

Parametric Surfaces

Michael Kazhdan

(601.457/657)

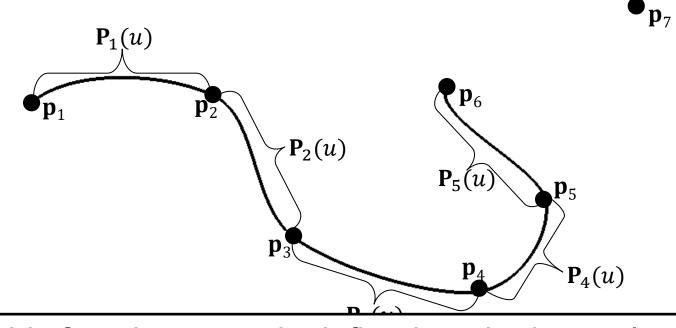
Outline

Spline Surfaces

Sweep Surfaces

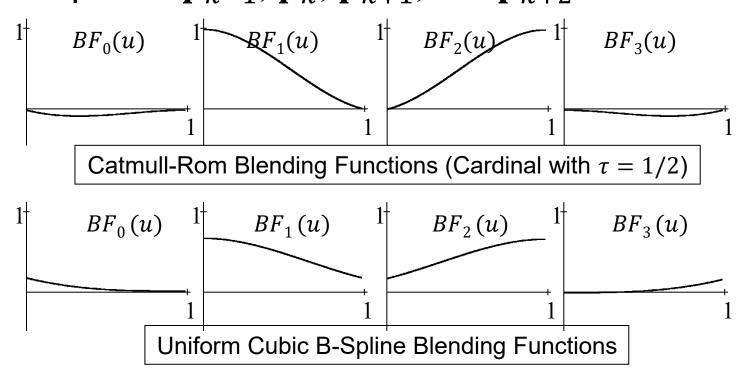
Cubic Splines

Given n+1 control points, $\{\mathbf{p}_0, ..., \mathbf{p}_n\}$, we define n-2 cubic polynomial functions $\{\mathbf{P}_1(u), ..., \mathbf{P}_{n-2}(u)\}$ that jointly describe a curve that approximates l interpolates the control points.



Each cubic function $\mathbf{P}_k(u)$ is defined on the interval $0 \le u \le 1$ and is determined by the points \mathbf{p}_{k-1} , \mathbf{p}_k , \mathbf{p}_{k+1} , and \mathbf{p}_{k+2} .

Blending functions provide a way for expressing the functions $\mathbf{P}_k(u)$ as a weighted sum of the four control points \mathbf{p}_{k-1} , \mathbf{p}_k , \mathbf{p}_{k+1} , and \mathbf{p}_{k+2} :



$$\mathbf{P}_k(u) = BF_0(u) \cdot \mathbf{p}_{k-1} + BF_1(u) \cdot \mathbf{p}_k + BF_2(u) \cdot \mathbf{p}_{k+1} + BF_3(u) \cdot \mathbf{p}_{k+2}$$

Blending Functions

For spline curves, we need/want:

Translation Equivariance:

$$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$$
 for all $0 \le u \le 1$.

• *n*-th Order Continuity:

$$0 = BF_0^n(1)$$

$$BF_0^n(0) = BF_1^n(1)$$

$$BF_1^n(0) = BF_2^n(1)$$

$$BF_2^n(0) = BF_3^n(1)$$

$$BF_3^n(0) = 0$$

Convex Hull Containment:

$$BF_0(u), BF_1(u), BF_2(u), BF_3(u) \ge 0$$
, for all $0 \le u \le 1$.

Interpolation:

$$BF_0(0) & 0 & BF_0(1) & 0 \\
BF_1(0) & = 1 & \text{and} & BF_1(1) & = 0 \\
BF_2(0) & 0 & BF_2(1) & = 1 \\
BF_3(0) & 0 & BF_3(1) & 0$$

$$\mathbf{P}_k(u) = BF_0(u) \cdot \mathbf{p}_{k-1} + BF_1(u) \cdot \mathbf{p}_k + BF_2(u) \cdot \mathbf{p}_{k+1} + BF_3(u) \cdot \mathbf{p}_{k+2}$$

Overview

From Curves to surfaces

Spline Curves and Blending Functions

Weighted Averaging

Spline Surfaces

Spline Surface Properties

Suppose we have values:

$$\mathbf{v}_1$$
, \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 ,

and (averaging) weights:

$$\alpha_1$$
, α_2 , α_3 , and α_4 , with $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$, β_1 , β_2 , β_3 , and β_4 , with $\beta_1 + \beta_2 + \beta_3 + \beta_4 = 1$.

We can express the weighted average of the \mathbf{v}_i as:

$$\sum_{i=1}^{4} \alpha_i \mathbf{v}_i = (\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4) \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{pmatrix} \quad \sum_{i=1}^{4} \beta_i \mathbf{v}_i = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3 \quad \mathbf{v}_4) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}$$

If we have a matrix of values:

$$\begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix}$$

multiplying on the **left** by $(\alpha_1 \alpha_2 \alpha_3 \alpha_4)$ gives:

$$(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4) \begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix}$$

If we have a matrix of values:

$$\begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix}$$

multiplying on the **left** by $(\alpha_1 \alpha_2 \alpha_3 \alpha_4)$ gives:

multiplying on the **left** by
$$(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$$
 gives:
$$(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) \begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix} = \begin{pmatrix} \sum \alpha_i \mathbf{v}_{1i} \\ \sum \alpha_i \mathbf{v}_{2i} \\ \sum \alpha_i \mathbf{v}_{2i} \\ \sum \alpha_i \mathbf{v}_{3i} \\ \sum \alpha_i \mathbf{v}_{3i} \\ \sum \alpha_i \mathbf{v}_{3i} \end{pmatrix}$$
... A **row** vector whose entries are the weighted average of the matrix's columns.

