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Abstract

Melanoma is the most deadly form of skin cancer. Tracking the evolution of
nevi and detecting new lesions across the body is essential for the early detec-
tion of melanoma. Despite prior work on longitudinal tracking of skin lesions
in 3D total body photography, there are still several challenges, including
1) low accuracy for finding correct lesion pairs across scans, 2) sensitivity
to noisy lesion detection, and 3) lack of large-scale datasets with numerous
annotated lesion pairs. We propose a framework that takes in a pair of 3D
textured meshes, matches lesions in the context of total body photography,
and identifies unmatchable lesions. We start by computing correspondence
maps bringing the source and target meshes to a template mesh. Using these
maps to define source/target signals over the template domain, we construct
a flow field aligning the mapped signals. The initial correspondence maps
are then refined by advecting forward/backward along the flow field. Finally,
lesion assignment is performed using the refined correspondence maps. We
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propose the first large-scale dataset for skin lesion tracking with 25K lesion
pairs across 198 subjects. The proposed method achieves a success rate of
90.1% (at 10 mm criterion) for all pairs of annotated lesions and a matching
accuracy of 98.1% for subjects with more than 200 lesions.

Keywords: Total body photography, Skin lesion longitudinal tracking, 3D
correspondence

1. Introduction

Melanoma is the most deadly form of skin cancer. Tracking the evolution
of existing nevi and detecting new lesions across the body is essential for
the early detection of melanoma [I]. Manual evaluation of skin lesions by a
dermatologist is considered the standard of care. However, in patients with
numerous skin lesions, this task becomes challenging and is prone to human
€error.

Total body photography (TBP) captures the entire body of a patient
using 2D images [2] and/or a 3D mesh [3, [4]. As such, TBP can be effective
for monitoring the evolution of lesions |5l [, [7, 8, @, 10]. From a systematic
review, an individual with a large number (>100) of common nevi is usually
included in the target population of TBP [6].

Several prior works have proposed the use of 3D meshes for longitudi-
nal tracking of skin lesions [11] 12, 13, [14]. However, they continue to face
significant challenges. First, existing methods produce low-accuracy lesion
correspondences, attributed to multiple factors such as the limited positional
expression of a lesion, regions with non-isometric deformations, and inconsis-
tent texture across scans. Methods proposed in |12}, T3] [14] are constrained by
their representation of lesions at the resolution of the mesh vertices, thereby
making them heavily dependent on the resolution of the mesh. In extreme
cases, adjacent lesions will be mapped to the same vertex, reducing track-
ing accuracy. In addition, approaches from Zhao et al. [12] and Ahmedt-
Aristizabal et al. [I3] rely on a coarse correspondence map between the source
and target meshes to identify corresponding lesion pairs. Thus, even with an
accurate representation of the lesions themselves, correspondences are neces-
sarily imprecise. Huang et al. [I4] improve the correspondence accuracy by
incorporating both shape and texture information. However, their method is
sensitive to inconsistent texture across scans, caused by imperfect scanning
(e.g., misalignment between images) or changes in clothing and hairiness.



Independently, noise in lesion detection is unavoidable in practice [12],
including both false positives (detections that are not actual lesions) and
false negatives (lesions that are undetected). Therefore, matching methods
need to not only identify correspondences between of inlier lesions on the
source/target (i.e., lesions that are successfully detected in both scans) but
also provide the corresponding location on the target/source for lesions that
cannot be matched. This additional location information allows physicians
to verify whether an unmatchable lesion represents a new growth or is a false
positive resulting from noise.

The public dataset introduced by Zhao et al. [12] represents a pioneering
effort in lesion tracking using 3D meshes. However, the size of the dataset is
limited, comprising only 10 subjects. Furthermore, on average only 20 lesion
pairs are annotated per subject. The sparse annotation of skin lesions makes
the lesion-tracking evaluation far from representative of real-world scenarios.

We propose a framework to match lesions in the context of total body pho-
tography using 3D textured meshes while providing locations for unmatch-
able lesions. To achieve this, we compute accurate correspondence maps
relying on the signal represented by the TBP images, in addition to the ge-
ometry of the meshes themselves. Using the geometry of the meshes, we first
compute coarse correspondence maps taking the source and target meshes
to a template mesh. Then, using the lesion/texture signals, we solve for a
flow field on the template mesh which is used to refine the correspondence
maps. Finally, lesion assignment is performed using the refined correspon-
dence maps. The code will be made publicly available upon acceptance.

We also extend the annotations on the 3DBodyTex dataset [15] to a 25K
lesion pairs dataset for skin lesion tracking. To the best of our knowledge,
we are the first to release a dataset for skin lesion tracking dataset at this
scale. The dataset is available at https://github.com/weilunhuang-jhu/
LesionTrackingDatasetTBP3D. The dataset includes subjects scanned within
a single session under different poses. While the extended dataset does not
represent true temporal progression for longitudinal tracking as the ultimate
clinical goal, the non-isometric deformation induced by a change in body pose
is an issue shared with a change in body shape over time. Non-isometric de-
formation and sensitivity to texture inconsistencies are immediate technical
bottlenecks for finding lesion correspondence in 3D TBP.

Overall, we make three main contributions:

e We propose a novel framework for lesion tracking that automatically


https://github.com/weilunhuang-jhu/LesionTrackingDatasetTBP3D
https://github.com/weilunhuang-jhu/LesionTrackingDatasetTBP3D

matches inlier lesions while providing locations for unmatchable lesions
in the context of TBP using 3D textured mesh. The novelty lies in
the synergetic integration of geometry- and signal-based refinement via
flow-field tailored for the 3D TBP correspondence task.

e We extend the 3DBodyTex dataset by annotating 25K lesion pairs over
198 subjects for skin lesion tracking in 3D TBP under pose variation.

e We validate that the proposed framework outperforms the state-of-
the-art methods in both the matching accuracy and the accuracy of
the correspondence maps for pose-induced correspondence in 3D TBP.
The framework is also more robust to inconsistency between source and
target texture, as well as to non-isometric deformations. It exhibits
superior accuracy when errors are present in lesion detection.

