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Abstract

We present a novel surface convolution operator acting
on vector fields that is based on a simple observation: in-
stead of combining neighboring features with respect to a
single coordinate parameterization defined at a given point,
we have every neighbor describe the position of the point
within its own coordinate frame. This formulation com-
bines intrinsic spatial convolution with parallel transport in
a scattering operation while placing no constraints on the
filters themselves, providing a definition of convolution that
commutes with the action of isometries, has increased de-
scriptive potential, and is robust to noise and other nuisance
factors. The result is a rich notion of convolution which
we call field convolution, well-suited for CNNs on surfaces.
Field convolutions are flexible, straight-forward to incor-
porate into surface learning frameworks, and their highly
discriminating nature has cascading effects throughout the
learning pipeline. Using simple networks constructed from
residual field convolution blocks, we achieve state-of-the-
art results on standard benchmarks in fundamental geome-
try processing tasks, such as shape classification, segmen-
tation, correspondence, and sparse matching.

1. Introduction
The advent of deep learning in imaging, vision, and

graphics has coincided with the development of numerous
techniques for the analysis and processing of curved sur-
faces based on convolutional neural networks (CNNs). The
challenge in reproducing the success of CNNs on surfaces is
that classical notions of convolution and correlation in Eu-
clidean spaces cannot simply be transposed onto curved do-
mains. Unlike images, points on a surface have no canonical
orientation, without which simple operations fundamental
to the spatial propagation of information, such as moving
dot products, cannot be computed in a repeatable manner.

Geometric deep learning is a young field, and many
successful methods can be broadly categorized in relation
to two emerging paradigms characterized by specific ap-
proaches to convolution: diffusive propagation and equiv-
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Figure 1. Prior approaches define patch-based convolution opera-
tors as gathering operations (left), which are sensitive to noise or
disruptions in the local coordinate system. Field convolution is a
scattering operation and is robust under perturbations as it does
not rely on a single coordinate system to aggregate features.

ariant propagation. Diffusive approaches closely inter-
twine convolution operations with heat diffusion on man-
ifolds wherein filters represented by anisotropic heat ker-
nels or Gaussians are used to propagate scalar features
[35, 6, 5, 39, 31, 47]. In contrast, equivariant convolutions
distribute vector or tensor features that transform with local
coordinate systems [41, 55, 46, 7, 9, 61, 62].

Critically, virtually all state-of-the-art approaches sac-
rifice filter descriptiveness to define a notion of convolu-
tion that does not depend on the choice of local coordinate
frames. Gaussian filters can facilitate efficient evaluations
in the spectral domain but are individually undiscriminat-
ing. Extensions to anisotropic filtering mitigate these lim-
itations by extending the class of filters that can be used.
However, this requires defining a frame field over the sur-
face – itself a hard problem.

Equivariant approaches have the potential to provide ex-
pressive notions of convolution on surfaces due to the en-
coding of geometric information in the transport of tangent
vector features. However, equivariance of the response is
almost universally achieved by placing constraints on the
filters themselves [41, 42, 8, 9, 25, 61], limiting descrip-
tiveness and necessitating complex architectures to support
the algebraic relationships between kernels. Furthermore,
these regimes formulate spatial propagation as a gathering
operation, analogous to correlations on Euclidean domains;
features are weighted based on their position relative to a
coordinate frame defined at a single point (Figure 1, left),



making them sensitive to inconsistencies or disruptions in
local parameterizations .

In this paper we present a novel convolution operator act-
ing on vector �elds. Our method de�nes the value of the
convolution at a pointp using a simple observation: instead
of combining neighboring features by parameterizing each
neighborqi with respect to a coordinate frame de�ned atp,
each neighborqi parametrizesp within its own coordinate
frames (Figure 1, right). This formulation combines intrin-
sic spatial weighting with parallel transportwhile placing
no constraints on the �lters themselves, providing a de�ni-
tion of convolution that commutes with the action of isome-
tries and has increased descriptive potential. In addition, as
a scatteringoperation, it is less sensitive to noise and other
nuisance factors as it does not rely on a single coordinate
system about each point to aggregate features. The result is
a rich notion of convolution which we call�eld convolution
(FC), well-suited for CNNs on surfaces.