If we have a matrix of values:

$$\begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix}$$

multiplying on the **right** by $(\beta_1 \beta_2 \beta_3 \beta_4)^T$ gives:

$$\begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} = \begin{pmatrix} \sum \beta_j \mathbf{v}_{j2} \\ \sum \beta_j \mathbf{v}_{j2} \\ \sum \beta_j \mathbf{v}_{j3} \\ \sum \beta_j \mathbf{v}_{j3} \end{pmatrix}$$
 with entries that are the the matrix's rows.

... A **column** vector with entries that are the weighted average of the matrix's rows.

Simultaneously multiplying on the left by $(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$ and on the right by $(\beta_1 \ \beta_2 \ \beta_3 \ \beta_4)^{\mathsf{T}}$ gives:

$$(\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4) \begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix}$$

Simultaneously multiplying on the left by $(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$ and on the right by $(\beta_1 \ \beta_2 \ \beta_3 \ \beta_4)^{\mathsf{T}}$ gives:

$$(\alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4}) \begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{4} \end{pmatrix} = \sum_{i,j=1}^{4} \alpha_{j} \beta_{i} \mathbf{v}_{ij}$$

 \Rightarrow The weighted sum of the \mathbf{v}_{ij} , weighted by $\alpha_i\beta_i$.

<u>Claim</u>: This is a weighted average of the \mathbf{v}_{ij} :

To show this, we show that the total sum of the weights $\alpha_i \beta_j$ is equal to 1.

Simultaneously multiplying on the left by $(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$ and on the right by $(\beta_1 \ \beta_2 \ \beta_3 \ \beta_4)^{\mathsf{T}}$ gives:

$$(\alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4}) \begin{pmatrix} \mathbf{v}_{11} & \mathbf{v}_{21} & \mathbf{v}_{31} & \mathbf{v}_{41} \\ \mathbf{v}_{12} & \mathbf{v}_{22} & \mathbf{v}_{32} & \mathbf{v}_{42} \\ \mathbf{v}_{13} & \mathbf{v}_{23} & \mathbf{v}_{33} & \mathbf{v}_{43} \\ \mathbf{v}_{14} & \mathbf{v}_{24} & \mathbf{v}_{34} & \mathbf{v}_{44} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{4} \end{pmatrix} = \sum_{i,j=1}^{4} \alpha_{j} \beta_{i} \mathbf{v}_{ij}$$

 \Rightarrow The weighted sum of the \mathbf{v}_{ij} , weighted by $\alpha_i \beta_i$.

<u>Claim</u>: This is a weighted average of the \mathbf{v}_{ij} :

$$\sum_{i,j=1}^{4} \alpha_i \beta_j = \sum_{i=1}^{4} \alpha_i \left(\sum_{j=1}^{4} \beta_j \right)$$
$$= \sum_{i=1}^{4} \alpha_i = 1$$

Overview

From Curves to surfaces

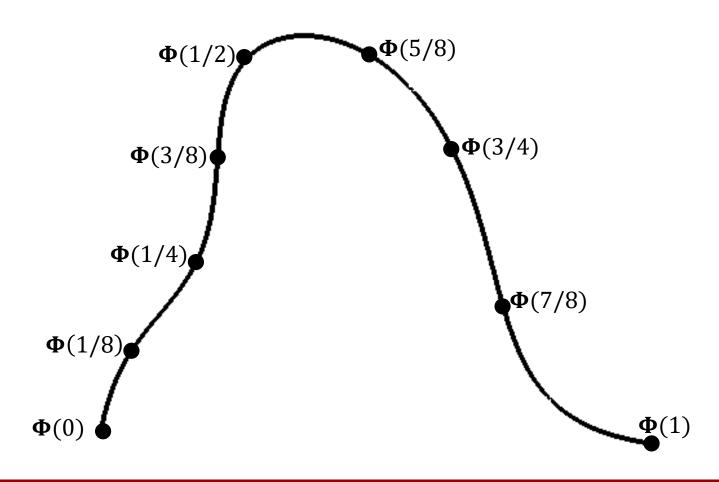
Spline Curves and Blending Functions

Weighted Averaging

Spline Surfaces

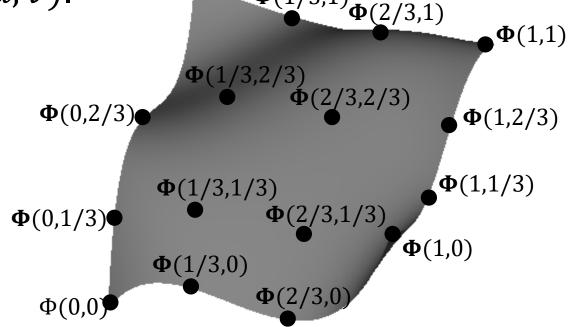
Spline Surface Properties

A parametric curve is a function in one variable $\Phi(u)$ associating a position to every value of u.

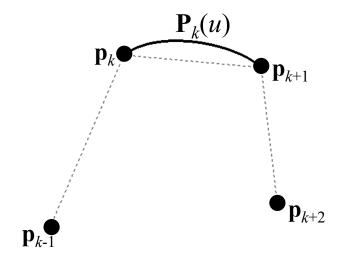


A parametric curve is a function in one variable $\Phi(u)$ associating a position to every value of u.