2. Related work

2.1. Shape correspondence for humans

Shape correspondence between non-rigid surfaces represented as trian-
gle meshes has been an active research topic in computer vision and com-
puter graphics [16] [I7, 18]. The shape correspondence problem for triangle
meshes is finding a set of corresponding points between two meshes. For
human shapes, priors of the human body are commonly applied, such as
near-isometric deformation and local rigidity for limbs [19] 20, 211, 22].

Template-based. A line of research relies on a template model, such as SMPL
[23], for establishing correspondences across shapes [24, 25 26]. These meth-
ods usually rely on an initial estimation of the pose (body joint positions
and orientation) mapping the template to the input. Groueix et al. [25]
proposed to deform a template mesh to various body poses and shapes with
auto-encoder frameworks. Bhatnagar et al. [20] used self-supervised learning
to register scans of humans to a common 3D human model.

Canonical embedding. Another common shape correspondence method maps
vertices into a pose-invariant feature space, where correspondences between
the input and template geometries are more easily established [27, 28], 29] [30].
In this category, several shape descriptors have been proposed, from tradi-
tional hand-crafted descriptors [31), B2, [33] to deep-learning-based descriptors



[34, 35] 36, 37]. Furthermore, functional map [27] is commonly used for ro-
bust regularization.

However, for matching skin lesions, the correspondence map relying on the
geometry is not sufficiently accurate. Therefore, using the coarse correspon-
dence map may fail to pair up lesions, particularly if the subject undergoes
non-isometric deformation from scan to scan with numerous lesions in close
vicinity. We propose leveraging additional signals on the mesh to refine the
correspondence map for more accurate matching.

2.2. Graph matching

Given a set of lesions detected in a mesh, we can construct a graph in
which a node corresponds to a single lesion and an edge is a connection
between a pair of lesions. The node attribute is the position of a lesion,
and the edge attribute is the geodesic distance between a pair of lesions.
Then, the problem of matching source and target lesions can be formulated
as a (partial) graph-matching problem that maximizes the node-to-node and
edge-to-edge affinity of the two graphs. Two-graph matching can be modeled
as the quadratic assignment problem (QAP), and is known to be NP-hard.

Traditional approaches [38, 89 [40] aim to match graphs by maximizing
quadratic objective functions. While effective for simple cases, these meth-
ods often struggle with complex graph structures. Some proposed approaches
utilize relaxation strategies in graph matching to mitigate the hard combina-
torial problem [41], 142} [43]. More recent methods explore hyper-graph match-
ing represented by a tensor to encode the higher-order information, offering
increased expressiveness but at the cost of higher computational complexity
[44., 145, [46].

Learning-based methods have been shown to improve matching accu-
racy [47, 48, 49]. Wang et al. [47] developed a QAP network to solve
the matching problem as a vertex classification task over the association
graph whose nodes represent candidate correspondences between the two
graphs and edge weights are induced by the affinity matrix built with the
two graphs. Liao et al. [49] converted the problem of hypergraph match-
ing into a node classification problem and developed a hypergraph neural
network. Despite their promise, these methods often require exhaustively
annotated datasets for training and struggle to generalize across different
domains or datasets. Meanwhile, to address real-world scenarios involving
noisy or incomplete data, some techniques are developed for partial graph
matching and soft assignment [50, [51].
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Despite the advances in graph matching, the solution itself (unlike a corre-
spondence map) does not provide location information for unmatched lesions,
an issues that is critical in clinical settings. Starting from coarse correspon-
dence maps, we propose a framework that performs lesion assignment and
maps lesions onto a template mesh that allows clinical verification.

2.3. Skin lesion tracking in total body photography

Several works have been proposed for tackling the skin lesion tracking
problem over the full body [562] (3], 54, 55]. Korotkov et al. [53] designed
a TBP system with 21 high-resolution cameras and a turntable to track le-
sions. However, their method assumes the patient poses are the same across
visits and heavily relies on calibrated camera poses for finding lesion corre-
spondence. The work of Korotkov et al. [52] improved the earlier method
but does not extend to multiple visits. Strzelecki et al. [55] developed a
TBP system with one digital camera rotating and moving vertically around
the subject. The camera captures 32 images for lesion detection and lesion
matching [54] based on feature matching and triangulation. However, their
method fails when the skin surface is inclined at an angle deviating signifi-
cantly from 90° with respect to the camera viewing direction. Overall, these
methods are limited to a controlled environment and sensitive to camera
perspectives and changes in body poses [14].

Recently, the concept of finding lesion correspondence using a 3D repre-
sentation of the human body has been explored in [111, 12), 13| [14]. Zhao et al.
[12], Bogo et al. [11], and Ahmedt-Aristizabal et al. [13] proposed to use a
template mesh and rely on anatomical position defined on the template mesh
for lesion matching. However, using the template-based correspondence map
is insufficient to accurately match lesions. Furthermore, these methods have
limited positional expression for lesions since they “snap” the location of a
lesion to the nearest vertex. Huang et al. [14] proposed to improve the lesion
correspondence localization accuracy using landmark-based correspondences
refined by texture information. However, their method requires manual anno-
tation of landmarks, is limited to the resolution of the mesh, and is sensitive
to inconsistent texture between scans due to scanning artifacts. In this paper,
we represent lesion positions using barycentric coordinates within a triangle,
making our approach less sensitive to the resolution of the mesh and allow-
ing us to achieve a higher matching accuracy. Additionally, we utilize lesion
signals that are agnostic to the textured mesh assuming lesions are provided
separately.



