

Image Sampling

Michael Kazhdan (601.457/657)

Sampling Questions

- How should we sample an image:
 - Nearest Point Sampling?
 - Bilinear Sampling?
 - Gaussian Sampling?
 - Something Else?

Image Representation

What is an image?

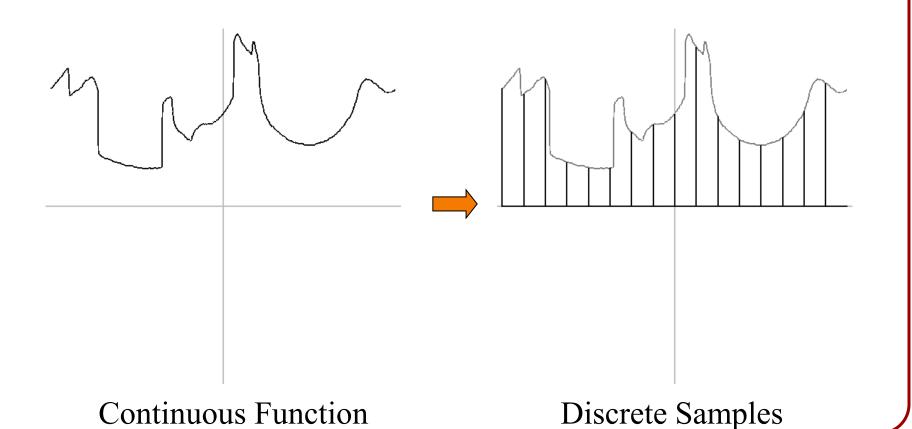
An image is a discrete collection of pixels, each representing the value(s) of a continuous function.

Continuous image

Digital image

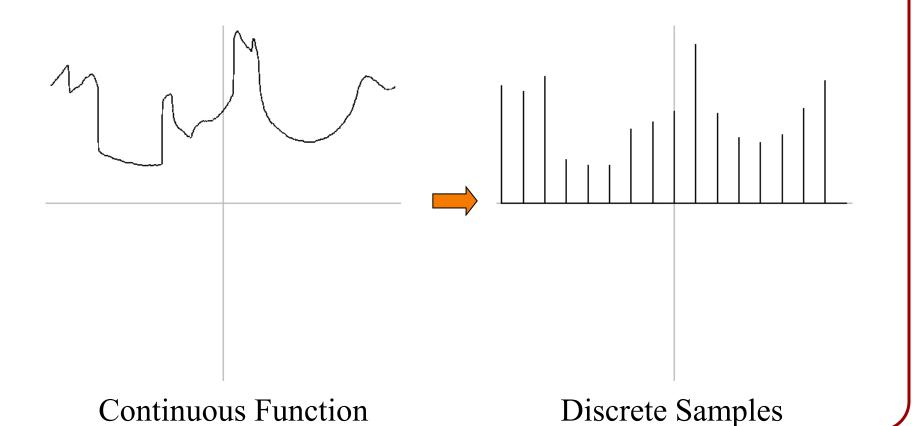
Sampling

Consider a 1D example:



Sampling

Consider a 1D example:

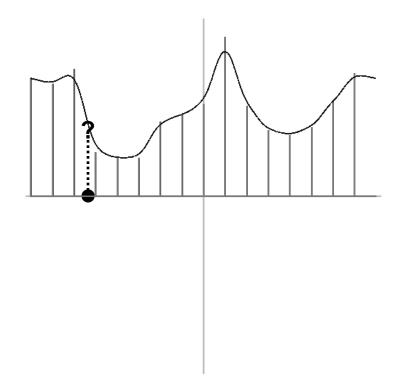


Sampling

At in-between positions, values are undefined.

How do we determine the value of a sample?

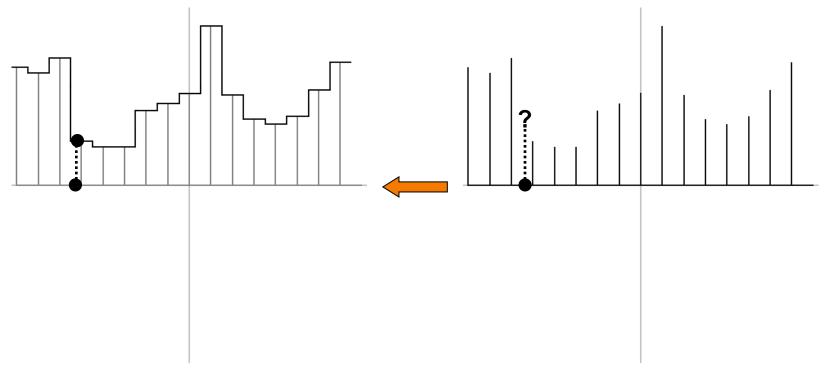
Turn the discrete collection of samples into a continuous function that can be sampled at arbitrary locations.



Discrete Samples

Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

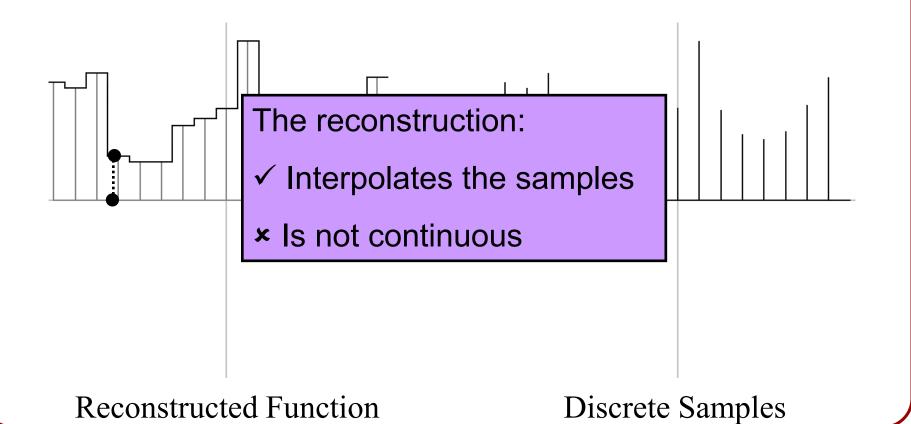


Reconstructed Function

Discrete Samples

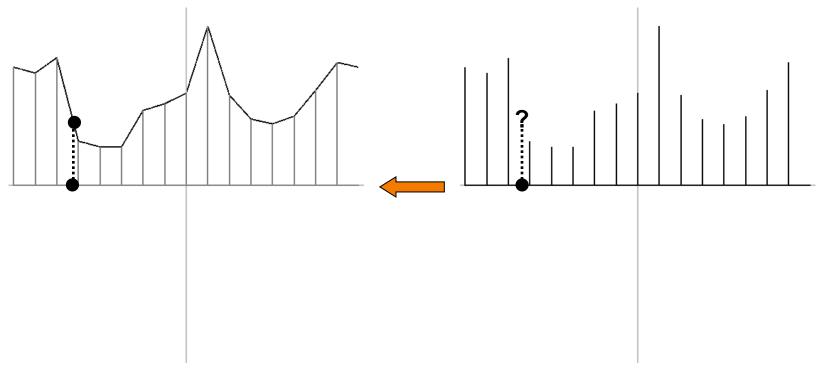
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.



(Bi)linear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

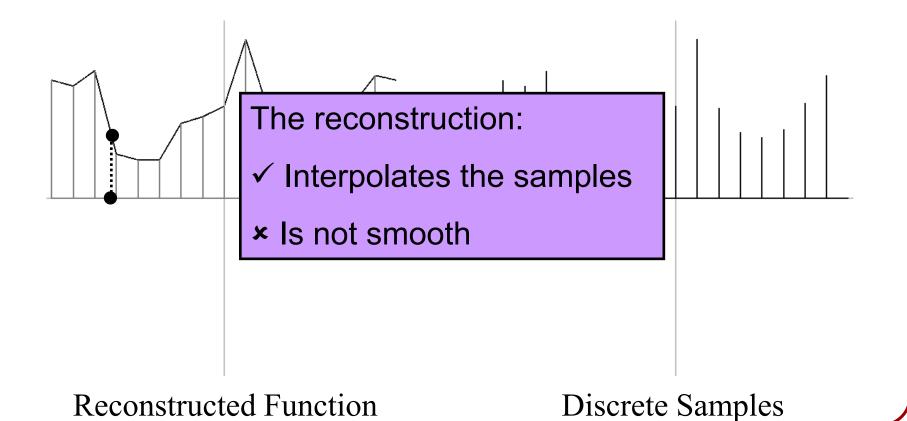


Reconstructed Function

Discrete Samples

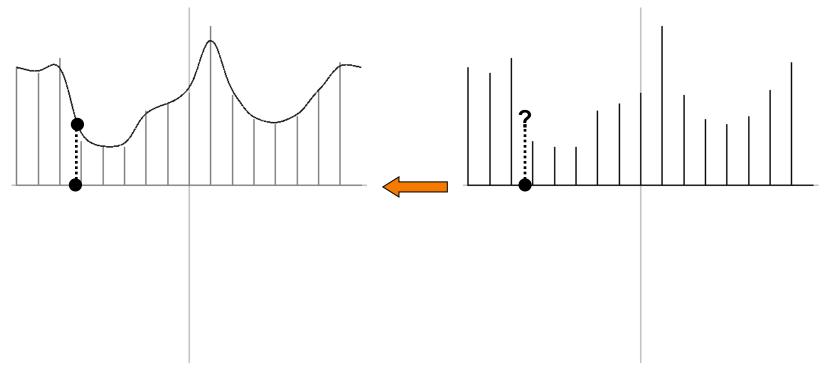
(Bi)linear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.



Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.



Reconstructed Function

Discrete Samples

Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.

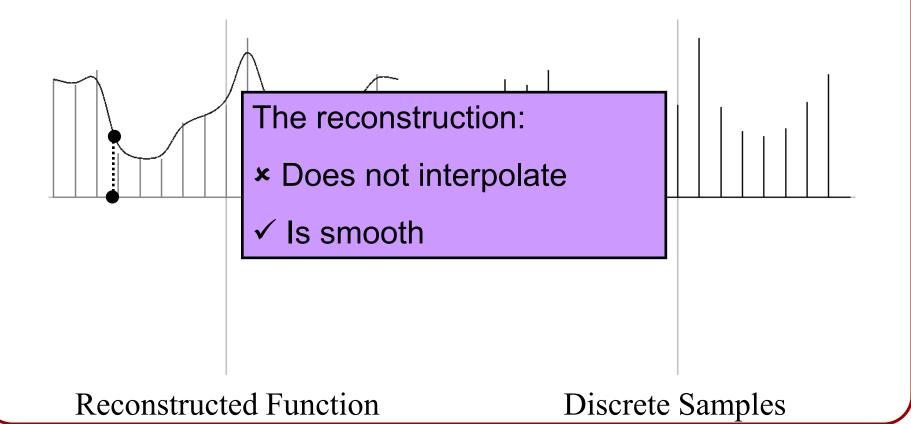
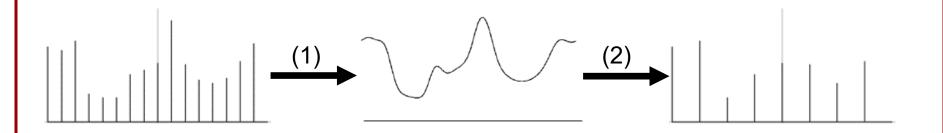


Image Sampling

Conceptually, this is done in two steps:

- 1. Reconstruct a continuous function from input samples.
- 2. Sample the continuous function at the new sample positions.



Challenge:

Reconstruction is an under-constrained problem (i.e. there are many functions fitting the samples.)

⇒ Need to define what makes a good reconstruction.

Image Sampling

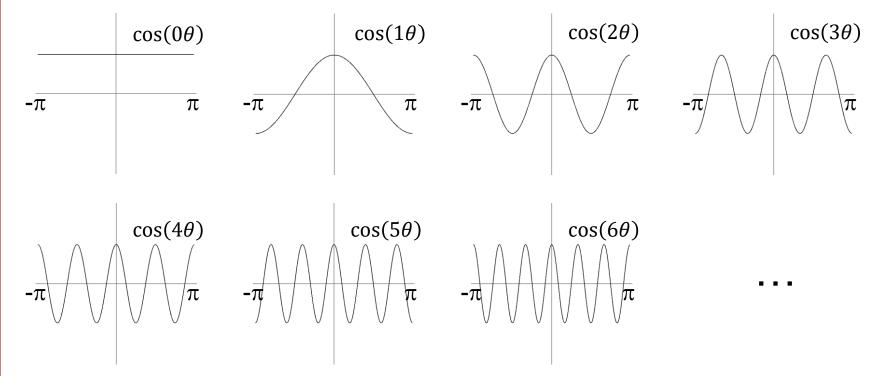
Conceptually, this is done in two steps:

- 1. Reconstruct a continuous function from input samples.
- 2. Sample the continuous function at the new sample positions.

Key Ideas:

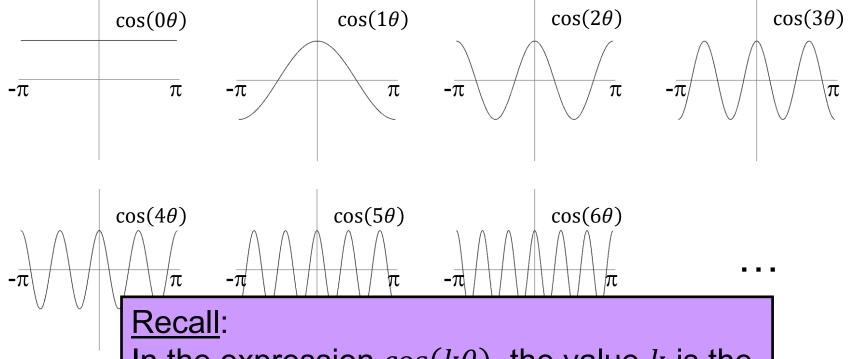
- 1. Of all possible reconstructions, we want the one that is smoothest (has lowest frequencies).
- 2. It turns out... How we reconstruct should also depend on how we intend to sample.
 - Signal processing helps us formulate this precisely.

Uniquely describes a signal as a sum of <u>scaled</u> and shifted cosine functions.



The Building Blocks for the Fourier Decomposition

Uniquely describes a signal as a sum of <u>scaled</u> and shifted cosine functions.

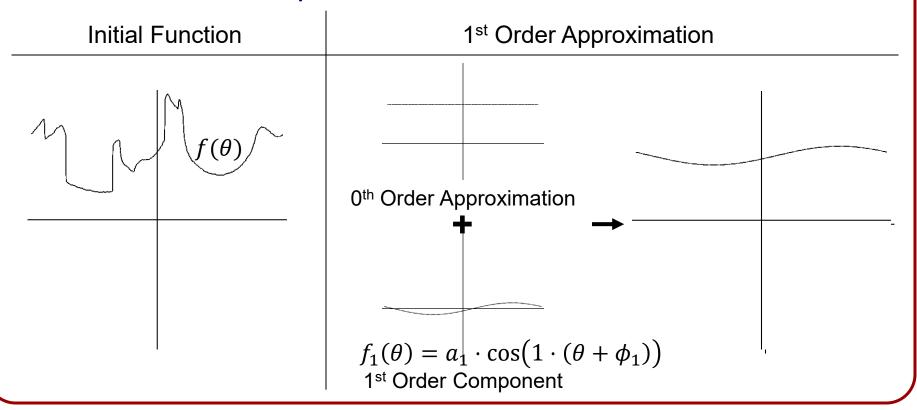


In the expression $cos(k\theta)$, the value k is the frequency of the function.

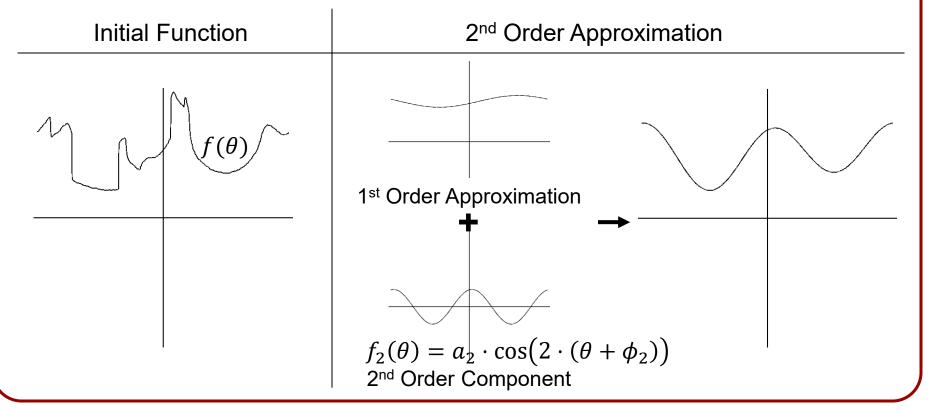
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.

