

Representing Meshes Parametric Curves

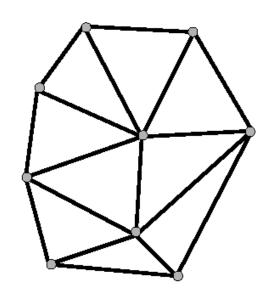
Michael Kazhdan

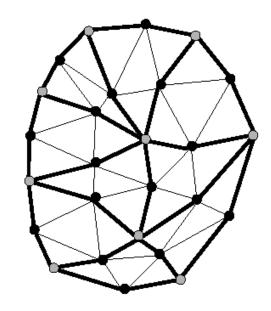
(601.457/657)

Outline

- Representing Meshes
- Parametric Curves

Key Questions

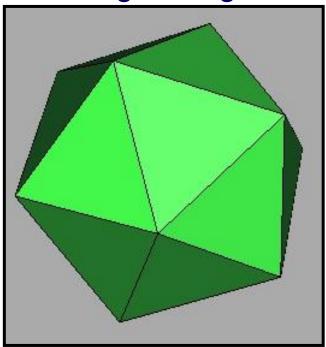



How to refine the mesh?

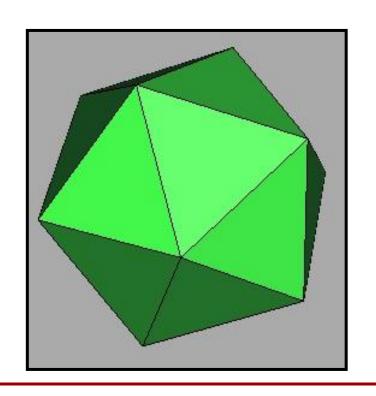
Aim for properties like smoothness

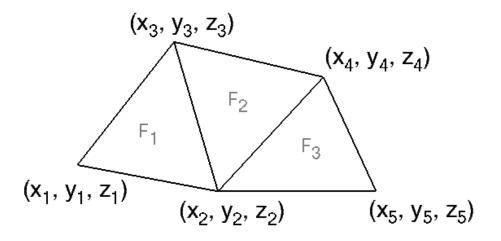
How to store the mesh?

Aim for efficiency in implementing subdivision rules

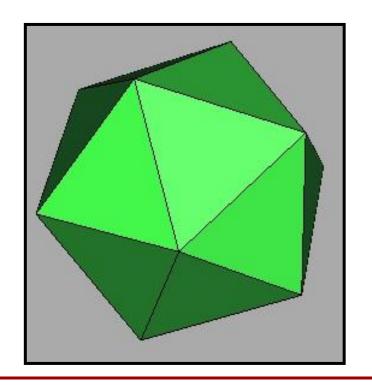

Zorin & Schroeder SIGGRAPH 99 Course Notes

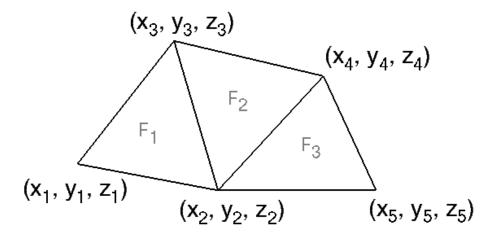
Polygon Meshes

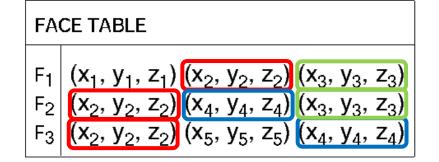

Mesh Representations


- Independent faces
- Vertex and face tables
- Adjacency lists
- Winged-Edge

Each face lists vertex coordinates

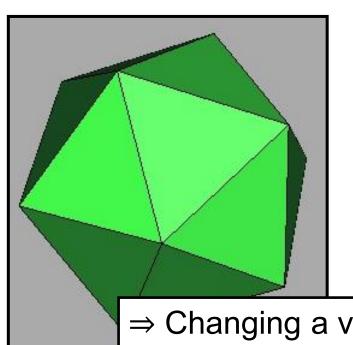


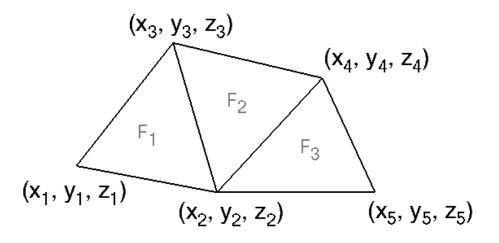

FACE TABLE



Each face lists vertex coordinates

* Redundant vertices

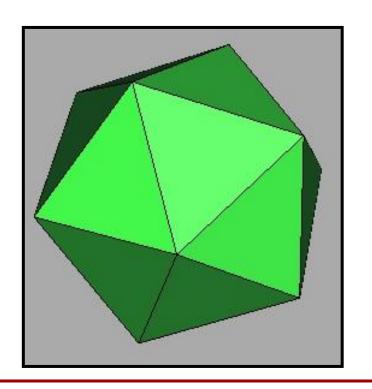


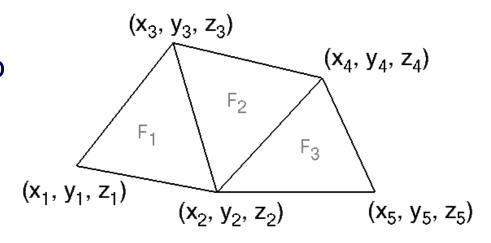


Each face lists vertex coordinates

× Redundant vertices

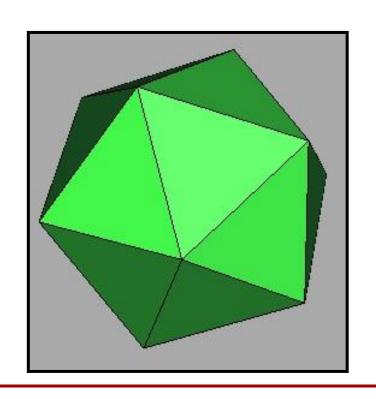
FACE TABLE

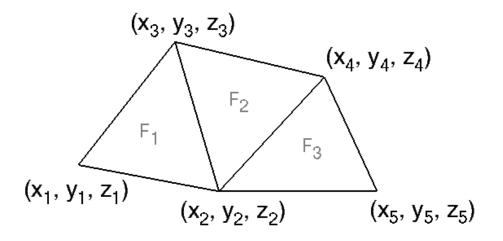

 x_4, y_4, z_4


⇒ Changing a vertex requires changing the coordinates of each instance.

Each face lists vertex coordinates

- × Redundant vertices
- No (efficient/precise)vertex-adjacency info




FACE TABLE

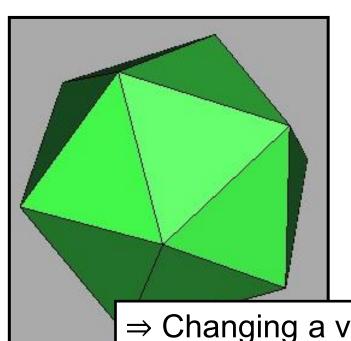
Vertex and Face Tables

Each face lists vertex references

VERTEX TABLE

	X ₁	Y_1	Z_1
V_2	X ₂	Y_2	Z_2
٧3	Х3	Y_3	Z_3
V_4	X_4	Y_4	Z_4
V_5	X ₅	Υ ₅	Z_5
	I		

FACE TABLE


F_1	٧1	V_2	٧3
F_2	٧2	V_4	V_3
F ₃	V ₂ V ₂	V_5	V_4


Vertex and Face Tables

Each face lists vertex references

✓ Shared vertices

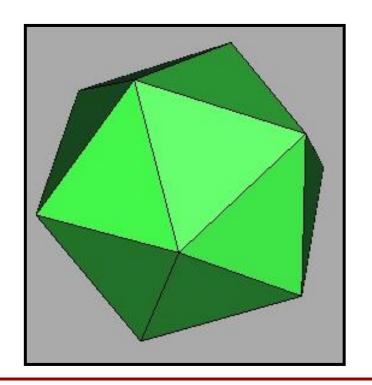
VERTEX TABLE

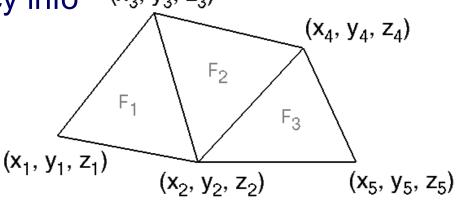
 $\begin{array}{c|ccccc} V_1 & X_1 & Y_1 & Z_1 \\ V_2 & X_2 & Y_2 & Z_2 \\ V_3 & X_3 & Y_3 & Z_3 \\ V_4 & X_4 & Y_4 & Z_4 \end{array}$

FACE TABLE

F₁ V₁ V₂ V₃ F₂ V₂ V₄ V₃ F₃ V₂ V₅ V₄

⇒ Changing a vertex requires changing the coordinates of a single point.


