

The Procrustes Method and 3D Scanning

Michael Kazhdan

(601.457/657)

Any matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ can be expressed in terms of its Singular Value Decomposition as:

$$\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$

with:

 $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times n}$ orthogonal

 $\mathbf{D} \in \mathbb{R}^{n \times n}$ diagonal (i.e. off-diagonals are 0)

The diagonal entries are:

- Non-negative
- Decreasing

Given a square matrix:

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} & \cdots & \mathbf{M}_{n1} \\ \vdots & \ddots & \vdots \\ \mathbf{M}_{1n} & \cdots & \mathbf{M}_{nn} \end{pmatrix}$$

the *trace* is the sum of the diagonal entries:

$$\operatorname{Trace}(\mathbf{M}) = \sum_{i} \mathbf{M}_{ii}$$

1. Given matrices **P** and **Q**, we have:

$$(\mathbf{P} \cdot \mathbf{Q})^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}} \cdot \mathbf{P}^{\mathsf{T}}$$

- 2. Given a square matrix \mathbf{P} , we have: $\operatorname{Trace}(\mathbf{P}) = \operatorname{Trace}(\mathbf{P}^{\top})$
- 3. Given an $n \times m$ matrices \mathbf{P} and \mathbf{Q} , we have: $\mathrm{Trace}(\mathbf{P}^{\mathsf{T}} \cdot \mathbf{Q}) = \mathrm{Trace}(\mathbf{Q}^{\mathsf{T}} \cdot \mathbf{P})$
- 4. Given an $n \times n$ matrices \mathbf{P} and \mathbf{Q} , we have: $\operatorname{Trace}(\mathbf{P}) = \operatorname{Trace}(\mathbf{Q}^{-1} \cdot \mathbf{P} \cdot \mathbf{Q})$
- 5. Given vectors \mathbf{v} and \mathbf{w} , we have: $\|\mathbf{v} \pm \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \pm 2\langle \mathbf{v}, \mathbf{w} \rangle$

Given a point-set $\{\mathbf{p}_1, ..., \mathbf{p}_n\} \subset \mathbb{R}^m$, we denote by $\mathbf{P} = (\mathbf{p}_1 | \cdots | \mathbf{p}_n) \in \mathbb{R}^{m \times n}$ the matrix whose columns are the points $\{\mathbf{p}_i\}$.

Given a transformation $\mathbf{M} \in \mathbb{R}^{m \times m}$, the matrix defined by the transformed points is:

$$(\mathbf{M}(\mathbf{p}_1)|\cdots|\mathbf{M}(\mathbf{p}_n))=\mathbf{M}\cdot\mathbf{P}$$

$$\begin{pmatrix} \vdots & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \end{pmatrix} = \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \\ \mathbf{P}_{31} & \mathbf{P}_{32} \\ \mathbf{P}_{41} & \mathbf{P}_{42} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{Q}_{11} \\ \mathbf{Q}_{21} \\ \mathbf{Q}_{21} \end{pmatrix} \cdot \mathbf{Q}_{12} \cdot \mathbf{Q}_{13}$$

$$\begin{pmatrix} \cdot & \cdot & \ddots \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \\ \mathbf{P}_{31} & \mathbf{P}_{32} \\ \mathbf{P}_{41} & \mathbf{P}_{42} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} & \mathbf{Q}_{13} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} & \mathbf{Q}_{23} \\ \mathbf{Q}_{23} \end{pmatrix}$$

$$\begin{pmatrix}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{pmatrix} = \begin{pmatrix}
P_{11} & P_{12} \\
P_{21} & P_{22} \\
P_{31} & P_{32} \\
P_{41} & P_{42}
\end{pmatrix} \cdot \begin{pmatrix}
Q_{11} \\
Q_{21} \\
Q_{22}
\end{pmatrix} Q_{13} Q_{23}$$

For matrices $\mathbf{P} \in \mathbb{R}^{n \times m}$, $\mathbf{Q} \in \mathbb{R}^{m \times l}$, the (i, j)-th entry of $\mathbf{P} \cdot \mathbf{Q}$ is the dot-product of the i-th row of \mathbf{P} and j-th column of \mathbf{Q} .

$$\Rightarrow \text{ Given } \mathbf{P} = (\mathbf{p}_1 | \cdots | \mathbf{p}_n), \mathbf{Q} = (\mathbf{q}_1 | \cdots | \mathbf{q}_n) \in \mathbb{R}^{m \times n}:$$

$$\mathbf{P}^\top \cdot \mathbf{Q} = \begin{pmatrix} \langle \mathbf{p}_1, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{p}_1, \mathbf{q}_n \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{p}_n, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{p}_n, \mathbf{q}_n \rangle \end{pmatrix}$$

⇒ In particular, we have:

Trace(
$$\mathbf{P}^{\mathsf{T}} \cdot \mathbf{Q}$$
) = $\sum_{i=1}^{n} \langle \mathbf{p}_i, \mathbf{q}_i \rangle$

We denote by O(m) the group of *orthogonal* $m \times m$ matrices (i.e. rotations and reflections):

$$(\mathbf{0}^{\mathsf{T}} \cdot \mathbf{0}) = \mathbf{Id}. \Leftrightarrow \mathbf{0}^{\mathsf{T}} = \mathbf{0}^{-1} \quad \forall \mathbf{0} \in O(m)$$

⇒ The determinant of any orthogonal matrix is ± 1 : $\det(\mathbf{0}) = \pm 1 \quad \forall \mathbf{0} \in O(m)$

We denote by $SO(m) \subset O(m)$ the of orthonormal $m \times m$ matrices (i.e. just rotations):

$$SO(m) = \{ \mathbf{0} \in O(m) | \det(\mathbf{0}) = 1 \}$$

If $\mathbf{O} \in O(m)$ is an orthogonal transformation: $(\mathbf{O}^{\top} \cdot \mathbf{O}) = \mathbf{Id}$.