Initial Function	0 th Order Approximation
$f(\theta)$	$f_0(heta) = a_0 \cdot \cos(0 \cdot (heta + \phi_0))$ Oth Order Component

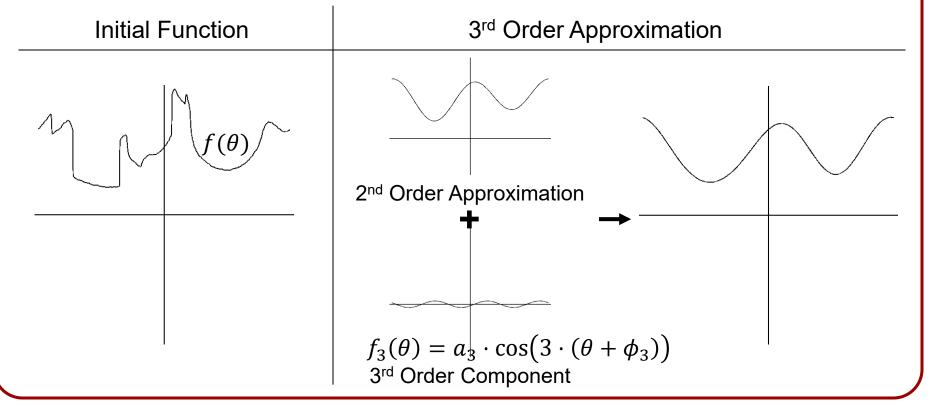
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



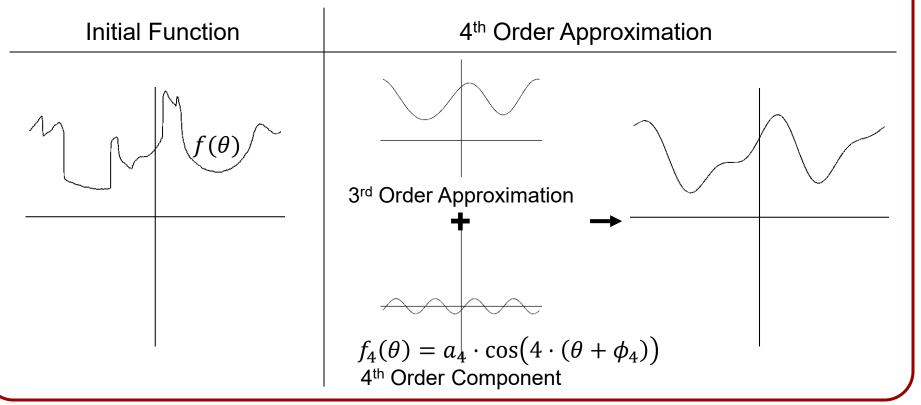
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



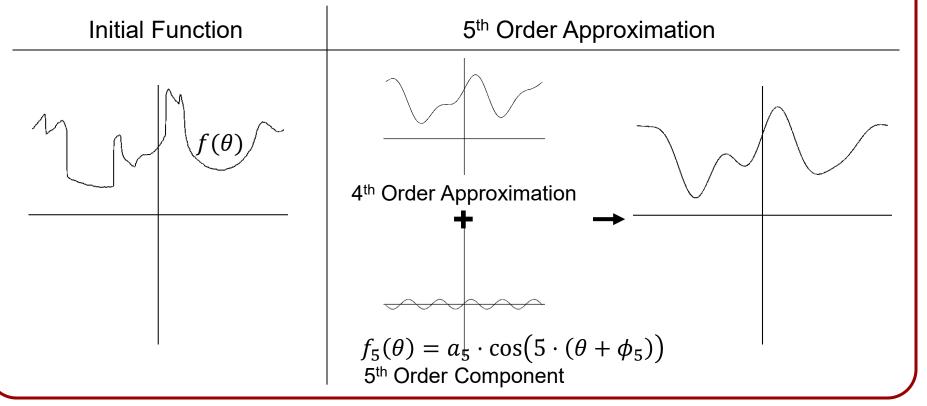
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



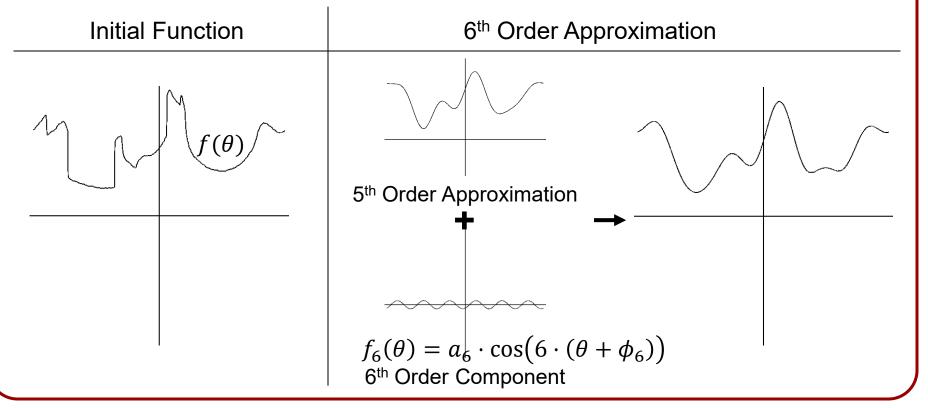
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



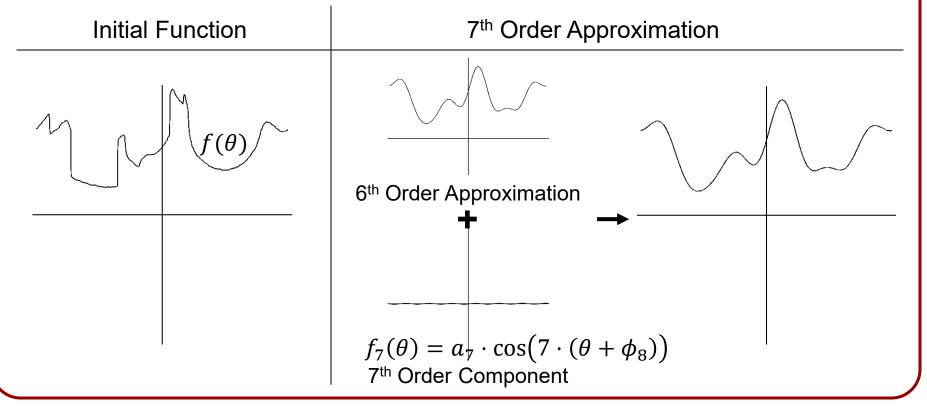
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



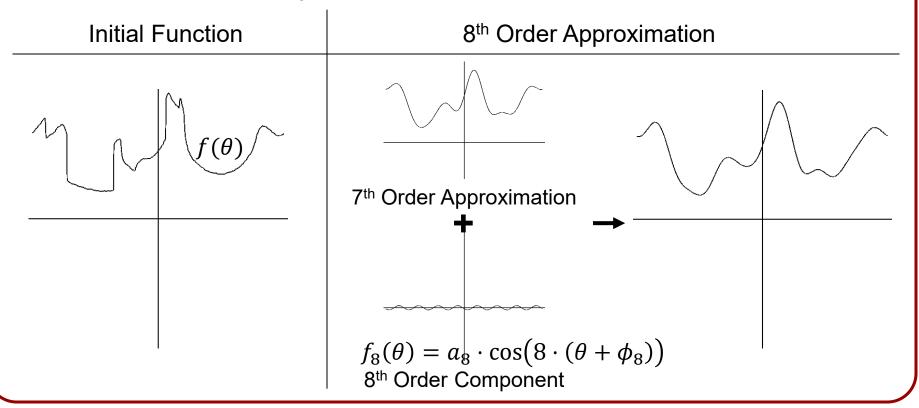
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



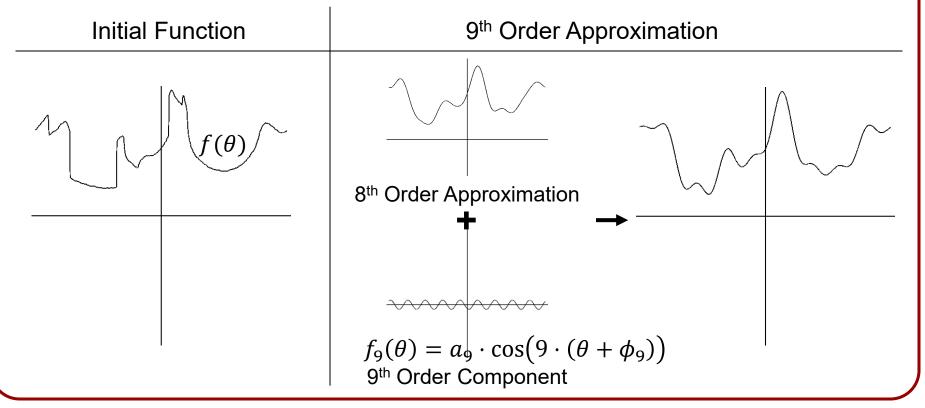
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