Vertex and Face Tables



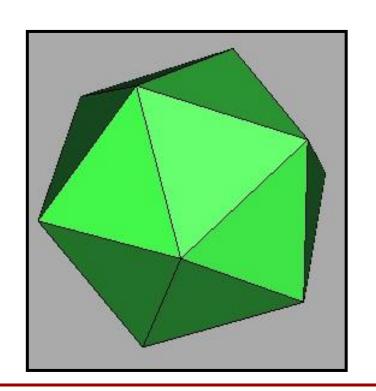
Each face lists vertex references

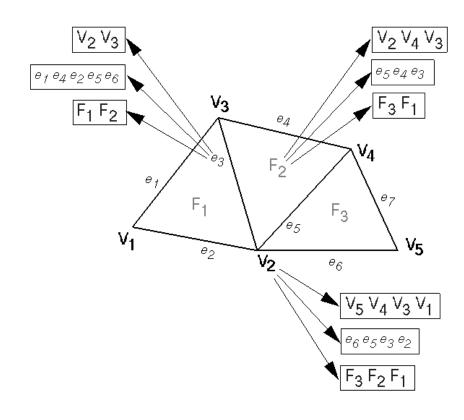
✓ Shared vertices

★ No (efficient) adjacency info (x₃, y₃, z₃)

VERTEX TABLE

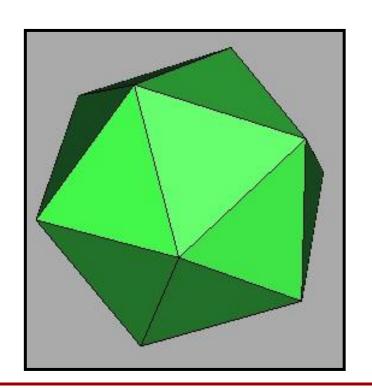
V ₁	X ₁	Υ ₁	Z ₁
	X ₂		Z_2
	Х3		Z_3
V_4	X_4	Y_4	Z_4
V_5	X ₅	Υ ₅	Z_5

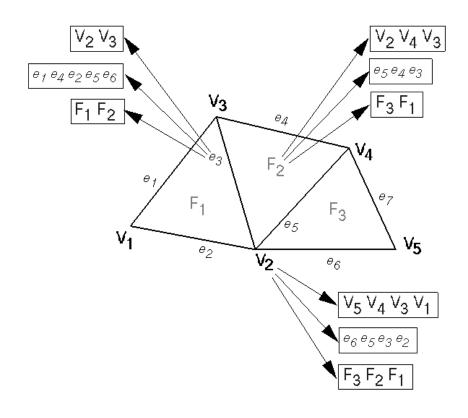

FACE TABLE


F.	٧1	٧2	٧3
	V ₂		V3
F ₃	V ₂	٧5	٧4

Adjacency Lists

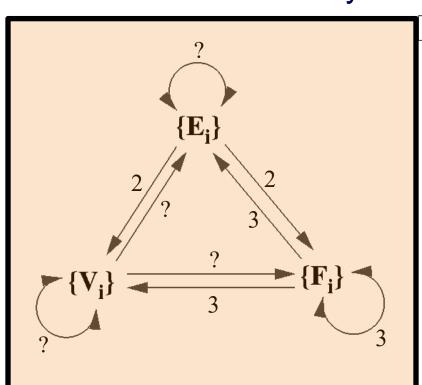
Store all vertex, edge, and face adjacencies

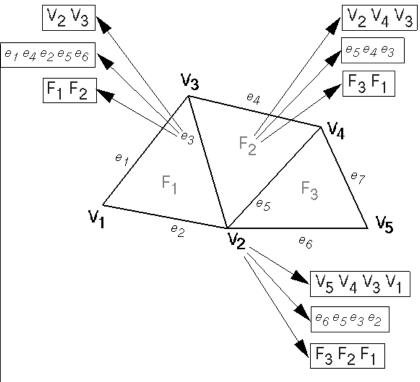



Adjacency Lists

Store all vertex, edge, and face adjacencies

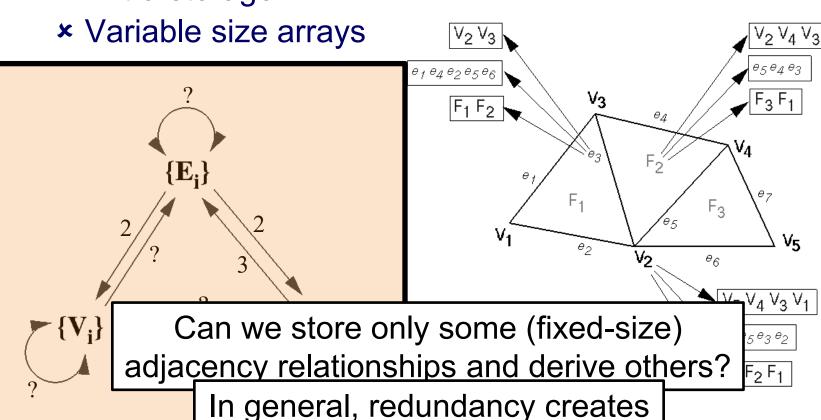
- ✓ Efficient adjacency info
- Extra storage
- Variable size arrays




Partial Adjacency Lists

Store all vertex, edge, and face adjacencies

- ✓ Efficient adjacency info
- Extra storage
- Variable size arrays



Partial Adjacency Lists

Store all vertex, edge, and face adjacencies

- ✓ Efficient adjacency info
- Extra storage

opportunity for inconsistency.

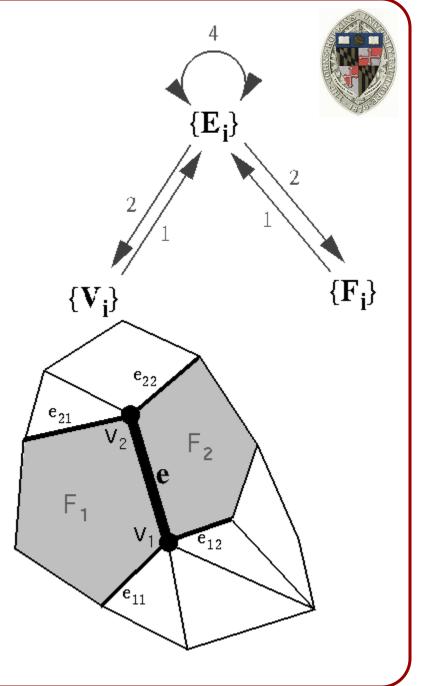
Adjacency encoded in edges

- ✓ All adjacencies in O(1) time
- ✓ Little extra storage
- √ Fixed-size records
- √ Supports polygonal faces
- Mesh needs to be oriented

Each edge stores:

