

# **Solid Modeling**

Michael Kazhdan (601.457/657)

A Generalization of Algebraic Surface Drawing, Blinn 1982
Marching Cubes, Lorensen and Cline 1987

## **Announcements**



My office hours have moved to Wednesday, 1-3pm

# **Solid Modeling**



We have focused on representing models with meshes that describe the surface/boundary of the model.

### Advantages:

Well-suited for animation

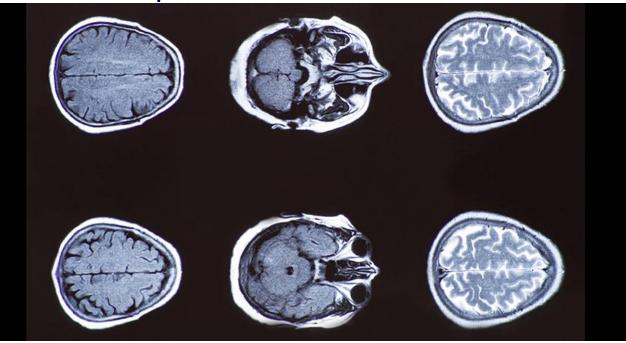
Easy to visualize in graphics hardware

## **Motivation 1**

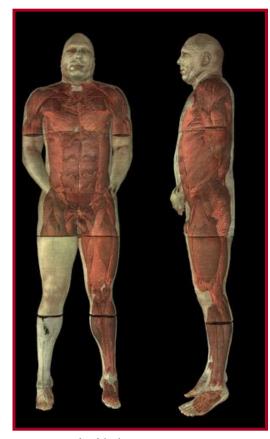


Some acquisition methods generate volumetric data

**Example: Medical visualizations** 



https://www.sciencenewsforstudents.org/



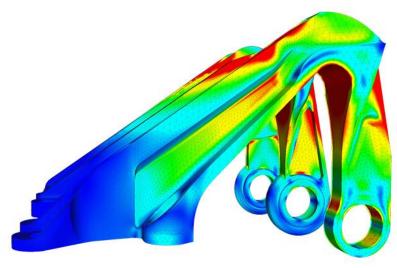
Visible Human (National Library of Medicine)

## **Motivation 2**



## Some representations require solids

Example: FEM simulations



https://www.simscale.com/



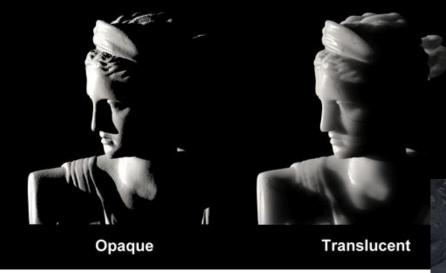
[Irving et al., 2007]

## **Motivation 3**



## Some algorithms require solids

Example: ray tracing in participating media



http://graphics.stanford.edu/



http://casual-effects.com/

## **Overview**



Implicit Surfaces

Voxels

**Quadtrees and Octrees** 



Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

Example: quadric

 $F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$ 

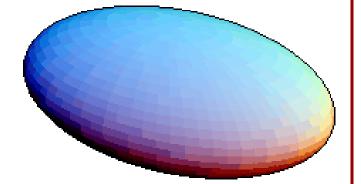


Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

### Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1 = 0$$



Ellipsoids

Image courtesy of http://www.geom.uiuc.edu/

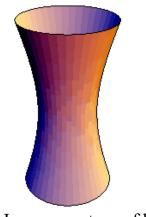


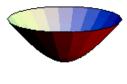
Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

### Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 - \left(\frac{z}{r_z}\right)^2 \pm 1 = 0$$







Hyperboloids

Image courtesy of http://www.geom.uiuc.edu/



Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

### Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 \pm \left(\frac{y}{r_y}\right)^2 + 2z = 0$$

Paraboloids

Image courtesy of http://www.geom.uiuc.edu/



## Blobby Models [Blinn '82]

Express the implicit surface as a sum of (signed) Gaussians:

$$F(x, y, z) = \sum_{i} F_{i}(x, y, z)$$

$$F_{i}(x, y, z) = \alpha_{i} e^{-((x-x_{i})^{2} + (y-y_{i})^{2} + (z-z_{i})^{2})/2\sigma_{i}^{2}}$$

 $(x_i, y_i, z_i)$ : Center of the Gaussian

 $\alpha_i$ : Scale of the Gaussian

How much the Gaussian contributes
Interior vs. exterior (sign)