A parametric patch/surface is a function in two variables $\Phi(u, v)$ associating a position to every pair of values of (u, v). $\Phi(0,1) = \Phi(1/3,1) \Phi(2/3,1)$

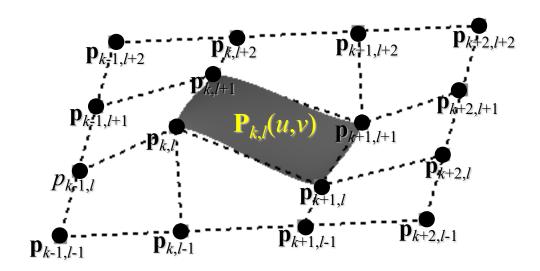


We use **four** control points to define a **cubic** polynomial $P_k(u)$ in one variable $(0 \le u \le 1)$.



We use **four** control points to define a **cubic** polynomial $P_k(u)$ in one variable $(0 \le u \le 1)$.

We use $\mathbf{4} \times \mathbf{4}$ control points to define a **bi-cubic** polynomial $\mathbf{P}_{k,l}(u,v)$ in two variables $(0 \le u,v \le 1)$.



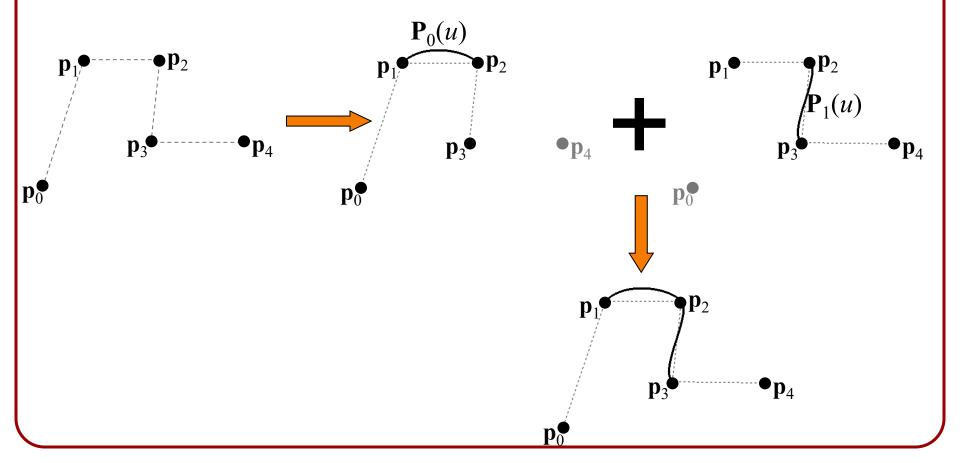
We use **four** control points to define a **cubic** polynomial $P_k(u)$ in one variable $(0 \le u \le 1)$.

We use 4×4 control points to define a **bi-cubic** polynomial $P_{k,l}(u,v)$ in two variables $(0 \le u,v \le 1)$.

A *bi-cubic polynomial* is a polynomial which is cubic in each variable:

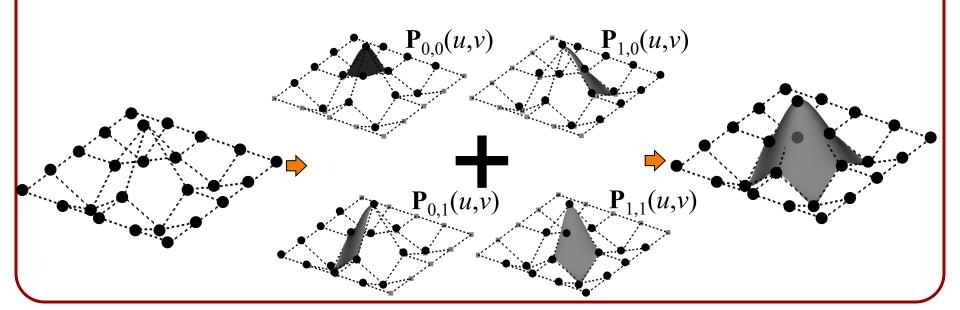
$$\mathbf{P}(u, v) = \mathbf{a}u^{3}v^{3} +
+ \mathbf{b}u^{3}v^{2} + \mathbf{c}u^{2}v^{3} +
+ \mathbf{d}u^{2}v^{2} + \mathbf{e}u^{1}v^{3} + \mathbf{f}u^{3}v^{1} +
+ \cdots$$

Given n points, we fit a **piecewise** cubic curve consisting of n-3 segments to the points.

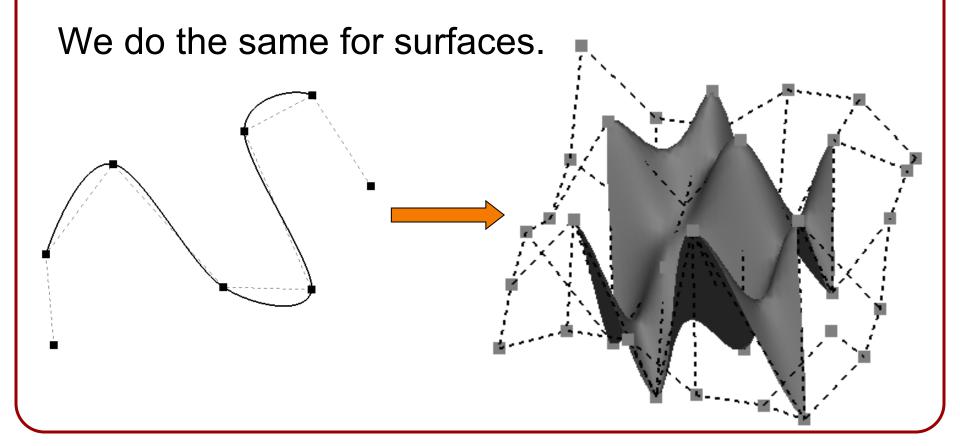


Given n points, we fit a **piecewise** cubic curve consisting of n-3 segments to the points.