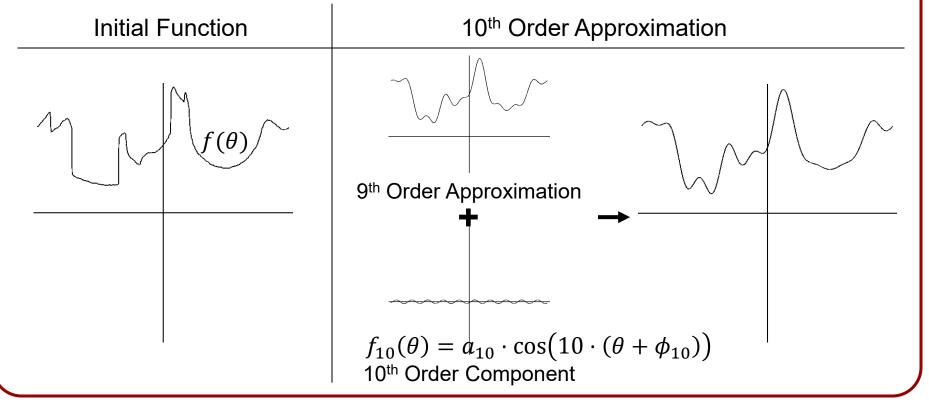
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



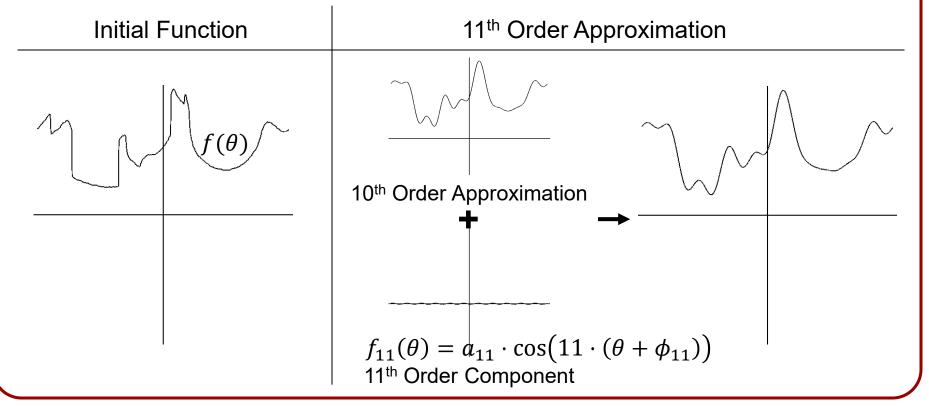
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



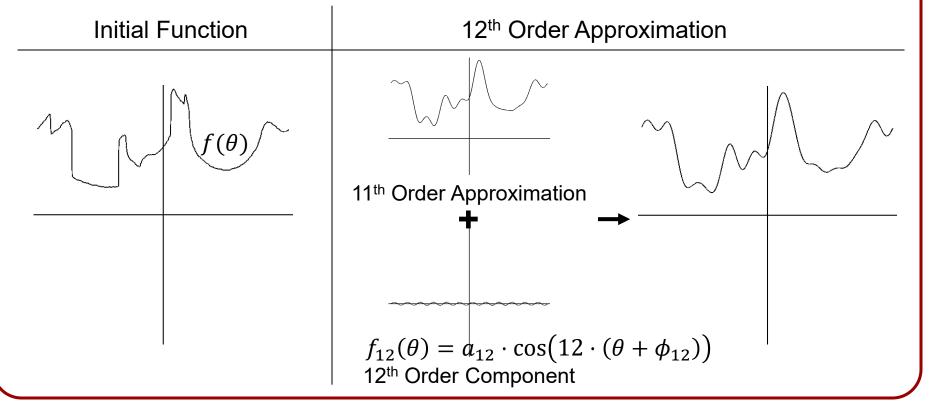
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



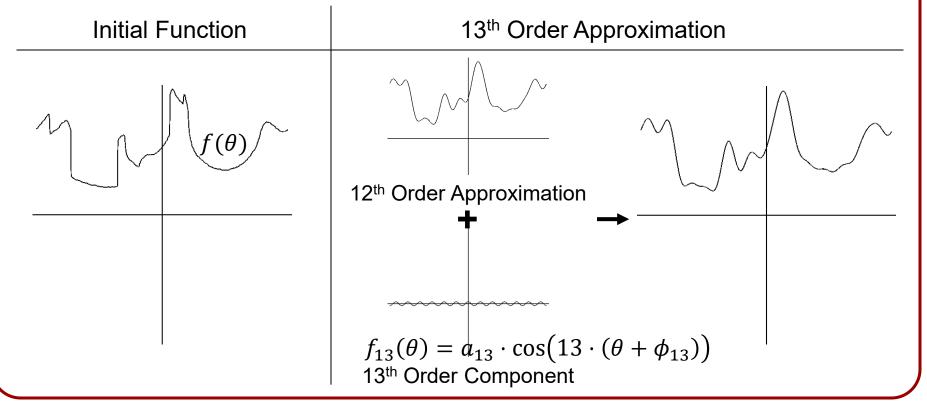
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



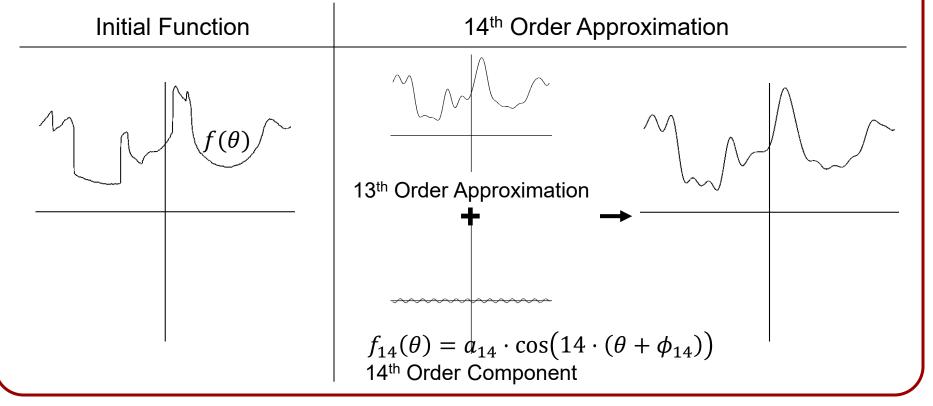
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



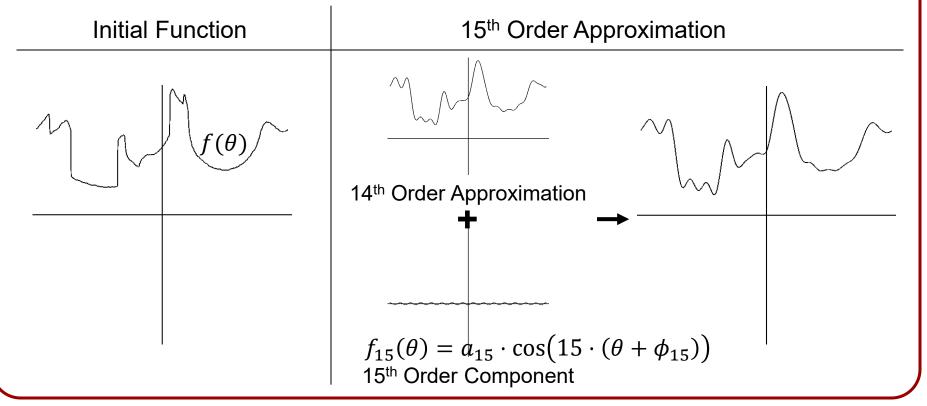
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



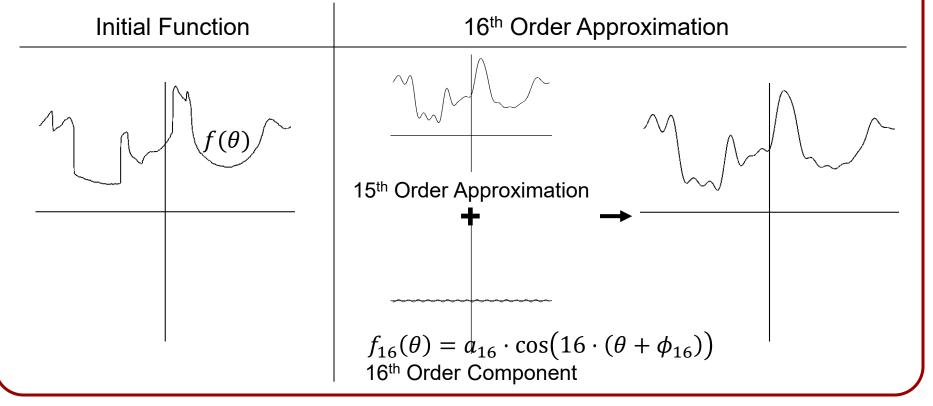
Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.



Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.