 $\sigma_i$ : Standard deviation of the Gaussian

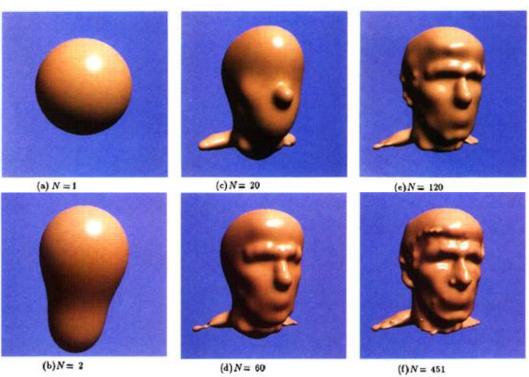


## Blobby Models [Blinn '82]

The more functions used, the more accurate the

reconstruction.

But this also makes the function more difficult to sample.





$$F(x, y, z) = \sum_{i} F_{i}(x, y, z)$$

If the functions  $F_i$  are compactly supported, evaluation at a point can be done in sub-linear time.



Chen et al., SIGGRAPH 04



### Advantages:

- Easy to test if a point is on the boundary of the solid
- Easy to test if a point is inside the solid
- Easy to intersect two solids (e.g. collision detection)

### Challenges:

- Describing complex shapes (concisely)
- Evaluating complex functions (efficiently)
- Enumerating points on surface

# **Overview**



Implicit Surfaces

Voxels

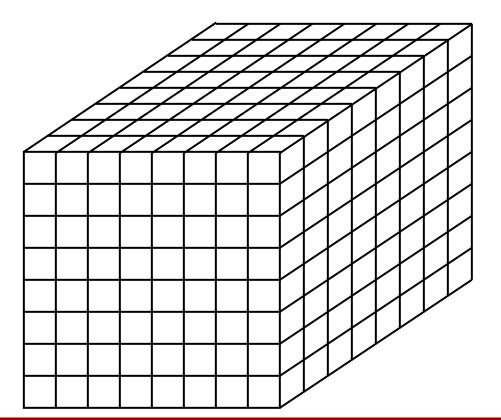
Quadtrees and Octrees

## Voxels



Partition space into uniform grid
Grid cells are called *voxels* (volumetric elements)

Each voxel has a value associated to it.



## **Binary Voxels**



Partition space into uniform grid

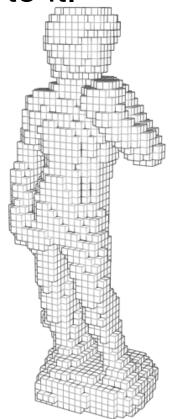
Grid cells are called *voxels* (volumetric elements)

Each voxel has a value associated to it.

**Binary Voxel Grids:** 

» Value is 0 if the voxel is outside the model

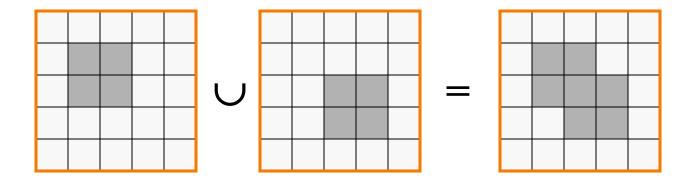
» Value is 1 if the voxel is inside

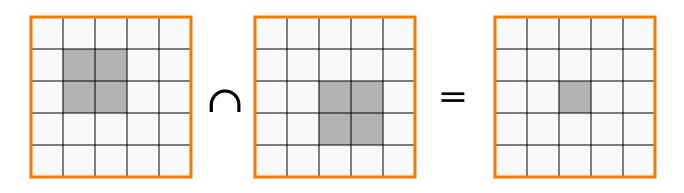


# **Binary Voxels: Boolean Operations**



Compare objects voxel by voxel Trivial

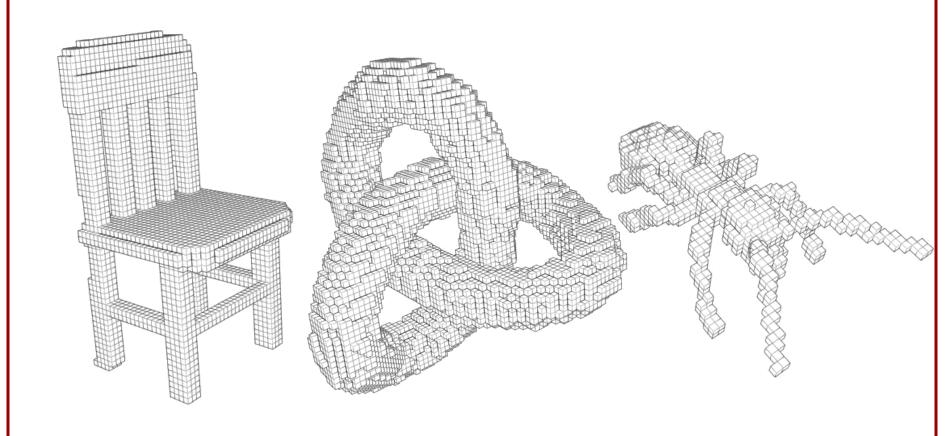




# **Binary Voxels: Visualization**



Draw the faces between on and off voxels.



