Signal Processing From Images to Surfaces

Ming Chuang, Fabian Prada, Alvaro Collet, Linjie Luo, Benedict Brown, Szymon Rusinkiewicz, Hugues Hoppe

Estimating the Laplace-Beltrami Operator by Restricting 3D Functions. [Chuang et al., 2009]

Fast Mean-Curvature Flow via Finite Elements Tracking. [Chuang et al., 2011]

Interactive and Anisotropic Geometry Processing Using the Screened Poisson Equation. [Chuang et al., 2011]

Unconditionally Stable Shock Filters for Image and Geometry Processing. [Prada et al., 2015]

Motion Graphs for Unstructured Textured Meshes. [Prada et al., 2016]

Extend image-processing techniques to surfaces:

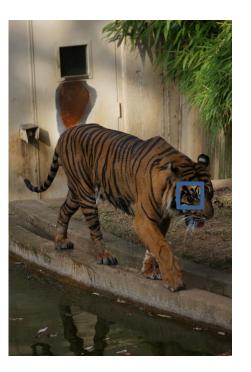
1. Gradient Domain

Extend image-processing techniques to surfaces:

1. Gradient Domain

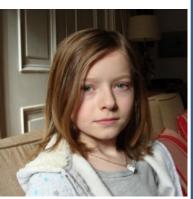
Extend image-processing techniques to surfaces:

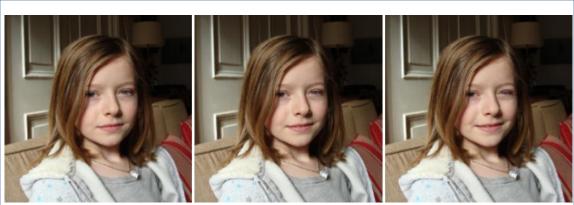
- 1. Gradient Domain
- 2. Shock Filters



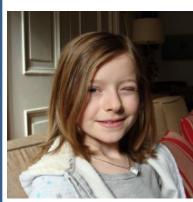
Extend image-processing techniques to surfaces:

- 1. Gradient Domain
- 2. Shock Filters
- 3. Optical Flow





Optical Flow Interpolation



Target

Outline

Motivation

Processing Tools

- Screened Poisson Equation
- Flow Fields/Lines

Extensions to Signals on Surfaces

Conclusion

1. Screened Poisson Equation:

Given a 2D domain Ω , a function g, and a vector field \vec{v} , solve for the function f minimizing:

$$E(f) = \int_{\Omega} ||f - g||^2 + \alpha ||\nabla f - \vec{v}||^2$$
value-fitting gradient-fitting

1. Screened Poisson Equation:

Given a 2D domain Ω , a function g, and a vector field \vec{v} , solve for the function f minimizing:

$$E(f) = \int_{\Omega} ||f - g||^2 + \alpha ||\nabla f - \vec{v}||^2$$

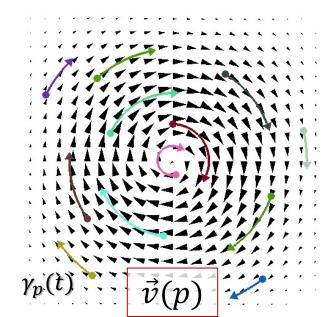
$$\downarrow \downarrow$$

$$(\mathbf{1} - \alpha \cdot \Delta)f = \mathbf{1} \cdot g - \alpha \cdot \mathbf{div}(\vec{v})$$

2a. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v} , a *flow-line* of \vec{v} is a curve γ_p such that:

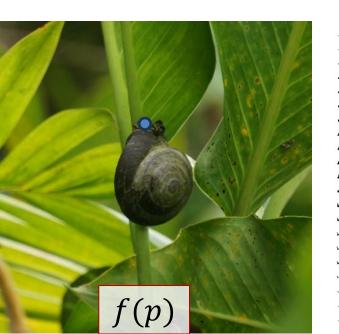
$$\gamma_p(0) = p$$
 and $\gamma'_p(t) = \vec{v}(\gamma_p(t))$.



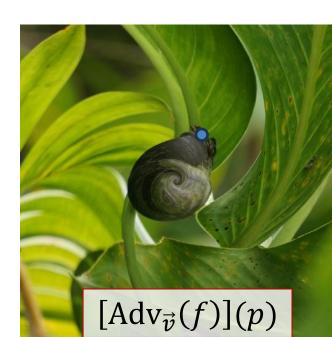
2b. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v} , the advection of a function f along \vec{v} is the function:

$$[Adv_{\vec{v}}(f)](p) = f(\gamma_p(-1)).$$





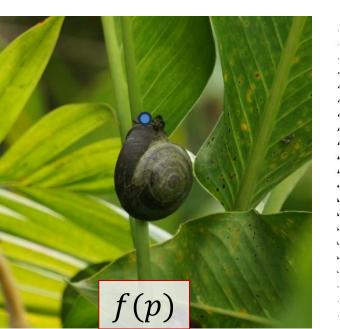


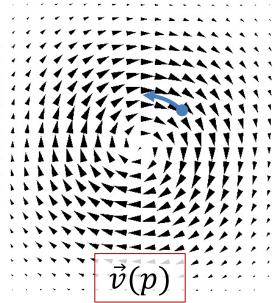
2c. Flow Fields/Lines:

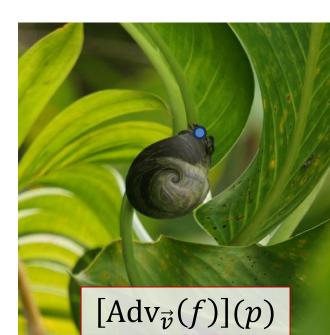
Given..., for small t we have:

$$[Adv_{t\cdot\vec{v}}(f)](p) - f(p) \approx f(p - t\vec{v}) - f(p)$$

$$\approx -t \cdot \langle \nabla f(p), \vec{v} \rangle$$







2c. Flow Fields/Lines:

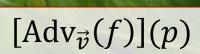
Given..., for small t we have:

$$[Adv_{t\cdot\vec{v}}(f)](p) - f(p) \approx f(p - t\vec{v}) - f(p)$$

$$\approx -t \cdot \langle \nabla f(p), \vec{v} \rangle$$

The advection of the signal f along the vector field \vec{v} is described by the PDE:

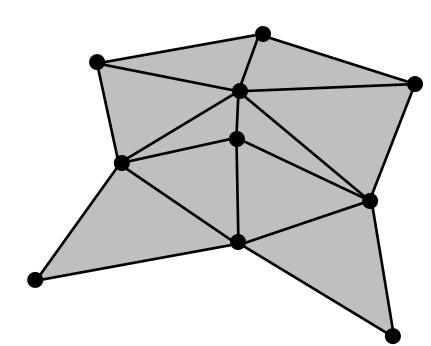
$$\frac{\partial \mathrm{Adv}_{t \cdot \vec{v}}(f)}{\partial t} = -\langle \nabla f, \vec{v} \rangle$$



1. Screened Poisson Equation:

$$(\mathbf{1} - \alpha \cdot \mathbf{\Delta})f = \mathbf{1} \cdot g - \alpha \cdot \mathbf{div}(\vec{v})$$

On a mesh:

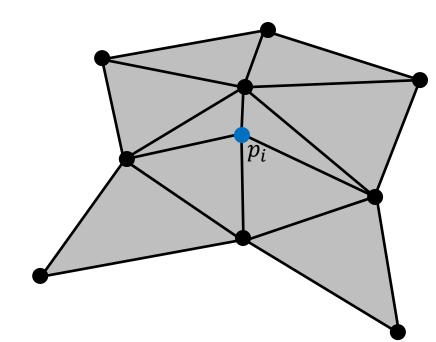


1. Screened Poisson Equation:

$$(\mathbf{1} - \alpha \cdot \Delta)f = \mathbf{1} \left[g - \alpha \cdot \operatorname{div}(\vec{v}) \right]$$

On a mesh:

 $f, g \rightarrow \text{maps from vertices to real values}$



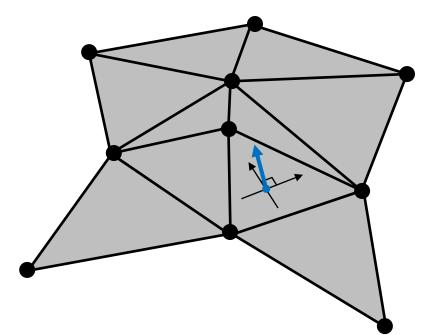
1. Screened Poisson Equation:

$$(\mathbf{1} - \alpha \cdot \mathbf{\Delta})f = \mathbf{1} \cdot g - \alpha \cdot \mathbf{div}[\vec{v}]$$

On a mesh:

 $f, g \rightarrow \text{maps from vertices to real values}$

 $\vec{v} \rightarrow$ a map from triangles to tangent vectors



1. Screened Poisson Equation:

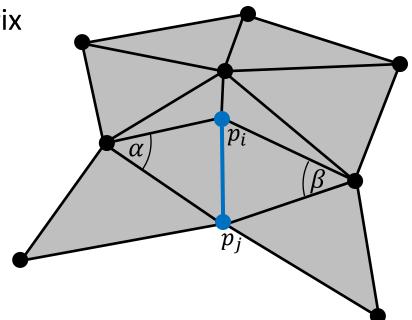
$$(\mathbf{1} - \alpha \cdot \mathbf{\Delta}) f = \mathbf{1} \cdot g - \alpha \cdot \operatorname{div}(\vec{v})$$

On a mesh:

 $f, g \rightarrow \text{maps from vertices to real values}$

 $\vec{v} \rightarrow$ a map from triangles to tangent vectors

 $\Delta \rightarrow$ the cotan. Laplacian matrix



1. Screened Poisson Equation:

$$\mathbf{1} - \alpha \cdot \mathbf{\Delta})f = \mathbf{1} \cdot g - \alpha \cdot \mathbf{div}(\vec{v})$$