⇔ The columns vectors of **0** are unit-length:

$$\sum_{j=1}^{m} \mathbf{O}_{ij}^2 = 1 \quad \forall \ 1 \le i \le m$$

$$\Rightarrow |\mathbf{0}_{ij}| \leq 1$$

- 1. Given a function $F(\mathbf{p})$, the point \mathbf{p} is an extremum of F if the gradient of F vanishes at \mathbf{p} .
- 2. If $F(\mathbf{p}) = \|\mathbf{p}\|^2$ then:

$$\nabla F = \nabla (p_x^2 + p_y^2 + p_z^2)$$
$$= (2p_x, 2p_y, 2p_z)$$
$$= 2\mathbf{p}$$

3. If $F(\mathbf{p}) = \langle \mathbf{p}, \mathbf{q} \rangle$ then:

$$\nabla_{\mathbf{p}} F = \nabla_{\mathbf{p}} (p_x q_x + p_y q_y + p_z q_z)$$

$$= (q_x, q_y, q_z)$$

$$= \mathbf{q}$$

1. Given two real values $a, b \in \mathbb{R}$, we have:

$$|a \cdot b| = |a| \cdot |b|$$

2. Given two real values $a, b \in \mathbb{R}$, we have:

$$|a+b| \le |a| + |b|$$

Claim

Given a diagonal matrix $\mathbf{D} \in \mathbb{R}^m$, the orthogonal transformation $\mathbf{O} \in O(m)$ maximizing the trace: $\mathrm{Trace}(\mathbf{O} \cdot \mathbf{D})$

is the diagonal matrix:

$$\mathbf{O} = \operatorname{sign}(\mathbf{D}) = \begin{pmatrix} \operatorname{sign}(\mathbf{D}_{11}) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \operatorname{sign}(\mathbf{D}_{nn}) \end{pmatrix}$$

This gives:

Trace(
$$\mathbf{O} \cdot \mathbf{D}$$
) = sign(\mathbf{D}_{11}) $\mathbf{D}_{11} + \dots + \text{sign}(\mathbf{D}_{nn}) \mathbf{D}_{nn}$
= $|\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$

Claim

Given a diagonal matrix $\mathbf{D} \in \mathbb{R}^m$, the orthogonal transformation $\mathbf{O} \in O(m)$ maximizing the trace: $\mathrm{Trace}(\mathbf{O} \cdot \mathbf{D})$

is the matrix:

$$\mathbf{O} = \operatorname{sign}(\mathbf{D}) = \begin{pmatrix} \operatorname{sign}(\mathbf{D}_{11}) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \operatorname{sign}(\mathbf{D}_{nn}) \end{pmatrix}$$

Will show that for any orthogonal **0**:

Trace(
$$\mathbf{O} \cdot \mathbf{D}$$
) \leq Trace(sign(\mathbf{D}) $\cdot \mathbf{D}$)
= $|\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$

Proof

$$Trace(\mathbf{O} \cdot \mathbf{D}) \le |\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$$

Setting:

$$\mathbf{O} = \begin{pmatrix} \mathbf{O}_{11} & \cdots & \mathbf{O}_{n1} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{1n} & \cdots & \mathbf{O}_{nn} \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} \mathbf{D}_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{D}_{nn} \end{pmatrix}$$

we get:

$$\mathbf{O} \cdot \mathbf{D} = \begin{pmatrix} \mathbf{O}_{11} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{n1} \cdot \mathbf{D}_{nn} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{1n} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{nn} \cdot \mathbf{D}_{nn} \end{pmatrix}$$

Proof

$$Trace(\mathbf{O} \cdot \mathbf{D}) \le |\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$$

Since:

$$\mathbf{O} \cdot \mathbf{D} = \begin{pmatrix} \mathbf{O}_{11} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{n1} \cdot \mathbf{D}_{nn} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{1n} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{nn} \cdot \mathbf{D}_{nn} \end{pmatrix}$$

we get:

$$\begin{aligned} \text{Trace}(\mathbf{O} \cdot \mathbf{D}) &= \mathbf{O}_{11} \mathbf{D}_{11} + \dots + \mathbf{O}_{nn} \mathbf{D}_{nn} \\ &\leq |\mathbf{O}_{11} \mathbf{D}_{11} + \dots + \mathbf{O}_{nn} \mathbf{D}_{nn}| \\ &\leq |\mathbf{O}_{11} \mathbf{D}_{11}| + \dots + |\mathbf{O}_{nn} \mathbf{D}_{nn}| \\ &= |\mathbf{O}_{11}| |\mathbf{D}_{11}| + \dots + |\mathbf{O}_{nn}| |\mathbf{D}_{nn}| \end{aligned}$$

Proof

$$Trace(\mathbf{O} \cdot \mathbf{D}) \le |\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$$