## **Continuous Voxels**

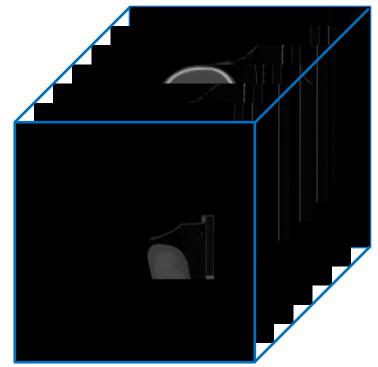


Partition space into uniform grid
Grid cells are called *voxels* (volumetric elements)

Each voxel has a value associated to it.

**Continuous Voxel Grids:** 

» Each voxel stores a continuous value (e.g. density, temperature, color, probability, etc.)



## **Continuous Voxels**



Partition space into uniform grid
Grid cells are called *voxels* (like pixels)

Each voxel has a value associated to it.

**Continuous Voxel Grids:** 

» Each voxel stores a continuous value (e.g. density, temperature, color, probability, etc.)



Slicing

Ray-Casting

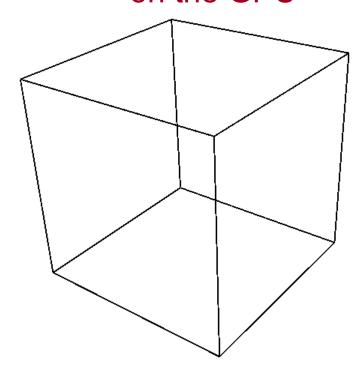
**Iso-Surface Extraction** 

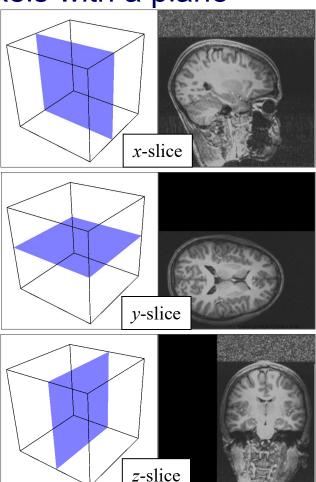


### Slicing

Draw 2D image by intersecting voxels with a plane

» Supported by 3D texturing on the GPU



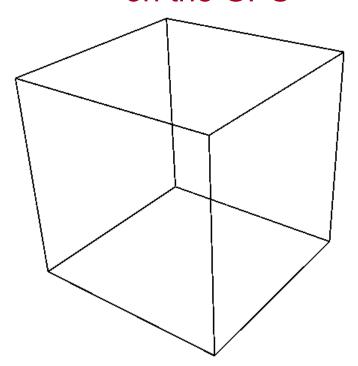


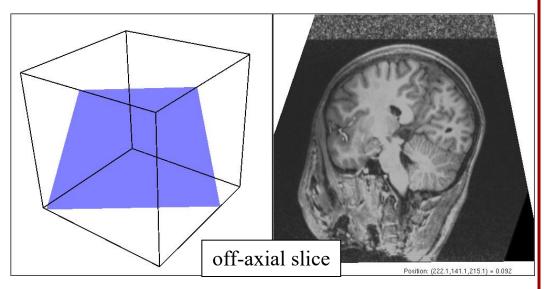


## Slicing

Draw 2D image by intersecting voxels with a plane

» Supported by 3D texturing on the GPU



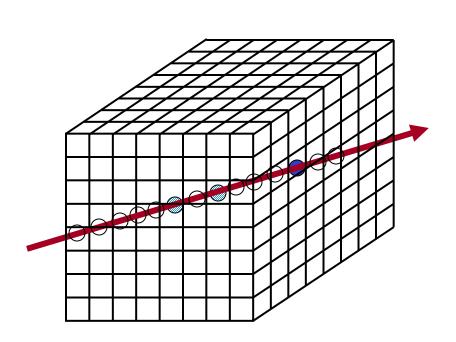


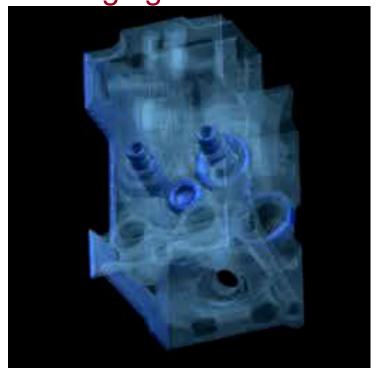


## Ray casting

Integrate density along rays through pixels