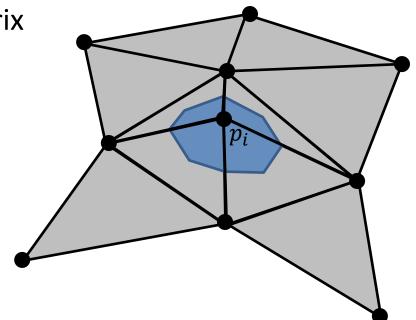
On a mesh:

 $f, g \rightarrow \text{maps from vertices to real values}$

 $\vec{v} \rightarrow$ a map from triangles to tangent vectors

 $\Delta \rightarrow$ the cotan. Laplacian matrix

 $1 \rightarrow$ the mass-matrix



1. Screened Poisson Equation:

$$(\mathbf{1} - \alpha \cdot \mathbf{\Delta})f = \mathbf{1} \cdot g - \alpha \left(\mathbf{div}(\vec{v}) \right)$$

On a mesh:

 $f, g \rightarrow \text{maps from vertices to real values}$

 $\vec{v} \rightarrow$ a map from triangles to tangent vectors

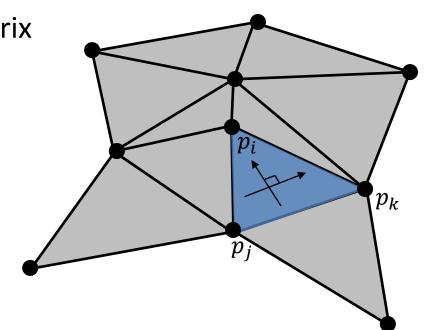
 $\Delta \rightarrow$ the cotan. Laplacian matrix

 $1 \rightarrow$ the mass-matrix

 $\mathbf{div} \rightarrow \mathbf{\nabla}^{\top} \cdot \mathbf{\Lambda}$:

 Λ : diagonal with triangle areas

 ∇ : the gradient operator

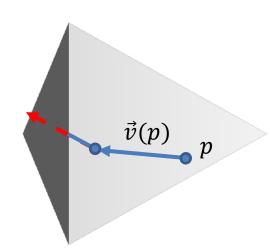


2. Flow Fields/Lines:

$$\gamma_p(0) = p$$
 and $\gamma'_p(t) = \vec{v}(\gamma_p(t))$

Iteratively:

Sample the flow field at p.

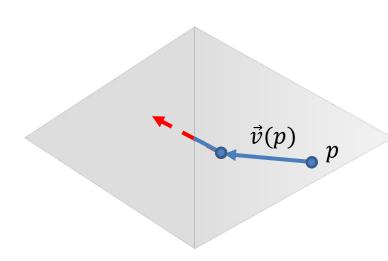


2. Flow Fields/Lines:

$$\gamma_p(0) = p$$
 and $\gamma'_p(t) = \vec{v}(\gamma_p(t))$

Iteratively:

Sample the flow field at p.

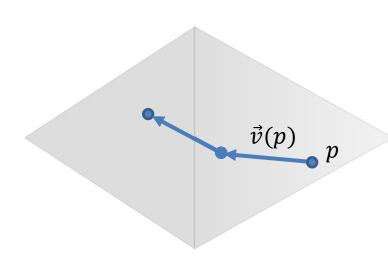


2. Flow Fields/Lines:

$$\gamma_p(0) = p$$
 and $\gamma'_p(t) = \vec{v}(\gamma_p(t))$

Iteratively:

Sample the flow field at p.

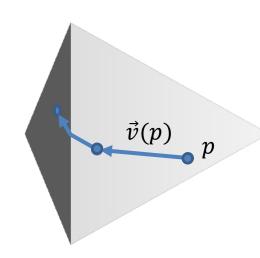


2. Flow Fields/Lines:

$$\gamma_p(0) = p$$
 and $\gamma'_p(t) = \vec{v}(\gamma_p(t))$

Iteratively:

Sample the flow field at p.



Outline

Motivation

Tools of the Trade

Extensions to Signals on Surfaces

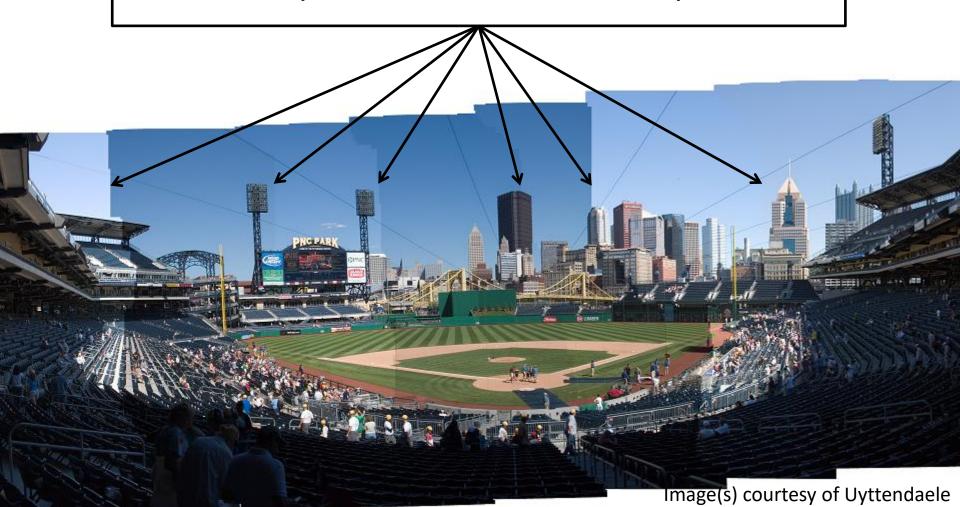
Gradient Domain [Poisson]