Since:

$$\mathbf{O} \cdot \mathbf{D} = \begin{pmatrix} \mathbf{O}_{11} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{n1} \cdot \mathbf{D}_{nn} \\ \vdots & \ddots & \vdots \\ \mathbf{O}_{1n} \cdot \mathbf{D}_{11} & \cdots & \mathbf{O}_{nn} \cdot \mathbf{D}_{nn} \end{pmatrix}$$

we get:

$$\operatorname{Trace}(\mathbf{O} \cdot \mathbf{D}) \leq |\mathbf{O}_{11}||\mathbf{D}_{11}| + \dots + |\mathbf{O}_{nn}||\mathbf{D}_{nn}|$$

Since **0** is orthogonal, we have $|\mathbf{0}_{ii}| \le 1$: $\operatorname{Trace}(\mathbf{0} \cdot \mathbf{D}) \le |\mathbf{D}_{11}| + \dots + |\mathbf{D}_{nn}|$

Goal:

Given points $\{\mathbf{p}_1, ..., \mathbf{p}_n\} \subset \mathbb{R}^m$ and $\{\mathbf{q}_1, ..., \mathbf{q}_n\} \subset \mathbb{R}^m$, find the **translation** $\delta \in \mathbb{R}^m$ and **orthogonal transform** $\mathbf{0} \in O(m)$ that best aligns $\{\mathbf{p}_i\}$ to $\{\mathbf{q}_i\}$.

That is, find δ and O minimizing the alignment energy:

$$E(\boldsymbol{\delta}, \mathbf{O}) = \sum_{i=1}^{n} ||\mathbf{O}(\mathbf{p}_i + \boldsymbol{\delta}) - \mathbf{q}_i||^2$$

Goal:

 $\|\mathbf{v} \pm \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \pm 2\langle \mathbf{v}, \mathbf{w} \rangle$

1. Find the **translation** $\delta \in \mathbb{R}^m$ minimizing:*

$$E(\mathbf{\delta}) = \sum_{i=1}^{n} \|(\mathbf{p}_i + \mathbf{\delta}) - \mathbf{q}_i\|^2$$

$$= \sum_{i=1}^{n} \|(\mathbf{p}_i - \mathbf{q}_i) + \mathbf{\delta}\|^2$$

$$= \sum_{i=1}^{n} (\|\mathbf{p}_i - \mathbf{q}_i\|^2 + \|\mathbf{\delta}\|^2 + 2\langle \mathbf{p}_i - \mathbf{q}_i, \mathbf{\delta} \rangle)$$

*We'll see why we can ignore orthogonal transformations shortly.

Goal:

$$\nabla_{\mathbf{p}} \|\mathbf{p}\|^2 = 2\mathbf{p}$$
 and $\nabla_{\mathbf{p}} \langle \mathbf{p}, \mathbf{q} \rangle = \mathbf{q}$

$$E(\mathbf{\delta}) = \sum_{i=1}^{n} (\|\mathbf{p}_i - \mathbf{q}_i\|^2 + \|\mathbf{\delta}\|^2 + 2\langle \mathbf{p}_i - \mathbf{q}_i, \mathbf{\delta} \rangle)$$

1. Find the **translation** $\delta \in \mathbb{R}^m$ minimizing $E(\delta)$.*

Taking the gradient gives:

$$\nabla E(\mathbf{\delta}) = \sum_{i=1}^{n} 2\mathbf{\delta} + 2(\mathbf{p}_i - \mathbf{q}_i)$$

Goal:

$$\nabla E(\mathbf{\delta}) = \sum_{i=1}^{n} 2\mathbf{\delta} + 2(\mathbf{p}_i - \mathbf{q}_i)$$

1. Find the **translation** $\delta \in \mathbb{R}^m$ minimizing $E(\delta)$.*

The minimizing translation must satisfy:

$$\nabla E(\mathbf{\delta}) = 0$$

$$\downarrow n$$

$$\mathbf{\delta} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{q}_i - \mathbf{p}_i)$$

*We'll see why we can ignore orthogonal transformations shortly.

Goal:

$$\nabla E(\mathbf{\delta}) = \sum_{i=1}^{n} 2\mathbf{\delta} + 2(\mathbf{p}_i - \mathbf{q}_i)$$

1. Find the **translation** $\delta \in \mathbb{R}^m$ minimizing $E(\delta)$.*

The minimizing translation must satisfy:

$$\nabla E(\mathbf{\delta}) = 0$$

$$\downarrow$$

$$\mathbf{\delta} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{q}_i - \mathbf{p}_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{q}_i - \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_i$$

*We'll see why we can ignore orthogonal transformations shortly.

The minimizing translation takes the center of mass of $\{\mathbf{p}_1, ..., \mathbf{p}_n\}$ to the center of mass of $\{\mathbf{q}_1, ..., \mathbf{q}_n\}$.

Goa

The point-sets are translationally aligned when their centers of mass coincide.

1. Fin If the centers are both at the origin, the point-sets are translationally aligned

 (δ) .*

Note:

If a point-set is translated so its center of mass is at the origin, any linear transformation (e.g. rotation) of the point-set will still have its center of mass at the origin.

If the point-sets are centered at the origin, they are optimally translationally aligned regardless of the rotation.