» Doing this interactively is challenging





Engine Block
Stanford University



## Ray casting

Integrate density along rays through pixels

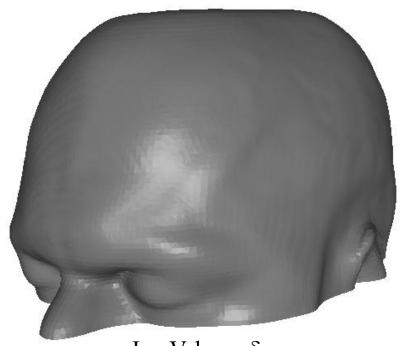


https://innoarea.com/files/ejemplo\_gaussian\_splatting.png

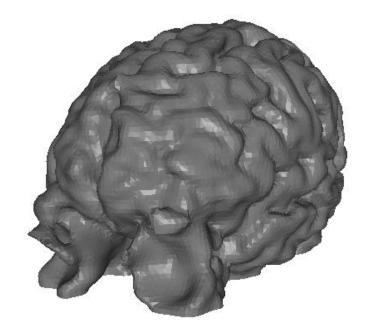


#### **Iso-Surface Extraction**

Treat the voxel grid as a regular sampling of a function F(x, y, z), and extract the iso-surface with  $F(x, y, z) = \delta$ .



Iso-Value =  $\delta_1$ 



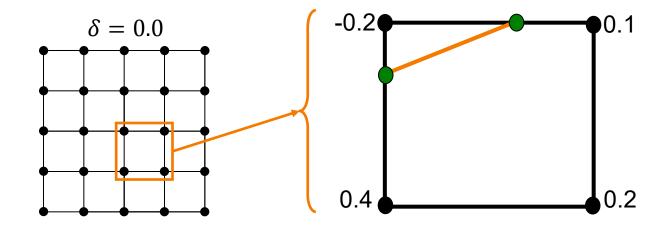
Iso-Value =  $\delta_2$ 



Iso-Surfaces analog with 2D grid

Assume each grid vertex has scalar value

- » **Iso-Vertices**: If one of the edge vertices has value larger than  $\delta$  and the other has value less than  $\delta$ , find the point on the edge whose linear interpolation equals  $\delta$ .
- » **Iso-Edge**: Per cell, connect iso-vertices with line segments.

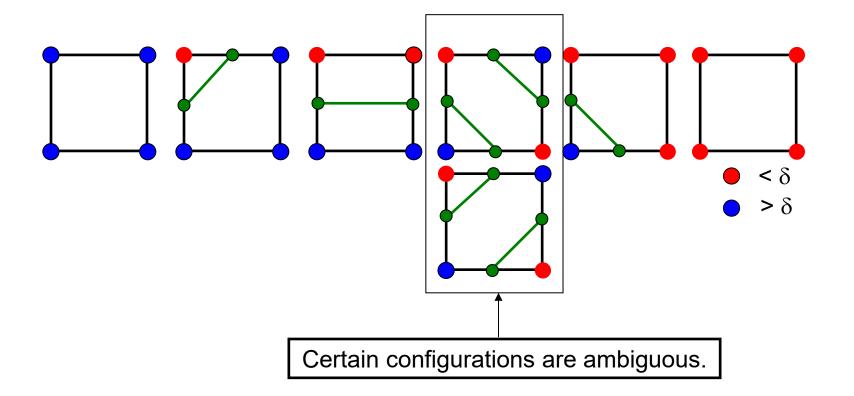


Note: The number of cell edges at which we insert vertices must be even



Iso-Surfaces analog with 2D grid

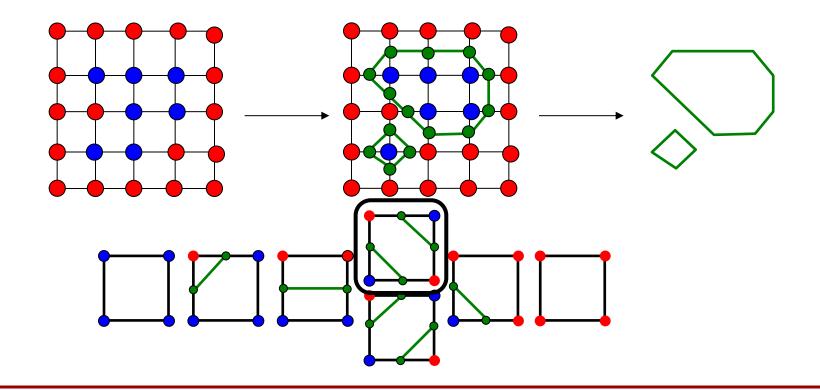
Break up into the  $2^4 = 16$  different possible cases Assign a rule for curve extraction in each case





