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Abstract

The discrete Laplace-Beltrami operator for surface meshes is a fundamental building block for many (if not most) geometry pro-
cessing algorithms. While Laplacians on triangle meshes have been researched intensively, yielding the cotangent discretization
as the de-facto standard, the case of general polygon meshes has received much less attention. We present a discretization of
the Laplace operator which is consistent with its expression as the composition of divergence and gradient operators, and is
applicable to general polygon meshes, including meshes with non-convex, and even non-planar, faces. By virtually inserting
a carefully placed point we implicitly refine each polygon into a triangle fan, but then hide the refinement within the matrix
assembly. The resulting operator generalizes the cotangent Laplacian, inherits its advantages, and is empirically shown to be
on par or even better than the recent polygon Laplacian of Alexa and Wardetzky [AW11] — while being simpler to compute.

CCS Concepts
• Computing methodologies → Mesh geometry models; • Theory of computation → Computational geometry;

1. Introduction

The Laplace-Beltrami operator, or Laplacian for short, plays a
prominent role in geometric modeling and related fields. As a gen-
eralization of the second derivative to functions defined on surfaces
it is intimately related to the notion of curvature and signal frequen-
cies. With triangle meshes being the standard surface representation
in computer graphics and geometry processing, the discretization
of the Laplace operator for triangular elements has received a lot
of attention over the years, with the classical cotangent discretiza-
tion [Mac49, Dzi88, PP93, DMSB99] being the de-facto standard.

Discrete Laplacians for polygon meshes have been much less
well investigated, even though polygon meshes, in particular quad
meshes, are ubiquitous in modern production pipelines (and higher-
order polygons are considered more noble in the 1884 novel Flat-
land [Abb84]). A straightforward approach would be to triangulate
all polygons and apply the well-defined triangle-based operators.
Unfortunately this approach does not work well in many cases.
Polygon meshes are commonly designed to align to certain surface
features and capture symmetries of the shape. Introducing an arbi-
trary triangulation can break these properties and lead to noticeable
artifacts. Alexa and Wardetzky [AW11] proposed a discrete Lapla-
cian that directly operates on two-manifold polygon meshes and
avoids these problems. However, their operator relies on a suitable
choice of parameter, which can considerably influence the results
and might not be easy to find, as we show in Section 5.

† the first two authors contributed equally

In this paper we propose a surprisingly simple, yet very effective
discretization of the polygon Laplace operator. Inserting a carefully
placed vertex for every polygon allows us to define a refined trian-
gulation that retains the symmetries and defines a sensible surface
consistent with the polygon mesh. Using the Galerkin method, we
then coarsen the cotangent Laplacian defined over the triangulation
to obtain a Laplacian on the original polygon mesh, completely hid-
ing the auxiliary points from the user by encapsulating them within
the matrix assembly stage.

Our discrete Laplacian operator acts directly on functions de-
fined on the vertices of a general polygon mesh. It works accu-
rately and robustly even in the presence of non-planar and non-
convex faces. By leveraging the cotangent Laplacian in the core
of our discretization, we inherit all its benefits. The absence of
tweakable parameters makes our operator intuitive and easy to
use in practice. Even though our method is quite simple and easy
to implement, we will make our source code freely available at
https://github.com/mbotsch/polygon-laplacian.

2. Related Work

Laplacians for triangle meshes The main goal when construct-
ing a discrete Laplacian is to retain as many properties from the
smooth setting as possible. While the classical cotangent Laplace
operator [Mac49] is negative semi-definite, symmetric, and has
linear precision—meaning that the operator yields zero for linear
functions defined over a planar domain—it fails to maintain the
maximum principle. As a consequence, parametrizations obtained
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with this discretization can suffer from flipped triangles. In con-
trast, the combinatorial Laplacian [Tau95, Zha04] guarantees the
maximum principle while failing to have linear precision. Bobenko
and Springborn [BS07] introduced a discrete Laplacian based on
the intrinsic Delaunay triangulation. While guaranteeing the max-
imum principle, this operator is defined over an intrinsic mesh
with different connectivity. Recently, an efficient data structure for
the representation of these meshes has been introduced [SSC19].
The idea of intrinsic triangulations does not extend to the case
of non-planar polygon meshes due to the lack of a well defined
surface. Other discretizations include the Laplacian of Belkin et
al. [BSW08] that provides point-wise convergence and the octree-
based Laplacian [CLB∗09] defined to support multigrid solvers. In
general, Wardetzky et al. [WMKG07] have shown that there cannot
exist a discretization that fulfills a certain set of properties for all
meshes, explaining the variety of approaches in the literature.

Laplacians for polygon meshes Alexa et al. [AW11] construct
a discrete Laplacian for general polygon meshes. They circum-
vent the problem that (non-planar) polygons in 3D do not bound
a canonical surface patch by considering the projection of the poly-
gon onto the plane that yields the largest projection area. Their
polygon Laplace operator yields the gradient of this area when ap-
plied to the vertex coordinates. However, the action of this oper-
ator on the component orthogonal to this projection is defined al-
gebraically rather than geometrically, involving parameters without
an obvious interpretation. Another potential problem with this con-
struction is a relatively large number of negative coefficients, caus-
ing the maximum principle to be violated. Xiong et al. [XLH11]
define a discrete Laplace operator for the special case of quadrilat-
eral meshes by averaging over both triangulations of each quad.