Table 1: Summary of notations

Mo A source mesh in R?
M, A target mesh in R3
My A template mesh in R3
Vi A set of vertices, V; C M;
X0, X4 A set of source/target lesions, Xo C My , X7 C M,
] A mapping from M; to M,
7 A matching matrix of source and target lesions, m;; = {0,1}
tP The triangle containing p in a mesh

(t?, {a?, B?,4?}) | The barycentric encoding of a point p in a mesh

F(t?) The list of vertices of triangle t?
@f A vertex-to-surface-point mapping, @f V= M;
L A signal on mesh M;, F; : M; - R
To,1h Source/target texture signals on the template mesh
Lo, L1 Source/target lesion signals on the template mesh
v A flow field (tangent vector field) on the template mesh
exp,, The exponential map of a point in a mesh
Dy The geodesic distance function on the template mesh
E(v) The energy function of the flow field ¢
Ex, x,(m) The energy function of the matching matrix 7
3. Methods

3.1. Method Overview

To track skin lesions in 3D total body photography, we propose using
3D textured meshes for source and target scans. Given the detected lesions
in the source/target meshes, we start by establishing coarse correspondence
maps from the source/target to a template mesh. We use these maps to
define source/target signals over the template domain and then construct
a flow field aligning the mapped signals. The coarse correspondence maps
for source/target are then refined by advecting forward /backward along the
flow field. Finally, lesion assignment is performed using the refined correspon-
dence maps to match lesions and identify unmatchable lesions. An overview
of the proposed framework is shown as a block diagram in Fig[l] A summary
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Figure 1: Block diagram of the proposed framework to track skin lesions in 3D total body
photography.

of the mathematical notation used in this paper is provided in Table

3.2. Problem formulation

Given a template mesh M+, source and target meshes M, M1, and two
sets of detected lesions Xy C My, X7 C My, we would like to find correspon-
dence maps ¢ : My — M7 and ¢] : M; — My, and a matching matrix
7 = {0, 1}(IXelF)x X1+ minimizing an energy consisting of two terms:

EXO,Xl <¢ga ¢,1T7 7T) = Z EDistanceProximity(¢g> ¢,1T> 7T) + EStochasticity(’]r) . (1)
Xo0,X1

That is, we want a pair of corresponding source and target lesions to be close
to each other while encouraging the correspondence matrix to be doubly
stochastic. By adding a dummy lesion to each of the lesion sets in m, we
allow the matching function to account for unmatchable lesions. Specifically,
assuming a lesion in the source scan can be matched to at most one lesion
in the target scan and vice versa, we also enforce:

| X1
T3 = 1, Vi = 1,...,|X0| (2)
=0
| Xol
Zﬂ'i,jzlv ijl,,’X1’ (3>
i=0
(where m; o = 1 indicates a match between the i-th lesion on the source

and the target’s dummy lesion). Since the dummy lesions can be matched
multiple times, the sums involving the dummy lesions can be greater than 1.



3.3. Coarse correspondence map

3.3.1. Template-based coarse correspondence

We start by constructing a coarse correspondence map between the input
source/target and a template mesh. We follow the approach from Marin et
al. [56] to acquire a deformed template mesh registered to the source/target
mesh that allows us to construct the correspondence map. Given an input
mesh, they propose a localized neural fields network in which a neural field is
dedicated to a local region of body shape to predict the vertex displacement
of the template mesh (SMPL [23] model). The parameters of the neural field
are then refined using Iterative Closest Point [57] through backpropagation.
Then, the updated neural field is utilized to register the SMPL model to the
input, followed by a refinement that optimizes Chamfer distance. We denote
the method SMPL-NICP. Let M+ be the template mesh, for an input mesh
M,;, i = {0, 1}, the output from SMPL-NICP is a deformed template mesh
(i.e., with the same topology as the original template) whose geometry is
registered to that of M,.

We define a correspondence map ¢ : M; — My, by first deforming
the template mesh to M; and then finding, for every point p € M;, the
nearest surface point on the deformed template. Similarly, we construct a
correspondence map ¢4 : My — M, by finding the closest surface point on
the input mesh M, for each point on the deformed template mesh.

We note that ¢] and ¢%- are not inverses of each other since two different
points on the source/target can have the same closest point on the deformed
template. Fig. [2| illustrates the template mesh in (a), the source and the
target meshes in (b), the correspondence maps from the source/target to the
template in (c), and the source and the target lesions mapped to the template
mesh in (d).

3.3.2. Surface point correspondence map

We allow lesions to be located anywhere on the surface on the mesh (i.e.,
not restricted to vertex positions, a limitation in previous work [12} [13] [14]).
To this end, we use barycentric coordinates to encode a point on the mesh:
p € M < (7, {a?, 5P,~P}) where t* indexes the triangle containing p and
{aP, 3P AP} are the barycentric coordinates of p inside the triangle (0 <
aP, fP AP <1 and a? 4+ P +~P = 1).

Using this encoding, we represent mesh correspondences as vertex-to-
surface-point maps, taking the vertices on one mesh to points on the second



mesh: ®/ : V; — M, is represented by a RV** matrix. The I* row in &’
maps the [™! vertex v} € V; to a point in M; in the barycentric encoding.

Given a vertex-to-surface-point correspondence map <I)g 2V — M, we
use the barycentric encoding to extend it to a surface-point-to-surface-point
correspondence map gbg : M; — M. Concretely, to find the correspon-
dence of a surface point p € M, to the mesh M, we map the three vertices
of the triangle containing the point p onto the mesh M;, interpolate the
positions of the imaged vertices using the barycentric coordinate of p, and
then find the point on M; closest to the interpolant. Formally, for a point
p < (2, {a?, P, ~P}) € M; with F;(t") = (vh, v}, v}) representing the trian-
gle containing p, we have:

¢;(p) = argmin [|o” - ®j(vg) + 57 - D} (vy) +197- Qi (vg) —qll . (4)
qeEM;

With Eqn. , an arbitrary surface point in the source/target mesh can
be mapped to a surface point on the template mesh. The representation of
a query point and its mapped point is not restricted to vertex positions. In
practice, this operation is accurate if the interpolant is close to the mapped
surface point.

3.4. Flow-field-based refinement

The template-based correspondence maps are coarse for two reasons.
First, when fitting a template mesh to source/target scan, non-isometric
deformation is present at locations near body joints and locations of soft
tissues. Second, misalignment between the deformed template mesh and the
input mesh occurs if the body pose of the input mesh is far from the canonical
“T” pose. Since the coarse correspondence map relies on the nearest point
on the registered template mesh to the query point, such a misalignment
degrades the accuracy of the mapping. Consequently, a pair of correspond-
ing points in the source and the target will not map to the same position
on the template mesh. To refine the correspondence map, we transfer the
texture and lesion signals of the source/target to the template mesh using
the source/target-to-template correspondences. We then construct a vector
field on the template mesh that aligns the transferred signals.