Iso-Surfaces analog with 2D grid

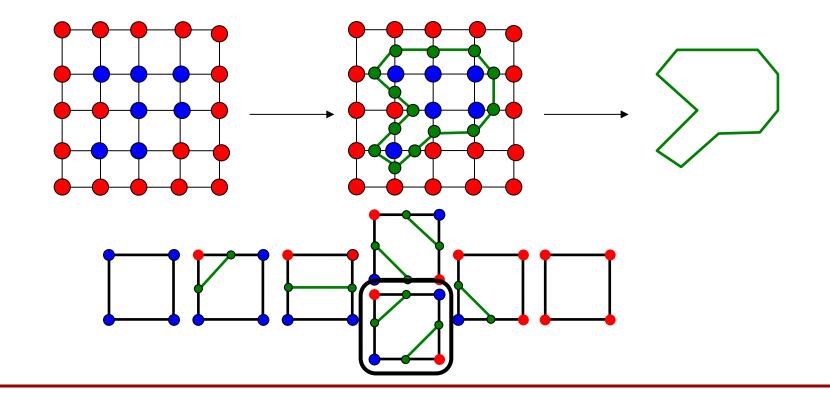
Break up into the  $2^4 = 16$  different possible cases Assign a rule for curve extraction in each case Combine the iso-vertices from the different cells





Iso-Surfaces analog with 2D grid

Break up into the  $2^4 = 16$  different possible cases Assign a rule for curve extraction in each case Combine the iso-vertices from the different cells



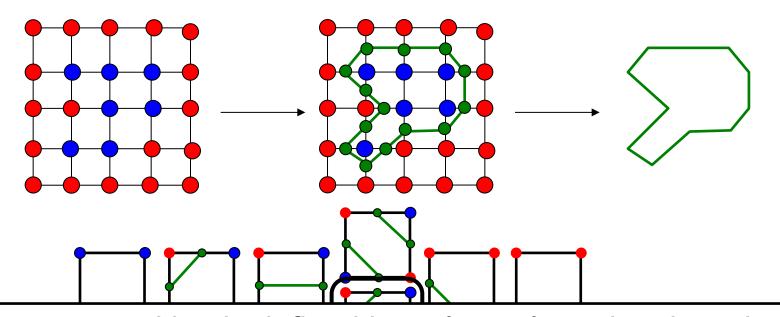


Iso-Surfaces analog with 2D grid

Break up into the  $2^4 = 16$  different possible cases

Assign a rule for curve extraction in each case

Combine the iso-vertices from the different cells



If iso-vertex position is defined by values along the shared edge, adjacent cells will define connected segments.

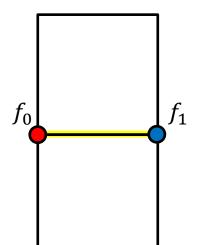


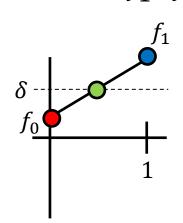
Assigning iso-vertex positions (linear):

Given values  $f_0$  and  $f_1$  at the endpoints of an edge we can fit a linear interpolant:

$$\mathbf{F}(t) = f_0 \cdot (1 - t) + f_1 \cdot t$$

 $\Rightarrow$  The function has value  $F(t) = \delta$  at  $t = \frac{\delta - f_0}{f_1 - f_0}$ .





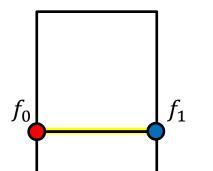


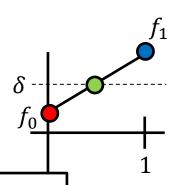
Assigning iso-vertex positions (linear):

Given values  $f_0$  and  $f_1$  at the endpoints of an edge we can fit a linear interpolant:

$$\mathbf{F}(t) = f_0 \cdot (1 - t) + f_1 \cdot t$$

$$\Rightarrow$$
 The function has value  $F(t) = \delta$  at  $t = \frac{\delta - f_0}{f_1 - f_0}$ .