Field convolutions are �exible and straight-forward to
incorporate into surface learning frameworks. Their highly
discriminating nature has cascading effects throughout the
learning pipeline, allowing us to achieve state-of-the-art
results on standard benchmarks in applications including
shape classi�cation, segmentation, correspondence, and
sparse matching. All code and evaluations are publicly
available at github.com/twmitchel/FieldConv.

2. Related Work

The �eld of geometric deep learning has grown exten-
sively since its inception half a decade ago. Here, we only
review the techniques most closely related to ours – those
designed speci�cally for the analysis of 3D shapes. Gener-
ally speaking, these methods exist on a spectrum between
extrinsic and intrinsic techniques, with the former perform-
ing signal processing using the embedding of the surface in
3D and the latter only using the Riemannian structure.

Point-basedmethods offer a purely extrinsic framework
for applying deep learning to 3D shapes by representing
them in terms of point clouds. A majority of these ap-
proaches can trace their lineage to the in�uential Point-
Net [43] and PointNet++ architectures [44] and recent ap-
proaches such as DGCNN [60], PCNN [3], KPCNN [54],
TFN [55], QEC [64] and SPHNet [42] have sought to ex-
tend the framework by incorporating connectivity informa-
tion, dynamic �lter parameterizations, and equivariance to
rigid transformations. Convolution is typically expressed
by applying radially isotropic �lters over local 3D neigh-
borhoods and aggregating the results with the maximum or
summation operations. This approach offers a simple foun-
dation for extremely �exible and noise-robust networks,
though at the expense of descriptive potential. More gener-
ally, these methods tend to struggle in the presence of non-
rigid isometric deformations, making them less effective in

scenarios like deformable shape matching [11, 19, 47].
Representationalapproaches sit between extrinsic and

intrinsic techniques. These methods exploit the data's un-
derlying connectivity to form convolutional operators, often
making use of well-developed techniques for graph-based
learning on irregular structures [10, 63, 58, 14, 30, 18, 8,
29]. In particular, convolutions are performed using �lters
de�ned relative to the explicit graph structure as functions
on edges or vertices, often with only immediate local sup-
port such as the surrounding one-ring or half-edge. A par-
ticularly notable example is MeshCNN [23], which speci�-
cally leverages the ubiquitous representation of surfaces as
triangle meshes to construct a similarity-invariant convolu-
tion operator propagating edge-based features. While this
enables graph-based convolutions to better handle non-rigid
deformations compared to point-based approaches, it also
makes them sensitive to changes in connectivity.

One approach to de�ningintrinsic convolution has been
to parametrize the surface over a simple domain such as the
the sphere [22], torus [34], or plane [50] where standard
CNNs can be applied. However, such parameterizations de-
pend on the genus and often exhibit signi�cant distortion.

A second class of approaches has been to de�ne intrinsic
convolution over the Riemannian manifold, and can gen-
erally be classi�ed in relation to two emerging paradigms:
diffusiveconvolutions andequivariantconvolutions. In the
former, convolution operations are closely related to heat
diffusion on surfaces wherein heat (e.g. Gaussian) kernels
are used to propagate scalar features. While early diffusive
approaches including GCNN [35], ADD [5], ACNN [6] and
MoNet [39] perform convolutions over local patches, recent
state-of-the-art networks ACSCNN [31] and DiffusionNet
[47] represent convolution in the spectral domain. Despite
their success in a variety of scenarios, most notably in dense
shape correspondence [19, 11, 31, 47], these methods face
an intractable problem: radially symmetric �lters are indi-
vidually undiscriminating and diffusive frameworks are not
naturally suited to handle the orientation ambiguity prob-
lem introduced by the use of more descriptive, anisotropic
kernels. To compensate, these methods supplement convo-
lutions with basic orientation-aware operations on tangent
vector features [47] in addition to employing various strate-
gies that are either fragile, such as aligning kernels along
the directions of principal curvature [6, 39], or discarding
information by pooling over samplings of orientations or
by specifying directions of maximum activation[35, 31].