Goal:

$$\|\mathbf{v} \pm \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 \pm 2\langle \mathbf{v}, \mathbf{w} \rangle$$

2. Find the **transform** $0 \in O(m)$ minimizing:

$$E(\mathbf{O}) = \sum_{i=1}^{n} \|\mathbf{O}(\mathbf{p}_i) - \mathbf{q}_i\|^2$$

$$= \sum_{i=1}^{n} \|\mathbf{O}(\mathbf{p}_i)\|^2 + \|\mathbf{q}_i\|^2 - 2\langle \mathbf{O}(\mathbf{p}_i), \mathbf{q}_i \rangle$$

$$= \sum_{i=1}^{n} \|\mathbf{p}_i\|^2 + \|\mathbf{q}_i\|^2 - 2\langle \mathbf{O}(\mathbf{p}_i), \mathbf{q}_i \rangle$$

Minimizing $E(\mathbf{0})$ is the same as maximizing:

$$\tilde{E}(\mathbf{0}) = \sum_{i=1}^{n} \langle \mathbf{0}(\mathbf{p}_i), \mathbf{q}_i \rangle$$

Goal:

2. Find the **transform** $0 \in O(m)$ maximizing:

$$\tilde{E}(\mathbf{0}) = \sum_{i=1}^{n} \langle \mathbf{0}(\mathbf{p}_i), \mathbf{q}_i \rangle$$

- Set $P = (\mathbf{p}_1 | \cdots | \mathbf{p}_n)$ and $\mathbf{Q} = (\mathbf{q}_1 | \cdots | \mathbf{q}_n)$.
- Use the facts that:

$$\mathbf{O} \cdot \mathbf{P} = (\mathbf{O}(\mathbf{p}_1) | \cdots | \mathbf{O}(\mathbf{p}_n))$$

$$\operatorname{Trace}(\mathbf{P}^{\top} \cdot \mathbf{Q}) = \sum_{i=1}^{n} \langle \mathbf{p}_i, \mathbf{q}_i \rangle$$

$$\tilde{E}(\mathbf{0}) = \operatorname{Trace}((\mathbf{0} \cdot \mathbf{P})^{\mathsf{T}} \cdot \mathbf{Q})$$

Goal:

2. Find the **transform** $0 \in O(m)$ maximizing:

$$\tilde{E}(\mathbf{O}) = \operatorname{Trace}((\mathbf{O} \cdot \mathbf{P})^{\top} \cdot \mathbf{Q})
= \operatorname{Trace}((\mathbf{P}^{\top} \cdot \mathbf{O}^{\top}) \cdot \mathbf{Q})
= \operatorname{Trace}(\mathbf{Q} \cdot (\mathbf{P}^{\top} \cdot \mathbf{O}^{\top}))
= \operatorname{Trace}((\mathbf{Q} \cdot \mathbf{P}^{\top}) \cdot \mathbf{O}^{\top})
= \operatorname{Trace}(\mathbf{O} \cdot (\mathbf{Q} \cdot \mathbf{P}^{\top})^{\top})
= \operatorname{Trace}(\mathbf{O} \cdot (\mathbf{P} \cdot \mathbf{Q}^{\top}))$$

$$(\mathbf{A} \cdot \mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{A}^{\mathsf{T}}$$
 $\mathbf{O}^{-1} = \mathbf{O}^{\mathsf{T}} \ \ \forall \mathbf{O} \in \mathcal{O}(m)$
 $\mathsf{Trace}(\mathbf{B}) = \mathsf{Trace}(\mathbf{A}^{-1} \cdot \mathbf{B} \cdot \mathbf{A})$
 $\mathsf{Trace}(\mathbf{A}^{\mathsf{T}}) = \mathsf{Trace}(\mathbf{A})$

Massage so we are trying to maximize $Trace(\mathbf{O} \cdot \mathbf{D})$, for some diagonal **D**.

Goal:

$$Trace(\mathbf{B}) = Trace(\mathbf{A}^{-1} \cdot \mathbf{B} \cdot \mathbf{A})$$

2. Find the **transform** $0 \in O(m)$ maximizing:

$$\tilde{E}(\mathbf{0}) = \operatorname{Trace}(\mathbf{0} \cdot (\mathbf{P} \cdot \mathbf{Q}^{\mathsf{T}}))$$

Compute the singular value decomposition:

$$\mathbf{P} \cdot \mathbf{O}^{\mathsf{T}} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{V}^{\mathsf{T}}$$

with U and V orthogonal and D diagonal.

$$\bigcup$$

$$\tilde{E}(\mathbf{O}) = \operatorname{Trace}(\mathbf{O} \cdot \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{V}^{\mathsf{T}})$$

$$= \operatorname{Trace}(\mathbf{V}^{\mathsf{T}} \cdot \mathbf{O} \cdot \mathbf{U} \cdot \mathbf{D})$$

$$= \operatorname{Trace}((\mathbf{V}^{\mathsf{T}} \cdot \mathbf{O} \cdot \mathbf{U}) \cdot \mathbf{D})$$

Massage so we are trying to maximize $Trace(\mathbf{0} \cdot \mathbf{D})$, for some diagonal **D**.