#### Note:

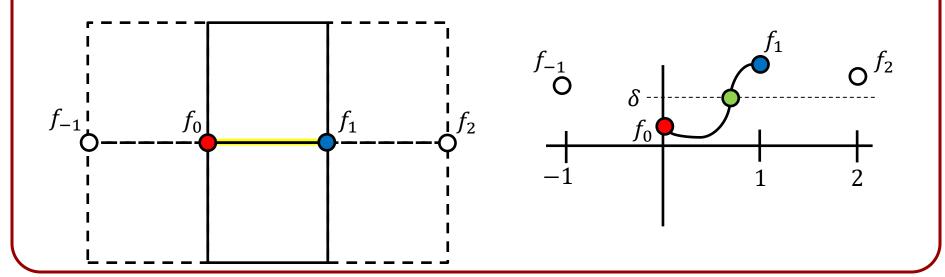
Since both cells see the same values along the shared edge, they both define the same iso-vertex.



Assigning iso-vertex positions (cubic):

If we also know  $f_{-1}$  and  $f_2$  we can fit a Cardinal B-spline to the four values and find the root(s) of the cubic polynomial in the range [0,1]:

$$\mathbf{F}(t) = f_{-1} \cdot BF_0(t) + f_0 \cdot BF_1(t) + f_1 \cdot BF_2(t) + f_2 \cdot BF_3(t)$$



# Marching Cubes Algorithm [Lorensen and Cline, '87]

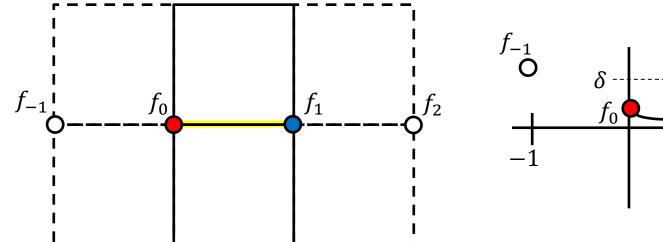


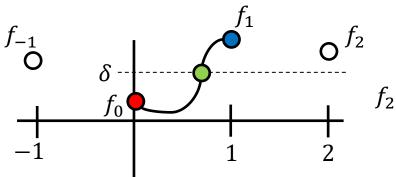
### Note:

Since the spline is interpolating, if  $f_0 < \delta$  and  $f_1 > \delta$  (or viceversa) F(t) will have an odd number of roots in [0,1].

Because it is cubic, F(t) may have 3 roots in [0,1].

- $q \Rightarrow$  We need to choose the zero-crossing consistently.
- ⇒ Same number of iso-vertices as linear interpolation.





# Marching Cubes Algorithm [Lorensen and Cline, '87]

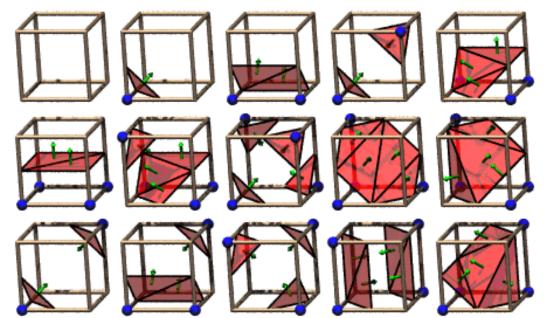


Iso-Surface with 3D grid

Break up into the  $2^8 = 256$  different possible cases

Assign a rule for surface extraction in each case

Combine the iso-triangles from the different cells



The 15 Cube Combinations

Back in the day, a table of 2<sup>8</sup> configurations was too much to store in memory. Leveraging symmetry, [Lorensen and Cline, 1987] reduced it to 15 cases.

# Marching Cubes Algorithm (Informally)



## **Inductively**:

Per edge (1D)

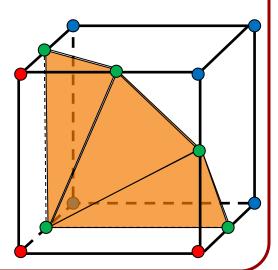
Iso-vertices: Get edge  $\delta$ -crossings

Per face (2D)

Iso-edges: Connect iso-vertices in each face

Per cell (3D)

Iso-triangles: Merge iso-edges and triangulate



# Marching Cubes Algorithm (Informally)



## <u>Inductively</u>:

Per edge (1D)