Recently, several techniques have been introduced for
equivariantsurface convolutions such as MDGCNN [41],
GCN [7, 9] and HSN [61]. In contrast to diffusive ap-
proaches, equivariant convolutions are designed speci�cally
to address the rotation ambiguity problem by propagating
tangent vector features that transform with local coordi-
nate systems. To make the convolution independent of
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the choice of local coordinate frame, most existing meth-
ods strongly constrain the class of �lters that can be used
[41, 42, 8, 9, 25, 61]. An exception to this is PFCNN
[62] which also discards information by pooling over mul-
tiple kernel orientations. Often, these parameterizations
are so restrictive that they necessitate complex network ar-
chitectures to be effective: even the state-of-the-art HSN
[61] is formulated as a multi-stream U-Net with various
pooling operations. Furthermore, in moving from radi-
ally isotropic to anisotropic �lters, prior equivariant regimes
universally formulate spatial propagation as agatheringop-
eration wherein all features in the local surface are weighted
based on their position in asinglecoordinate system. While
this approach may seem natural as it is analogous to corre-
lation on Euclidean domains, a feature's dependence on a
single local parameterization increases sensitivity to noise.

3. Method Overview

Field convolutions are closely related to an operation
calledextended convolution, which allows a �lter to adap-
tively transform as it travels over a Euclidean domain or
manifold [37]. In the latter case, it forms the basis for the
recently proposed ECHO descriptor [38], which has been
shown to signi�cantly outperform SHOT [56] and other
hand-crafted descriptors in terms of overall descriptiveness
and robustness to a variety of nuisance factors.

In particular, �eld convolutions combine extended con-
volution on surfaces with parallel transport, resulting in a
mapping between vector �elds that only depends on the
Riemannian metric. Given a feature vector �eldX and a
�lter f , the construction of the �eld convolution is straight-
forward: At each pointp 2 M on the surface, values ofX
in the surrounding neighborhoodq 2 N p are weighted rel-
ative to the position ofp in the frame determined byX (q),
transported top, and aggregated. This approach is agnostic
to connectivity and is robust, as the assignment of weights
with respect to multiple coordinate systems makes it natu-
rally insensitive to noise and other nuisance factors. Most
importantly, no constraints are placed on �lters.

Field convolutions facilitate the construction of highly
discriminating yet simple networks, without the need for
pooling, normalization, or specialized architecture. The
principal module in applications is the �eld convolution
ResNet (FCResNet) block, consisting of two successive
�eld convolutions with a residual connection between the
input and output layers [24]. FCResNet blocks are self-
contained and �exible, and can easily be incorporated into
isometry-invariant surface learning regimes. In addition, we
leverage the connection between �eld convolutions and the
recently proposed state-of-the-art ECHO surface descriptor
[38] to construct a novel �nal layer speci�cally designed
for labeling tasks with isometry-invariant surface networks,
which we refer to as an ECHO block. This block takes vec-

tor �eld channels as input, mapping them to scalar ECHO
descriptors which are then fed through an MLP to make pre-
dictions, essentially converting the problem to one of image
classi�cation in the �nal layer of the network.

4. Field Convolution

Following the approach of Knoppelet al. [28], we repre-
sent tangent vectors as complex numbers. Given a surface
M , at any pointp 2 M we can assign to the tangent space
TpM an orthonormal basisf e1; e2gp. ThenTpM can be
associated withC such that for anyv 2 TpM; we have
v � r ei� , with r = jv j and� the angle betweenv ande1.