Shock Filters [Advection]

– Optical Flow [Poisson + Advection]

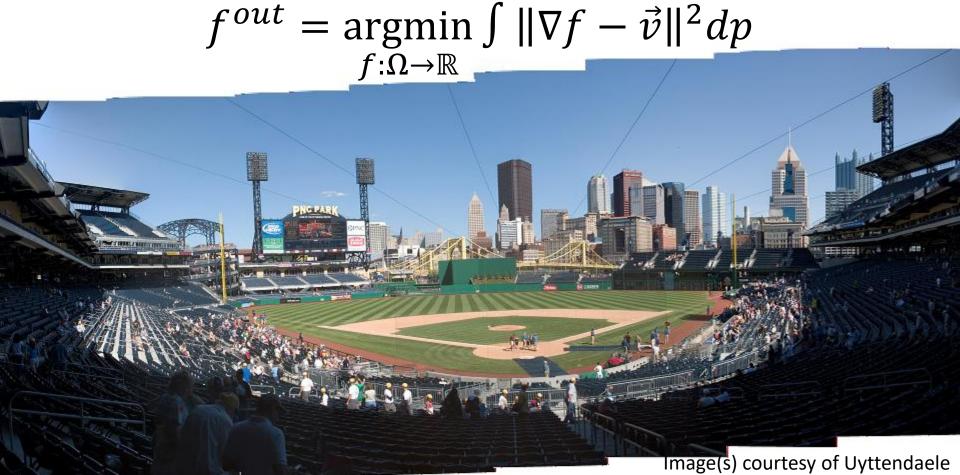
Conclusion

Different exposures ⇒ Seams in the panorama



Copy interior gradients into \vec{v}

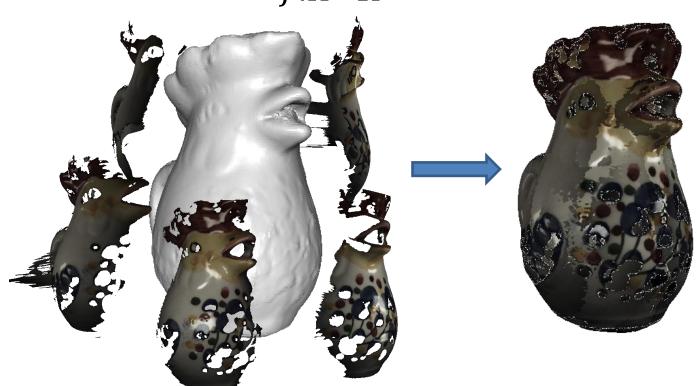
Set seam-crossing gradients to zero



Copy interior gradients into \vec{v}

Set seam-crossing gradients to zero

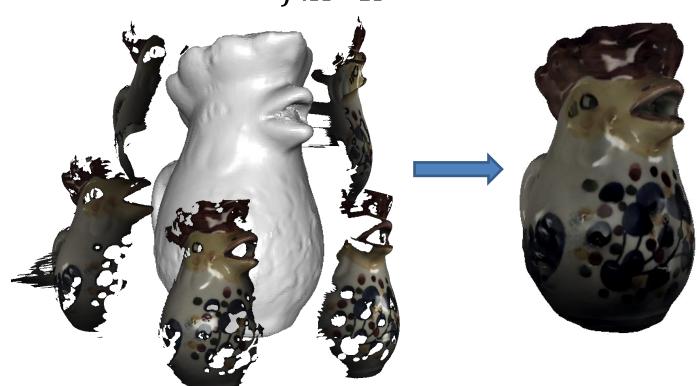
$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int \|\nabla f - \vec{v}\|^2 dp$$



Copy interior gradients into \vec{v}

Set seam-crossing gradients to zero

$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int \|\nabla f - \vec{v}\|^2 dp$$

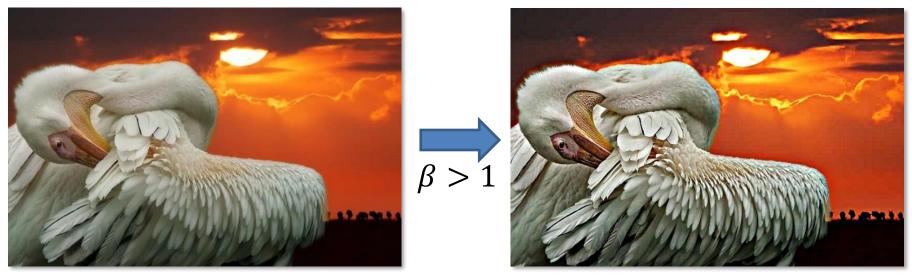


Gradient Domain (Sharpening)

