. In contrast, the additive
nature of our method (as described in the previous section)
gives rise to a surface reconstruction that averages out the
noise and returns a surface that resembles a smoothed ver-
sion of the initial model and is, on average, about twice as
accurate as the reconstruction of the competing methods.

The local nature of the optimizations in the Radial Basis
Function and Partition of Unity approaches is further high-
lited by the timing results in Table 3. Since the input samples
are noisy, the iterative local optimizations converge less ef-

Model Time Tris. RMS Max

RBF 5 : 23 302K 0.10% 2.19%
Pelvis MPU 0 : 39 288K 0.12% 3.37%

Ours 0 : 12 289K 0.11% 1.85%

RBF 24 : 10 200K 0.13% 0.50%
Armadillo MPU 2 : 14 205K 1.16% 12.71%

Ours 0 : 11 176K 0.07% 0.67%

Table 3: A comparison of the reconstruction time (min:sec), the
triangle count, and the accuracy of the reconstructions of the pelvis
and Armadillo Man models using Radial Basis Functions, Multi-
Level Partition of Unity Implicits, and our method.

ficiently, making the Radial Basis Function reconstruction
run five times slower and the Partition of Unity reconstruc-
tion run three time slower. In contrast, the efficiency of our
method, which only performs a single averaging optimiza-
tion, is not affected by the noise in the data, returning an
accurate reconstruction in the same amount of time.

5. Conclusion and Future Work

In this paper we have presented a novel method for re-
constructing seamless meshes from oriented point samples.
Our method differs from past approaches in that it leverages
Stokes’ Theorem to provide a method for surface reconstruc-
tion that does not require the establishment of topological
relations between adjacent points and involves no implicit
parameter fitting. Consequently, we provide a surface recon-
struction method that is both simple and efficient. We have
shown that the method is robust and can be used to recon-
struct the surface of 3D solids in the presence of missing
data, non-uniform sampling, and noise.

In the future, we would like to consider using a method
akin to PolyCube-Maps [TH∗04] to decompose the input
samples into a collection of regionally localized subsets.
This would enable us to run our method on each of the
subsets independently, allowing us to overcome the mem-
ory bottleneck that restricts the resolution of reconstructable
detail. We expect that the additive nature of our reconstruc-
tion process should facilitate this task by providing a method
for stitching together adjacent reconstructions.
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Apppendix

To reconstruct a surface from an oriented point set, we com-
pute the Fourier coefficients of the characteristic function by
approximating surface integration by a Monte-Carlo summa-
tion. To do this we need to define complex vector functions
whose divergences are equal to the complex exponentials.

In this appendix, we show that although there are many
complex vector functions whose divergences are equal to a
given complex exponential, if we would like the reconstruc-
tion to satisfy two simple properties, these vector functions
have to be unique. In particular, we show that if we would
like the reconstruction process to satisfy:

• The contribution of a point to the reconstructed implicit is
independent of the contribution of any other point, and

• The reconstruction commutes with translation and rota-
tion (translations and rotations of the point set result in
corresponding translations and rotations of the implicit)

then the vector function giving rise to the~l-th Fourier coef-
ficient can only be:

~F~l(~q) =
(

i~l/‖~l‖2
)

e−i〈~l,~q〉.

To prove this, we recall that given a point set {~pi,~ni}, the
~l-th Fourier coefficient of the implicit function is defined by:

F̂(~l) = ∑i

〈

~F~l(~pi),~ni

〉

.

Since we assume that the contribution of any point is inde-
pendent of any other point, it suffices to prove the uniqueness
property for the case when the point set consists of a single
oriented point {~p,~n}.

The condition that the reconstructed function commutes
with translation implies that if F̂(~l) is the ~l-th Fourier co-
efficient of the reconstruction obtained using the oriented
point {~p,~n}, then e−i〈~l,~p0〉F̂(~l) is the ~l-th Fourier coeffi-
cient of the reconstruction obtained using the oriented point
{~p +~p0,~n}. Since this must be true for any normal vector
~n, it follows that the function ~F~l(~p) can be factored as the

product ~F~l(~p) = ~G(~l)e−i〈~l,~p〉 with ~G(~l) ∈ C3.

Moreover, since the divergence of ~F~l(~p) has to be equal to

e−i〈~l,~p〉, it follows that −i〈~G(~l),~l〉 = 1. Thus, we know that:
~G(~l) = i~l/‖~l‖2 +~l⊥ (2)

where~l⊥ is a vector perpendicular to~l.

Since we also want the reconstruction to commute with
rotation, this implies that if F̂(~l) is the ~l-th Fourier coeffi-
cient of the reconstruction obtained using the oriented point
{~p,~n}, then F̂(R(~l)) is the~l-th Fourier coefficient of the re-
construction obtained using the oriented point {R(~p),R(~n)},
for any rotation R.

Thus, in order for the reconstruction process to commute
with rotation, the function ~G(~l) must satisfy the property:

R(~G(~l)) = ~G(R(~l)).
Clearly, the function ~G(~l) = i~l/‖~l‖2 satisfies this property.
On the other hand, if we take R to be a rotation about the
vector ~l, we get R(~G(~l)) = ~G(~l). Thus, it follows that ~l⊥

(in Equation 2) must be zero, and hence the only function
satisfying translation and rotation commutativity is:

~F~l(q) =
(

i~l/‖~l‖2
)

e−i〈~l,~q〉.

c© The Eurographics Association 2005.



M. Kazhdan / Reconstruction of Solid Models

Figure 11: A reconstruction of the Stanford bunny model from range scans: Some of the initial scans of the model, obtained from different
view points, are shown in (a). The complete point set, obtained by merging the scans, is shown in (b). The reconstructed surface is shown in
(c). And a visualization of the surface, obtained by mapping the normal coordinates to RGB is shown in (d). Note that although the overlap of
different scans results in a non-uniform distribution of points, our weighting scheme correctly assigns sampling densities to the input points,
resulting in an accurate and smooth reconstruction of the surface (as demonstrated by the smooth variation of normals seen in (d)). (Model
courtesy of Stanford University Computer Graphics Laboratory.)

c© The Eurographics Association 2005.