Given $n \times m$ points, we fit a **piecewise** bi-cubic surface, consisting of $(n-3) \times (m-3)$ patches to the points.



We generate spline curves by using the blending function to compute the weighted average of the control points.



Recall

For a cubic segment of a spline curve, we express the spline curve in matrix form as:

$$\mathbf{P}_{k}(u) = (BF_{0}(u) \quad BF_{1}(u) \quad BF_{2}(u) \quad BF_{3}(u)) \begin{pmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{pmatrix}$$

Recall

For a cubic segment of a spline curve, we express the spline curve in matrix form as:

$$\mathbf{P}_{k}(u) = (BF_{0}(u) \quad BF_{1}(u) \quad BF_{2}(u) \quad BF_{3}(u)) \begin{pmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{pmatrix} = \begin{pmatrix} BF_{0}(u) \\ BF_{1}(u) \\ BF_{2}(u) \\ BF_{3}(u) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{pmatrix}$$

Since the sum of the $BF_i(u)$ equals 1, this is a weighted average of the control points.

If we are given a 4×4 array of control points, we can define a bi-cubic spline patch similarly:

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

Since, the sum of the $BF_i(u)$ equals 1, $P_{k,l}(u,v)$ is a weighted **average** of the control points.

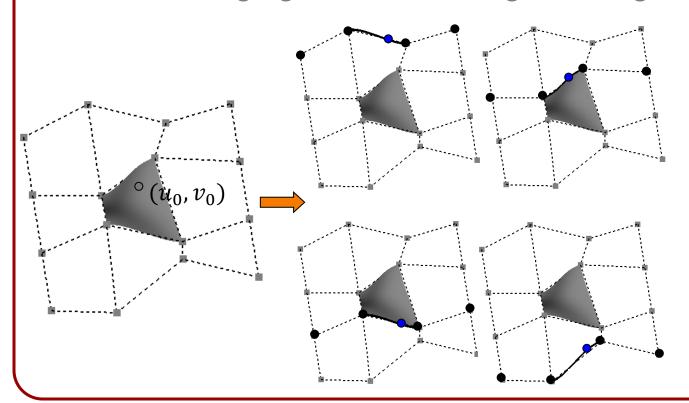
Computing the value of the patch at a point (u_0, v_0) amounts to:

- 1. Averaging the rows using the weights $BF_i(u_0)$
- 2. Averaging the result using the weights $BF_i(v_0)$.

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

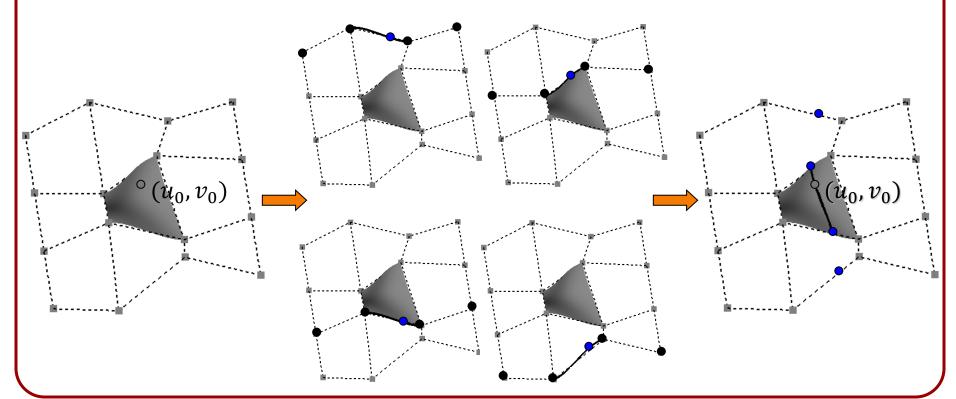
Computing the value of the patch at a point (u_0, v_0) amounts to:

- 1. Averaging the rows using the weights $BF_i(u_0)$
- 2. Averaging the result using the weights $BF_i(v_0)$.



Computing the value of the patch at a point (u_0, v_0) amounts to:

- 1. Averaging the rows using the weights $BF_i(u_0)$
- 2. Averaging the result using the weights $BF_i(v_0)$.



$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

$$\mathbf{P}_{k,l}(u,v) = BF_0(u) \cdot BF_0(v) \cdot \mathbf{p}_{k-1,l-1} + BF_1(u) \cdot BF_0(v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_0(u) \cdot BF_1(v) \cdot \mathbf{p}_{k-1,l} + BF_1(u) \cdot BF_1(v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

⇒ Setting
$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$
 we get:

$$\mathbf{P}_{k,l}(u,v) = BF_{0,0}(u,v) \cdot \mathbf{p}_{k-1,l-1} + BF_{1,0}(u,v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_{0,1}(u,v) \cdot \mathbf{p}_{k-1,l} + BF_{1,1}(u,v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

$$\mathbf{P}_{k,l}(u,v) = BF_0(u) \cdot BF_0(v) \cdot \mathbf{p}_{k-1,l-1} + BF_1(u) \cdot BF_0(v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_0(u) \cdot BF_1(v) \cdot \mathbf{p}_{k-1,l} + BF_1(u) \cdot BF_1(v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

⇒ Setting
$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$
 we get:

$$\mathbf{P}_{k,l}(u,v) = BF_{0,0}(u,v) \cdot \mathbf{p}_{k-1,l-1} + BF_{1,0}(u,v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_{0,1}(u,v) \cdot \mathbf{p}_{k-1,l} + BF_{1,1}(u,v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

$$\mathbf{P}_{k,l}(u,v) = BF_0(u) \cdot BF_0(v) \cdot \mathbf{p}_{k-1,l-1} + BF_1(u) \cdot BF_0(v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_0(u) \cdot BF_1(v) \cdot \mathbf{p}_{k-1,l} + BF_1(u) \cdot BF_1(v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