Fit input colors: $g = f^{in}$

Scale (amplify) input gradients: $\vec{v} = \beta \cdot \nabla f^{in}$

$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int_{\Omega} \left\| f - f^{in} \right\|^2 + \alpha \left\| \nabla f - \beta \cdot \nabla f^{in} \right\|^2$$
value-fitting gradient-fitting



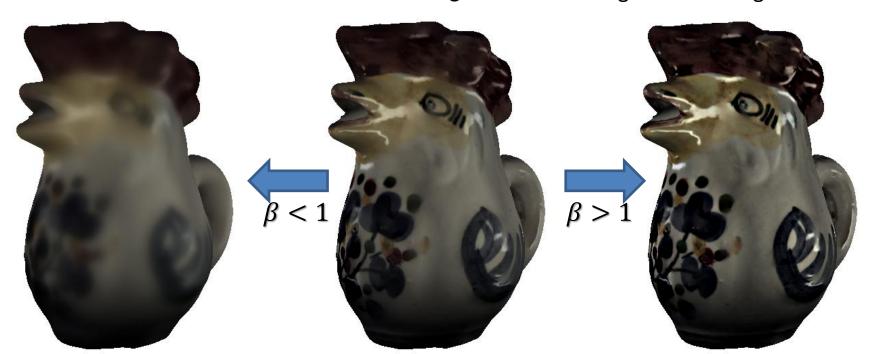
Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. [Bhat et al. 2008]

Gradient Domain (Sharpening)

Fit input colors: $g = f^{in}$

Scale (amplify) input gradients: $\vec{v} = \beta \cdot \nabla f^{in}$

$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int_{\Omega} \left\| f - f^{in} \right\|^{2} + \alpha \left\| \nabla f - \beta \cdot \nabla f^{in} \right\|^{2}$$
value-fitting gradient-fitting

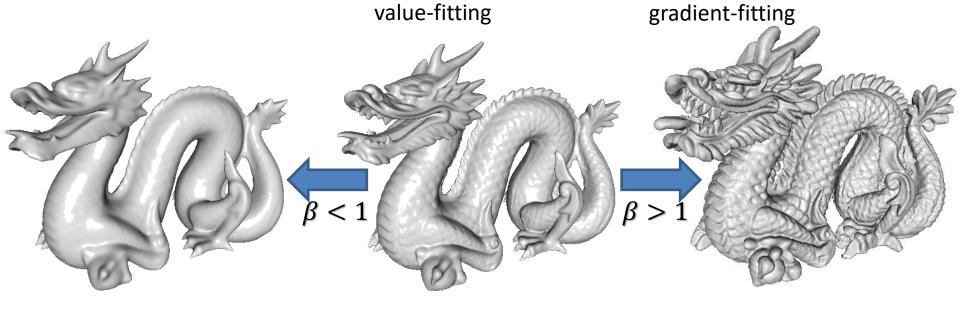


Gradient Domain (Sharpening)

Fit input colors: $g = f^{in}$

Scale (amplify) input gradients: $\vec{v} = \beta \cdot \nabla f^{in}$

$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int_{\Omega} \left\| f - f^{in} \right\|^{2} + \alpha \left\| \nabla f - \beta \cdot \nabla f^{in} \right\|^{2}$$



Setting f^{in} to the positions of the vertices in 3D

Outline

Motivation

Tools of the Trade

Extensions to Signals on Surfaces

– Gradient Domain [Poisson]

Shock Filters [Advection]

– Optical Flow [Poisson + Advection]

Conclusion

[Osher and Rudin, 1990]:

Progressively sharpen a signal so that:

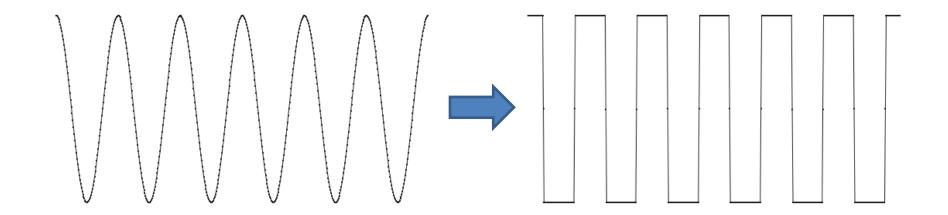
Extrema preserved

Zero derivative → value fixed

Edges pronounced

Concave up → value decreases

Concave down → value increases



[Osher and Rudin, 1990]:

Progressively sharpen a signal so that:

Extrema preserved $\rightarrow \mathcal{F}$ vanishes with the gradient

Edges pronounced $\rightarrow \mathcal{G}$ gives the convexity/concavity along the gradient direction

[Osher and Rudin, 1990] Solve the PDE by carefully adapting step-sizes.