4 "wing" edges

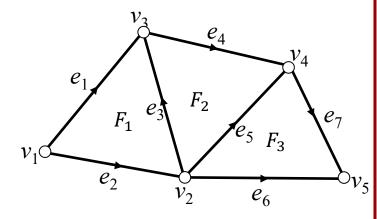
2 vertices


2 faces

Each face stores:

1 (some) edge

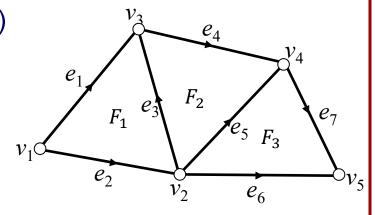
Each vertex stores:


1 (some) edge

Vertex table:

• A reference to some incident edge

VERTEX TABLE						
V ₁	X ₁	Υ ₁	Z ₁	e ₁		
V ₂		Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₄ Υ ₅	Z_5	e ₆		
I	i					

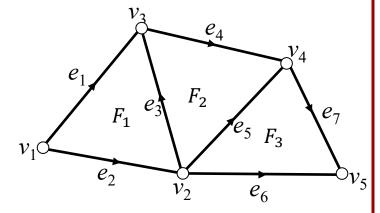

ED	EDGE TABLE					S	E	,
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3	l	F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
ез	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	-	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V_2	٧5	F ₃		e ₅			e ₇
e ₇	V_4	V_5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

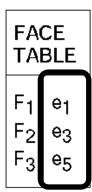
Vertex table:

- A reference to some incident edge
- Vertex positions (and other attributes)

VERTEX TABLE						
V ₁	X ₁	Υ ₁	Z_1	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
V ₃	Х3	Υ3	Z_3	ез		
V ₄	X ₄	Y_4	Z_4	e ₅		
V ₅	X ₅	Y ₅	Z ₅	e ₆		

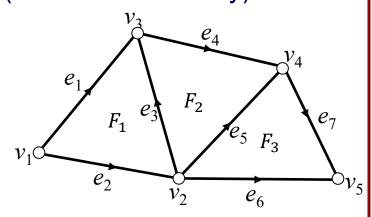

ED	EDGE TABLE					S	E	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e_1	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3		e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			


Face table:

- A reference to some incident edge
- (And other attributes)

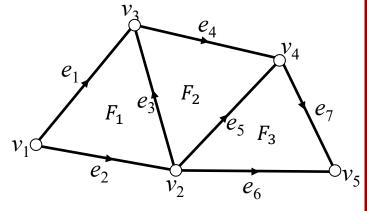
VEI	VERTEX TABLE							
ν ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				


ED	EDGE TABLE					S	E	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e_1	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3		e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆

Edge table:

• References to Start and End vertices (orientation arbitrary)

VEI	VERTEX TABLE					
٧1	× ₁	Υ ₁	Z_1	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		


FD	GE J	ΔRI	F			 S	E	
	\mathbf{S}^{-}	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	V_1	٧2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	۷3	٧4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	٧2	٧4	F_2	F_3		e ₆	e_4	e ₇
e ₆	V_2	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

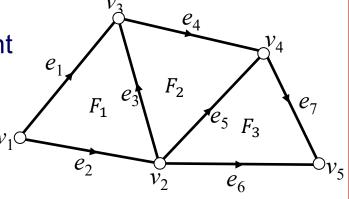
Edge table:

- References to Start and End vertices (orientation arbitrary)
- References to Left and Right faces

VEI	VERTEX TABLE					
ν ₁	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	GE 1	ΓAΒL	<u> </u>		S	Е	,	
	<u>S</u>	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1		F ₁		e ₁	e_1	ез	e ₆
e ₃	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄		٧4		F_2	e ₁	e_3	е7	e ₅
e ₅	V ₂	٧4	F_2	F ₃	ез	e ₆	e_4	e ₇
e ₆	V_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V_4	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE			
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		



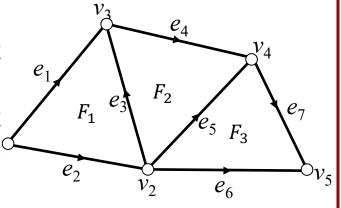
Edge table:

References to Start and End vertices (orientation arbitrary)

References to Left and Right faces

 References to immediate Left and Right edges coming out of the Start vertex

VEI	VERTEX TABLE					
٧1	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	^4	Y 4	44	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

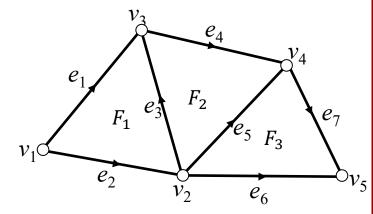

ED	EDGE TABLE				3	S	Е	
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	e ₃	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F ₃	ез	e ₆	е4	e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE			
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		

Edge table:

- References to Start and End vertices (orientation arbitrary)
- References to Left and Right faces
- References to immediate Left and Right edges coming out of the Start vertex
- References to immediate Left and Right edges coming out of the End vertex

VEI	VERTEX TABLE					
٧1	× ₁	Υ ₁	Z_1	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		


ED	EDGE TABLE					S	Е	
	S	E	 L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	V ₁	V_2	F ₁		e ₁	e_1	ез	e ₆
e ₃	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆
1	I		l		l			

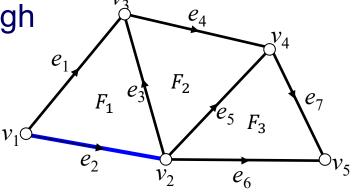
FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Boundary edges:

Have only one incident face

VEI	VERTEX TABLE							
٧1	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	EDGE TABLE				S		E	
	S	Е	L	R	L	R	L	R
	17.	1/-		\г.		۸.	۸.	٥.
e ₁	٧1	٧3		厂	e_2	e_2	e_4	ез
e ₂	V_1	V_2	F1(e ₁	e ₁	eз	e ₆
ез	V ₂	٧3	F ₁	\F ₂	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4)F ₂	e ₁	ез	е7	e ₅
e ₅	V ₂	V_4	F ₂	F3	ез	e ₆	e_4	e ₇
e ₆	V_2	٧5	F3(e ₅	e_2	e_7	e ₇
e ₇	V_4	V_5		$)F_3$	e_4	e ₅	e ₆	e ₆


	FACE TABLE					
F ₁	e ₁					
F ₂	e ₃					
F ₃	e ₅					

Boundary edges:

Have only one incident face

 Wing edges are defined as though the boundary was also a face

VEI	VERTEXTABLE								
ν ₁	X ₁	Υ1	Z_1	e ₁					
V ₂	X ₂	Y_2	Z_2	e ₆					
V ₃	Х3	Υ ₁ Υ ₂ Υ ₃	Z_3	ез					
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅					
V ₅	X ₅	Υ ₅	Z ₅	e ₆					

EDGE TABLE				(S	I	Ξ	
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	<u>e</u> 2	e ₄	eg
e ₂	V_1	V_2	F ₁		e ₁ ((e ₁)	ез	(e ₆)
ез	V_2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e ₄
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	٧2	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	V_5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	V_4	V ₅		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

Find CCW edges adjacent to v_2 .

Note that given a vertex v on edge e:

• If v is the Start, the next CCW edge is on the Left of e, coming out of the Start.