Virtual refinement in geometry processing To extend the cotan-
gent Laplacian to polygon meshes, we refine the mesh by insert-
ing a virtual vertex for each face and using these to tessellate each
polygon into a triangle fan. Similar to recent work on Subdivision
Exterior Calculus [dGDMD16], we define a prolongation opera-
tor expressing functions on the coarser polygonal mesh as linear
combinations of the triangle hat basis functions on the finer mesh.
Then, leveraging the Galerkin method [Fle84], we define the Lapla-
cian on the polygon mesh by coarsening the Laplacian from the
triangle mesh. As in the method of de Goes et al. [dGDMD16],
this gives us the benefit of working over a refined triangle mesh
(where discrete Laplacians are well understood) without incurring
the computational complexity of working on a finer mesh.

Sample applications Applications of Laplacians include the ap-
proximation of conformal parametrizations [DMA02], mesh defor-
mation [SCOL∗04], and signal processing on meshes [CRK16], to
name a few. Replacing the usual cotangent Laplacian with a Lapla-
cian defined on polygon meshes directly enables many of these al-
gorithms to work in this more general setting. However, the quality
of the results depends on the specific construction and properties
of the polygon Laplacian. In this work we compare different vari-
ants with respect to a set of applications including parametrization
[Flo97,GGT06], mean curvature flow [DMA02,KSBC12], spectral
analysis [LZ10], and geodesics in heat [CWW13].

3. Math Review

Our approach for defining a polygon Laplacian proceeds in two
steps. First, we refine the polygon mesh to define a triangle mesh
on which the standard cotangent Laplacian is defined. Then, to ob-
tain a Laplacian on the initial polygon mesh, we use the Galerkin
method to coarsen the cotangent Laplacian. In the following we
briefly review both the derivation of Laplacians on triangle meshes
[BKP∗10] and the Galerkin method [Fle84].

Laplacians on triangle meshes

Consider a triangle meshM= (V,T ) with vertices V and triangles
T . Let |V | and |T | be the numbers of vertices and triangles, respec-
tively, and let {φ1, . . . ,φ|V |} be the hat basis (with φi the piecewise
linear function that is equal to one at vertex vi and zero at all other
vertices). The Laplace operator is discretized as

L = M−1 ·S, (1)

with M,S ∈ R|V |×|V | denoting the mass and stiffness matrices

Mi j =
∫
M

φi ·φ j =


|ti jk|+|t jih|

12 if j ∈N (i)

∑
k∈N(i)

Mik if j = i

0 otherwise

, (2)

Si j =−
∫
M
〈∇φi,∇φ j〉=


cot αi j+cot βi j

2 if j ∈N (i) ,

− ∑
k∈N(i)

Sik if j = i ,

0 otherwise.

(3)

Here ti jk and t jih are the triangles incident on edge (vi,v j) and
∣∣ti jk
∣∣

and
∣∣t jih

∣∣ are their areas; αi j and βi j are the angles opposite edge
(vi,v j);N (i) denotes the index set of vertices in the one-ring neigh-
borhood of vertex vi. Note that our stiffness matrix S is negative
semi-definite (like the Laplace matrix L). This sign choice makes
it consistent with the cotangent matrix in graphics. FEM literature
typically uses −S as the stiffness matrix.

Decomposition into divergence and gradient

Following the expression of the Laplacian as the divergence of the
gradient in the continuous case, a similar expression is obtained
in the discrete case. The gradient can be expressed as the matrix
G ∈ (R3)|T |×|V | with

Gi j =


ni×e j

i
2|ti| if v j ∈ ti ,

0 otherwise ,

where ni is the unit outward normal of triangle ti and e j
i is the

counter-clockwise oriented edge of triangle ti opposite vertex v j.
Then the divergence is

D =−GT · M̃, (4)

where M̃ is a block diagonal matrix whose i-th block consists of
the 3×3 identity matrix multiplied by the area of the i-th triangle.
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The product of divergence and gradient gives the stiffness matrix

S = D ·G =−GT · M̃ ·G (5)

and the Laplacian becomes

L =−M−1 ·GT · M̃ ·G. (6)

In practice, the mass matrix is often approximated by a diagonal
(lumped) mass matrix with the i-th diagonal entry in the lumped
matrix set to the sum of entries in the i-th row of the original matrix.
This makes inversion of M straightforward.

The Galerkin method

Assume that we are given two finite-dimensional nesting function
spaces Fc ⊂ F f . Given a prolongation operator P injecting the
coarser space into the finer, P : Fc ↪→F f , and given a symmetric
positive semi-definite operator Q defining a quadratic energy on
the space of functions, we can define a symmetric positive semi-
definite operator on the space F f through restriction

Q f (φ,ψ) := Q(φ,ψ), ∀φ,ψ ∈ F f . (7)

In a similar manner, we can define a symmetric positive semi-
definite operator Qc on the space Fc.

The Galerkin method tells us that the operators are related by

Qc = P∗ ◦Q f ◦P, (8)

where P∗ is the dual of P. In particular, given bases for Fc and F f

and letting P, Qc, and Q f be the matrices representing the operators
with respect to these bases, we have

Qc = PT ·Q f ·P. (9)

4. Polygon Laplacian

When working with general polygon meshes, the finite elements
method cannot be applied directly for two reasons. First, when the
polygon is not planar, it is not clear what the underlying surface is
over which functions should be integrated. Second, even for simple
planar polygons, it is not clear how to associate basis functions with
the vertices of the mesh.

A simple approach would be to triangulate all the polygons,
defining a piecewise-linear integration domain, and use the hat ba-
sis functions to define the finite elements. This would have the
advantage of defining a finite elements system whose dimension
equals the number of vertices in the input mesh. Unfortunately,
the introduction of diagonal edges would also break the symmetry
structure of the polygonization (e.g., in quad meshes where edges
are aligned with principal curvature directions).