⇒ Setting
$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$
 we get:

$$\mathbf{P}_{k,l}(u,v) = BF_{0,0}(u,v) \cdot \mathbf{p}_{k-1,l-1} + BF_{1,0}(u,v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_{0,1}(u,v) \cdot \mathbf{p}_{k-1,l} + BF_{1,1}(u,v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

$$\mathbf{P}_{k,l}(u,v) = BF_0(u) \cdot BF_0(v) \cdot \mathbf{p}_{k-1,l-1} + BF_1(u) \cdot BF_0(v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_0(u) \cdot BF_1(v) \cdot \mathbf{p}_{k-1,l} + BF_1(u) \cdot BF_1(v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

⇒ Setting
$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$
 we get:

$$\mathbf{P}_{k,l}(u,v) = BF_{0.0}(u,v) \cdot \mathbf{p}_{k-1,l-1} + BF_{1,0}(u,v) \cdot \mathbf{p}_{k,l-1} + \cdots$$

$$+ BF_{0,1}(u,v) \cdot \mathbf{p}_{k-1,l} + BF_{1,1}(u,v) \cdot \mathbf{p}_{k,l} + \cdots$$

$$+ \cdots$$

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{I}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

$$\mathbf{P}_{k,l}(u,v) = BF_0(u) \cdot BF_0(v) \cdot \mathbf{p}_{k-1,l-1} + BF_1(u) \cdot BF_0(v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_0(u) \cdot BF_1(v) \cdot \mathbf{p}_{k-1,l} + BF_1(u) \cdot BF_1(v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

⇒ Setting
$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$
 we get:

$$\mathbf{P}_{k,l}(u,v) = BF_{0,0}(u,v) \cdot \mathbf{p}_{k-1,l-1} + BF_{1,0}(u,v) \cdot \mathbf{p}_{k,l-1} + \cdots + BF_{0,1}(u,v) \cdot \mathbf{p}_{k-1,l} + BF_{1,1}(u,v) \cdot \mathbf{p}_{k,l} + \cdots + \cdots$$

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

Recall that we can write out blending functions as:

$$(BF_0(u) \quad BF_1(u) \quad BF_2(u) \quad BF_3(u))^{\mathsf{T}} = \mathbf{M}_{\mathsf{Spline}} U$$

with $U^{\mathsf{T}} = (u^3 \ u^2 \ u \ 1)$ and $\mathbf{M}_{\mathrm{Spline}}$ the spline matrix.

This gives:

$$\mathbf{P}_{k,l}(u,v) = V^{\mathsf{T}} \mathbf{M}_{\mathrm{Spline}}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \mathbf{M}_{\mathrm{Spline}} U$$

with
$$V^{T} = (v^{3} v^{2} v 1)$$
.

$$\mathbf{P}_{k,l}(u,v) = \begin{pmatrix} BF_0(v) \\ BF_1(v) \\ BF_2(v) \\ BF_3(v) \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \begin{pmatrix} BF_0(u) \\ BF_1(u) \\ BF_2(u) \\ BF_3(u) \end{pmatrix}$$

Recall that we can write out blending functions as:

$$(BF_0(u) \quad BF_1(u) \quad BF_2(u) \quad BF_3(u))^{\mathsf{T}} = \mathbf{M}_{\mathsf{Spline}} U$$

Surface splines that are obtained from curve splines in this way are referred to as *tensor product splines*.

$$\mathbf{P}_{k,l}(u,v) = V^{\mathsf{T}} \mathbf{M}_{\mathsf{Spline}}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \mathbf{M}_{\mathsf{Spline}} U$$

with $V^{T} = (v^{3} v^{2} v 1)$.

We can choose our favorite spline curve (Cardinal, uniform cubic-B, etc.) and use its blending functions to define a spline patch:

$$\mathbf{P}_{k,l}(u,v) = V^{\mathsf{T}} \mathbf{M}_{\mathrm{Spline}}^{\mathsf{T}} \begin{pmatrix} \mathbf{p}_{k-1,l-1} & \mathbf{p}_{k,l-1} & \mathbf{p}_{k+1,l-1} & \mathbf{p}_{k+2,l-1} \\ \mathbf{p}_{k-1,l} & \mathbf{p}_{k,l} & \mathbf{p}_{k+1,l} & \mathbf{p}_{k+2,l} \\ \mathbf{p}_{k-1,l+1} & \mathbf{p}_{k,l+1} & \mathbf{p}_{k+1,l+1} & \mathbf{p}_{k+2,l+1} \\ \mathbf{p}_{k-1,l+2} & \mathbf{p}_{k,l+2} & \mathbf{p}_{k+1,l+2} & \mathbf{p}_{k+2,l+2} \end{pmatrix} \mathbf{M}_{\mathrm{Spline}} U$$

Overview

From Curves to surfaces

Spline Curves and Blending Functions

Weighted Averaging

Spline Surfaces

Spline Surface Properties

Blending Functions

For spline curves, we want:

Translation Equivariance:

$$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$$
 for all $0 \le u \le 1$.

• *n*-th Order Continuity:

$$0 = BF_0^n(1)$$

$$BF_0^n(0) = BF_1^n(1)$$

$$BF_1^n(0) = BF_2^n(1)$$

$$BF_2^n(0) = BF_3^n(1)$$

$$BF_3^n(0) = 0$$

Convex Hull Containment:

$$BF_0(u), BF_1(u), BF_2(u), BF_3(u) \ge 0$$
, for all $0 \le u \le 1$.