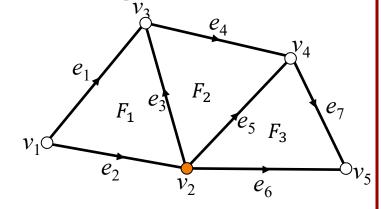
Otherwise, it is on the Right of e,
 coming out of the End.

e_4
is on $ / $
t. $e_1 \longrightarrow F_2 \longrightarrow F_2$
F_1 F_2 F_3
v_1
e_2 v_2 e_6 v_5
2 6

VEI	VERTEXTABLE							
٧1	X ₁	Υ ₁	Z ₁	e ₁				
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆				
V ₃	Х3	Υ3	Z_3	ез				
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	EDGE TABLE				6	S	Е	,
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	_	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃		٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
		V_4		F_2			е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆		e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5	ı	F_3	e ₄	e ₅		e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				



Find CCW edges adjacent to v_2 :

• Initialize: Choose the only edge coming out of v_2

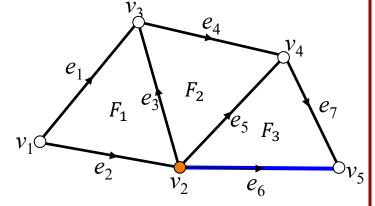
• **Do**: Iterate CCW around v_2

 While: Haven't cycled back to the start edge

VEI	VERTEX TABLE								
ν ₁	X ₁	Υ ₁	Z ₁	e ₁					
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆					
٧3	Х3	Υ3	Z_3	ез					
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅					
V ₅	X ₅	Υ ₅	Z ₅	e ₆					

EDGE TABLE					(S	E	L
	S	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e_1	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FAC	CE
TAI	BLE
F ₁	e ₁
F ₂	e ₃
F ₃	e ₅

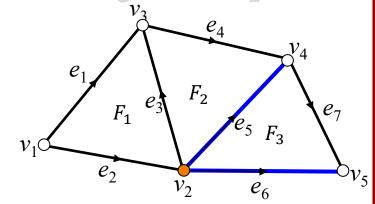


Find CCW edges adjacent to v_2 :

 \circ Initialize: Choose the only edge coming out of v_2

• **Do**: Iterate CCW around v_2

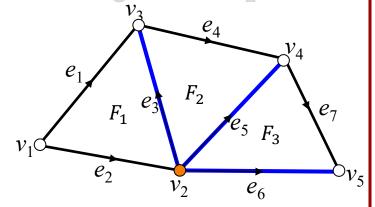
 While: Haven't cycled back to the start edge


VERTEX TABLE									
V ₁ X ₁ Y ₁ Z ₁ e ₁									
V ₂	X ₂	Υ2	Z_2	e ₆					
٧3	Х3	Υ3	Z_3	e ₃					
V_4	X ₄	Y_4	Z_4	e ₅					
V ₅	X ₅	Y ₃ Y ₄ Y ₅	Z ₅	e ₆					

ED	GE 1	ΓAΒΙ	E	(S	Е	L	
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e_1	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V ₄	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

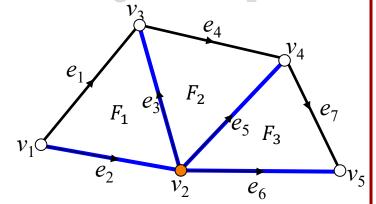
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEXTABLE									
V ₁ V ₂ V ₃	X ₂ X ₃	Y ₁ Y ₂ Y ₃ Y ₄	Z ₁ Z ₂ Z ₃ Z ₄	e ₁ e ₆ e ₃ e ₅						
V ₅	X ₅	Υ ₄ Υ ₅	Z ₅	e ₆						

ED	GE 1	ΓAΒΙ	E		(S	Е	,
	S	Е	L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e ₄
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	<u>V</u> 2	V_4	F ₂	F_3	eз	e ₆	e_4	e ₇
e ₆ (V_2)V ₅	F ₃	(e ₅)e ₂	e ₇	e ₇
e ₇	\forall_4	٧5		F ₃	e_4	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

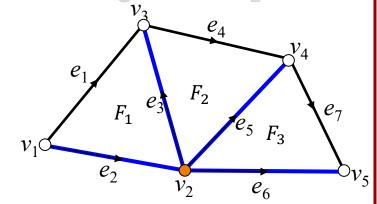
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE										
٧1	X ₁	Υ1	Z_1	e ₁							
V ₂	X ₂	Y_2	Z ₂ Z ₃	e ₆							
V ₃	Х3	Υ3	Z_3	ез							
V ₄	X ₄	' 4	Z_4	e ₅							
V ₅	X ₅	Υ ₅	Z ₅	e ₆							

ED	EDGE TABLE					S		
	S	Е	L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	е3
e ₂	٧1	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e ₄
e ₄	<u>V3</u>	V_4		F_2	θţ	ез	е7	e ₅
e ₅ (V_2	V_4	F ₂	F3(ез)e ₆	e_4	e ₇
e ₆	$\sqrt{2}$	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e1				
F ₂	e3				
F ₃	e5				

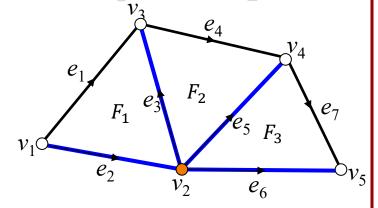
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE										
٧1	X ₁	Υ ₁	Z_1	e ₁							
V ₂	X ₂	Y_2	Z_2	e ₆							
V ₃	Х3	Υ3	Z_3	ез							
V ₄	X ₄	Y_4	Z_4	e ₅							
V ₅	X ₅	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₅	e ₆							

ED	E		Š	S	E	3		
	S	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	Vι	V_2	F ₁		e ₁	e_1	e_3	e ₆
ез(V ₂)V ₃	F ₁	F ₂ (e ₂) e ₅	e ₁	e ₄
e ₄	∀3	٧4		F ₂	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V_2	V_5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE							
F ₁	e ₁						
F ₂	e ₃						
F ₃	e ₅						

- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge

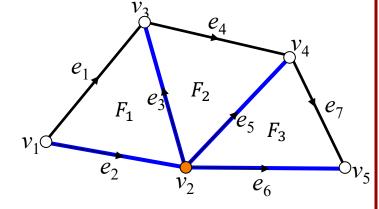

VEI	VERTEX TABLE									
٧1	X ₁ X ₁ Y ₁ Z ₁ e ₁ X ₂ Y ₂ Z ₂ e ₆ X ₃ X ₃ Y ₃ Z ₃ e ₃ X ₄ X ₄ Y ₄ Z ₄ e ₅ X ₅ X ₅ Y ₅ Z ₅ e ₆									
V ₂	X ₂	Y_2	Z_2	e ₆						
٧3	Х3	Υ3	Z_3	ез						
٧4	X ₄	Y_4	Z_4	e ₅						
V ₅	X ₅	Υ ₅	Z ₅	e ₆						

ED	GE 1	ABL	E	(S	E	E	
	S E L				L	R	L	R
e ₁	٧1	V3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	(V_2))F ₁		e ₁	e ₁	ез	(e ₆
e ₃	٧2	V3	F ₁	F ₂	e ₂	e ₅	e ₁	e ₄
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e_7	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE						
F ₁	e1					
F ₂	e3					
F ₃	e5					

- Initialize: Choose the only edge coming out of v_2
- **Do**: Iterate CCW around v_2
- While: Haven't cycled back to the start edge

VEI	VERTEX TABLE									
٧1	X ₁ Y ₁ Z ₁ e ₁ X ₂ Y ₂ Z ₂ e ₆ X ₃ X ₃ Y ₃ Z ₃ e ₃ X ₄ X ₄ Y ₄ Z ₄ e ₅ X ₅ Y ₅ Z ₅ e ₆									
V ₂	X ₂	Y_2	Z_2	e ₆						
٧3	Х3	Υ3	Z_3	ез						
٧4	X ₄	Y_4	Z_4	e ₅						
V ₅	X ₅	Υ ₅	Z ₅	e ₆						


E	EDGE TABLE						S	E	E
		S	Е	L	R	L	R	L	R
e-	1	٧1	V3		F ₁	e ₂	e ₂	e ₄	ез
e	2	V_1	(V_2))F ₁		e ₁	e ₁	ез	(e ₆)
e(3	٧2	V ₃	F ₁	F ₂	e ₂	e ₅	e ₁	e ₄
e,	1	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
Θί	5	V_2	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e	3	V_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e-	7	V_4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE							
F ₁	e ₁						
F ₂	e ₃						
F ₃	e ₅						