An alternate approach would be to refine the polygon mesh by
introducing a new vertex in the middle of each face. This would
preserve the symmetry structure, but would come at the cost of an
increase in the finite elements system dimension. Also, as we show
in Section 5, such an approach can result in poor performance due
to the introduction of negative edge weights in the stiffness matrix.
(For example, refining a rectangle by adding the mid-point creates
two triangles with angles larger than π/2.)

Figure 1: Spanned triangle fan on the virtual mesh after inserting
the virtual vertex x|V |+ j at the j-th face.

We propose an in-between approach – introducing a virtual ver-
tex in the middle of each face, expressed as the affine combination
of the face’s vertices. Naively, the new vertex produces a refined
triangle mesh with a finite elements system given by the hat basis
functions, as before. However, we then coarsen the refined system,
expressing the vertex functions on the coarse mesh as linear com-
binations of the hat basis functions on the finer one.

This new system has dimension equal to the number of vertices
in the original polygon mesh (preserving the finite elements system
dimension) and has the property that basis functions have overlap-
ping support only if the associated vertices lie on a common face
(defining a sparse system that preserves the symmetry structure). A
further advantage of our approach is that we easily obtain a con-
sistent factorization of the stiffness matrix as the product of diver-
gence and gradient matrices.

4.1. Construction of the finite elements system

Given a polygon mesh M = (V,F), we construct our finite ele-
ments system by defining a refined triangle meshM f = (V f ,T f ).
Vertices in the refined mesh, V f , are obtained by introducing a new
vertex, v|V |+ j, for every face f j ∈ F and setting the position of
v|V |+ j to an affine combination of the positions of vertices in f j

x|V |+ j = ∑
vi∈ f j

w jixi, with ∑
vi∈ f j

w ji = 1. (10)

Triangles in the refined mesh, T f , are obtained by replacing each
face f j ∈ F with the triangle fan connecting the inserted vertex
v|V |+ j to the edges in f j, as can be seen in Figure 1.

Using the refined triangle mesh, we can define the stiffness ma-
trix, S f ∈ R|V

f |×|V f |, using the standard cotangent weights of
Equation (3). Aggregating the affine weights, we get the prolon-
gation matrix P ∈ R|V

f |×|V |, with

Pi j =


1 if i = j ,

wki if i = |V |+ k and v j ∈ fk ,

0 otherwise .

(11)

And finally, using the Galerkin method, we obtain an expression
for the coarsened polygonal stiffness matrix as

S = PT ·S f ·P. (12)
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We use the same approach to obtain the coarsened polygonal mass
matrix M, but in addition to restricting the refined triangle mass
matrix M f , we also lump it to a diagonal matrix:

M = lump
(

PT ·M f ·P
)

with (13)

lump(M)i j =

{
∑k Mik if i = j ,

0 otherwise ,
(14)

setting the diagonal entry to the sum of the entries in the row.

We note that our stiffness matrix has non-zero entries if the cor-
responding vertices share a face, not just an edge. We also note that
solving a linear system using our operators is different from solving
the system on the refined mesh and only using the solution values
at the original (i.e., non-virtual) vertices. Our approach corresponds
to solving the system using a coarser function space. The alterna-
tive corresponds to sub-sampling a solution obtained over a refined
function space, which could result in aliasing.

4.2. Choice of virtual vertex position

Choosing different virtual vertex positions, we provide a frame-
work for defining a whole family of polygon Laplace operators.
While many choices are possible we would like the virtual vertex
to fulfill a set of properties in order to yield a geometric Laplacian:

• The vertex should be efficient to compute and uniquely defined.
• Since the choice of virtual vertex defines the surface of the poly-

gon, we would like to find a point giving small surface area.
• For planar polygons, the vertex should be inside the polygon.
• To achieve linear precision, the virtual vertex should be an affine

combination of polygon vertices (see Equation (10)).

A straightforward choice is to use the centroid of the polygon
vertices. However, for non-convex (planar) polygons this point can
be located outside the polygon. Moreover, it will be biased by an
uneven distribution of polygon vertices.

Another choice is to find a point minimizing the area of the
induced triangle fan, which is related to the minimization of the
Dirichlet energy. Unfortunately, this point is not uniquely defined.
For example, for convex planar polygons, the total area will be
identical for every virtual vertex inside the polygon. Furthermore,
since area is non-linear in the position of the virtual vertex, less ef-
ficient iterative solvers, e.g. Newton’s method, are required to com-
pute the position of the virtual vertex.

Instead, we opt for the minimizer of the sum of squared triangle
areas of the induced triangle fan. Introducing a virtual vertex with
position x f into an n-gon with vertex positions (x1, . . . ,xn) allows
us to define the triangle fan with n triangles (xi,xi+1,x f ), where
indices are interpreted modulo n. The position of the virtual vertex,
x f ∈ R3, is then defined as the minimizer

x f = argmin
x

n

∑
i=1

area
(
xi,xi+1,x f

)2
. (15)

Compared to the minimizer of the area, the squared area mini-
mizer has two advantages. First, the solution is unique even for
planar convex polygons. Second, using the squared area, the ob-
jective function becomes quadratic in x f . Also, in contrast to the

centroid, the minimizer of the squared area tends to be positioned
in the interior of the polygon, even when the polygon is not convex.

While the position of our virtual vertex is unique, its expres-
sion as the linear combination of polygon vertices usually is not.
Since linear precision requires x f to be an affine combination of
the polygon’s vertices (see Section 4.3), finding the position of the
virtual vertex can be formulated as a minimization directly over the
weights w = (w1, . . . ,wn)

T:

w f = argmin
w

n

∑
i=1

area

(
xi,xi+1,

n

∑
j=1

w jx j

)2

such that
n

∑
j=1

w j = 1.