Goal:

2. Find the **transform** $0 \in O(m)$ maximizing:

$$\tilde{E}(\mathbf{0}) = \operatorname{Trace}((\mathbf{V}^{\mathsf{T}} \cdot \mathbf{0} \cdot \mathbf{U}) \cdot \mathbf{D})$$

Since $\mathbf{V}^{\mathsf{T}} \cdot \mathbf{O} \cdot \mathbf{U}$ is orthogonal, this is maximized if:

$$\mathbf{V}^{\mathsf{T}} \cdot \mathbf{O} \cdot \mathbf{U} = \operatorname{sign}(\mathbf{D})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{O} = \mathbf{V} \cdot \operatorname{sign}(\mathbf{D}) \cdot \mathbf{U}^{\mathsf{T}}$$

Since the diagonal entries of **D** are non-negative:

$$\mathbf{O} = \mathbf{V} \cdot \mathbf{U}^{\mathsf{T}}$$

$$\mathbf{O} = \mathbf{V} \cdot \operatorname{sign}(\mathbf{D}) \cdot \mathbf{U}^{\mathsf{T}}$$

In practice, we often want the best *orthonormal* transformation, $\mathbf{0} \in SO(m)$, not just orthogonal transformation. This requires:

```
1 = \det(\mathbf{O})
= \det(\mathbf{V}) \cdot \operatorname{sign}(\mathbf{D}) \cdot \det(\mathbf{U}^{\mathsf{T}})
= \det(\mathbf{V}) \cdot \det(\mathbf{U}^{\mathsf{T}})
= \det(\mathbf{V} \cdot \mathbf{U}^{\mathsf{T}})
```

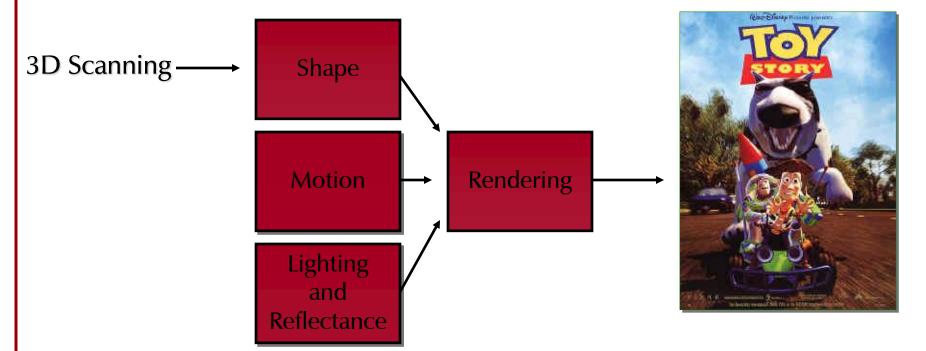
As with SVD normalization, we achieve this by setting one of the entries of $sign(\mathbf{D})$ to $det(\mathbf{V} \cdot \mathbf{U}^{\top})$.

Since the diagonals are non-negative and decreasing, we flip the last one.

3D Scanning

Lecture courtesy of
Szymon Rusinkiewicz
Princeton University

Computer Graphics Pipeline



- Human time = expensive
- Sensors = cheap
 - Computer graphics increasingly relies on measurements of the real world

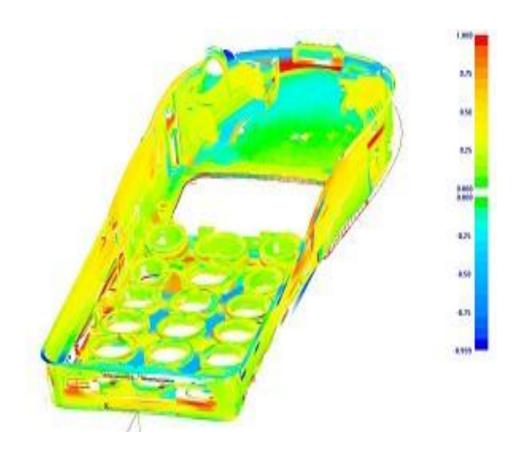
3D Scanning Applications

- Computer graphics
- Product inspection
- Robot navigation

- Product design
- Archaeology
- Clothes fitting

Industrial Inspection

Are manufactured parts within a tolerance?



Clothing

Scan a person, custom-fit clothing U.S. Army; booths in malls

Driving

Autonomous navigation Collision avoidance

Blind Spot Detection Surround View Furk Assistance Furk

https://www.geotab.com/blog/crash-avoidance/

The Digital Michelangelo Project

The Digital Michelangelo Project

Why Scan Sculptures?

Virtual museums

Controlled interaction (lighting, proximity, etc.)