Find CCW edges adjacent to v_2 :

- \circ Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
- While: Haven't cycled back to the start edge

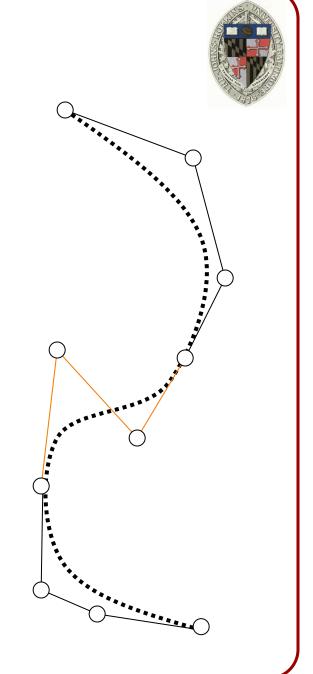
VEI	VERTEX TABLE									
٧1	V ₁ X ₁ Y ₁ Z ₁ e ₁ V ₂ X ₂ Y ₂ Z ₂ e ₆ V ₃ X ₃ Y ₃ Z ₃ e ₃									
V ₂	X ₂	Y_2	Z_2	e ₆						
٧3	Х3	Υ3	Z_3	e ₃						
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅						
٧5	X ₅	Υ5	Z ₅	e ₆						

ED	TABL E	- E	L	S R	E L	R		
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁			e ₆
ез	٧2	٧3	F ₁	F_2		e ₅	e ₁	e_4
e ₄	V3	٧4		F_2	e ₁	e ₃	е7	e ₅
e ₅	٧2	٧4	F ₂	F ₃	ез	e ₆	e ₄	e ₇

FACE TABLE F₁ e₁ F₂ e₃ F₃ e₅

Computational complexity is proportional to the size of the output. (Independent of the size of the mesh.)

Outline

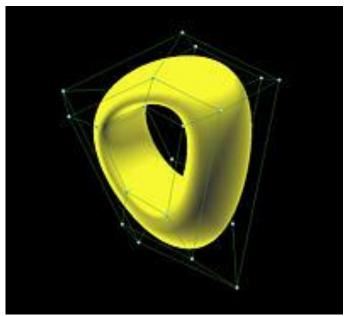


- Representing Meshes
- Parametric Curves

Parametric Curves

Given a 1D control lattice

Compute a smooth curve passing through/near the control points



Parametric Surfaces

Given a 2D control lattice

Compute a smooth surface passing through/near the control points

Courtesy of C.K. Shene

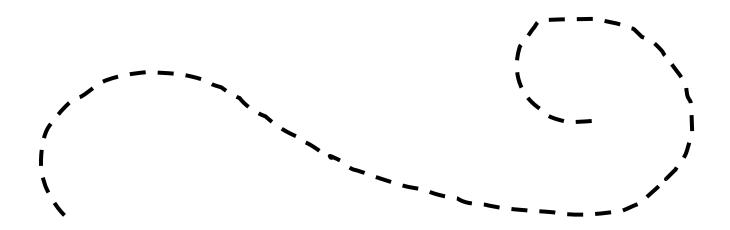
Very closely related to subdivision surfaces!

"Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values". [Stam, 1998]

Goals

Some attributes we would like to have:

- Local support
- Simple/predictable
- Continuous


We'll satisfy these goals using:

- Piecewise
- Polynomials

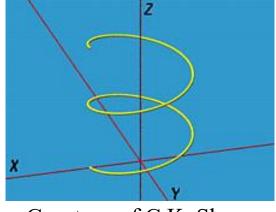
What is a Spline in CG?

A spline is a <u>piecewise</u> <u>polynomial function</u> whose derivatives satisfy <u>continuity constraints</u> across curve boundaries.

What is a Spline in CG?

Piecewise: the spline is a collection of parametric curves segments joined together.

Polynomial functions: each segment is a parametric polynomial curve.


Parametric Curves

A <u>parametric curve</u> in d-dimensions is defined by a collection of coordinate functions in u giving the position of a point on the curve at each u value:

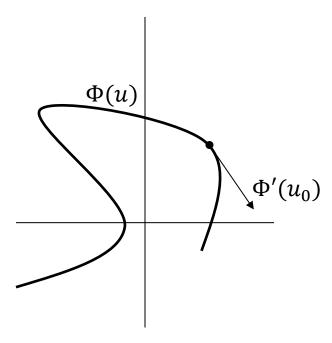
$$\Phi(u) = (x_1(u), \cdots, x_d(u))$$

$$\Phi(u) = (\cos u \, , \sin u \, , u)$$

Courtesy of C.K. Shene

Note:

A parametric curve is **not** the graph of a function.


Derivatives

For a curve $\Phi(u) = (x(u), y(u))$, the derivatives of the curve coefficients at a point u_0 :

$$\Phi'(u_0) = (x'(u_0), y'(u_0))$$

points in a direction tangent to the curve.

Note:

The direction of the derivative is determined by the path that the $\Phi'(u_0)$ curve traces out.

The magnitude of the parametric derivative is determined by the tracing speed.

Polynomials

A polynomial in the variable u is:

"An algebraic expression written as a sum of constants multiplied by different powers of a variable."

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

The constant a_k is referred to as the k-th coefficient of the polynomial P.

A polynomial P(u) has <u>degree</u> n if $(a_n \neq 0 \text{ and })$ for all k > n, the coefficients satisfy $a_k = 0$.

Polynomials

A polynomial in the variable u is:

"An algebraic expression written as a sum of constants multiplied by different powers of a variable."

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

A polynomial of degree n has n+1 degrees of freedom

With n+1 pieces of information about a degree-n polynomial, should have enough information to reconstruct its coefficients

Polynomials (Matrices)

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^n a_k \cdot u^k$$

The polynomial *P* can be expressed as the matrix multiplication of:

- \circ A row vectors containing the powers of u, and
- A column vector containing the coefficients:

$$P(u) = (u^{n} \quad u^{n-1} \quad \cdots \quad u^{1} \quad u^{0}) \cdot \begin{pmatrix} a_{n} \\ a_{n-1} \\ \vdots \\ a_{1} \\ a_{0} \end{pmatrix}$$

Polynomials (1st Derivative Matrices)

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

The derivative of the polynomial is:

$$P'(u) = a_1 + 2 \cdot a_2 \cdot u + \dots + n \cdot a_n \cdot u^{n-1} = \sum_{k=1}^{n} k \cdot a_k \cdot u^{k-1}$$

⇒ The derivative of polynomial P can also be expressed as a matrix multiplication:

$$P'(u) = (n \cdot u^{n-1} \quad (n-1) \cdot u^{n-2} \quad \cdots \quad 1 \quad 0) \cdot \begin{pmatrix} a_{n-1} \\ a_{n-1} \\ \vdots \\ a_1 \\ a_0 \end{pmatrix}$$

Polynomials (Matrices)

Example:

Given the values of P(u) at n+1 different locations: $p_0 = P(u_0), \dots, p_n = P(u_n)$

$$p_0 = (u_0^n \quad \cdots \quad u_0^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}, \cdots, p_n = (u_n^n \quad \cdots \quad u_n^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

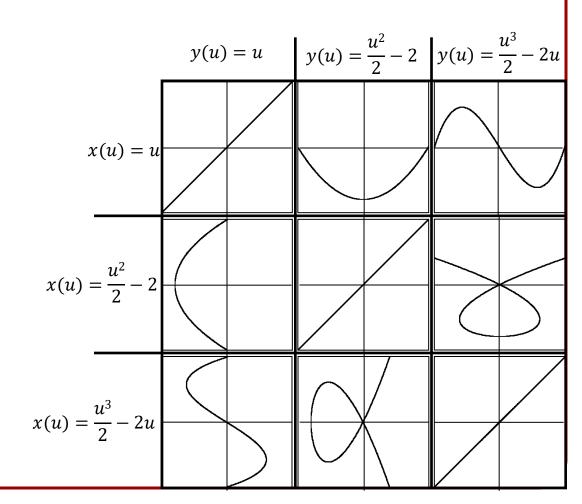
We can stack into one linear system:

$$\begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

Polynomials (Matrices)