Iso-vertices: Get edge  $\delta$ -crossings

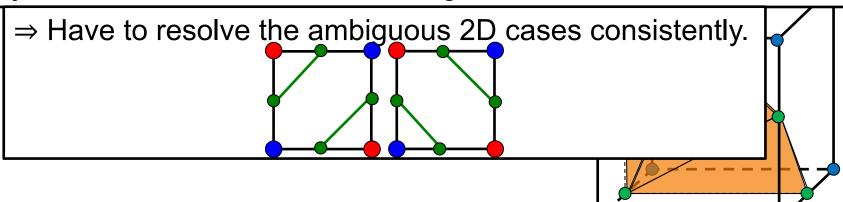
Per face (2D)

Iso-edges: Connect iso-vertices in each face

Per cell (3D)

2D: Adjacent cells need to match iso-vertices across the shared edge.

3D: Adjacent cells need to match iso-edges across the shared face.



### Voxels



Continuous voxel grids are 3D images.

⇒ Operations we applied to 2D images can also be applied to voxel grids:

Sampling

Contrast

Edge detection

**Smoothing** 

## Voxels



Continuous voxel grids are 3D images.

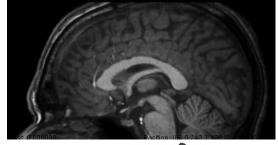
⇒ Operations we applied to 2D images can also be applied to voxel grids:

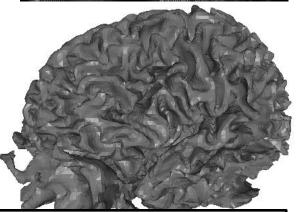
Sampling

**Contrast** 

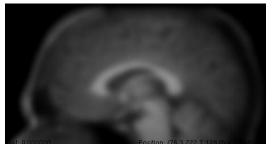
**Edge detection** 

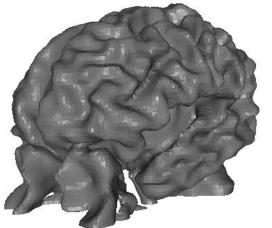
**Smoothing** 











### Voxels



### Advantages

Simple

Same complexity for all objects

Natural acquisition for some applications

Trivial boolean operations

## Disadvantages

**Approximate** 

Not affine invariant

Large storage requirements

**Expensive display** 

## **Solid Modeling Representations**



Implicit Surfaces

Voxels

**Quadtrees & Octrees** 

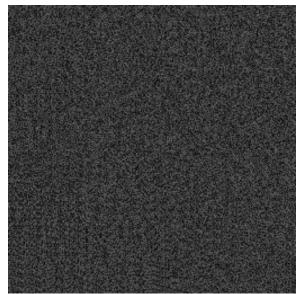
# Quadtrees(2D) & Octrees(3D)

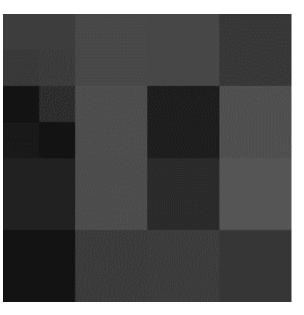


Refine resolution of voxels hierarchically

Outside Inside







**Uniform Voxels** 

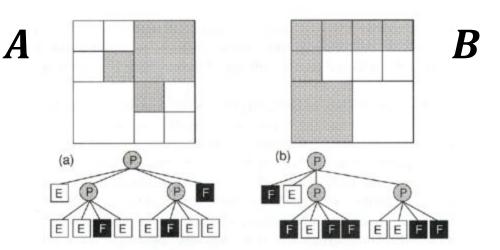
Octree

# Quadtrees(2D) and Octrees(3D)



#### Cell ordering:

- 1. bottom left
- 2. bottom right
- 3. top left
- 4. top right

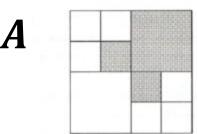


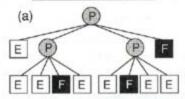
Expected complexity: number of nodes ≅ to perimeter or surface area

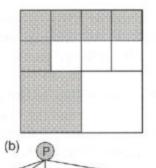
# Binary Quadtree Boolean Operations

#### Cell ordering:

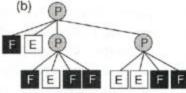
- 1. bottom left
- 2. bottom right
- 3. top left
- 4. top right