3.4.1. Signal construction on template mesh

Let F; : M; — R be a signal on mesh M;, we transfer the signal to
the template mesh using the correspondence map, to define a signal on the
template F] = F; o ¢4 My — R. We consider two types of input signals:
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Figure 2: Visualization of the source and target lesions mapped to a template mesh by
registering the template mesh to the source and target meshes. (a) shows the template
mesh M. (b) shows the source mesh (Mj) and the target mesh (M;). (c) shows the
correspondence maps from the source/target to the template. (d) shows the source and
the target lesions mapped to the template mesh. Lesions in correspondences are visualized
in the same color.

Mr, o) (Xo), 6] (X1)
() (d)

Texture signal. We construct a triplet of color signals on the template mesh,
using the colors in the texture map acquired by the TBP, Z§,Z7 : My — R,
with ¢ € {R, G, B}.

Lesion signal. We construct lesion signals on the template mesh using le-
sion signals defined on the source/target meshes, Lo, L1 : My — R. The
source/target lesion signals represent the likelihood of a surface point being
a lesion. To create the lesion signal, we diffuse a sum of delta functions cen-
tered at the lesion positions and normalize the signal across the surface with
the maximum signal value to create a scalar-per-vertex signal. In practice,
this is done by transferring the lesion positions onto the template mesh and
then diffusing over the template mesh.

3.4.2. Surface optical flow

We are given a template mesh M, source/target texture signals Z§, Z¢,
and source/target lesion signals Ly, £;. Our goal is to define a tangent vector
field ¥ on the template mesh such that advection along the field best aligns
the source and target signals. To this end we leverage the approach of Prada
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et al. [58|, defining the flow field ¢ as the minimizer of the energy:

B -y / VIC* (Ig—Il)>2dp

1€{0,1}
ce{R,G,B}

[\ J/

~
texture fitting
1

ey [ (980 (- £0) iy )

J/

TV
lesion fitting

e / Va0 |2 dp+ < - / 1) dp
R M M

Vv Vv
smoothness size

with the first and the second terms penalizing the failure of the vector field to
explain the difference in the texture signal and the lesion signal respectively,
the third term encouraging the smoothness of the flow, and the fourth term
regularizing the norm of the flow to respect the initial correspondence map.
We follow the approach proposed by Prada et al., solving for the flow field
¥ hierarchically. Please refer to [58] for more details. Fig. |3| visualizes the
source and the target (a) texture and (b) lesion signals transferred to the
template mesh. Fig. 3| (c) shows the vector field obtained by minimizing

Eqnj

3.4.3. Update of correspondence map

With the vector field ¥ defined on My, we update the correspondence
map ¢] and ¢] by advecting the positions of correspondence forward and
backward along the vector field halfway, separately. Formally, we have:

ST
) expggy "B ey ©)

and LT
5T+ expyg — )y, )

with exp,, : T, M7 — M the exponential map taking vectors in the tangent
space at p € M7 to positions on M. Through the update of the correspon-
dence maps, the mapped position of a source lesion is expected to be closer
to the mapped position of the corresponding target lesion on the template

12
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Figure 3: Visualization of the signals on a template mesh and the vector field. (a) shows
the source and the target texture signals. (b) shows the source and the target lesion
signals. (c) visualizes a solved vector field that explains the difference between the source
and the target signals while being smooth and small.

mesh (ideally, at the same position). This is an important step enabling us
to match lesions more accurately, particularly when multiple source/target
lesions are mapped close to each other by the coarse correspondence maps.

3.5. Lesion assignment

Given source/target correspondence maps ngZT : M; — My, we expect
lesions, zp € Xy and x; € X; to be in correspondence if the geodesic dis-
tance between ¢] (r9) and ¢7 (x1) is small. Conversely, we expect zy € Xg
(resp. 1 € X)) to be unmatched if the geodesic distance from ¢ (z) to
¢ (z1) for all z; € X; (resp. from ¢] (1) to ¢ (¢) for all 2y € X) is
large. We formalize these observations, expressing the assignment matrix
7 € {0, 1}{(IXol+Dx(X2l+D) a5 the minimizer of the energy:

Exox, (1) = Z (o, 21) - D (] (w0), &7 (1)) +

z0€X0,21€X1

BIY. wlwo, ™)+ D wag )] (8)

z0€X0o r1€X1

where Dy : My x My — R2% is the geodesic distance function on M.
The first term penalizes lesions that are in correspondence but distant from
each other, while the second and the third term add a constant cost (/)

13



to unmatchable lesions in both source and target. The assignment problem
can be optimized through the Kuhn-Munkres algorithms [59]. We follow the
implementation in Pygmtools [60] to solve for the minimizer of Eqn. [§|

4. Evaluation

4.1. Dataset

4.1.1. Annotation protocol

We extend the 3DBodyTex dataset [15] [61] by annotating lesion corre-
spondence in every pair of meshes. Following the suggestion from a medical
expert reported in [62], the lesion identification, while subjective to non-
experts annotators (i.e., non-dermatologists), is inclusive of anything that
could be potentially considered a skin lesion (e.g., including freckles). The
dataset is labeled by four technical annotators (three co-authors, WH, MX|
ZL, and one external annotator) using the point list picking function in
CloudCompare [63]. A tutorial video was made by WH and shared with
all annotators to ensure standardized annotation procedure and results. A
standard annotation process for a subject involves loading the two textured
meshes in CloudCompare, navigating the 3D view using zoom /pan/rotate
operations to select lesions at their centroids, and saving the triangle ID and
3D coordinates for the selected lesions in correspondence. We note that the
goal of the annotation is not to identify all the lesions on a subject exhaus-
tively, but rather to ensure correct matches and proper annotated locations
for lesions in correspondence. It takes an annotator approximately 15 min-
utes to label one subject with 100 lesion pairs in two poses (meshes). The
annotated lesions in correspondence were manually validated by WH. We
excluded subjects when fewer than 10 lesions were found.