Study working techniques

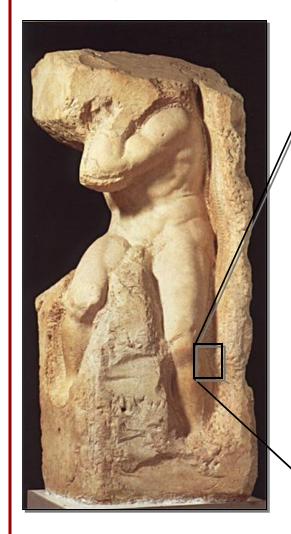
Cultural heritage preservation

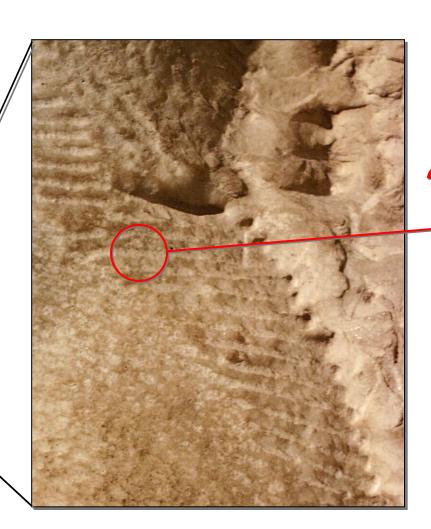
Goals

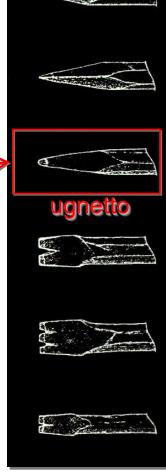
Scan 10 sculptures by Michelangelo

High-resolution (i.e. quarter-millimeter) resolution

Why Capture Chisel Marks?

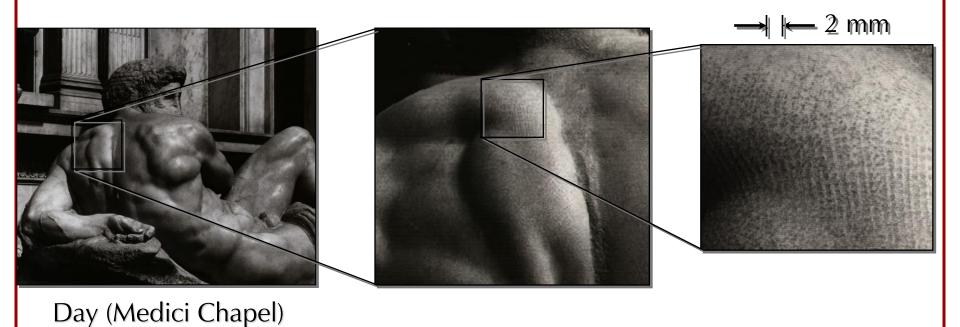




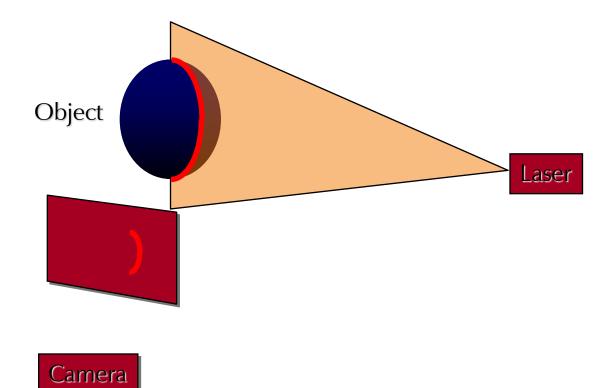


Atlas (Accademia)

Why Capture Chisel Mark Geometry



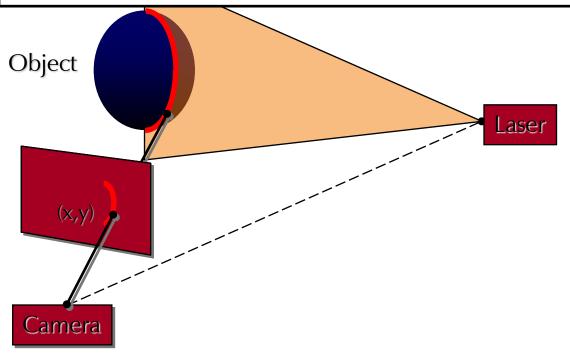
Triangulation



- Project laser stripe onto object
- Detect laser stripe in image

Triangulation

Gives the depth of the point (x, y) with respect to the camera.

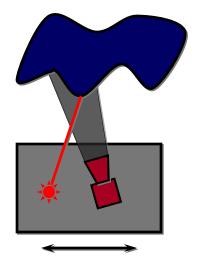


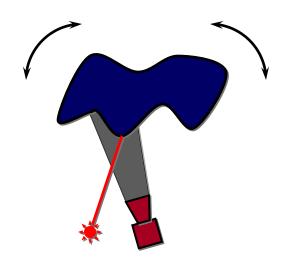
- Project laser stripe onto object
- Detect laser stripe in image
- Get depth from ray-plane triangulation

Triangulation: Moving the Camera and Illumination

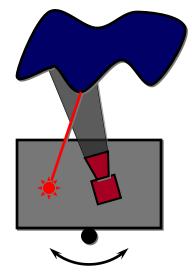
- Moving independently leads to problems with calibration
- ✓ Most scanners mount camera and light source rigidly, move them as a unit

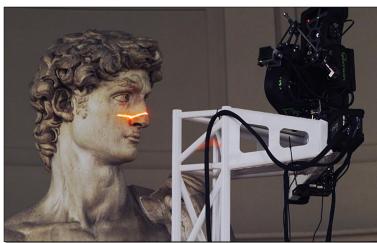
Triangulation: Moving the Camera and Illumination