$$\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f)$$

$$\mathcal{F}(f) = \|\nabla f\|^2$$

$$\mathcal{G}(f) = -\frac{\partial^2 f}{\partial (\nabla f/\|\nabla f\|)^2}$$
 (Second derivative in the gradient direction)

Method of Characteristics:

We can re-write the PDE:

$$\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f)$$
$$= -\langle \nabla f, H_f \cdot \nabla f \rangle$$

This describes the advection of f along the flow:

$$\vec{v} = H_f \cdot \nabla f$$

$$\mathcal{F}(f) = \|\nabla f\|^{2}$$

$$\mathcal{G}(f) = -\frac{\partial^{2} f}{\partial (\nabla f / \|\nabla f\|)^{2}} = -\frac{1}{\|\nabla f\|^{2}} \langle \nabla f, H_{f} \cdot \nabla f \rangle$$

Method of Characteristics:

We can re-write the PDE:

$$\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f)$$
$$= -\langle \nabla f, H_f \cdot \nabla f \rangle$$

This describes the advection of f along the flow:

$$\vec{v} = H_f \cdot \nabla f = \frac{1}{2} \nabla ||\nabla f||^2$$

$$\mathcal{F}(f) = \|\nabla f\|^{2}$$

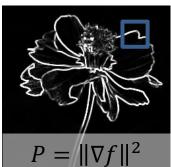
$$\mathcal{G}(f) = -\frac{\partial^{2} f}{\partial (\nabla f / \|\nabla f\|)^{2}} = -\frac{1}{\|\nabla f\|^{2}} \langle \nabla f, H_{f} \cdot \nabla f \rangle$$

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla \|\nabla f\|^2$$

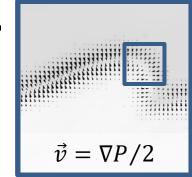
Sharpen f by advecting along the flow:

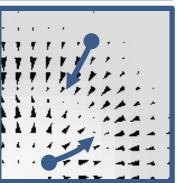
$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = ||\nabla f||^2$$



ShockAdvect(f,t)

- 1. $P \leftarrow ||\nabla f||^2$ // edge potential
- 2. $\vec{v} \leftarrow \frac{1}{2}\nabla P$ // flow field
- 3. return Advect(f , \vec{v} , t)





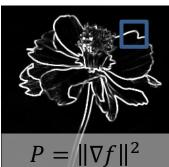
Sharpen f by advecting along the flow:

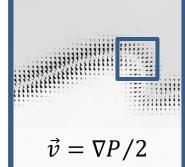
$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$

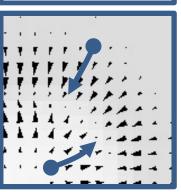
Values are transported:

From regions where gradient has small magnitude to regions where the gradient has large magnitude

- ⇔ From regions where the signal is (nearly) constant towards edges
- ⇒ "Piecewise constant" image with input extrema pushed to the edges.





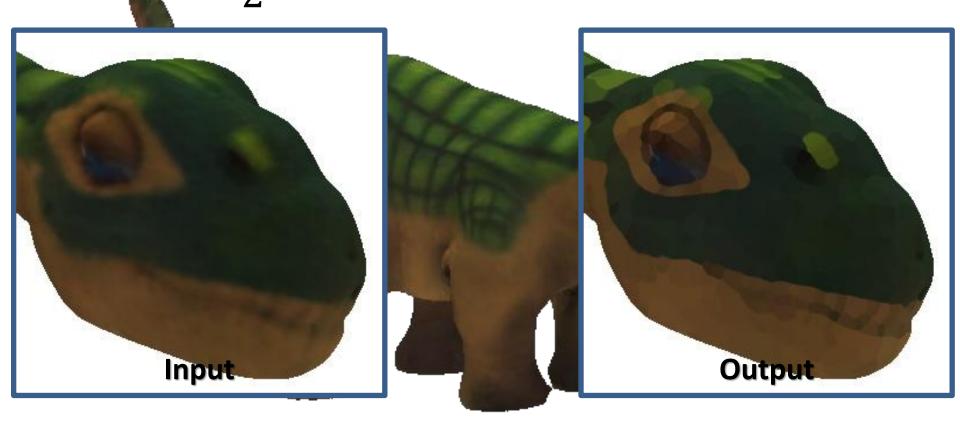


Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$

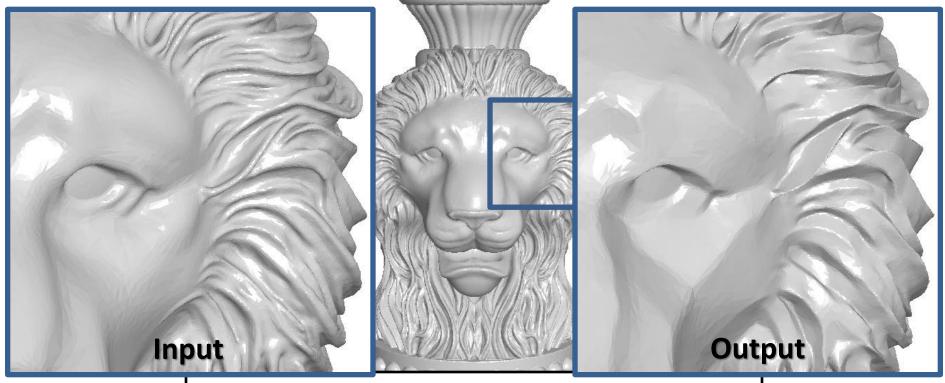
Sharpen *f* by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$