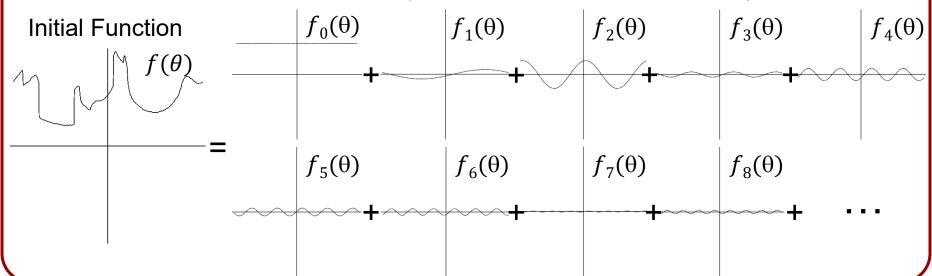


Uniquely describes a signal as a sum of <u>scaled</u> and <u>shifted</u> cosine functions.

In the limit, we "reproduce" the initial function:

$$f(\theta) = \sum_{k=0}^{\infty} a_k \cdot \cos(k(\theta + \phi_k))$$

 a_k : amplitude of the k^{th} frequency component ϕ_k : phase shift of the k^{th} frequency component



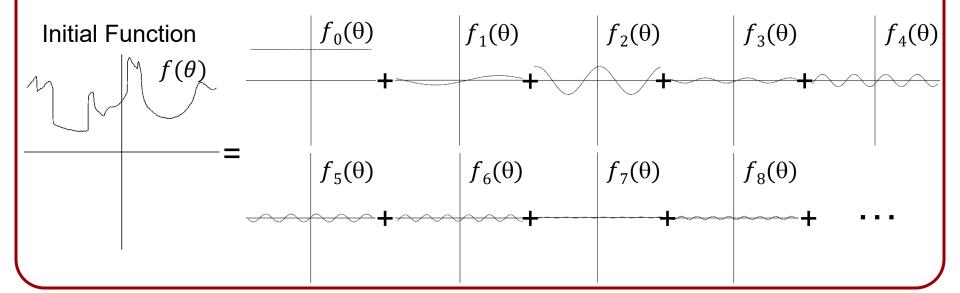
Question

Goal:

Fit a low-frequency signal to the m samples.

Question:

To fit to the m samples, what is the smallest number of (low) frequencies we need to use?



Question

Goal:

Fit a low-frequency signal to the m samples.

Question:

To fit to the m samples, what is the smallest number of (low) frequencies we need to use?

Answer:

(Except for the first) each frequency component has two degrees of freedom – amplitude and phase shift.

- ⇒ Each additional frequency component allows us to satisfy two more (sample) constraints
- \Rightarrow With m/2 (lowest) frequencies, we can fit m samples.

Sampling Theorem

Terminology:

- A signal is **band-limited** if its highest non-zero frequency is bounded (i.e. less than infinity).
- That frequency is called the bandwidth.

Having m samples

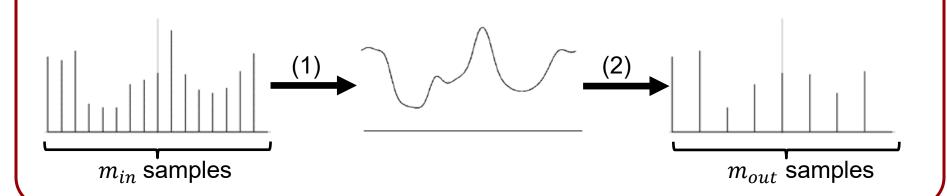
 \bigcirc

Having a signal width bandwidth m/2

To reconstruct the continuous function from m_{in} inputes samples, we can find the unique function of frequency $m_{in}/2$ that interpolates the values.

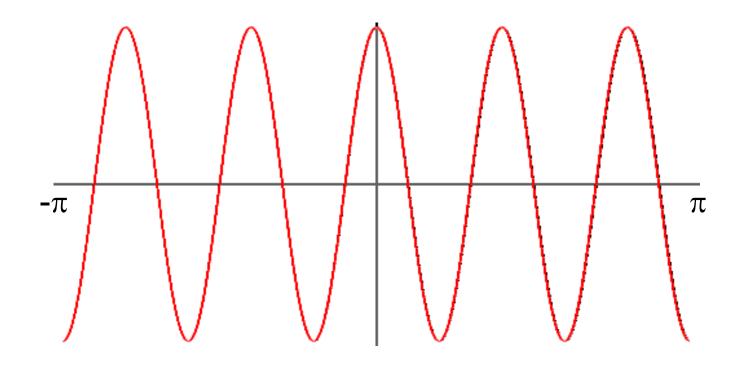
Q: Why don't we just evaluate this function at the m_{out} output sample positions?

A: If $m_{out} < m_{in}$ we don't have sufficient samples!



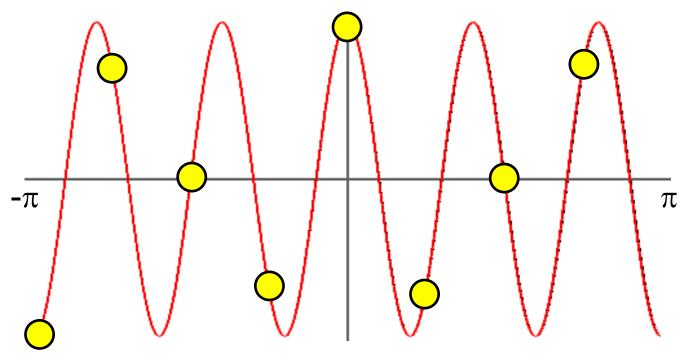
Aliasing

When a high-frequency signal is sampled with too few samples, it <u>masks/aliases</u> as a lower-frequency signal.



Aliasing

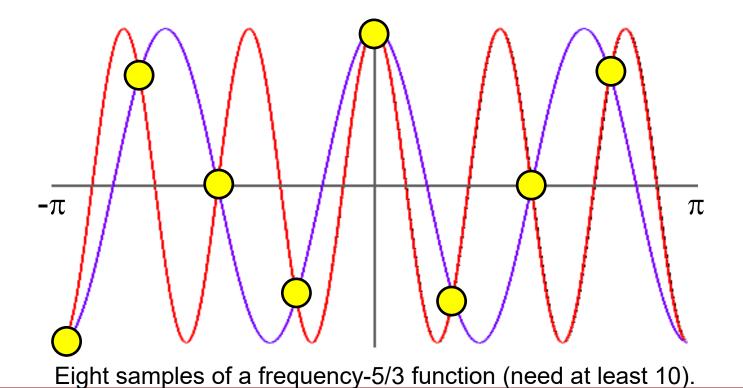
When a high-frequency signal is sampled with too few samples, it <u>masks/aliases</u> as a lower-frequency signal.



Eight samples of a frequency-5 function (need at least 10).

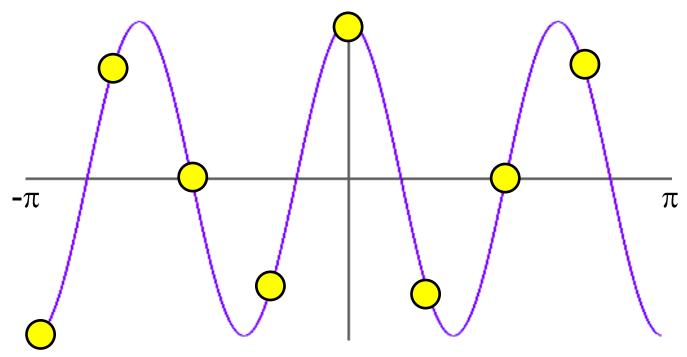
Aliasing

When a high-frequency signal is sampled with too few samples, it <u>masks/aliases</u> as a lower-frequency signal.

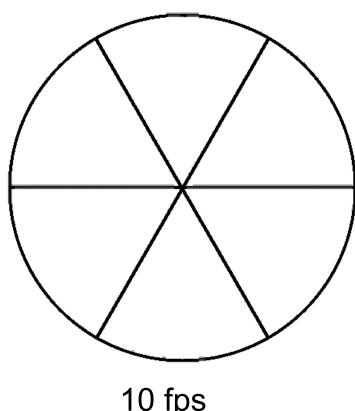


Aliasing

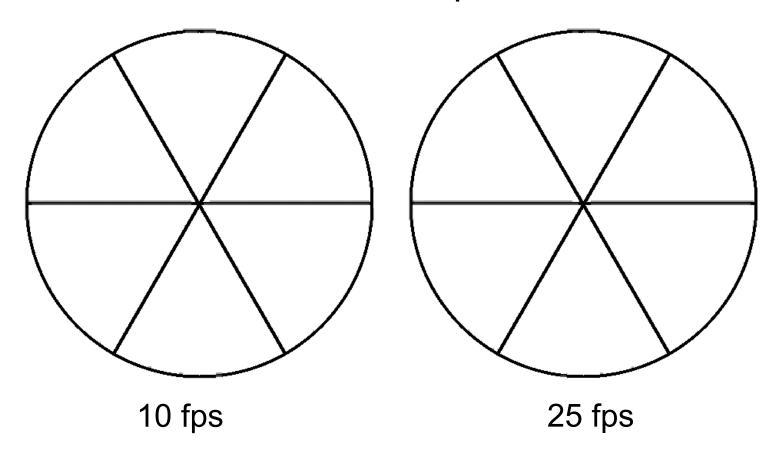
When a high-frequency signal is sampled with too few samples, it <u>masks/aliases</u> as a lower-frequency signal.