(16)

Noting that when n > 3 the system is under-constrained (with mul-
tiple affine weights defining the same unique squared-area mini-
mizer x f ), we add the constraint that, of all the weights w defining
the minimizing position x f , we prefer the one with minimal L2-
norm ‖w‖. This encourages the weights to be as uniform as pos-
sible, allowing each polygon vertex to contribute equally. These
affine weights can be obtained by solving a single linear system,
derived in Appendix A.

It is tempting to add non-negativity constraints w j ≥ 0 to Equa-
tion (16) since this would yield convex weights that guarantee a
maximum principle for the virtual vertex and prevent negative co-
efficients in the coarsened stiffness matrix S (see Equation (12)) as
long as they do not appear in S f . However, this comes at the cost
of solving a quadratic program with inequality constraints.

We compare our choice of virtual vertex—minimizing the sum
of squared triangle areas through affine weights—to the other op-
tions (centroid, min. area, convex weights) in Section 5.7.

4.3. Properties of the operator

One goal of our construction is to preserve the beneficial numeri-
cal properties of the cotangent Laplacian. Symmetry and negative
semi-definiteness follow directly from our construction of the stiff-
ness matrix S = PT ·S f ·P, since the refined (cotangent) stiffness
matrix S f has these properties and since the prolongation matrix P
has full rank. (Note that Wardetzky and Alexa [WMKG07, AW11]
aim for positive definiteness, since they define their geometric
Laplacian as the negative of ours.)

For linear precision we require (S ·u)i = 0 whenever vertex vi is
not part of the boundary, all incident polygons f j 3 vi are coplanar,
and the values of u in the one-ring of vi are obtained by sampling
a linear function on the plane. To see that this is the case, we note
that by constraining ourselves to use affine weights in defining the
prolongation, we ensure that prolonging u to the finer mesh, the
values of u f = P ·u sample a linear function at all vertices of the
fan triangulations incident to vi. Since the cotangent Laplacian has
linear precision, this implies that S f ·u f is zero at vi and all virtual
centers v|V |+ j with f j 3 vi. Since these are precisely the entries at

which the i-th column of P is non-zero, it follows that (PT · S f ·
u f )i = 0. Or, equivalently, (S ·u)i = 0.

It follows that if the initial meshM is a triangle mesh, then the
derived stiffness matrix S is the standard cotangent Laplacian. This
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is because using affine weights, the finite elements basis defined on
the coarse mesh through prolongation is precisely the hat basis.

The property of positive off-diagonal values does not hold for
the cotangent Laplacian and consequently cannot extend to our
construction, resulting in the potential violation of the maximum
principle. The lack of positivity is also present in the definition
of [AW11], however, our operator tends to contain fewer negative
off-diagonal coefficients (see Section 5).

4.4. Implementation

Implementing our system is simple, especially if code for the com-
putation of the cotangent Laplacian is already available. Our im-
plementation is based on the PMP-Library [SB19]. Algorithm 1
illustrates the procedure. Initially we set the prolongation matrix P
to the identity of size |V | × |V | (line 3), reflecting the fact that all
original vertices appear in the refined mesh. We then loop over all
faces, collecting all vertex positions of the polygon, finding affine
weights for the optimal virtual vertex, and constructing this point
(lines 5–7, Section 4.2). Next we compute the area and cotangent
weights for the resulting triangle fan and aggregate them in M f

and S f (lines 9–10, Section 3). The final operators are constructed
by multiplying the matrices M f and S f defined on the refined mesh
with the prolongation matrix and its transpose (line 12, Section 4.1).

Algorithm 1: Assemble polygon stiffness and mass matrix
Data: Mesh vertices V and faces F
Result: Mass matrix M, stiffness matrix S.

1 S f = 0|V
f |×|V f |

2 M f = 0|V
f |×|V f |

3 P = I|V |×|V |

4 foreach f ∈ F do
5 X← getVertexPositions( f );
6 w← findVirtualVertexWeights(X);
7 x← XT ·w;
8 P← appendWeightRow(P, f ,w);
9 M f ←M f +buildTriangleFanMassMatrix( f ,X,x);

10 S f ← S f +buildTriangleFanCotan( f ,X,x);
11 end
12 return M = PT ·M f ·P, S = PT ·S f ·P

4.5. Gradient and divergence

We are also able to factor the stiffness matrix as the product of di-
vergence and gradient matrices. As described in Section 3, we can
obtain a matrix expression for the gradient and divergence opera-
tors over the refined mesh, G f and D f and use those to factor the
refined triangle stiffness matrix

S f = D f ·G f . (17)

Coarsening, we obtain a factorization of the polygon stiffness ma-
trix in terms of coarse polygon divergence and gradient matrices

S = PT ·D f︸ ︷︷ ︸
=D

· G f ·P︸ ︷︷ ︸
=G

. (18)

Note that the derived gradient operator, G = G f ·P, is a map from
functions defined on the vertices of the original polygon mesh to
tangent vector fields that are constant on triangles of the refined
mesh. These refined triangles, however, can uniquely be identified
with half-edges of the original polygon mesh, so that the refined tri-
angles never have to be constructed explicitly. Hence, the gradient
operator maps from function values at vertices to vectors at half-
edges (and conversely for the divergence operator, D = P> ·D f ).

4.6. Finite Elements Exterior Calculus

An alternative approach is to define differential operators by ex-
tending Finite Elements Exterior Calculus to polygon meshes. We
do this by using our coarsened basis to define Whitney bases for
higher-order forms and then using these higher-order bases to de-
fine the Hodge star operators.