Sharpen *f* by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$



Setting *f* to the <u>normals</u> of the vertices

Outline

Motivation

Tools of the Trade

Extensions to Signals on Surfaces

– Gradient Domain [Poisson]

Shock Filters [Advection]

— Optical Flow [Poisson + Advection]

Conclusion

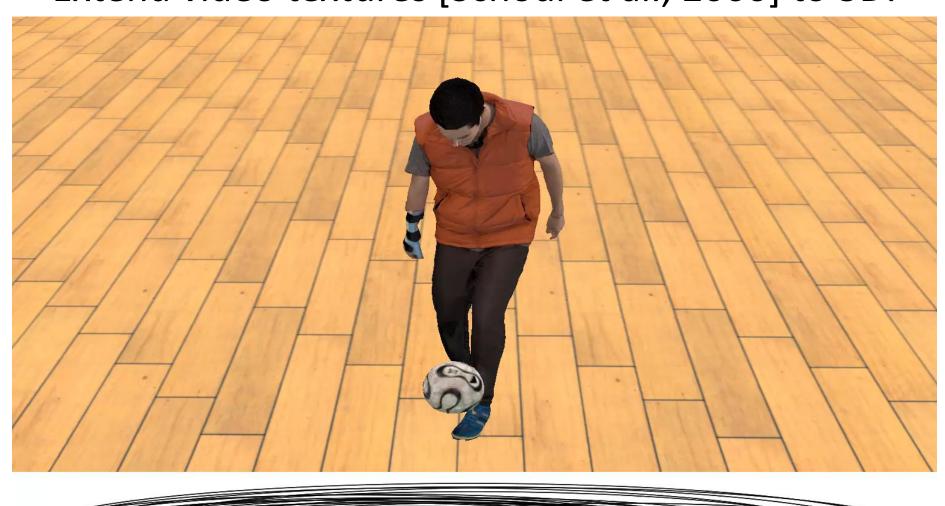
Video Textures:

Given a video, generate "a continuous, infinitely

varying stream of video images".

Video Textures. [Schödl, Szeliski, Salesin, and Essa, 2000]

Extend video textures [Schödl et al., 2000] to 3D:



Extend video textures [Schödl et al., 2000] to 3D:

Identify similar windows in the video

Interpolate geometries

Interpolate textures

Image Interpolation:

Target

<u>Image Interpolation (Linear)</u>:

Linear interpolation causes ghosting.

Target

Linear Blend

Image Interpolation (Advected):

Estimate optical flow field.

Image Interpolation (Advected):

Estimate optical flow field.

Advect forward/backward and blend.

Optical Flow Blend

Target

Linear Blend

Brightness Constancy [Lucas and Kanade, 1981]:

Solve for \vec{v} that advects the source/target towards each other by minimizing:

$$E(\vec{v}) = \|\operatorname{Adv}_{-\vec{v}}(f^t) - \operatorname{Adv}_{\vec{v}}(f^s)\|^2$$

$$\approx \|(f^t - \langle \nabla f^t, -\vec{v} \rangle) - (f^s - \langle \nabla f^s, \vec{v} \rangle)\|^2$$

$$= \|(f^t - f^s) + \langle \nabla (f^t + f^s), \vec{v} \rangle\|^2$$

Estimate \vec{v} hierarchically (coarse-to-fine):

Advance the source/target along \vec{v}

Solve for the correcting flow

Incorporate the correcting flow into $ec{v}$

Advance to the next level of the hierarchy

Brightness Constancy [Lucas and Kanade, 1981]:

Solve for \vec{v} that advects the source/target towards each other by minimizing:

$$E(\vec{v}) = \|\text{Adv}_{\vec{v}}(f^t) - \text{Adv}_{\vec{v}}(f^s)\|^2$$

Smooth signals/vector-fields are implicitly <u>mandated</u> by working in a space that does not have high-frequencies.