Letting �( TM ) be the space of vector �elds onM , we
express the evaluation of a vector �eldX 2 �( TM ) at a
pointp 2 M , in terms of the framef e1; e2gp, as

X (p) � � p ei� p : (1)

Similarly, for two pointsp; q 2 M we denote the logarithm
of p with respect toq, giving the “position” ofp in TqM , as

logq p � r qp ei� qp : (2)

We denote by' pq the change in angle resulting from the
parallel transportPp� q : TqM ! TpM along the shortest
geodesic fromq to p, such that for anyv 2 TqM ,

Pp� q(v ) � ei' pq v : (3)

We consider �lters belonging to the space of square inte-
grable functions on the complex plane, and de�ne the�eld
convolutionof a vector �eld X 2 �( TM ) with a �lter
f 2 L 2(C) to be the vector �eld in�( TM ) with

�
X � f

�
(p) =

Z

M
� q ei ( � q + ' pq ) f

�
r qp ei ( � qp � � q )

�
dq:

(4)

The �rst term is the parallel transport of the tangent vector
X (q) to TpM and the second term is the evaluation of the
�lter at the coordinates oflogq p, expressed relative to the
frame

�
X (q)=kX (q)k; X ? (q)=kX (q)k

	
:1

In practice, we use �lters compactly supported within
a radius of� and limit the domain of integration to the
geodesic� -ball aboutp.

Finally, noting that isometries preserve areas, and com-
mute with the action of parallel transport and the logarithm
[16], it follows that if 	 : M ! N is an isometry, we have

d	
��

X � f
�
(p)

�
= [ d	( X ) � f ]

�
	( p)

�
: (5)

Or in other words, �eld convolutions commute with the ac-
tion of isometries. A detailed proof of this claim can be
found in Supplement A.

1Although the frame is unde�ned when� q = 0 , the integral remains
well-de�ned as the value of the �lter is multiplied by� q in the integrand.



Figure 2. The FCResNet block. HereC denotes the complex
ReLU in Equation (8).

Discretization In practice, we discretize a surfaceM by
a triangle mesh with verticesV . To everyp 2 V , we as-
sociate the collection of verticesNp � V belonging to the
geodesic� -ball aboutp. At each point, real-valued �lters
f 2 L 2(C) are supported onlogp (Np) � C, and param-
eterized as sums of angular frequencies with band-limitB .
That is, for anyz = rei� 2 C with jr j � �; the evaluation
of f at z is expressed as

f (z) =
BX

m = � B

f m (r ) � eim� (6)

wheref m (r ) 2 C is them-th Fourier coef�cient off , re-
stricted to radiusr andf � m (r ) = f m (r ) becausef is real-
valued. We discretize the functionf m (r ) using linear inter-
polation, settingf m (r ) = r >(r ) fm , wherer (r ) 2 RN is
the vector of linear interpolation weights (withr i (r ) 6= 0
only if i 2 fb rN=� c; drN=� eg) andfm 2 CN is the vector
of Fourier coef�cients at the discrete radii.

Then, lettingf wpg � R> 0 denote the area weights as-
sociated with verticesp 2 V , choosing an arbitrary edge at
every vertex to de�ne a frame, and lettingX 2 CjV j be a
discrete vector �eld, the evaluation of the �eld convolution
X � f as in Equation (4) at a vertexp 2 V is given by
�
X � f

�
(p) =

X

q2N p

jm j� B

wq � q ei ( � q + ' pq ) f m (r qp) eim ( � qp � � q ) :

(7)

The values ofwq; ' pq; r qp; and� qp, corresponding to the
weight, transport change of angle, geodesic distance, and
logarithm for eachp 2 V andq 2 N p can be precomputed
to speed up training. Similar to [61], we apply rotational
offsetsei� j m j to the coef�cients corresponding to each fre-
quency, providing additional learned degrees of freedom.