Recall Given a basis of zero-forms {ψi} forming a partition of
unity, one can define Whitney bases [Whi57, AFW06] for 1-forms
{ψi j} (with i< j and supp(ψi)∩supp(ψ j) 6= ∅) and 2-forms {ψi jk}
(with i < j < k and supp(ψi)∩ supp(ψ j)∩ supp(ψk) 6= ∅) by set-
ting:

ψi j = ψi ·dψ j−ψ j ·dψi ,

ψi jk = 2
(
ψi ·dψ j ∧ψk−ψ j ·dψi∧dψk +ψk ·dψi∧dψ j

)
.

The exterior derivatives are then defined using the combinatorics

d0
(i j)k =


−1 i = k

1 j = k
0 otherwise

, d1
(i jk)(lm) =


1 i = l, j = m
1 j = l, k = m
−1 i = l, k = m

0 otherwise
(19)

and the discrete Hodge stars are defined using the geometry

???0
i j = 〈〈ψi,ψ j〉〉, (20)

???1
(i j)(kl) = 〈〈ψi j,ψkl〉〉, (21)

???2
(i jk)(lmn) = 〈〈ψi jk,ψlmn〉〉, (22)

with 〈〈·, ·〉〉 denoting the integral of the (dot-)product of k-forms.
Using the hat basis on a triangle mesh, the basis functions are lin-
ear within each triangle so computing the coefficients reduces to
integrating quadratic polynomials over a triangle.

Prolonging higher-order forms Given the hat basis on the refined
triangle mesh {φ f

1 , . . . ,φ
f
|V f |}, defining a prolongation operator P

is equivalent to defining a coarsened basis {φ1, . . . ,φ|V |} on the

triangle mesh, with φ j = ∑i Pi jφ
f
i .

As both bases form a partition of unity, we can define Whitney
bases for higher-order forms. In doing so we get:

φi j = ∑
k,l

PkiPl jφ
f
kl and φi jk = ∑

l,m,n
PliPm jPnkφ

f
lmn, (23)

which gives prolongation operators for 0-, 1-, and 2-forms:

P0
i j = Pi j, (24)

P1
(i j)(kl) = Pik ·P jl , (25)

P2
(i jk)(lmn) = Pil ·P jm ·Pkn. (26)
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This allows us to define Hodge star operators for the coarsened
basis through prolongation:

???k = (Pk)T ·???k, f ·Pk, (27)

where ???k is the discrete Hodge star for k-forms defined using the
coarsened basis and ???k, f is the discrete Hodge star for k-forms de-
fined using the refined hat basis.

In particular, this gives a factorization of the stiffness matrix as
S = −(d0)T · ???1 · d0, with gradients represented in terms of dif-
ferences across polygon edges/diagonals. The minus sign is due to
our design choice of a negative semi-definite stiffness matrix, as
discussed in Section 3.

5. Evaluation

We evaluate our Laplacian in a variety of different geometry pro-
cessing operations, applied to a selection of polygon meshes (Fig-
ures 2 and 3). These results are compared to two other methods.
First, we triangulate each (potentially non-planar, non-convex) n-
gon into n− 2 triangles without inserting an extra point, and then
use the standard cotangent Laplacian for triangle meshes. Using the
dynamic-programming approach of Liepa [Lie03] we find the poly-
gon triangulation that minimizes the sum of squared triangle areas
(similar in concept to our squared area minimization). We also ex-
perimented with the triangulation that maximizes the minimum tri-
angle angle (similar to planar Delaunay triangulations). While the
latter yields better-behaved cotangent weights, it tends to produce
flips or fold-overs for non-convex polygons, so we used the for-
mer for most experiments. Second, we compare our results to the
ones obtained with the polygon Laplacian of Alexa and Wardet-
zky [AW11], based on their original implementation, using various
values for their parameter λ that assigns weight to the component
perpendicular to the projection direction.

5.1. Conformalized mean curvature flow

A common approach for smoothing meshes is to use implicit in-
tegration to solve the diffusion equation [DMSB99]. In our appli-
cation we use the conformalized Mean Curvature Flow introduced
by Kazhdan et al. [KSBC12], which obtains the coordinates of the
mesh vertices at the next time-step, Xt+ε from the coordinates at
the current time-step, Xt , iteratively solving the linear system(

Mt − εS0
)

Xt+ε = MtXt (28)

with ε the time-step, S0 the initial stiffness matrix, and Mt the mass
matrix at time t. After each iteration the mesh is translated back to
the origin and re-scaled to its original surface area. Figure 4 demon-
strates the resilience of our Laplacian to noise and non-planar as
well as non-convex faces. The flow can recover the spherical shape
after one iteration and converges after 10 iterations.

Figure 5 shows an example of this flow after one and ten iter-
ations respectively. The mean curvature is color-coded and shows
that the mesh correctly converges to a sphere when using our oper-
ator. This example shows that even extreme differences in polygon
scale are handled correctly. The results of Alexa and Wardetzky’s

REGULAR SPHERE NOISY SPHERE

HEX SPHERE FINE SPHERE

Figure 2: Spherical meshes used for testing the accuracy of spher-
ical harmonics and mean curvature.

QUADS 1 QUADS 2 L-SHAPED TETRIS 1 TETRIS 2

Figure 3: Planar meshes used for the evaluation of geodesic dis-
tances, including non-convex and non-star shaped tessellations.

Figure 4: Stress test for smoothing on a noisy sphere (left). After
one (center) and ten iterations (right).