The 3DBodyTex.v1 dataset is available for use after a license agreement.
We strictly adhered to the dataset’s license terms. The study is exempt from
full IRB review as it involves secondary analysis of de-identified, public data.
We describe our annotation protocol, ensuring transparency regarding who
performed the annotations and the quality control measures.

4.1.2. Dataset characteristics

The average number of annotated lesions is 129.6 (0 = 88.4) across 198
subjects, totaling 25,666 lesions. We define the density of the annotated
lesions as the number of neighboring lesions within a geodesic distance of
100 mm. Across all subjects, the average density is 8.5 with ¢ = 6.1. In

14



addition, the lesions are distributed with 12,846 lesions on the trunk, 3761
lesions on the upper right limb, 3617 lesions on the upper left limb, 2139
lesions on the lower left limb, 2291 lesions on the lower left limb, and 1012
lesions on the head. Overall, numerous skin lesion pairs are annotated with
diversity in body shapes, sizes, poses, and anatomical variations. Therefore,
the proposed dataset is suitable for the evaluation of skin lesion tracking that
approximates real-world scenarios for TBP. The distribution of the lesion
annotations can be found in [A.9l

4.1.8. Challenging-pose and numerous-lesion subsets

Since one of our contributions addresses lesion tracking with changes in
body pose, we analyze the pose difficulty of the dataset using Procrustes-
Aligned Mean Per Joint Position Error (PA-MPJPE). Concretely, the PA-
MPJPE is computed relative to a canonical “T” pose for each mesh. Recall
from that an SMPL model is registered to an input mesh. We extract
joints from the registered SMPL models for both the input pose and the
“T” pose, using shared shape parameters. Then we estimate a rigid trans-
formation to align the two sets of joints. We note that we treat the shape
parameters from SMPL as the scale term and do not explicitly estimate it,
since the input pose may be far from the “T” pose, making scale estimation
difficult. Finally, the meshes are grouped into 35 pose categories provided
by 3DBodyTex, and the mean PA-MPJPE is computed for each group. The
distribution of PA-MPJPE per pose can be found in [A.I0]

To demonstrate the performance of our method across different scenar-
ios, we group subjects into subsets for specific purposes. First, we define
a “challenging-pose” subset that consists of 26 subjects in which one of the
two poses belongs to a group whose mean PA-MPJPE is larger than 200
mm. Unless explicitly stated, this subset is separated from the entire dataset
and evaluated individually. Second, we define an “entire” subset with 170
subjects, excluding 26 challenging-poses and an additional 2 cases in which
SMPL-NICP failed (visualized in supplement [A.11]), from the 198 subjects.
Furthermore, since lesion tracking is most valuable for patients with nu-
merous and dense lesions, we identify another subset of 32 subjects as a
“numerous-lesions” set in which subjects are annotated with more than 200
lesions within the “entire” subset.

15



4.2. FEvaluation of correspondence map

To evaluate the quality of the established correspondence maps, we mea-
sure the geodesic distance between a pair of source and target lesions mapped
on the template mesh. The evaluation is done for the “entire” subset. We
report 1) the average geodesic distance across all the annotated lesion pairs
(Dpp) and 2) the subject-wise geodesic distance (Dgw) as the average geodesic
distance of the annotated lesion pairs for the individual subject, and then ag-
gregated across all the subjects. To interpret the geodesic distance between
a pair of source and target lesions in a clinical application, a pair of lesions
is successfully mapped if the distance between them is less than a threshold
criterion. Using the threshold criterion of 10 mm (as in [14]), we measure
the success rate for each subject as the percentage of the correctly mapped
source and target skin lesions over the total number of annotated skin lesion
pairs. We report the subject-wise success rate computed on a pair of meshes
(for one subject) and averaged across paired meshes.

We compare our method to two baseline methods that rely solely on ge-
ometry to provide correspondence maps, SMPL-NICP [56] and DiffusionNet
[35]. We note that DiffusionNet [35] is used as a feature extractor to trans-
form each vertex into a higher-order embedding. Therefore, shape correspon-
dence from DiffusionNet [35] belongs to the category of canonical embedding
in shape correspondence (described in §2.1)), relying on functional maps to
compute correspondence between shapes assuming descriptor preservation
over the underlying meshes. Table [2| shows the comparison of the established
correspondence maps. For both Dpp and Dgsw, the correspondence maps
from our method are substantially more accurate compared to the baseline
methods. As a result, the proposed method achieves a success rate of 90.1%
(0 = 4.6%) at the 10-mm criterion, significantly higher than baseline meth-
ods. We note that the reported success rate from [14] is only 57% (o = 14%),
computed over 10 subjects and totaling around 200 lesions within our dataset.

Fig. [4] (a) shows the distribution of the geodesic distance between all the
lesion pairs. Fig. 4 (b) shows the distribution of the subject-wise geodesic
distance between lesion pairs. We observe that the proposed method effec-
tively aligns lesion pairs closer and reduces the long-tail distribution as well.
To further investigate the improvement of flow field refinement, we compare
correspondence maps established by the proposed method and SMPL-NICP
for an individual subject. Fig. [5| (a) shows the distribution of the geodesic
distances for all the lesion pairs on the subject. In Fig. |5| (b), we observe
that the flow field refinement is also effective in aligning lesion pairs that are
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Figure 4: (a) The distribution of all lesion pair geodesic distances. (b) The distribution
of the subject-wise geodesic distance between lesion pairs.

originally far from each other (e.g., with a geodesic distance of more than
30 mm). Fig. || (c) visualizes the source and the target mesh of the subject,
demonstrating challenges of non-isometric deformation due to soft tissue and
differing poses. Fig.[5|(d) visualizes the texture signals transferred to the tem-
plate mesh. In Fig. 5| (¢), we show the source and the target lesions mapped
onto the template mesh with (ours) and without (SMPL-NICP) flow field
refinement. We observe that after the refinement source and target lesions
are mapped more closely together, facilitating the task of lesion assignment.

Table 2: Comparison of the accuracy of the established correspondence maps. Dyp denotes
the geodesic distance across all lesion pairs. Dgyw represents the geodesic distance between
lesion pairs across all the subjects. The standard deviation is shown in brackets.