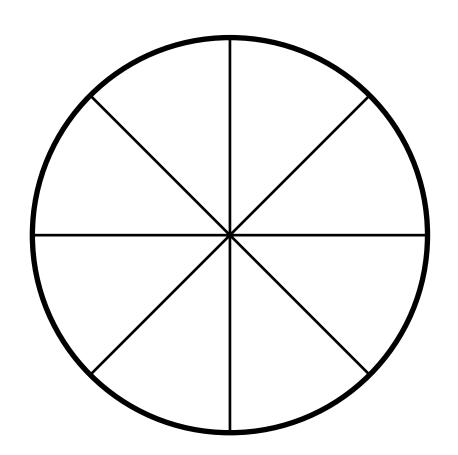


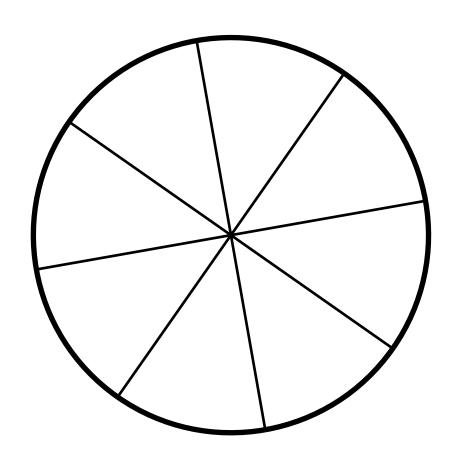
Eight samples of a frequency-3 function (need at least 10).

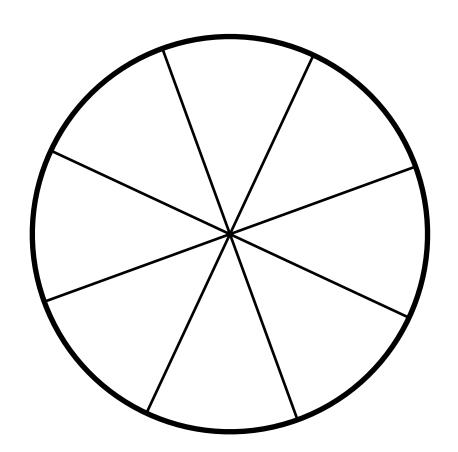


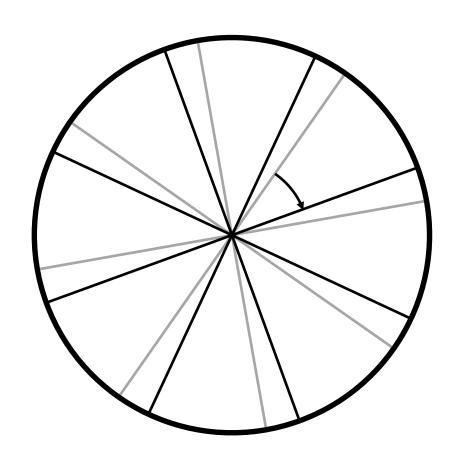
10 fps











Sampling

There are two problems:

- Don't have enough samples to correctly reconstruct/represent the higher-frequency information
- 2. Corrupt the low-frequency information because the higher-frequencies mask themselves as lower ones.

Anti-Aliasing

Two possible ways to address aliasing:

- Sample at higher rate
- Pre-filter to form band-limited signal

Anti-Aliasing

Two possible ways to address aliasing:

- Sample at higher rate
 - Not always possible (e.g. fixed-resolution displays)
- Pre-filter to form band-limited signal

Anti-Aliasing

Two possible ways to address aliasing:

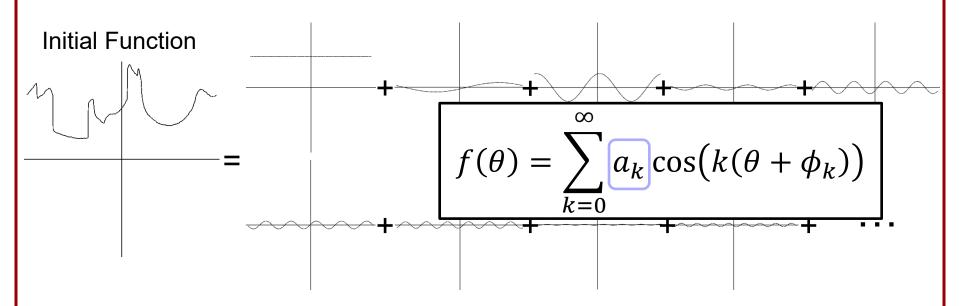
- Sample at higher rate
- Pre-filter to form an appropriately band-limited signal
 - You still don't get your high frequencies, but the low frequencies are not corrupted.

Recall:

Sampling with a wider Gaussian has the effect of smoothing out higher frequencies

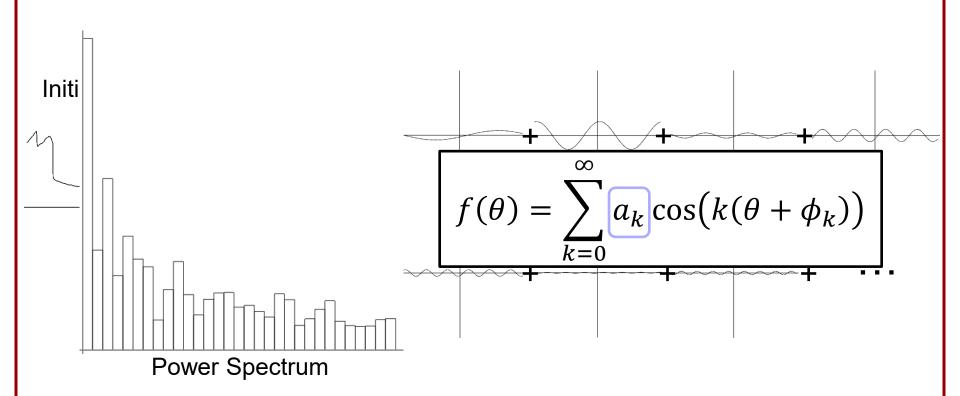
Fourier Analysis

If we look at the amplitude at each frequency, we obtain the **power spectrum** of the signal:



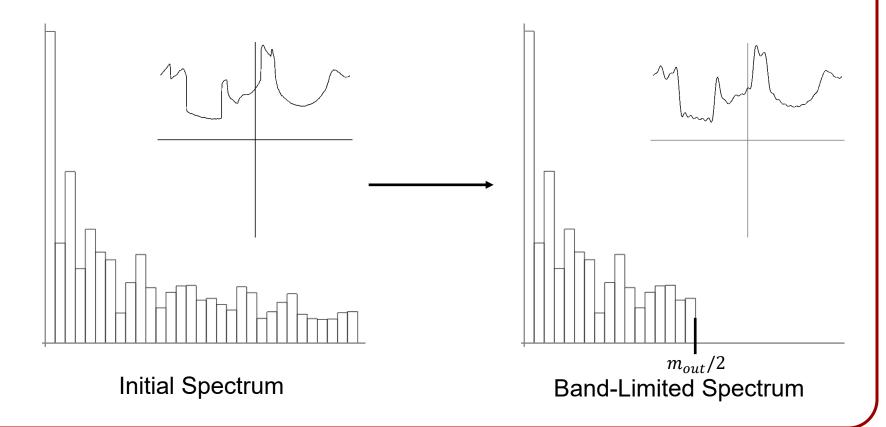
Fourier Analysis

If we look at the amplitude at each frequency, we obtain the **power spectrum** of the signal:



Pre-Filtering

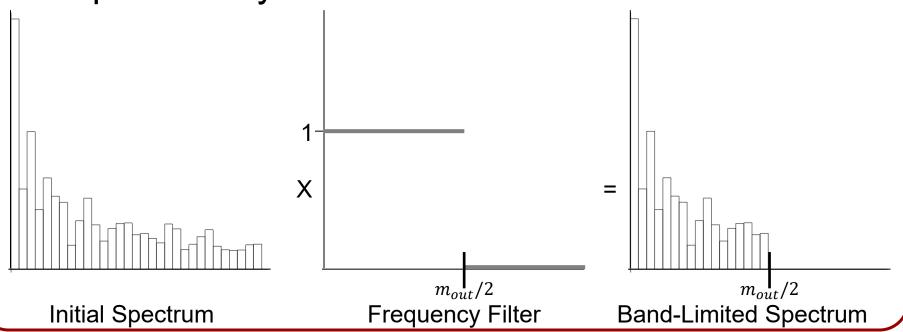
To avoid aliasing when sampling with m_{out} samples, we should first band-limit by discarding the high-frequency (greater than $m_{out}/2$) components.