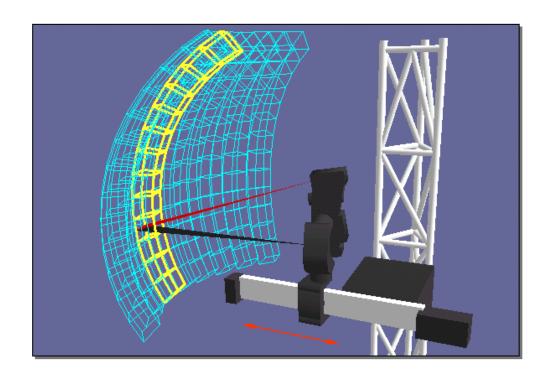


Triangulation: Moving the Camera and Illumination





Scanning a Large Object

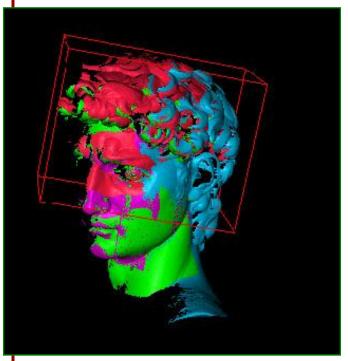


Calibrated motions

- pitch (yellow)
- pan (blue)
- horizontal translation (orange)

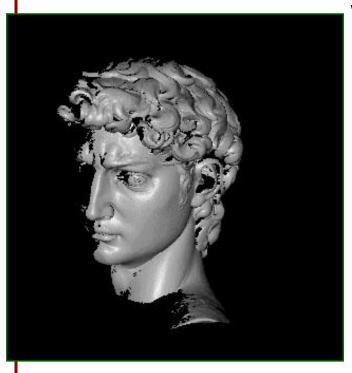
Uncalibrated motions

- vertical translation
- rolling the gantry
- remounting the scan head



Steps

- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



Steps

- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method

Goal:

Given two point-sets $\mathbf{P} = \{\mathbf{p}_1, ..., \mathbf{p}_n\} \subset \mathbb{R}^d$, and $\mathbf{Q} = \{\mathbf{q}_1, ..., \mathbf{q}_m\} \subset \mathbb{R}^d$, find:

The <u>correspondence</u>, Φ : $\{1, ..., n\} \rightarrow \{1, ..., m\}$,

The <u>translation</u> $\delta \in \mathbb{R}^d$, and

The rotation $\mathbf{0} \in SO(d)$

that minimize the sum of squared distances:

$$E(\Phi, \boldsymbol{\delta}, \mathbf{O}) = \sum_{i=1}^{n} \|\mathbf{O}(\mathbf{p}_{i} + \boldsymbol{\delta}) - \mathbf{q}_{\Phi(i)}\|^{2}$$

$$E(\Phi, \boldsymbol{\delta}, \mathbf{0}) = \sum_{i=1}^{n} \|\mathbf{0}(\mathbf{p}_{i} + \boldsymbol{\delta}) - \mathbf{q}_{\Phi(i)}\|^{2}$$

Approach:

Create a sequence of correspondences, translations, and rotations:

$$\{\{\Phi_0, \boldsymbol{\delta}_0, \boldsymbol{O}_0\}, \{\Phi_1, \boldsymbol{\delta}_1, \boldsymbol{O}_1\}, \cdots\}$$

that monotonically reduces the energy.

Implementation:

Alternately solve for the correspondence Φ_i and the transformation $\{\delta_i, \mathbf{O}_i\}$.

Algorithm:

- 0. Initialize k = 0, $\delta_k = \vec{0}$, and $O_k = Id$.
- 1. Fix δ_k and O_k , and set Φ_{k+1} to minimize:

$$E(\Phi_{k+1}, \boldsymbol{\delta}_k, \mathbf{O}_k) = \sum_{i=1}^n \|\mathbf{O}_k(\mathbf{p}_i + \boldsymbol{\delta}_k) - \mathbf{q}_{\Phi_{k+1}(i)}\|^2$$

 $\Rightarrow \Phi_{k+1}$ is the nearest-neighbor map:

$$\Phi_{k+1}(i) = \underset{j \in \{1,\dots,m\}}{\operatorname{arg min}} \left\| \mathbf{O}_k(\mathbf{p}_i + \boldsymbol{\delta}_k) - \mathbf{q}_j \right\|^2$$

Algorithm:

- 0. Initialize k = 0, $\delta_k = \vec{0}$, and $O_k = Id$.
- 1. Fix δ_k and O_k , and set Φ_{k+1} to minimize:

$$E(\Phi_{k+1}, \boldsymbol{\delta}_k, \mathbf{O}_k) = \sum_{i=1}^n \left\| \mathbf{O}_k(\mathbf{p}_i + \boldsymbol{\delta}_k) - \mathbf{q}_{\Phi_{k+1}(i)} \right\|^2$$

2. Fix Φ_{k+1} , and set δ_{k+1} and O_{k+1} to minimize:

$$E(\Phi_{k+1}, \mathbf{\delta}_{k+1}, \mathbf{O}_{k+1}) = \sum_{i=1}^{n} \|\mathbf{O}_{k+1}(\mathbf{p}_i + \mathbf{\delta}_{k+1}) - \mathbf{q}_{\Phi_{k+1}(i)}\|^2$$

3. Update k = k + 1. Goto step 1.

Algorithm:

- 0. Initialize k = 0, $\delta_k = \vec{0}$, and $O_k = Id$.
- 1. Fix δ_k and O_k , and set Φ_{k+1} to minimize:

$$E(\Phi_{k+1}, \boldsymbol{\delta}_k, \mathbf{O}_k) = \sum_{i=1}^n \left\| \mathbf{O}_k(\mathbf{p}_i + \boldsymbol{\delta}_k) - \mathbf{q}_{\Phi_{k+1}(i)} \right\|^2$$