DiffusionNet [35] | SMPL-NICP [56] | Ours
Drp (mm) 31.4 (27.4) 16.0 (12.3) 19 (8.7)
Dsw (mm) 31.6 (8.5) 15.7 (3.9) 18 (1.4)
Success rate (%) | 12.4 (7.1) 31.7 (14.2) 90.1 (4.6)

4.8. FEvaluation of lesion assignment

We compare the proposed framework to existing lesion matching methods
from Zhao et al. [12] and Ahmedt-Aristizabal et al. [13]. We note that the
two methods essentially rely on the anatomical position of the source lesions
and the target lesions that are mapped in the template mesh while differing
in two ways. First, Ahmedt-Aristizabal et al. [I3] use linear assignment,
whereas Zhao et al. [12] resort to quadratic assignment using the preservation
of geodesic distance between lesion pairs. Second, Ahmedt-Aristizabal et
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Figure 5: Comparison of correspondence maps for an individual subject (subject-162)
between SMPL-NICP and the proposed method. (a) shows the distribution of the geodesic
distance for all the lesion pairs on the subject. (b) shows the difference in geodesic distance
of each lesion pair between SMPL-NICP and the proposed method. (c) visualizes the
source and the target textured meshes. (d) visualizes the source and the target texture
signals brought onto the template mesh. (e) visualizes the source and the target lesions
mapped to the template mesh using SMPL-NICP and the proposed method. Lesions in
correspondences are in the same color.
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al. [13] selects LoopReg [26] for template registration, while Zhao et al.
[12] selects 3D-CODED |[25]. To eliminate the effect coming from different
registering methods, we re-implement their methods using SMPL-NICP [50]
for template registration, similar to what is used in our framework.

For each subject, we calculate the matching accuracy as the number of
correctly matched lesions over the number of annotated lesion pairs. Table
shows the comparison of the matching accuracy evaluated with different sub-
sets of the dataset. The matching accuracy of the proposed method is highest
for all the subsets. In particular, when only evaluating subjects within the
“numerous-lesions” subset, we observe that the improvement from our method
is more pronounced. In this subset, our method achieves a 98.1% (o = 1.5%)
matching accuracy over 32 subjects totaling 8838 lesion pairs, as compared
to 91.5% (o = 17.5%) and 95.7% (o = 5.9%) for the methods of Zhao et al.
[12] and Ahmedt-Aristizabal et al. [13], respectively. Therefore, the proposed
method effectively pairs up skin lesions for subjects with numerous lesions,
the most important benefit of using TBP for skin cancer. The matching ac-
curacy for individual subjects within the “numerous-lesions” subset is shown
in[A.12] We remark that the reported matching accuracy from Zhao et al.
[12] is 83% (0 = 38%) conducted on 10 subjects and totaling around 200
lesion pairs. We also observe that the proposed method is more robust to
differences in topology between source and target meshes. A subject with
changes in topology between the two scans and the results can be found in
[A.13] For the “challenging-pose” subset, our method outperforms the other
two baseline approaches from Zhao et al. [12] and Ahmedt-Aristizabal et al.
[13] as well. However, our matching accuracy drops to 95.9% (o = 9.0%)
for this subset. We note that the template-based correspondence map could
fail when the poses are challenging, either unseen in the training dataset (in
SMPL-NICP [56]) or far from the template “T” pose.

4.4. Impact of pose difficulty

To further investigate the impact of pose difficulty on performance, we
plot the PA-MPJPE against the matching accuracy. In the 3DBodyTex
dataset, subjects were scanned once in either the “U” pose or the “A” pose.
These two standard poses are relatively easy to register among the 35 pose
categories, especially the “U” pose found to have the lowest PA-MPJPE in
A.10). Since subjects were scanned in two poses, we use the other pose
(not the “U” pose nor the “A” pose) of each subject for the pose complexity.
We perform stratified aggregation on pose complexity. Subjects are first
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clustered by pose category to derive a per-pose mean PA-MPJPE. These
poses are subsequently discretized into quantiles (bins) based on the per-
pose mean PA-MPJPE, allowing us to evaluate matching performance as a
function of pose difficulty. All 198 subjects (396 scans) are evaluated here.

Fig.[0] (a) shows the average matching accuracy over the mean PA-MPJPE
for each bin. We observe a decay in matching accuracy when the mean PA-
MPJPE is larger than 180 mm for both the proposed method and the method
from Ahmedt-Aristizabal et al. [13]. We also plot the lesion pair geodesic
distance (Dpp) across the template mesh aggregated over all subjects in Fig. |§]
(b). We observe that the distances (errors) tend to be larger around regions
that are prone to non-isometric deformation and change in mesh connectivity,
such as armpits, inner elbow, and belly.

Table 3: Comparison of the matching accuracy (%) across all the subjects within different
subsets of the dataset. The standard deviation is shown in brackets. Recall that the
“entire” subset has 170 subjects, excluding 26 subjects in the “challenging-pose” subset.
There are 32 subjects in the “numerous-lesions” subset.

Zhao et al. [12] | Ahmedt-Aristizabal et al. [I3] | Ours
entire 96.2 (11.5) 98.3 (3.4) 98.8 (1.7)
numerous-lesions | 91.5 (17.5) 95.7 (5.9) 98.1 (1.5)
challenging-pose | 92.8 (11.6) 94.3 (10.4) 95.9 (9.0)

4.5. Performance in noisy lesion detection

We evaluate the performance of the proposed framework for noisy lesion
detection by independently taking out p% of lesions in the source and target,
and then pairing up lesions. The evaluation is performed on the “numerous-
lesions” subset. We compare the proposed framework to the approaches from
Zhao et al. [12] and Ahmedt-Aristizabal et al. [13].