Pre-Filtering

To avoid aliasing when sampling with m_{out} samples, we should first band-limit by discarding the high-frequency (greater than $m_{out}/2$) components.

We could do this if we could **multiply** the frequency components by a 0/1 function:



Pre-Filtering

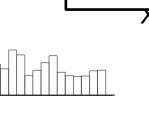
To avoid aliasing when sampling with m_{out} samples, we should first band-limit by discarding the highfrequency (greater than $m_{out}/2$) components.

We could do

We could do components
$$f(\theta) = \sum_{k=0}^{\infty} a_k \cos(k(\theta + \phi_k))$$

$$f(\theta) = \sum_{k=0}^{m_{out}/2} a_k \cos(k(\theta + \phi_k))$$

frequency

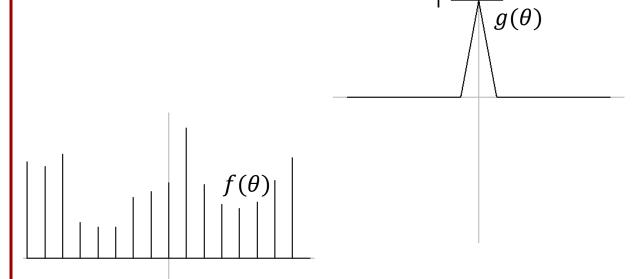


Initial Spectrum

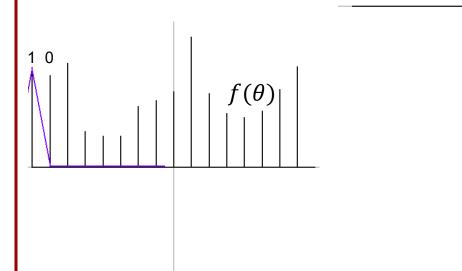
Fourier Theory

A fundamental fact from Fourier theory is that <u>multiplication</u> of power spectra in the frequency domain is <u>convolution</u> in the spatial domain.

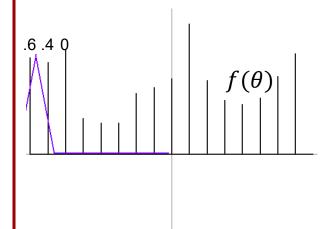
The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

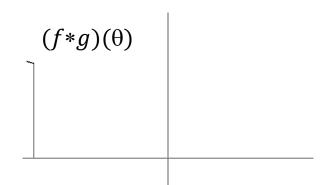


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

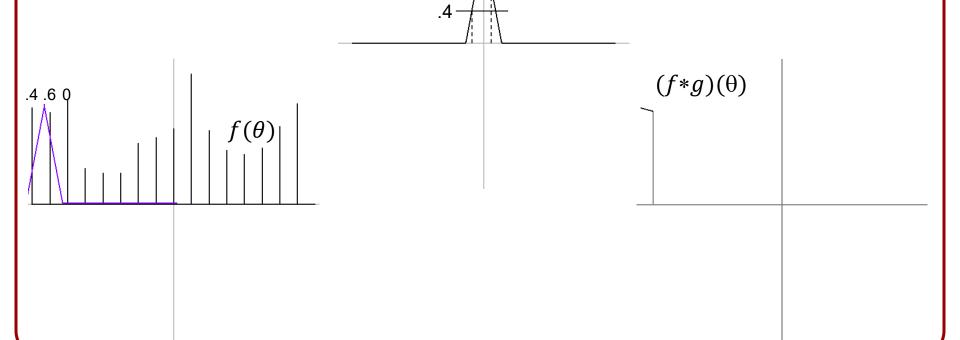


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

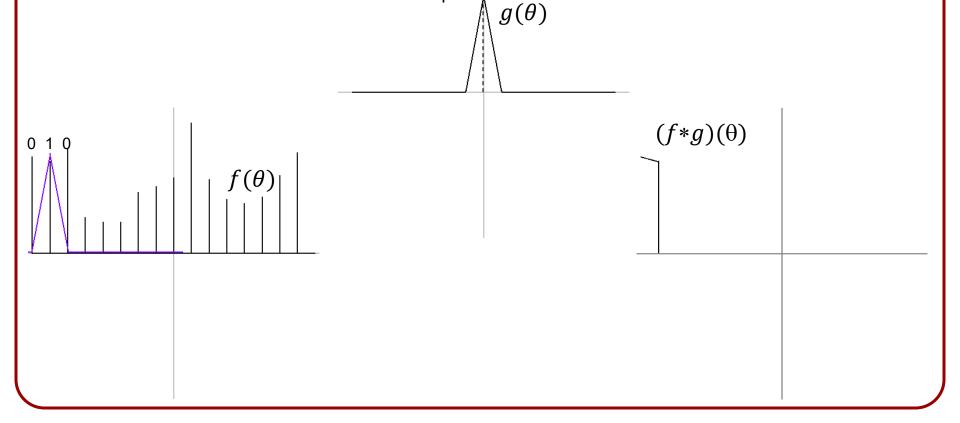




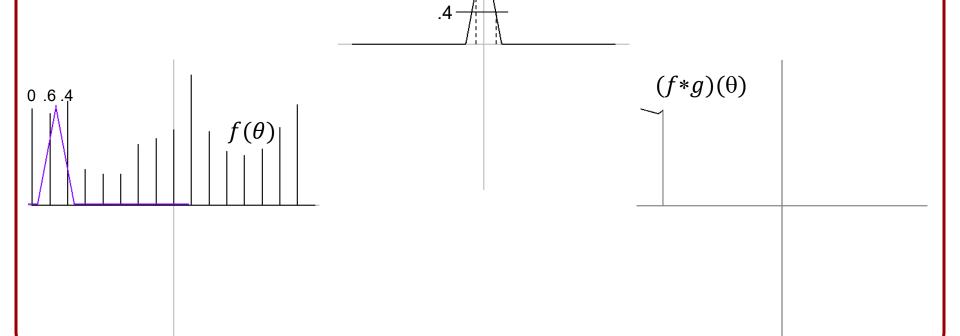
The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.



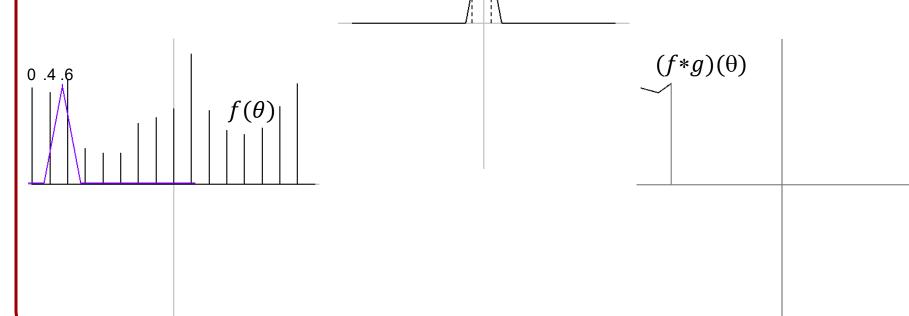
The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.



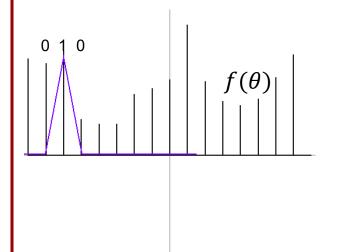
The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