5. Surface CNNs with Field Convolutions

Field convolutions are the principle contribution of this
work as they provide a robust and descriptive framework
for the spatial propagation of information on surfaces. The
goal of this section is to introduce the fundamental building
blocks for incorporating �eld convolutions into isometry-
invariant surface learning paradigms.

FCResNet Blocks The atomic unit for �eld convolutions
in surface CNN frameworks is the FCResNet block, which

consists of two �eld convolutions each followed by a non-
linearity and a residual connection between the input and
output streams (Figure 2). They are entirely self-contained,
and map vector �eld features to vector �eld features without
relying on any supporting or complementary convolution
operations that are a common �xture in other equivariant
approaches [41, 61]. As such, they represent a �exible and
descriptive layer that can be easily employed in isometry-
invariant learning pipelines.

ECHO Blocks A secondary contribution of this work is
the concept of an ECHO block for label-prediction tasks,
which leverages the connection between vector �elds and
the recently proposed ECHO surface descriptor [38]. Given
a scalar signal and a frame �eld, ECHO descriptors pro-
vide an intrinsic, isometry-invariant characterization of the
local surface about a feature point in terms of the �lter max-
imizing the response to extended convolution. This �lter is
constructed by having neighbors of the feature point “cast a
vote”, weighted by the value of the signal at that point, into
the �lter position corresponding to the position of the fea-
ture point, as seen from the neighbor's frame. A vector �eld
can be used to compute ECHO descriptors at every point
p 2 M , using the magnitude and direction of each vector to
de�ne the values of the signal and transformation �eld atp.

The idea behind ECHO blocks is to convert feature vec-
tor �elds to pointwise descriptors, turning the task of vector
�eld classi�cation into one of image classi�cation in the �-
nal layer of the network. These blocks consist of two steps:
1) A �eld convolution layer is used to map the input fea-
ture channels toD output feature channels (withD the de-
sired number of descriptors). These are then used to com-
pute pointwise ECHO descriptors, resulting inH isometry-
invariant scalar features per channel, whereH is the number
of samples used to represent the ECHO descriptor. 2) The
D � H values are linearized and fed to a three-layer MLP.
Like �eld convolutions, the computation of ECHO descrip-
tors relies only on the logarithm map, parallel transport, and
the integration weights associated with each vertex. No ad-
ditional pre-processing is required.

Linearities and Non-Linearities Since we represent tan-
gent vector features as complex numbers, we apply linear-
ities in the form of multiplication by complex matrices in
the same manner as is done for real-valued features. How-
ever, our linearities do not include translational offsets to
preserve commutativity with the action of isometries.

For similar reasons, non-linearities are applied only
to the radial components of features as is done in [61].
Namely, given a feature vector �eldX 2 CjV j we apply
pointwise ReLUs with a learned offsetbsuch that

ReLUb
�
X (p)

�
= ReLU(� p + b) ei� p : (8)



FCNet: A Generic Surface CNN for Vector Fields In
our experiments we use a simple, generalizable architecture
we call anFCNet, which is simply a series of FCResNet
blocks. For labeling tasks, we append an ECHO block to
the end of the network to make predictions. For FCNets
consisting of three or more layers, we add additional resid-
ual connections after every two FCResNet blocks as we �nd
this signi�cantly accelerates training. In all experiments,
we take the raw 3D positions of points as inputs and use
a learnable gradient-like operation (Supplement B) to map
them to vector �elds which are then fed to the network. We
could also use the intrinsic Heat Kernel Signature [51] as
input, thereby obtaining a fully isometry-invariant pipeline.
However, as demonstrated by Sharpet al.[47], the 3D coor-
dinates work as well in practice and are easier to compute.

Despite this elementary construction, we show that FC-
Nets achieve state-of-the-art results in a variety of funda-
mental geometry processing tasks.