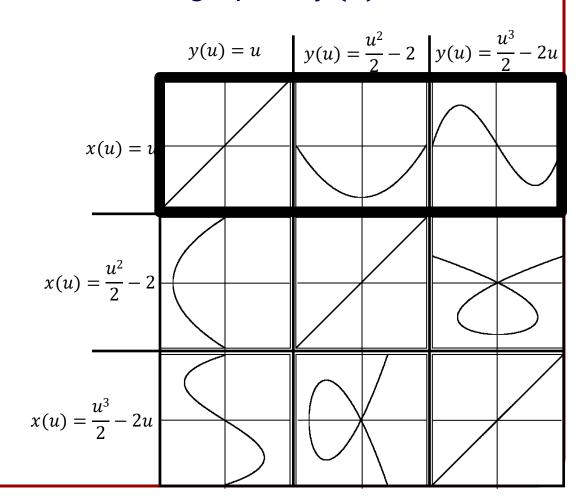
Example:

Given the values of P(u) at n+1 different locations: $p_0 = P(u_0), \dots, p_n = P(u_n)$

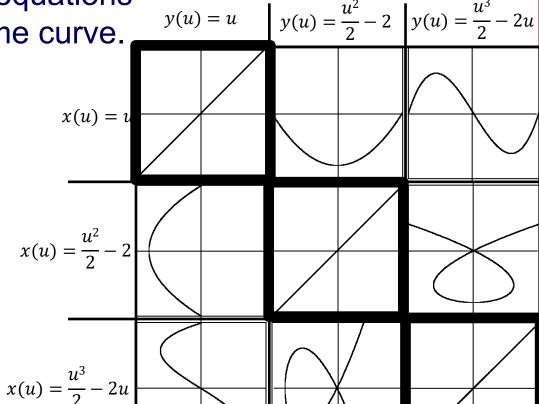

$$p_0 = (u_0^n \quad \cdots \quad u_0^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}, \cdots, p_n = (u_n^n \quad \cdots \quad u_n^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

We can stack into one linear system, and invert to get the coefficients:

$$\begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix} \Rightarrow \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix}^{-1} \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}$$


Examples:

Examples:


• When x(u) = u, the curve is the graph of y(u).

Examples:

- When x(u) = u, the curve is the graph of y(u).
- Different parametric equations can trace out the same curve.

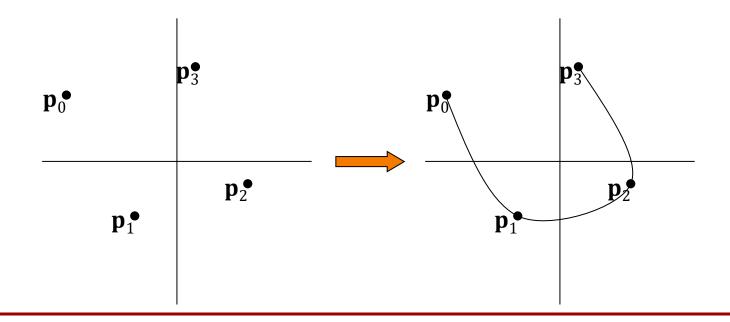
Examples:

- When x(u) = u, the curve is the graph of y(u).
- Different parametric equations can trace out the same curve.

y(u) = u $y(u) = \frac{u^2}{2} - 2$ $y(u) = \frac{u^3}{2} - 2u$

As the degree gets larger,
 the complexity of the x(u) = u
 curve increases.

$$x(u) = \frac{u^2}{2} - 2$$


$$x(u) = \frac{u^3}{2} - 2u$$

Parametric Curves (in \mathbb{R}^d)

Goal:

Given a sequence of points, $\{\mathbf{p}_1, \cdots, \mathbf{p}_m\} \subset \mathbb{R}^d$, define a parametric curve that passes through/near the points

Parametric Curves (in \mathbb{R}^d)

Direct Approach:

Solve for the $d \times m$ coefficients of a parametric polynomial curve of degree m-1, passing through the points.

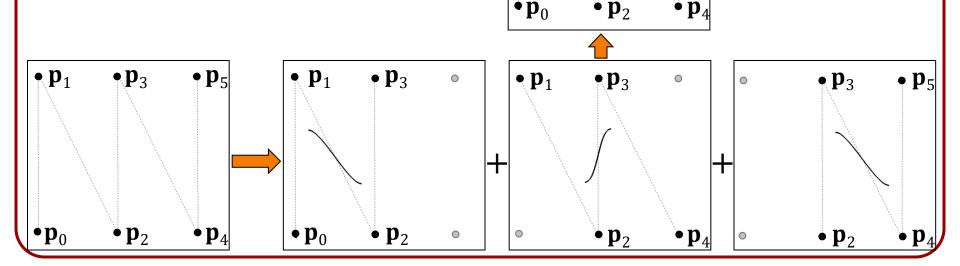
Limitations:

No local control

As the number of points increases:

The dimension increases and the curve oscillates more Requires inverting a large linear system

Polynomial Fitting Demo


Piecewise parametric polynomials

Approach:

Fit low-degree polynomials to (overlapping) groups of points so that the combined curve passes through/near

the points

Piecewise parametric polynomials

Approach:

Fit low-degree polynomials to (overlapping) groups of points so that the combined curve passes through/near the points

Properties:

Local Control

A curve segment only depends on its group of points Simplicity

Individual curve segments are low-order polynomials Continuity/Smoothness

How do we guarantee smoothness?

What is a Spline in CG?

Continuity:

In the interior of the parameterization domain, the polynomial functions are smooth.

The values/derivatives $P_1(u)$ $u \in [0,1]$ of the polynomials need to match at the boundaries.

$$P_{2}(u) \ u \in [0,1]$$
 $P_{3}(u) \ u \in [0,1]$

$$\mathbf{P}_i(u) = \sum_{j=0}^n \mathbf{a}_{ij} \cdot u^j$$

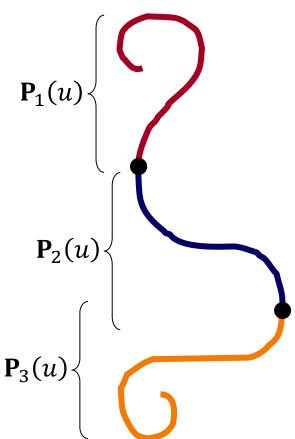
Continuity/Smoothness

Continuity:

When they meet, values/derivatives of the two curve segments need to be *equal*.

 \circ C^0 : function is continuous

$$\Rightarrow$$


$$\mathbf{P}_i(1) = \mathbf{P}_{i+1}(0)$$

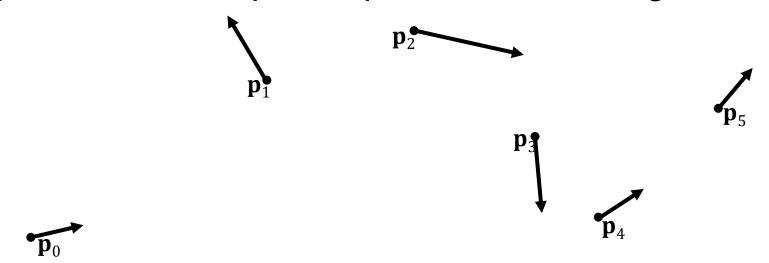
C¹: function is continuous and
 1st derivatives equal

$$\Rightarrow C^0$$
 and $\mathbf{P}'_i(1) = \mathbf{P}'_{i+1}(0)$

• C^2 : function is continuous and 1st and 2nd derivatives are equal $\Rightarrow C^1$ and $\mathbf{P}_i''(1) = \mathbf{P}_{i+1}''(0)$

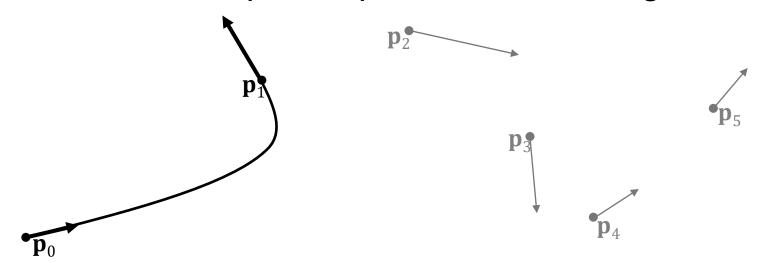
 \circ C^k : function is continuous and ...