We compute precision, recall, and F1 scores between the source and target
lesions for each subject and then report the average and standard deviation
across subjects. The F1 score is the harmonic mean of precision and recall.
Given predicted matrix m,.eq containing k.. matches, and ground truth
matrix g containing kg matches, denote ©® as element-wise product, we
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Figure 6: Analysis of pose’s impact on performance. (a) shows the average matching
accuracy over the mean PA-MPJPE. “linear” and “quadratic” represent the methods of
Ahmedt-Aristizabal et al. [I3] and Zhao et al. [12], respectively. The number of subjects
(n) for each pose complexity is indicated. (b) shows the error distribution (lesion pair
geodesic distance) across the template mesh aggregated over all subjects. The gray mask
indicates region without any annotated lesion pairs.

have:
precision = Z(?Tpred O 7yt)/ Kpred, (9)

recall = > " (Tprea © 1) /K, (10)
precision - recall (1)

Fig. [7] compares the precision, recall, and F1 scores for the three methods
under different noise levels. Compared to the baseline methods, the proposed
method consistently maintains the highest F'1 score across noise levels smaller
than 25%. However, the relative advantage over the linear baseline narrows
as noise increases. This is consistent with our ablation study ( showing
reliance on the lesion signal; as that signal degrades, the benefit of our signal-
driven refinement naturally diminishes. We note that the reported recall for
lesion detection by Zhao et al. [12] ranges from 78% to 96%, validating that
the noise range in our experiment is practical. Furthermore, the quadratic
assignment using the preservation of geodesic distance between lesion pairs
is known to be sensitive to noise, which is corroborated in our findings.

F1=2- — .
precision + recall
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Figure 7: Comparison of the precision, recall, and F1 scores under different noise levels.
“linear” and “quadratic” represent the methods of Ahmedt-Aristizabal et al. [I3] and Zhao
et al. [12], respectively. The noise level is the percentage of lesions independently taken
out from the source and target lesions, ranging from 5% to 30% every 5%.

4.6. Ablation study

4.6.1. Initial correspondence map

Conceptually, the proposed flow field refinement can be applied to any
shape correspondence method that maps the source and target mesh to a
template mesh. However, the level of improvement might be different, de-
pending on the consistency of the source and target signals constructed on
the template mesh. Therefore, we compare how the flow field refinement
works on different initial correspondence maps. We evaluate the average
geodesic distance across all the annotated lesion pairs (Dpp), using Diffu-
sionNet [35] and SMPL-NICP [56] for initial correspondence maps. The Dy p
for DiffusionNet and SMPL-NICP are 31.4 mm (¢ = 27.4) and 16.0 mm
(¢ = 12.3) initially, and 27.4 mm (o = 18.0) and 4.9 mm (o = 8.7) after
refinement, respectively. We show that the proposed flow field refinement
effectively improves the correspondence map from both methods. Remark-
ably, the improvement for a more precise initial correspondence map is more
signnificant — an improvement of 11.1 mm for SMPL-NICP as compared to
an improvement of 4.0 mm for DiffusionNet. Since SMPL-NICP gives more
consistent source and target signals to be aligned, in line with the assump-
tions of brightness constancy and little motion [64] [65], it benefits more from
flow field refinement.
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4.6.2. Flow field refinement

Usage of signals. To investigate the effectiveness of different signals to refine
the correspondence maps, we compare Dy p by using only the texture signal,
the lesion signal, and a combination of the two. On the “numerous-lesion”
subset, we observe that using the texture signal gives 13.6 mm (o = 12.0),
while there is no significant difference between using only the lesion signal
compared to using a combination of the two, with both giving 5.0 mm (¢ =
7.2). Overall, the signals used in our method refine the correspondence maps
while being robust to inconsistent source and target texture coming from
scanning artifacts.

Usage of small magnitude regqularization. To respect the initial correspon-
dence map and be robust to inconsistency in signals due to noise (e.g., un-
detected lesions or texture that does not agree in the source and target), we
add a magnitude regularization to enforce the vector field to be small. On
the “numerous-lesion” subset, we observe that the Dyp is 15.9 mm (o = 11.8)
without the regularization and 5.0 mm (o = 7.2) with the regularization.

5. Discussion

5.1. Choice of barycentric coordinate representation

The choice of the barycentric coordinate representation for lesions (and
correspondence maps) tackles the limitation of inaccurate and resolution-
dependent matching present in previous works [12] 13, [14]. Since the barycen-
tric coordinate representation impacts both the accuracy of lesion location
and the initial correspondence map, it significantly affects the quality of sig-
nal construction on the template mesh, and consequently downstream evalu-
ation tasks. As such, the barycentric coordinate representation is crucial for
our accurate correspondence maps and high matching performance.

As a comparison, on the entire dataset, the average matching accuracy
across all the subjects using the vertex representation is 83.5% (o = 11.1),
as compared to 98.3% (o = 3.4) evaluated with our re-implementation of the
approach from Ahmedt-Aristizabal et al. [13]. As expected, we observe a
consistent decrease in matching accuracy as the lesion count increases due
to inaccurate representation. A detailed comparison of the average matching
accuracy for different numbers of lesions per subject can be found in

In addition, the selected representation is robust to the input mesh res-
olution. Our evaluation is conducted on the low-resolution mesh from the
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3DBodyTex dataset with 10K vertices on average, whereas both Zhao et al.
[12] and Huang et al. [14] use high-resolution mesh with 300K vertices from
the same dataset. To investigate the effect of input mesh resolution, we per-
form the flow field refinement using the texture signal on the high-resolution
mesh and compare to the results in §4.6.2 On the “numerous-lesion” subset,
the improvement of Dyp from using high-resolution texture (as compared
to low-resolution texture) is only 0.2 mm. The improvement becomes even
smaller (0.1 mm) after introducing the lesion signal.

However, the performance of our method depends on the template mesh
resolution at run-time. Our implementation uses nearest-sampling to con-
struct the texture signal and diffuses a sum of delta functions centered at
mapped lesion positions on the template mesh for lesion signals. Concretely,
the template mesh (from SMPL [23]) has 6890 vertices. To ensure suffi-
cient texture/lesion signals on the template mesh, we perform three rounds
of one-to-four subdivisions (to 440,834 vertices) on the template mesh when
constructing the signals (in and solving the surface optical flow (in
§3.4.2). The number of iterations for one-to-four subdivisions is determined
empirically: a lower resolution produces a larger error (in geodesic distance)
for lesion pairs, while a higher resolution is slow and does not provide no-
ticeable improvement.