Figure 5: Visualization of the mean curvature flow on a quad mesh.
Mean curvature is color coded.
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Ours [AW11]

Figure 4 5.075×10−3 5.417×10−3

Figure 5 2.271×10−3 2.69×10−3

Figure 6 1.157×10−3 1.204×10−3

Table 1: Conformal distortion of conformal spherical [KSBC12]
and spectral free-boundary [MTAD08] parametrizations.

[AW11]

Mesh Ours [Lie03] λ = 0.1 λ = 0.5 λ = 1

REGULAR SPHERE 0.0168 0.0469 0.0290 0.0290 0.0290
NOISY SPHERE 0.0469 0.1053 0.0562 0.0814 0.1551
HEX SPHERE 0.0016 0.3711 0.0023 0.0038 0.0075
FINE SPHERE 0.1334 0.0623 0.0279 0.0107 0.0141

Table 2: Root-mean-square error (RMSE) of the curvature devia-
tion for different meshes of the unit sphere.

operator are qualitatively very similar, however, analyzing the con-
formal error shows a small advantage for our method (see Table 1).
We evaluated the conformal distortion by computing the root mean
square errors of area-weighted angle differences between the mesh
and its spherical parametrization. We opted for this measure be-
cause it is not obvious how to compute conformal distortion for
non-planar polygons.

5.2. Mean curvature estimation

Noting that the Laplacian of the coordinate function is the mean-
curvature normal vector, we can use our Laplace operator to ap-
proximate the mean curvature H at vertex vi

H(vi) :=
1
2

∥∥(LX)i
∥∥ · sign

(〈
(LX)i , ni

〉)
(29)

with X the matrix of vertex coordinates and ni the normal at vi.

Since the mean curvature is 1 at every point on the unit sphere,
we can measure the accuracy of our Laplacian by comparing the es-
timated mean curvature to the true one. Table 2 gives the root mean
square error (RMSE), comparing curvature estimates over differ-
ent polygonizations of the sphere, and using different definitions of
the Laplace operator. As the table shows, our operator outperforms
existing methods on most spherical meshes.

5.3. Parametrization

We compare our operator to [AW11] with respect to conformal
parametrization based on Mullen et al.’s [MTAD08] spectral free-
boundary parametrization. Figure 6 illustrates that both operators
perform well for this quad mesh. In this case we obtain a confor-
mal distortion (c.f. Section 5.1) of 1.157×10−3 while the method
of [AW11] achieves 1.204×10−3. For [AW11] we systematically
tried to find the best parameter λ and consistently observed very
similar behavior with a slightly lower conformal distortion for our
operator, across a variety polygon meshes.

Figure 6: Parametrization of the right half of a quadrangulated
monkey head. The result of [AW11] (left) is similar to ours (right),
but our operator has slightly lower conformal distortion.

5.4. Reproducing the spherical harmonics

The eigenfunctions of the Laplacian form an orthonormal basis
known as the “manifold harmonics” [VL08]. In the case that the
surface is a sphere, these eigenfunctions are known to be the spher-
ical harmonics. We evaluate the quality of our Laplacian by mea-
suring the extent to which the true spherical harmonics are eigen-
vectors of the Laplacian.

We know that the spherical harmonic Y m
l : S2 → R is an eigen-

function of the Laplacian with eigenvalue −l · (l + 1). Sampling
Y m

l at the vertices of the spherical mesh, we obtain ym
l ∈ R|V |. We

measure the accuracy of our Laplacian by evaluating∥∥∥∥ym
l +

1
l · (l +1)

L ·ym
l

∥∥∥∥2

M
, (30)

with the L2-norm computed relative to the mass matrix M.

Table 3 compares the spectral error, giving the sum of errors over
the spherical harmonics in the first nine frequencies (1 ≤ l ≤ 9).
As the table shows, in this experiment we are unable to reproduce
the accuracy of Alexa and Wardetzky’s Laplacian. However, our
construction does not require selecting a parameter on a case-by-
case basis as in [AW11].

[AW11]

Mesh Ours [Lie03] λ = 0.1 λ = 0.5 λ = 1

REGULAR SPHERE 0.0393 0.0200 0.0599 0.0220 0.0175
NOISY SPHERE 0.0643 0.0722 0.0969 0.0589 0.1366
HEX SPHERE 7.41e-7 0.0037 9.93e-6 1.46e-6 1.13e-6
FINE SPHERE 0.0003 6.73e-5 0.0005 6.48e-5 8.98e-5

Table 3: We measure the extent to which the spherical harmonics of
frequencies 1≤ l ≤ 9 are eigenvectors, with eigenvalue−l ·(l+1),
of the Laplacian on spherical meshes.
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a) ours b) [AW11] c) refinement d) max-angle e) min-area f) intrinsic Delaunay

Figure 7: Computing geodesic distances on a quad mesh (top left) following the approach of Crane et al. [CWW13], using our operator
(a) and Alexa and Wardetzky’s (b, using λ = 0.5). Images (c–f) show results using different triangulation strategies: refining the mesh by
inserting the virtual point (c), triangulating polygons to maximize the minimum angle (d), and triangulating polygons to minimize squared
triangle areas (e). To improve the results of (e), we employ the Laplacian based on the intrinsic Delaunay triangulation [BS07] (f). The
triangles of (d) are already Delaunay, therefore using the intrinsic triangulation does not further improve the result in (d).

5.5. Geodesics in Heat

In [CWW13], Crane et al. proposed the heat method for computing
geodesic distances from a selected vertex vi to all others on the
mesh. Let D be the divergence operator, G the gradient operator and
ei ∈R|V

c| the i-th unit vector. The geodesic distances are computed
in four steps.