Overview

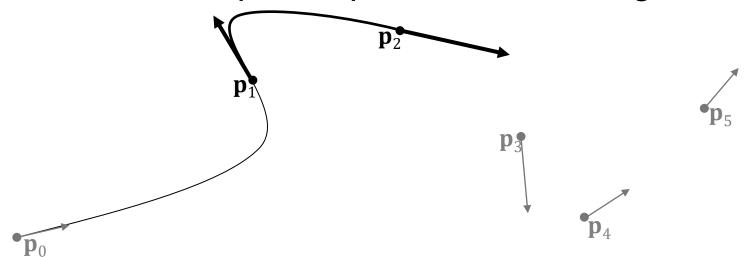


- Representing Meshes
- Parametric Curves
 - Hermite Splines

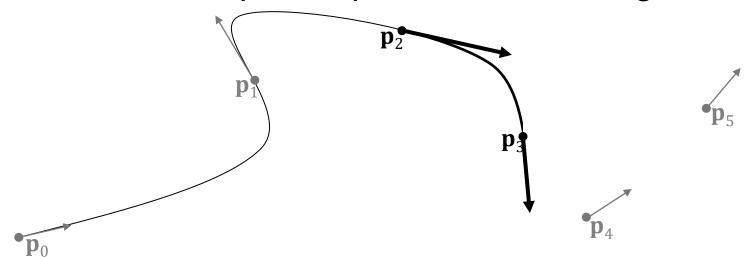
Interpolating piecewise *cubic* polynomial, each specified by:


- Start/end positions
- Start/end tangents

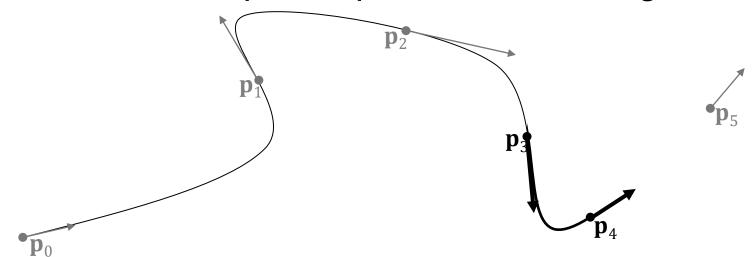
Interpolating piecewise *cubic* polynomial, each specified by:


- Start/end positions
- Start/end tangents

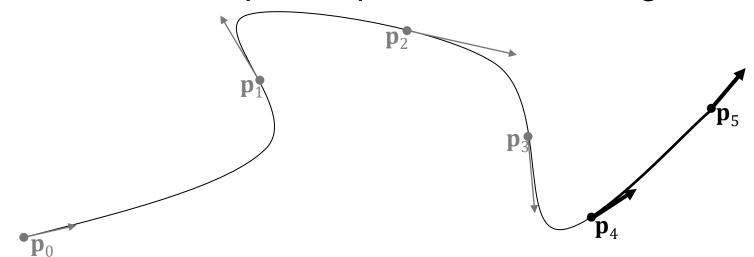
Interpolating piecewise *cubic* polynomial, each specified by:


- Start/end positions
- Start/end tangents

Interpolating piecewise *cubic* polynomial, each specified by:

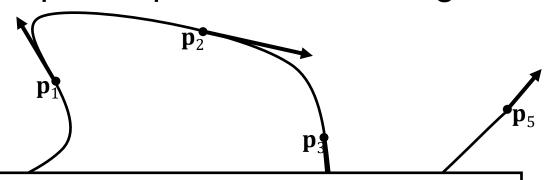

- Start/end positions
- Start/end tangents

Interpolating piecewise *cubic* polynomial, each specified by:


- Start/end positions
- Start/end tangents

Interpolating piecewise *cubic* polynomial, each specified by:

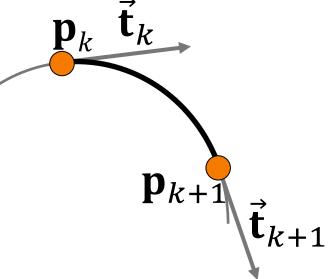
- Start/end positions
- Start/end tangents



Interpolating piecewise *cubic* polynomial, each specified by:

- Start/end positions
- Start/end tangents

Iteratively construct the curve between adjacent end points that interpolate positions and tangents.


Because the end-points of adjacent curves have the same position and derivatives, the Hermite spline is C^1 by construction.

Let $\mathbf{P}_k(u) = (x_k(u), y_k(u))$ with $0 \le u \le 1$ be the polynomial curve for the section between control points $\{\mathbf{p}_k, \vec{\mathbf{t}}_k\}$ and $\{\mathbf{p}_{k+1}, \vec{\mathbf{t}}_{k+1}\}$.

Boundary conditions are:

- $P_k(0) = \mathbf{p}_k$
- $P_k(1) = \mathbf{p}_{k+1}$
- $\circ \mathbf{P}'_k(0) = \vec{\mathbf{t}}_k$
- $\circ \mathbf{P}'_k(1) = \vec{\mathbf{t}}_{k+1}$

Solve for the coefficients of the polynomials $x_k(u)$ and $y_k(u)$ that satisfy the boundary conditions.

Note:

Four constraints \Rightarrow we need a cubic polynomial.

Recall:

For a polynomial:

$$\mathbf{P}_k(u) = \mathbf{a} \cdot u^3 + \mathbf{b} \cdot u^2 + \mathbf{c} \cdot u + \mathbf{d}$$

we have:

$$\mathbf{P}_k'(u) = 3 \cdot \mathbf{a} \cdot u^2 + 2 \cdot \mathbf{b} \cdot u + \mathbf{c}$$

Using the matrix representation:

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

By abuse of notation, we will think of the coefficients \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d} as d-dimensional vectors rather than scalars so that $\mathbf{P}_k(u)$ is a function taking values in

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_k = \mathbf{P}_k(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_k = \mathbf{P}_k(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_k(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k} = \mathbf{P}_{k}(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{t}_{k} = \mathbf{P}_{k}'(0) = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$
$$\mathbf{p}_{k+1} = \mathbf{P}_{k}(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k} = \mathbf{P}_{k}(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{\vec{t}}_{k} = \mathbf{P}_{k}'(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_{k}(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{\vec{t}}_{k+1} = \mathbf{P}_{k}'(1) = (3 \quad 2 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_k = \mathbf{P}_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \vec{\mathbf{t}}_k = \mathbf{P}'_k(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_k(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \quad \vec{\mathbf{t}}_{k+1} = \mathbf{P}'_k(1) = \begin{pmatrix} 3 & 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Combining into a single matrix gives:

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{t}_k \\ \mathbf{t}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Inverting, we get:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Inverting, we get:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{t}_k \\ \mathbf{t}_{k+1} \end{pmatrix}$$

Using the fact that:

$$\mathbf{P}_{k}(u) = \begin{pmatrix} u^{3} & u^{2} & u & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

We get:

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{t}_{k} \\ \mathbf{t}_{k+1} \end{pmatrix}$$
parameters
$$\mathbf{M}_{\text{Hermite}} \quad \text{boundary info}$$

$$\mathbf{P}_{k}(u) = \begin{pmatrix} (u^{3} & u^{2} & u & 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{t}_{k} \\ \mathbf{t}_{k+1} \end{pmatrix}$$

Multiplying out and rearranging terms, we get:

$$\mathbf{P}_{k}(u) = (2u^{3} - 3u^{2} + 1) \cdot \mathbf{p}_{k}
+ (-2u^{3} + 3u^{2}) \cdot \mathbf{p}_{k+1}
+ (u^{3} - 2u^{2} + u) \cdot \mathbf{t}_{k}
+ (u^{3} - u^{2}) \cdot \mathbf{t}_{k+1}$$

$$\mathbf{P}_{k}(u) = (2u^{3} - 3u^{2} + 1) \cdot \mathbf{p}_{k} + (-2u^{3} + 3u^{2}) \cdot \mathbf{p}_{k+1} + (u^{3} - 2u^{2} + u) \cdot \vec{\mathbf{t}}_{k} + (u^{3} - u^{2}) \cdot \vec{\mathbf{t}}_{k+1}$$

Setting:

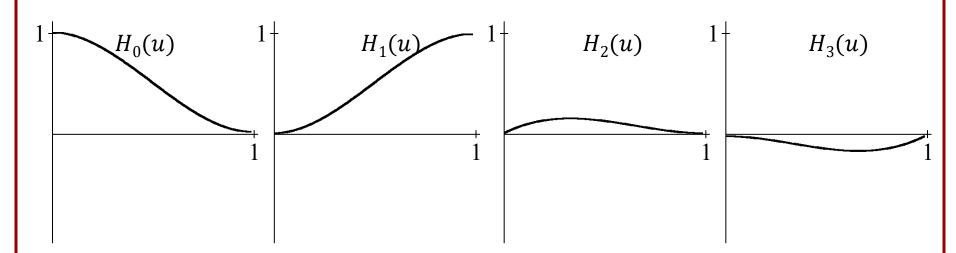
$$H_0(u) = 2u^3 - 3u^2 + 1$$

$$H_1(u) = -2u^3 + 3u^2$$

$$H_2(u) = u^3 - 2u^2 + u$$

$$H_3(u) = u^3 - u^2$$

we can write $P_k(u)$ as:

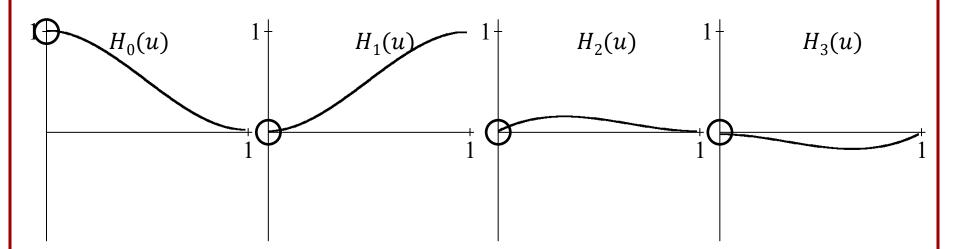

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$

Setting:

- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

Blending Functions

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

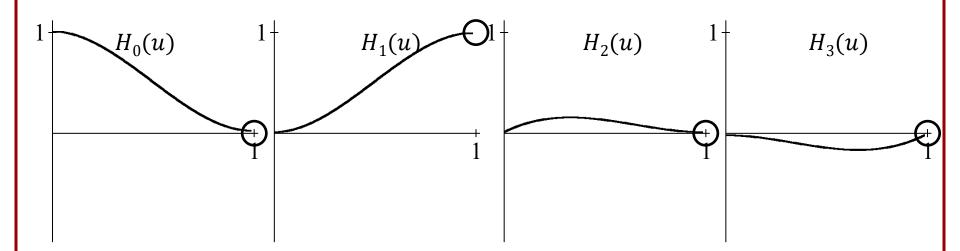
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 0:

- $H_0(u) = 1$
- $H_1(u) = 0$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $\mathbf{P}_k(0) = \mathbf{p}_k$

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

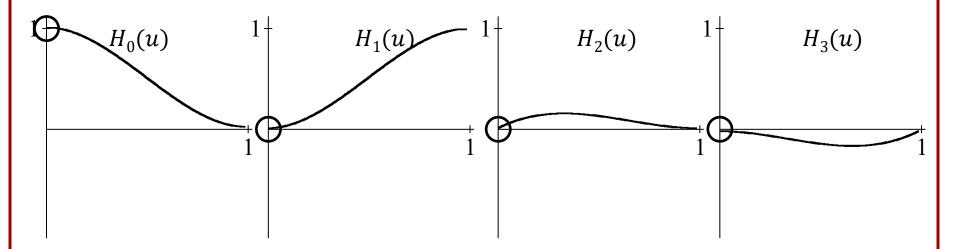
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 1:

- $H_0(u) = 0$
- $H_1(u) = 1$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $P_k(1) = p_{k+1}$

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

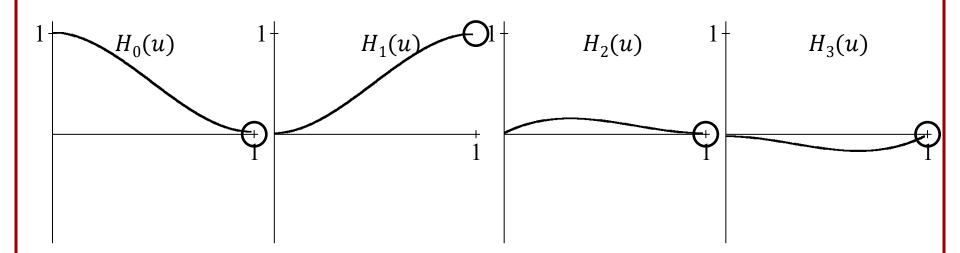
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 0:

- $H_0'(u) = 0$
- $H_1'(u) = 0$
- $H_2'(u) = 1$
- $H_3'(u) = 0$

So
$$\mathbf{P}_k'(0) = \vec{\mathbf{t}}_k$$

$$\mathbf{P}'_{k}(u) = H'_{0}(u) \cdot \mathbf{p}_{k} + H'_{1}(u) \cdot \mathbf{p}_{k+1} + H'_{2}(u) \cdot \vec{\mathbf{t}}_{k} + H'_{3}(u) \cdot \vec{\mathbf{t}}_{k+1}$$

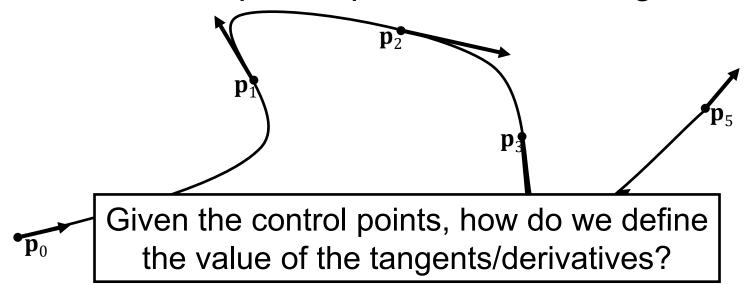

Setting:

- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 1:

- $H_0'(u) = 0$
- $H_1'(u) = 0$
- $\bullet \, H_2'(u) = 0$
- $H_3'(u) = 1$

So
$$\mathbf{P}'_k(1) = \vec{\mathbf{t}}_{k+1}$$


$$\mathbf{P}'_{k}(u) = H'_{0}(u) \cdot \mathbf{p}_{k} + H'_{1}(u) \cdot \mathbf{p}_{k+1} + H'_{2}(u) \cdot \vec{\mathbf{t}}_{k} + H'_{3}(u) \cdot \vec{\mathbf{t}}_{k+1}$$

Interpolating piecewise *cubic* polynomial, each specified by:

- Start/end positions
- Start/end tangents

Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