6. Evaluation

We compare our method against leading surface learning
paradigms on four benchmarks corresponding to fundamen-
tal tasks in geometry processing: classi�cation, segmenta-
tion, correspondence, and feature matching.

6.1. Implementation

Our framework is implemented using PyTorch Geomet-
ric [15]. We employ the same, simple FCNet architecture
discussed in Section 5 in all of our experiments, varying
the number of FCResNet blocks based on task complexity.
For label-prediction tasks on large datasets, we append an
ECHO block to the end of the network to make predictions.
Otherwise we use the magnitudes of the output feature vec-
tors.

As input, we take the 3D coordinates, which are lifted to
16 tangent vector features in the initial gradient layer, fol-
lowed by either32 or 48 features in the FCResNet stream.
We use the ADAM optimizer [27] to a cross-entropy loss
with an initial learning rate of0:01 and a batch size of1.
We randomly rotate all inputs to ensure there are no consis-
tencies in the spatial embedding of shapes.

Our pre-processing regime parallels [61], omitting the
operations necessary to support their multi-scale and pool-
ing operations. All shapes are normalized to have unit sur-
face area and we use the Vector Heat Method [49] to com-
pute the geodesic� -ball Np � V corresponding to each ver-
tex p 2 V , in addition to the logarithm and parallel trans-
port associated with each edge(p; q) 2 f pg � N p. Area
weights are assigned in the standard way, using one third of
the vertex's one-ring area, and are normalized by the sum
of the weights within the geodesic� -ball. While we process
shapes as triangle meshes in our experiments, we note that
recent work by Sharpet al. [48] has made possible ef�cient

Method Accuracy
FC (ours) 99.2%
DiffusionNet [47] 98.9%
MeshWalker [29] 97.1%
HSN [61] 96.1%
MeshCNN [23] 91.0%
GWCNN [13] 90.3%

Table 1. Classi�cation accuracy on the SHREC '11 Dataset [32] .

Method # Features Accuracy
FC (ours) 3 92.9%
MeshWalker [29] NA 92.7%
MeshCNN [23] 5 92.3%
DiffusionNet [47] 16 91.5%
HSN [61] 3 91.1%
SNGC [22] 3 91.0%
PointNet++ [43] 3 90.8%

Table 2. Segmentation accuracy on the composite dataset of [34].

computations of logarithmic parameterizations and vector
transport on point clouds, with which our method can be
extended to analyze point cloud shape data.

6.2. Classi�cation

First, we use an FCNet with two FCResNet blocks to
classify meshes in the SHREC '11 dataset [32], contain-
ing 30 shape categories. Filters are supported on geodesic
neighborhoods of radius� = 0 :2 and are parameterized us-
ing N = 6 radial samples with band-limitB = 2 . Due
to the small scale of the task, we omit the ECHO block in
the �nal layer and instead use a global mean pool over the
feature magnitudes to give a prediction. As in prior works
[23, 61, 47], we train on 10 samples per class and report re-
sults over three random samplings of the training data. Our
FCNet converges quickly, and we train on just 30 epochs –
far fewer than the 100 or more used in previous work.

Results are shown in Table 1. Due to the wide adoption
of the dataset, we only list the results of methods achiev-
ing a classi�cation accuracy of90%or higher. Our simple
FCNet achieves the highest reported accuracy, reaching a
classi�cation rate of100%on two of the three random sam-
plings of the training data. Like HSN and DiffusionNet who
also report high classi�cation accuracy, our FCNet uses rel-
atively few parameters compared to other networks and is
agnostic to both mesh connectivity and isometric deforma-
tions – all providing a signi�cant advantage on the SHREC
'11 dataset which has a small number of training samples
and consists of poor-quality meshes with in-class deforma-
tions mainly limited to rigid articulations. The superior per-
formance of our FCNet is likely due to the descriptiveness
of �eld convolutions, as HSN uses specially parameterized
�lters.