2. Fix Φ_{k+1} , and set δ_{k+1} and O_{k+1} to minimize:

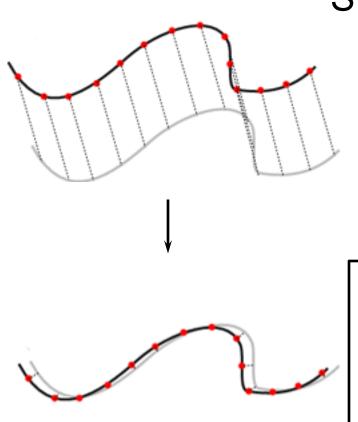
$$E(\Phi_{k+1}, \mathbf{\delta}_{k+1}, \mathbf{O}_{k+1}) = \sum_{i=1}^{n} \|\mathbf{O}_{k+1}(\mathbf{p}_i + \mathbf{\delta}_{k+1}) - \mathbf{q}_{\Phi_{k+1}(i)}\|^2$$

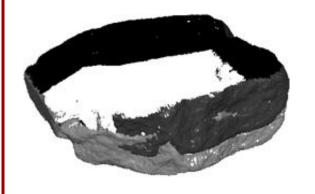
Since the two steps reduce the same energy, the sum of squared distances reduces monotonically.

- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method

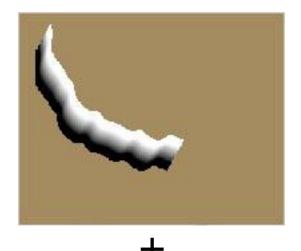
ICP(*Scan1* , *Scan2*) :

- 1. For each point on *Scan1*, find the nearest point on *Scan2*.
- 2. Translate and rootate *Scan1* to minimize the distance between corresponding points.
- 3. Go to step 1



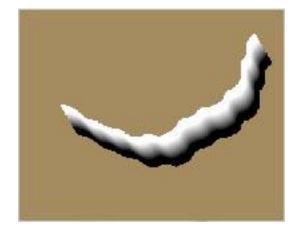


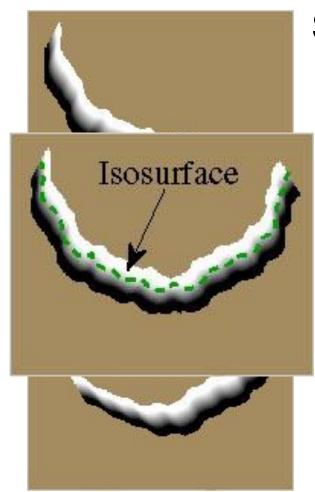
- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



Steps

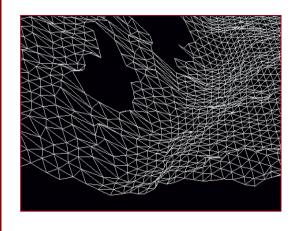
- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



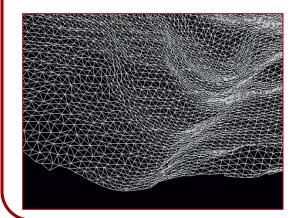


Steps

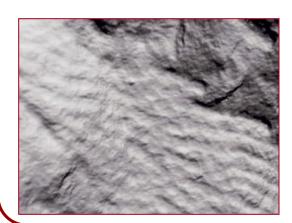
- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



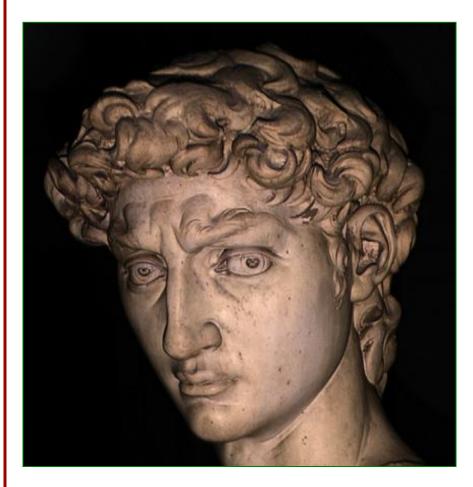
- 1. Manual initial alignment
- 2. Automatic ICP to an existing scan
- 3. Global relaxation to diffuse error
- 4. Merging using volumetric method



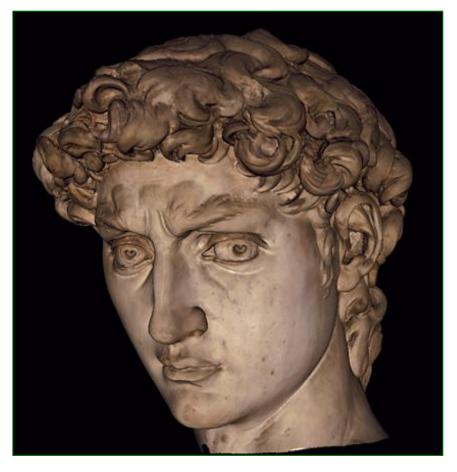
Statistics About the Scan of David

- 480 individually aimed scans
- 0.3 mm sample spacing
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

Head of Michelangelo's David



Photograph



1.0 mm computer model