Interpolation:

$$BF_0(0) = 0$$
 $BF_0(1) = 0$
 $BF_1(0) = 1$ and $BF_1(1) = 0$
 $BF_2(0) = 0$ $BF_2(1) = 1$
 $BF_3(0) = 0$ $BF_3(1) = 0$

Do tensor product splines satisfy these conditions?

<u>Translation equivariance</u>:

As with curves, we need the sum of the blending functions $BF_{i,i}(u,v)$ to equal 1.

But since

$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$

if the $BF_i(u)$ are weighting functions that sum to 1, then the tensor product functions $BF_{i,j}(u,v)$ also sum to 1.

Continuity:

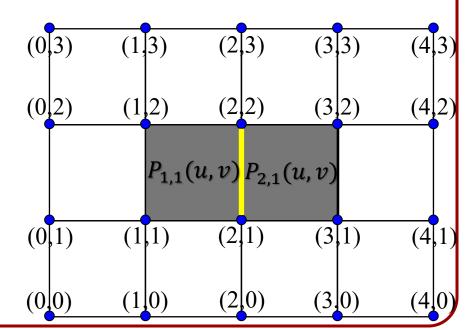
W.L.O.G. consider continuity along the yellow edge:

$$0 = \mathbf{P}_{1,1}(1, v) - \mathbf{P}_{2,1}(0, v) \quad \forall 0 \le v \le 1$$

$$\downarrow \downarrow$$

$$0 = \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p}_{i,j} - \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(0, v) \cdot \mathbf{p}_{i+1,j}$$

Re-index the second term so that the control point indices match.



Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \mathbf{P}_{1,1}(1, v) - \mathbf{P}_{2,1}(0, v) \quad \forall 0 \le v \le 1$$

$$0 = \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p}_{i,j} - \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(0, v) \cdot \mathbf{p}_{i+1,j}$$

$$0 = \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p}_{i,j} - \sum_{i=1}^{4} \sum_{j=0}^{3} B_{i-1,j}(0, v) \cdot \mathbf{p}_{i,j}$$

Decompose the equation in terms of the control points shared by both patches.

$${\bf p}_{i,j} \ \ {\rm w}/\ 1 \le i \le 3 \ {\rm and} \ 0 \le j \le 3$$

Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \mathbf{P_{1,1}}(1, v) - \mathbf{P_{2,1}}(0, v) \quad \forall 0 \le v \le 1$$

$$0 = \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p_{i,j}} - \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(0, v) \cdot \mathbf{p_{i+1,j}}$$

$$0 = \sum_{i=0}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p_{i,j}} - \sum_{i=1}^{4} \sum_{j=0}^{3} B_{i-1,j}(0, v) \cdot \mathbf{p_{i,j}}$$

$$0 = \sum_{i=0}^{3} B_{\mathbf{0,j}}(1, v) \cdot \mathbf{p_{0,j}} + \sum_{i=1}^{3} \sum_{j=0}^{3} B_{i,j}(1, v) \cdot \mathbf{p_{i,j}} - \sum_{i=1}^{3} \sum_{j=0}^{3} B_{i-1,j}(0, v) \cdot \mathbf{p_{i,j}} - \sum_{i=0}^{3} B_{\mathbf{3,j}}(0, v) \cdot \mathbf{p_{4,j}}$$

Combine terms using the same control points.

Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \mathbf{P_{1,1}}(1, v) - \mathbf{P_{2,1}}(0, v) \quad \forall 0 \leq v \leq 1$$

$$\downarrow \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \sum_{j=0}^{3} B_{0,j}(1,v) \cdot \mathbf{p}_{0,j} + \sum_{i=1}^{3} \sum_{j=0}^{3} \left(B_{i,j}(1,v) - B_{i-1,j}(0,v) \right) \cdot \mathbf{p}_{i,j} - \sum_{j=0}^{3} B_{3,j}(0,v) \cdot \mathbf{p}_{4,j}$$

For this to be true for all control points \mathbf{p}_{ij} , we need:

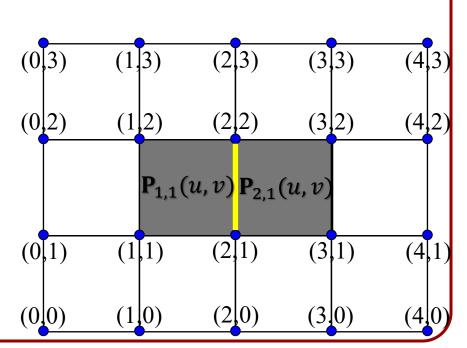
$$\circ B_{0,j}(1,v) = B_{3,j}(0,v) = 0$$

$$\circ B_{1,j}(1,v) = B_{0,j}(0,v)$$

$$\circ B_{2,j}(1,v) = B_{1,j}(0,v)$$

$$\circ B_{3,j}(1,v) = B_{2,j}(0,v)$$

for all $v \in [0,1]$



Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \sum_{j=0}^{3} B_{0,j}(1,v) \cdot \mathbf{p}_{0,j} + \sum_{i=1}^{3} \sum_{j=0}^{3} \left(B_{i,j}(1,v) - B_{i-1,j}(0,v) \right) \cdot \mathbf{p}_{i,j} - \sum_{j=0}^{3} B_{3,j}(0,v) \cdot \mathbf{p}_{4,j}$$

For this to be true for all control points \mathbf{p}_{ij} , we need:

$$\circ B_{0,j}(1,v) = B_{3,j}(0,v) = 0$$

$$\circ B_{1,j}(1,v) = B_{0,j}(0,v)$$

$$B_{1,j}(1,0) B_{0,j}(0,0)$$
 (0,3) (1,3) (2,3) (3,3) (4,3)
$$B_{2,j}(1,0) B_{0,j}(0,0)$$

$$B_{0,j}(1,v) = B_{3,j}(0,v) = 0$$

for all

$$B_0(1) \cdot B_j(v) = B_3(0) \cdot B_j(v) = 0$$

$$\uparrow$$

$$B_0(1) = B_3(0) = 0$$

Which is satisfied if the 1D B-spline is continuous!