First, the impulse function ei is diffused for a time-step of ε by
solving for u ∈ R|V | such that

(M− εS) u = M · ei, (31)

where we set ε to the squared mean of edge lengths as suggested in
[CWW13]. Next, the gradients of u are computed and normalized
to have unit length, resulting in a vector field g ∈ R|T

f |×3 with

gi =−
(G ·u)i∥∥(G ·u)i

∥∥ . (32)

Finally, the geodesic distance, d ∈ R|V | is computed by solving for
the scalar field whose gradient best matches g

S ·d = D ·g (33)

and additively offsetting so that it has value zero at vi. Our poly-
gon Laplacian offers a natural decomposition into divergence and
gradient (c.f. Section 4.5). Crane et al. [CWW13] demonstrate how
to obtain a normalized gradient for computing geodesic distances
using the operator of Alexa and Wardetzky.

We qualitatively compare the results using our operator, the one
from [AW11], and several polygon triangulation strategies in Fig-
ure 7. (a) Our construction gives a result with considerably fewer
artifacts compared to the other approaches. (b) The Laplace op-
erator of Alexa and Wardetzky fails independent of the choice of
λ. (d) Triangulating polygons to maximize the minimal angle also
gives good results, but this approach is not suitable for arbitrary
meshes since it fails on non-convex polygons. (e) Minimum-area
triangulations avoid this problem, but give worse results due to poor
triangle shapes. (f) Combining minimum-area triangulations with
the Laplacian based on the intrinsic Delaunay triangulation [BS07]
fixes this problem, but is more complex to compute. In (c) we show
the result obtained by using the cotangent Laplacian on the mesh
explicitly refined by inserting the virtual vertices (this is equiva-
lent to S f ). Our construction is clearly different from just refining
polygons.

The quality of geodesics is linked to the number of negative off-
diagonal coefficients in the stiffness matrix. Analyzing the ratio of
negative off-diagonal entries for Figure 7 confirms this correlation:

ours [AW11] c) d) e) f)

11% 21% 17% 5% 15% 0%

We consistently observe a significantly smaller number of negative
off-diagonal coefficients in our operator as compared to [AW11].
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[AW11]

Mesh Ours [BS07] λ = 0.1 λ = 0.5 λ = 1

QUADS 1 0.0265 0.0394 0.0179 0.0415 0.1206
QUADS 2 0.0356 0.0856 0.0403 0.0469 0.1233
L-SHAPED 0.0574 0.0736 0.4216 0.1115 1.6531
TETRIS 1 0.2183 0.1408 0.4521 0.2304 0.2483
TETRIS 2 0.0821 0.0665 0.4381 0.1177 0.1852

Table 4: Root-mean-square error of computed geodesic distances
for the different planar tessellations shown in Figure 3.

Mesh Affine Convex Centroid Abs. Area [AW11] [Lie03]

HEXAGON 55 142 13 357 52 21
QUADS 171 573 50 1460 240 82

HEXAGON 472+25 483+25 476+26 469+25 477+26 77+8
QUADS 596+35 596+35 599+35 600+36 599+35 498+29

Table 5: Timing (in ms) for constructing the Laplace matrix (top)
and solving the linear system (bottom). The latter is split into the
time needed for Cholesky factorization and for back-substitution.

Moreover, the optimal λ parameter for [AW11] has to be deter-
mined manually for each mesh.

Figure 8 shows another result of geodesics in heat. This example
features highly anisotropic polygons that lead to severe distortions
for [AW11], while our operator defines smooth geodesic distances.

Table 4 provides a quantitative evaluation of geodesic distances,
by compare them to Euclidean distances on different planar meshes
(Figure 3). Our operator yields smaller root-mean-square errors for
most models, including the geodesic distances computed via intrin-
sic Delaunay triangulation [BS07,SSC19] (based on the implemen-
tation provided in libigl [JP∗18]).

5.6. Timings

We evaluated the computational costs of the different operators
on the HEX SPHERE (16070 faces) and the FINE SPHERE (96408
faces) shown in Figure 2. All timings were measured on a standard
workstation with a six-core Intel Xeon 3.6 GHz CPU; no experi-
ment exploited multi-threading. We analyze our approach with the
different virtual vertex options described in Section 4.2: centroid of
polygon vertices, minimizing the sum of (absolute) triangle areas
(Abs. Area), minimizing the sum of squared triangle areas using ei-
ther affine weights or convex weights. We compare these methods
to Alexa and Wardetzky [AW11] and to the minimum area polygon
triangulation [Lie03]. The timings are given in Table 5.

In terms of the construction time for the Laplace matrix, our ap-
proach is faster than [AW11] on fine-resolution meshes and com-
parable for coarser meshes. And, with the exception of centroid, it
is also the fastest of the different virtual vertex choices, since the
Newton optimization of Abs. Area (based on Eigen) and the QP
solver of convex (based on CGAL) are computationally expensive.
However, triangulating the mesh and constructing the cotangent

Laplacian is faster than defining a polygon Laplacian. Also, since
a vertex on the polygon mesh has at least as many face-adjacent
neighbors as the same vertex on the triangulated mesh, the polygon
Laplacians are less sparse, resulting in an increased solver time.

5.7. Comparison of virtual vertex choices

As stated in Section 4.2, there are several options for computing the
virtual vertices and their weights. We compare the performance of
these alternative constructions, using both lumped and un-lumped
mass matrices, in a number of applications. For geodesic distances
(see Section 5.5), our proposed version using affine weights gives
the overall best results (see Table 6), although the strictly con-
vex weights yield a smaller error for meshes with non-star-shaped
faces. For most applications, using the lumped mass matrix gives
better results, as also shown in the additional experiments in the
supplementary material. Balancing numerical performance with
efficiency, we found the minimizer of the squared triangle areas
through affine weights to be the best choice.