Estimate \vec{v} hierarchically (coarse-to-fine):

Advance the source/target along \vec{v}

Solve for the correcting flow

Incorporate the correcting flow into \vec{v}

Advance to the next level of the hierarchy

Scale Space Formulation:

Smooth solutions are explicitly encouraged by:

Smoothing the source and target at each level:

$$E(\tilde{f}^{s/t}) = \|\tilde{f}^{s/t} - f^{s/t}\|^2 + \frac{\alpha}{4^l} \|\nabla \tilde{f}^{s/t}\|^2$$
fitting term level-weighted smoothness term

Scale Space Formulation:

Smooth solutions are explicitly encouraged by:

Smoothing the source and target at each level:

$$E(\tilde{f}^{s/t}) = \left\| \tilde{f}^{s/t} - f^{s/t} \right\|^2 + \frac{\alpha}{4^l} \left\| \nabla \tilde{f}^{s/t} \right\|^2$$

Incorporating a smoothness term in the energy:

$$E(\vec{v}) = \left\| \operatorname{Adv}_{\vec{v}}(\tilde{f}^s) - \operatorname{Adv}_{-\vec{v}}(\tilde{f}^t) \right\|^2 + \frac{\alpha}{4^l} \|\nabla \vec{v}\|^2$$

brightness constancy term

level-weighted smoothness term

Scale Space Formulation:

Smooth solutions are explicitly encouraged by:

Smoothing the source and target at each level:

$$E(\tilde{f}^{s/t}) = \left\| \tilde{f}^{s/t} - f^{s/t} \right\|^2 + \frac{\alpha}{4^l} \left\| \nabla \tilde{f}^{s/t} \right\|^2$$

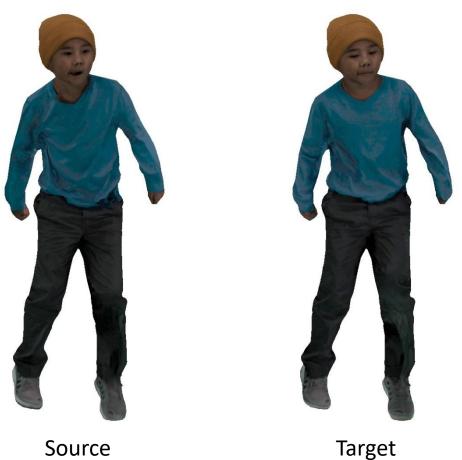
Incorporating a smoothness term in the energy:

$$E(\vec{v}) = \left\| \operatorname{Adv}_{\vec{v}}(\tilde{f}^s) - \operatorname{Adv}_{-\vec{v}}(\tilde{f}^t) \right\|^2 + \frac{\alpha}{4^l} \|\nabla \vec{v}\|^2$$

Solve two Poisson equations per level.*

^{*}In the second, the Laplacian is the vector-field (Hodge) Laplacian.





et Synthesized

Optical Flow Field

<u>Texture Interpolation</u>:

Source Target Synthesized

Linear Blend

Optical Flow Blend

Outline

Motivation

Tools of the Trade

Extensions to Signals on Surfaces

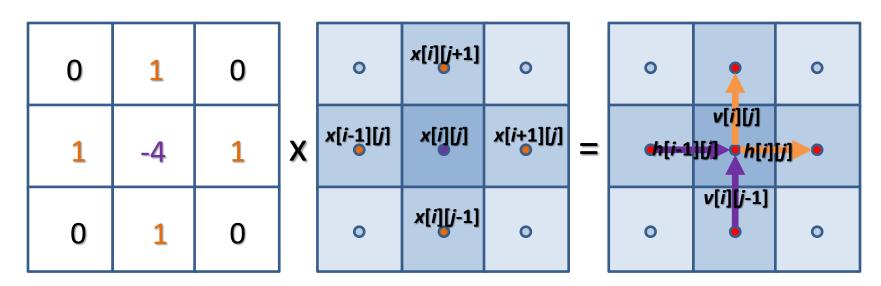
Conclusion

Extend fundamental image-processing operators to the context of surfaces [Differential Operators / Flows]

Much of the heavy lifting has already been done for us

Well-established image-processing techniques carry over [Gradient Domain / Shock Filters / Optical Flow]

Working with images makes simple things easier.

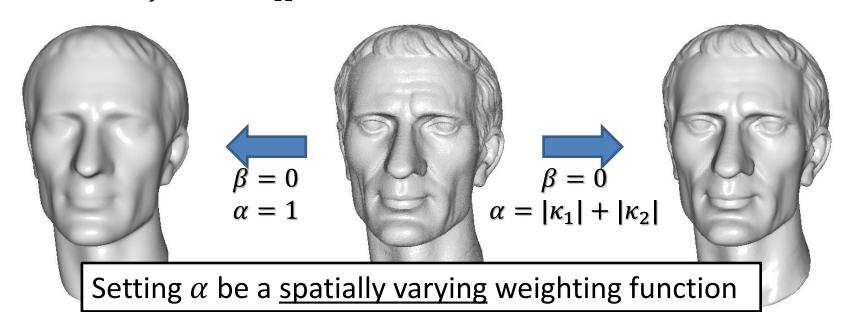


Fixed stencil Laplacian / Gradient / Divergence
Parallelization / Out-of-Core Streaming
Fast Fourier Transform

Working with images makes simple things easier.

Working with meshes makes hard things easier.

$$f^{out} = \underset{f:\Omega \to \mathbb{R}}{\operatorname{argmin}} \int_{\Omega} \alpha \|f - f^{in}\|^{2} + \|\nabla f - \beta \cdot \nabla f^{in}\|^{2}$$



Working with images makes simple things easier.