Continuity:

W.L.O.G. consider continuity along the yellow edge:

$$0 = \sum_{j=0}^{3} B_{0,j}(1,v) \cdot \mathbf{p}_{0,j} + \sum_{i=1}^{3} \sum_{j=0}^{3} \left(B_{i,j}(1,v) - B_{i-1,j}(0,v) \right) \cdot \mathbf{p}_{i,j} - \sum_{j=0}^{3} B_{3,j}(0,v) \cdot \mathbf{p}_{4,j}$$

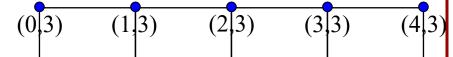
For this to be true for all control points \mathbf{p}_{ii} , we need:

$$B_{0,j}(1,v) = B_{3,j}(0,v) = 0$$

$$\circ B_{1,j}(1,v) = B_{0,j}(0,v)$$

$$\circ B_{2,j}(1,v) = B_{1,j}(0,v)$$

$$\circ B_{3,j}(1,v) = B_{2,j}(0,v)$$



$$(0|2)$$
 $(1|2)$ $(2|2)$ $(3|2)$ $(4|2)$

Similarly, the other continuity conditions for 2D B-splines are satisfied if they are satisfied by the 1D B-spline!

More generally, if the 1D B-spline gives continuous n-th order derivatives, so will the tensor-product.

(4|0)

(4[1])

Convex hull containment:

For convex hull containment we need the weights of the blending function to be non-negative.

If the $BF_i(u)$ are non-negative, then since

$$BF_{i,j}(u,v) = BF_i(u) \cdot BF_j(v)$$

the $BF_{i,j}(u,v)$ will also be non-negative.

Interpolation:

For the spline surface to interpolate, it must satisfy:

»
$$BF_{1,1}(0,0) \neq BF_{1,2}(0,1) = BF_{2,1}(1,0) = BF_{2,2}(1,1) = 1.$$

» All the other blending functions evaluate to 0 at the end-points.

Recall that the spline curve is interpolating if:

$$BF_{0}(0) = BF_{2}(0) = BF_{3}(0) = 0$$

$$BF_{0}(1) = BF_{1}(1) = BF_{3}(1) = 0$$

$$BF_{1}(0) = 1$$

$$BF_{1}(1) = 1$$

$$BF_{2}(0) = 1$$

$$BF_{3}(1) = 0$$

$$(0,2)$$

$$(1,3)$$

$$(2,3)$$

$$(3,3)$$

$$(3,3)$$

$$(3,3)$$

$$(3,3)$$

$$(3,3)$$

$$(3,3)$$

$$(4,3)$$

$$(4,3)$$

$$(4,3)$$

$$(5,3)$$

$$(5,3)$$

$$(5,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

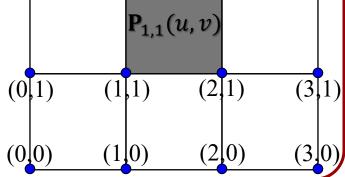
$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$(7,3)$$

$$BF_{1,2}(0,1) = BF_1(0) \cdot BF_2(1)$$



We began by describing properties that we want spline curves to satisfy:

- Translation equivariance
- Continuity
- Convex hull containment
- Interpolation

If the spline curve satisfies these properties, then so will the tensor product spline surface!

We began by describing properties that we want spline curves to satisfy:

- Translation equivariance
- Continuity
- Convex hull containment

As with curves, we can handle boundaries by:

- If the | Ignoring them
- will th. Doubling up
 - Introducing cylindrical/toroidal periodicity

Surface Spline Demo

hen so

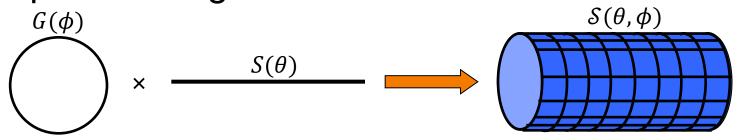
Outline

Spline Surfaces

Sweep Surfaces

Sweeps

Given a 3D sweep curve $S(\theta)$ and a 2D generating curve $G(\phi)$, define the sweep surface $S(\theta, \phi)$ as the sweep of C along H:



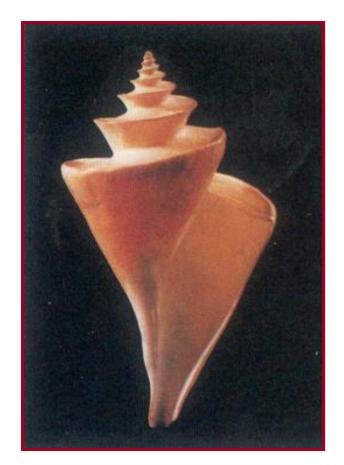
In this example, the sweep curve is used to translate the generating curve:

$$S(\theta, \phi) = S(\theta) + G(\phi)$$

We can define more complex sweep surfaces.