5.2. Computational cost

Overall, our method achieves state-of-the-art matching accuracy without
sacrificing efficiency. For each subject, our framework takes around 7 min-
utes, including the following components: 1) Coarse correspondence map (4
minutes). 2) Signal construction on template mesh (20 seconds). 3) Surface
optical flow (150 seconds). 4) Lesion assignment (1 second). In particular, for
the “numerous-lesion” subset, our method performs significantly better than
the approach from Ahmedt-Aristizabal et al. [13] with an acceptable compu-
tation overhead of 3 minutes. On the other hand, the quadratic assignment
used by Zhao et al. [12] is NP-hard.

5.3. Fvaluation on subjects with dark skin tones

Our dataset includes a variety of skin tones, notably including 5 subjects
with dark skin tones. We observe that the number of skin lesions is relatively
small for those subjects, with 26.6 (o = 7.7) lesions on average. Our method
successfully pairs up all the lesions on the 5 subjects. Example results can

be found in [A. 15l
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5.4. Clinical Integration

The proposed method serves as a correspondence machine that could be
integrated into an automatic screening system for skin cancer. For exam-
ple, once a new 3D TBP scan is acquired, existing methods (e.g., [12]) can
be applied to detect skin lesions on the scan. Subsequently, our framework
establishes lesions in correspondence and detects new/disappearing lesions,
creating a visual record of all moles on a person’s body. The computed pose
difficulty value can suggest to doctors to pay extra attention to the results in
difficult pose. Meanwhile, the visual presentation of the registered template
mesh and the input mesh allows clinicians to reject failure cases. Finally,
downstream tasks can be built on the proposed framework, such as monitor-
ing lesions that have significantly changed. The current computational time,
while optimizable, is reasonable to streamline a complete skin examination

of the full body.

5.5. Limitations

The proposed framework has several limitations. 1) Our method fails to
accurately map the source and the target lesions on the template mesh within
the 10-mm criterion if a large non-isometric deformation exists. Fig. |8 (a)
visualizes a subject with large non-isometric deformation around the chest
and the belly area. Fig.[§| (b) demonstrates the source and the target lesions
imaged on the template mesh. Although the proposed flow-field-based refine-
ment brings closer lesions in correspondence, the lesion pairs in the red box
are still far from each other, with a geodesic distance of more than 50 mm.
However, these lesions are correctly paired up in our lesion assignment step.
2) The proposed framework fails for some challenging poses when the tem-
plate mesh is incorrectly registered to the input mesh. For example, Fig.
(c) shows an example from “challenging-pose” subset where template-based
registration fails. The registered template mesh flips the left and the right
legs. As a result, the geodesic distance for lesions in correspondence is exces-
sively large on those incorrectly registered body regions. Our method cannot
match those lesions successfully. Furthermore, while our pose difficulty met-
ric could be used to warn clinicians for difficult cases, the metric fails to
categorize the two failure cases (in as challenging poses. We believe
that it is confusion due to bilateral symmetry that makes template fitting
difficult, particularly when limbs cross the body. A pose difficulty metric
incorporating symmetry should be investigated in the future. Nonetheless,
some challenging poses may not be common in clinical settings, especially
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(b)

Figure 8: Examples of failure cases. (a) visualizes a subject undergoing large non-
isometric deformation. (b) illustrates the source and the target lesions imaged on the
template mesh for lesions shown in (a). In the red box, we highlight lesion pairs with a
geodesic distance of more than 50 mm. (c) shows a failure in template registration of a
pose categorized as “challenging-pose”.

considering that patients have to maintain the pose during the scan. 3)
The proposed dataset exhibits limited annotations of distal extremities, such
as lesions on fingers and toes. In particular, due to complex morphology,
these anatomical regions are challenging for digital imaging. Consequently,
the proposed framework may demonstrate reduced performance and relia-
bility for lesions in these regions. 4) The 3DBodyTex dataset only contains
pose variations within a single session and lacks true longitudinal data (e.g.,
new /removed lesions, morphological changes). Future work should consider
the evaluation of true longitudinal changes.

6. Conclusions

In this paper, we propose a framework to match lesions in the context of
full body using 3D textured meshes while providing locations for unmatch-
able lesions. We propose a skin lesion tracking dataset with 25K lesion pairs
over 198 subjects. To our knowledge, a dataset for skin lesion tracking in 3D
TBP at this scale is not reported in the literature.. We show that the pro-
posed method effectively refines correspondence maps to align lesion pairs,
achieving a success rate of 90.1% at 10-mm criterion. The proposed frame-
work accomplishes state-of-the-art matching accuracy, an accuracy of 98.1%

26



for 32 subjects with more than 200 lesions on the body. Furthermore, our
method is validated to be more robust to inconsistent texture between the
source and the target meshes and outperforms state-of-the-art in noisy lesion
detection.

In the future, we would like to extend the framework for more than two
TBP scans. With more than two TBP scans, some of the false positives and
false negatives may potentially be resolved by evaluating the consistency of
a lesion’s life cycle [66]. Moreover, the method needs to be evaluated on
longitudinal data with a longer duration that may include more significant
changes in skin conditions.
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Figure A.11: The two cases in which NICP-SMPL fails to register the template mesh to
the input mesh of (a) subject 15 and (b) subject 73. The poorly registered body region is
highlighted in the red box. The annotated lesions for the two subjects are visualized as
black dots.
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Figure A.12: The matching accuracy for individual subjects within the “numerous-lesions”
subset, totaling 32 subjects.
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Figure A.13: An example demonstrating that the proposed method is more robust to
change in topology. (a) visualizes the source and the target mesh of subject 71. (b)
visualized the registered template mesh. Differences in topology between the two registered
meshes are highlighted in the red box. (c¢) shows a zoom-in view of the armpit location. (d)
shows the source and the target lesions mapped on the template mesh with and without
the vector-field-based refinement. We observe that lesions are aligned closer with the
refinement. As a result, lesion pairs are mostly correctly matched (shown in Fig[A.12)).
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