5.8. Convergence behavior

We evaluate the convergence behavior of our Laplacian under mesh
refinement by solving the Poisson equation ∆ f = b with Dirichlet
boundary conditions for the Franke test function [Fra79]

f (x,y) =
3
4

e−
(9x−2)2+(9y−2)2

4 +
3
4

e−
(9x+1)2

49 −
9y+1

10

+
1
2

e−
(9x−7)2+(9y−3)2

4 − 1
5

e−(9x−4)2−(9y−7)2
.

Figure 9 depicts the decrease of the L2 error under mesh refinement
for regular triangle, quad, and hex meshes. The identical slope in
this log-log plot reveals that our operator inherits the quadratic con-
vergence order of the triangle-based cotangent Laplacian.

Summary While our evaluations do not demonstrate that our
Laplace operator is superior to existing state-of-the-art methods, it
does show that it is competitive. We perform slightly better than tri-
angulation [Lie03]. This is likely because our Laplacian is denser.
And, while the polygon Laplacian of [AW11] outperforms ours in
some cases, its behavior depends on the choice of the parameter λ,
which cannot be fixed so as to perform well in all cases. In contrast,
our method is parameter-free.

6. Conclusion

In this work we have proposed a novel polygon Laplacian, defined
by first refining the polygon mesh to a triangle mesh and then coars-
ening the cotangent Laplacian from the triangle mesh back to the
original polygon mesh. The derived polygon Laplacian exhibits nu-
merous desirable properties including sparsity, symmetry, negative
semi-definiteness, linear precision, and consistency with the diver-
gence and gradient operators, without suffering from an increase
in the dimensionality of the linear system. We have evaluated our
Laplacian against other state-of-the-art methods and have demon-
strated that it performs competitively, providing efficient and high-
quality solutions without requiring parameter tuning.
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a) b) ours c) [AW11]

Figure 8: Geodesic distances computed on a quad mesh (a) with our Laplacian (b) and the Laplacian proposed in [AW11] (c). Even with the
manually determined best weight parameter (λ = 0.4), (c) exhibits distortions while ours remains stable despite highly anisotropic faces.

un-lumped mass matrix lumped mass matrix
Mesh Affine Convex Centroid Abs.Area Affine Convex Centroid Abs.Area

QUADS 1 0.025 0.025 0.025 0.025 0.026 0.027 0.027 0.027
QUADS 2 0.031 0.031 0.031 0.031 0.036 0.036 0.036 0.036
L-SHAPED 0.141 0.165 0.134 0.134 0.057 0.063 0.068 0.068
TETRIS 1 0.465 0.490 0.490 0.491 0.218 0.181 0.186 0.185
TETRIS 2 0.406 0.346 0.151 0.153 0.082 0.089 0.089 0.088

Table 6: RMSE of geodesic distances for the planar meshes in Figure 3 computed with different choices of virtual vertices and using un-
lumped and lumped mass matrices.

Figure 9: L2 convergence plots for the solution of the Poisson equa-
tion on triangle, quad, and hex meshes of increasing resolution.

In the future, we would like to extend our approach in several
ways. We would like to consider introducing multiple virtual ver-
tices within a single face as this could allow for better triangulations
of non-convex polygons. We would like to consider loosening the
restriction that the virtual vertex needs to be an affine combination
of the polygon vertices. For example, in the case of a planar poly-
gonization of the sphere, this would allow us to introduce vertices
on the surface of the sphere, not just on the planes containing the
polygons. Finally, we would like to extend our approach to higher-
order basis functions and volumetric polyhedral meshes.
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Appendix A: Finding the optimal virtual point

Given a polygon with n vertices (x1, . . . ,xn), we want to insert a
point x= x(w), defined as an affine combination x(w) =∑

n
j=1 w jx j

with ∑ j w j = 1, such that the sum of squared triangle areas over
the resulting triangle fan is minimized. This leads to the following
optimization problem in the weights w = (w1, . . . ,wn)

T:

min
w

n

∑
i=1

area

(
xi,xi+1,

n

∑
j=1

w jx j

)2

s.t.
n

∑
j=1

w j = 1. (34)

The objective function can be rewritten as

E(w) =
n

∑
i=1

1
2
‖(xi−xi+1)× (x(w)−xi)‖2 . (35)

Since E is quadratic in x(w) and therefore also quadratic in w, it
can be written as

E(w) =
1
2

wTAw+bTw+ c. (36)

Minimizing with respect to w, i.e., setting ∂E
∂w to zero, leads to

Aw =−b with

Ai j = 2
n

∑
k=1

(
x j× (xk+1−xk)

)
· (xi× (xk+1−xk)) ,

bi = 2
n

∑
k=1

(xi× (xk+1−xk)) · ((xk+1−xk)×xk)

(37)

We add one row to the matrix to enforce the partition of unity con-
straint ∑ j w j = 1, turning it into the (n+1)×n linear system(

A
1 · · ·1

)
w =

(
−b
1

)
. (38)
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The matrix A has rank 2 or 3 for planar or non-planar polygons,
respectively. Hence, the system in Equation (38) has rank 3 or 4 for
planar/non-planar polygons. It is therefore fully determined for ei-
ther (planar) triangles or non-planar quads, and is underdetermined
otherwise. In the latter case, we aim for the least-norm solution,
i.e., the solution w with minimal ‖w‖, because it distributes the
influence of polygon vertices xi equally. We handle both the fully-
determined and the under-determined cases in a robust and unified
manner through the matrix pseudo-inverse [GL89], which we com-
pute through Eigen’s complete orthogonal decomposition [GJ∗10].
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