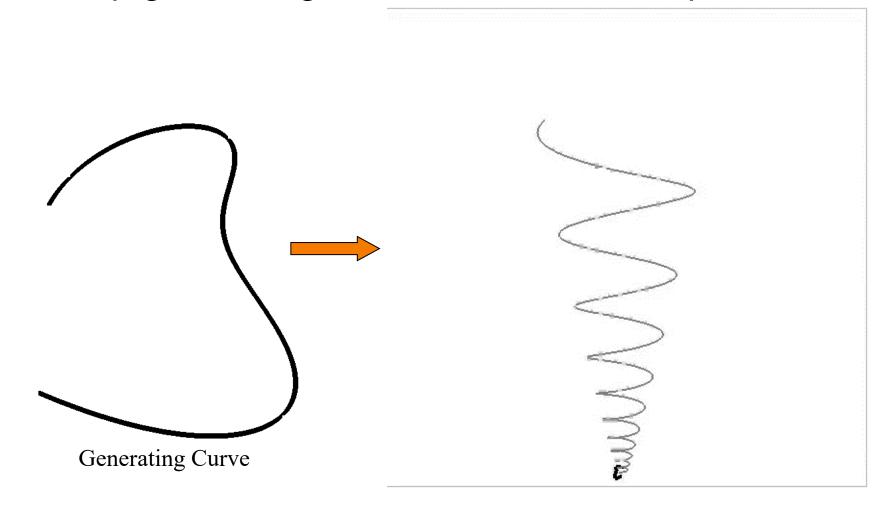
Create 3D polygonal surface models of seashells

"Modeling Seashells,"
Deborah Fowler, Hans Meinhardt,
and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, Illinois, July, 1992, p 379-387.



Fowler et al. Figure 7

Sweep generating curve around helico-spiral axis



Sweep generating curve around helico-spiral axis

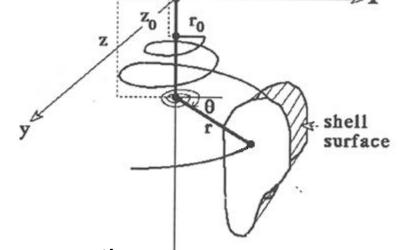
Helico-Spiral definition:

$$S(\theta) = (\cos \theta \cdot r(\theta), z(\theta), \sin \theta \cdot r(\theta))$$

Angle:

Radius:

 $r(\theta) = e^{\lambda \theta}$ $z(\theta) = e^{\mu \theta}$ Height:



If $G(\phi) = (G_x(\phi), G_y(\phi))$ is the generating

Fowler et al. Figure 1

curve, we can try to represent the surface as:

$$S(\theta, \phi) = S(\theta) + (G_{\chi}(\phi), G_{\chi}(\phi), 0) \cdot r(\theta)$$

Sweep generating curve around helico-spiral axis

Helico-Spiral definition:

$$S(\theta) = (\cos \theta \cdot r(\theta), z(\theta), \sin \theta \cdot r(\theta))$$

Angle: θ

Radius: $r(\theta) = e^{\lambda \theta}$

Height: $z(\theta) = e^{\mu\theta}$

This doesn't rotate the generating curve around the axis of the helix!

shell surface

If $G(\phi) = (G_{\chi}(\phi), G_{y}(\phi))$ is the generating

Fowler et al. Figure 1

curve, we can try to represent the surface as:

$$S(\theta, \phi) = S(\theta) + (G_{\chi}(\phi), G_{\chi}(\phi), 0) \cdot r(\theta)$$

Sweep generating curve around helico-spiral axis

Helico-Spiral definition:

$$S(\theta) = (\cos \theta \cdot r(\theta), z(\theta), \sin \theta \cdot r(\theta))$$

Angle:

Radius:

 $r(\theta) = e^{\lambda \theta}$ $z(\theta) = e^{\mu \theta}$ Height:

Compute a local **frame** $\{\vec{u}(\theta), \vec{v}(\theta), \vec{w}\{(\theta)\}\}$ at each point on the sweep curve and describe the surface w.r.t. this frame:

$$S(\theta,\phi) = S(\theta) + \left(\vec{u}(\theta) \cdot G_{\chi}(\phi) + \vec{v}(\theta) \cdot G_{y}(\phi)\right) \cdot r(\theta)$$

Sweet $\vec{u}(\theta)$ and $\vec{v}(\theta)$ define the plane that is perpendicular to the curve H at θ :

- Helico- $| \cdot \vec{w}(\theta) |$ is the curve tangent
 - $\vec{u}(\theta)$ is the curve *normal*

Angle: $| \cdot \vec{v}(\theta) |$ is the curve *bi-tangent* Radius (perpendicular to $\vec{u}(\theta)$ and $\vec{w}(\theta)$)

Height:

Compute a local **frame** $\{\vec{u}(\theta), \vec{v}(\theta), \vec{w}\{(\theta)\}\}$ at each point on the sweep curve and describe the surface w.r.t. this frame:

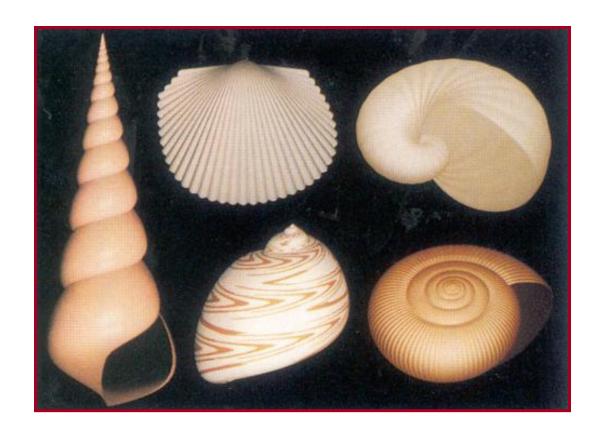
$$S(\theta, \phi) = S(\theta) + \left(\vec{u}(\theta) \cdot G_{\chi}(\phi) + \vec{v}(\theta) \cdot G_{y}(\phi)\right) \cdot r(\theta)$$

axis

shell .

Fowler et al. Figure 1

Generate different shells by varying parameters



Different helico-spirals

Generate different shells by varying parameters

Different generating curves

Generate interesting shells with a simple procedural model!