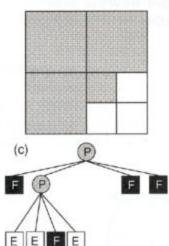


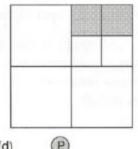


 $\boldsymbol{B}$ 



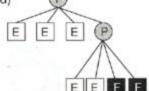
 $A \cup B$ 







 $A \cap B$ 

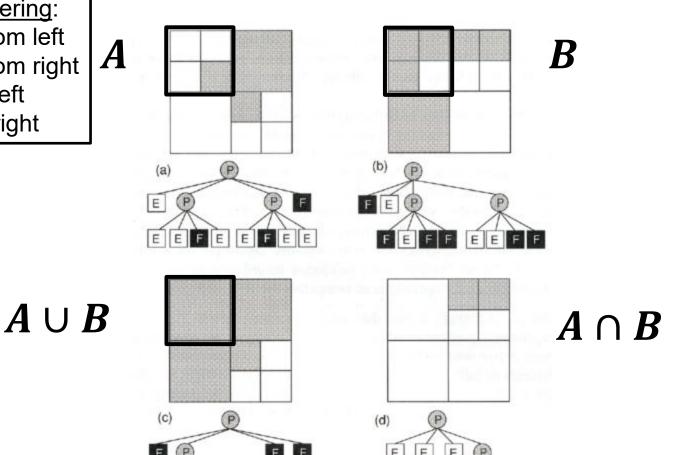


# Binary Quadtree Boolean Operations

# n

#### Cell ordering:

- 1. bottom left
- 2. bottom right
- 3. top left
- 4. top right



If the operation results in <u>all</u> child nodes being marked empty/full

Remove the children and mark the parent

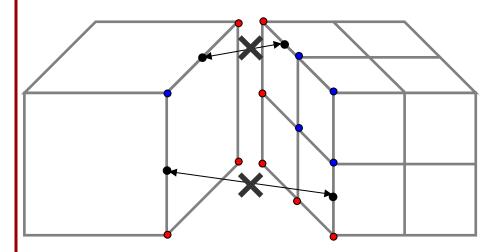


Extend voxel methods

Slicing

Ray casting

Iso-surface extraction



How to define positions of  $\delta$ -crossings along edges shared by cells at different resolutions?

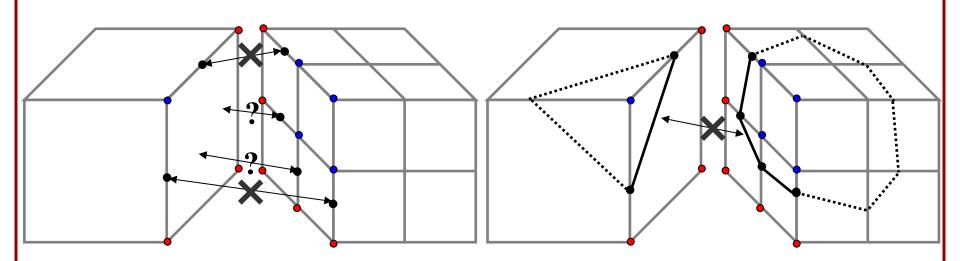


Extend voxel methods

Slicing

Ray casting

Iso-surface extraction



How to handle the situation when vertices on one side of a face do not exist on the other?

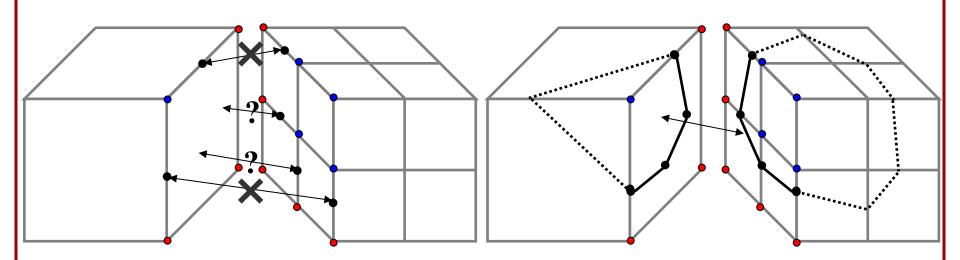


Extend voxel methods

Slicing

Ray casting

Iso-surface extraction



### **General Approach:**

Copy from the finer faces to the coarser one.

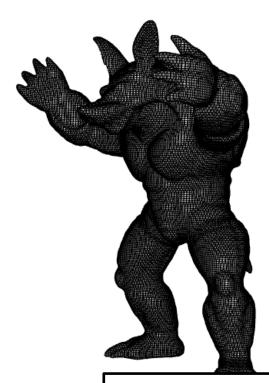


Extend voxel methods

Slicing

Ray casting

Iso-surface extraction





Octree adapted to surface curvature



Extend voxel methods

Slicing

Ray casting

Iso-surface extraction





Octree adapted to surface curvature