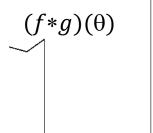


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

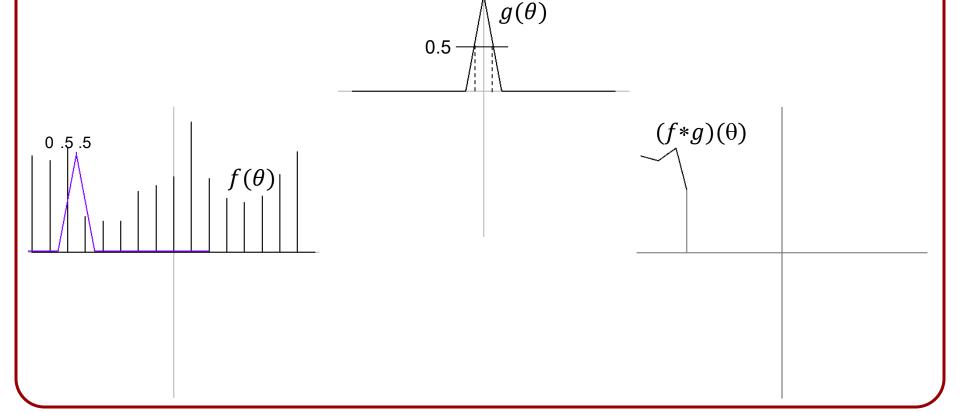


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

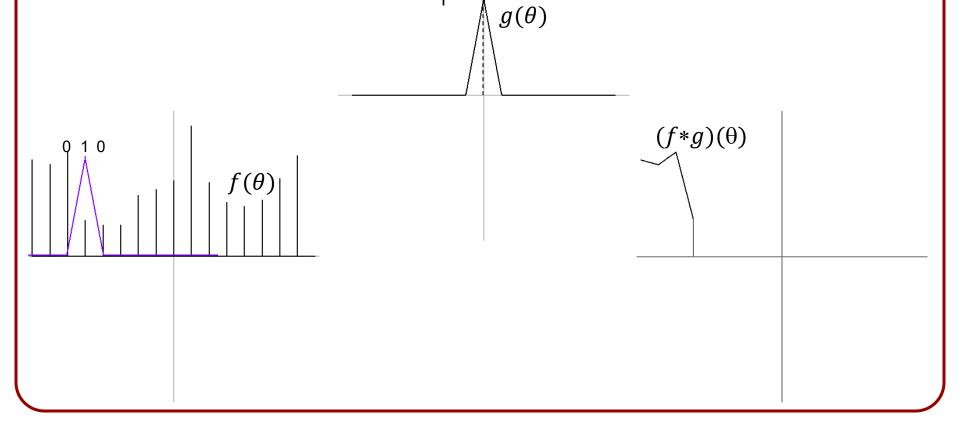




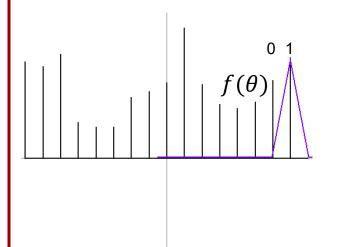
The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

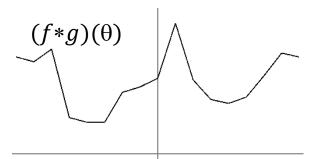


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.

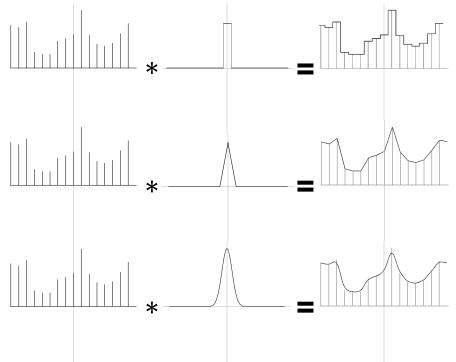


The <u>convolution</u> of functions f and g, denoted f * g, is obtained by sampling the values of f with weights given by a shifted g.



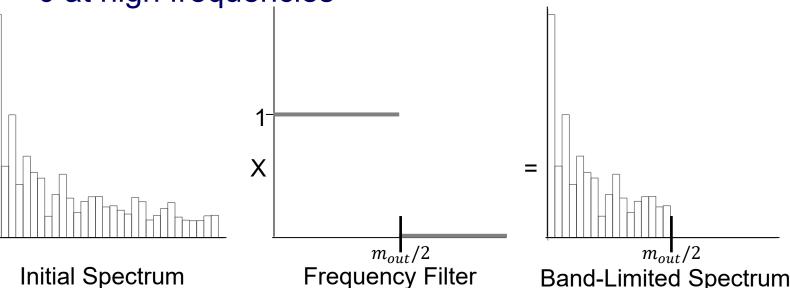


- To convolve functions f and g, we resample the function f using the weights given by g.
- Nearest, (bi)linear, and Gaussian interpolation are convolutions with different filters.

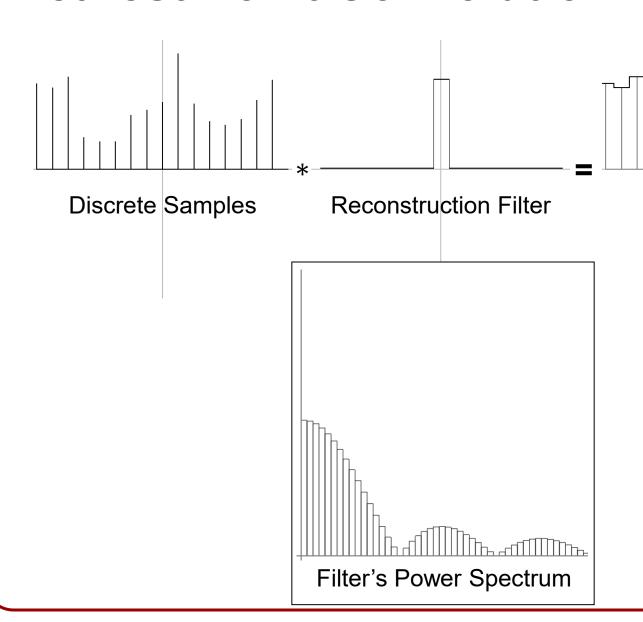


Since convolution in the spatial domain is equal to multiplication in the frequency domain...

- ⇒ To avoid aliasing, we should convolve with a filter whose power spectrum has value:
 - 1 at low frequencies



Nearest Point Convolution



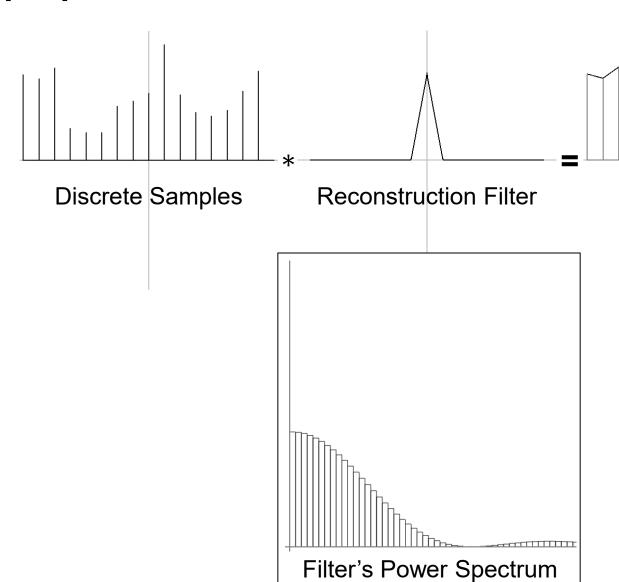
Note:

The spectrum does not really fall off at high frequencies.

Also:

The nearest-point filter does not provide a way for controlling the cut-off frequency.

(Bi)Linear Convolution



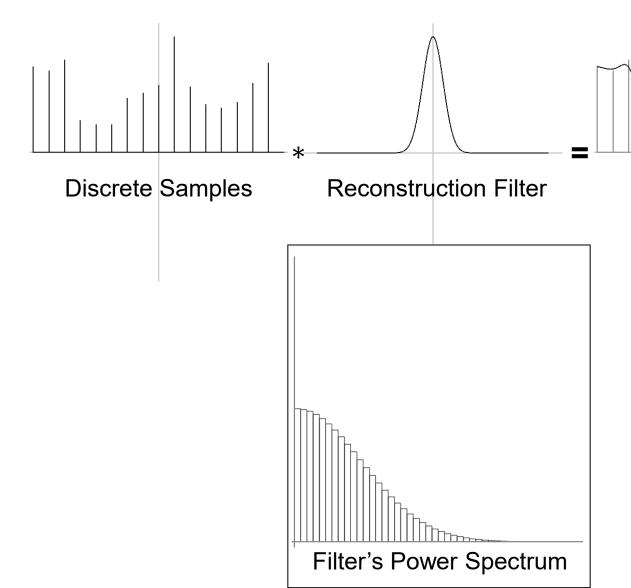
Note:

The spectrum does a better job of falling off at high frequencies, but still doesn't go to zero.

Also:

The (bi)linear filter does not provide a way for controlling the cut-off frequency.

Gaussian Convolution



Note:

The spectrum quickly decays to zero at high frequencies, (falling off like a Gaussian).

Also:

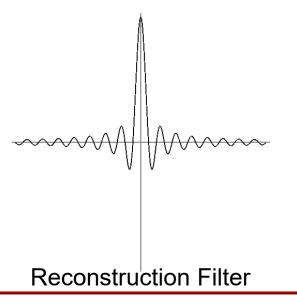
The variance of the Gaussian filter provides a way for controlling the cut-off frequency.

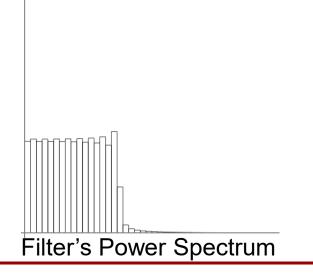
Convolution

- The ideal filter for avoiding aliasing should have a power spectrum with values:
 - 1 at low frequencies
 - 0 at high frequencies
- The sinc function has such a power spectrum and is referred to as the ideal reconstruction filter:

$$\operatorname{sinc}(\theta) = \begin{cases} \frac{\sin(\theta)}{\theta} & \text{if } \theta \neq 0 \\ 1 & \text{if } \theta = 0 \end{cases}$$

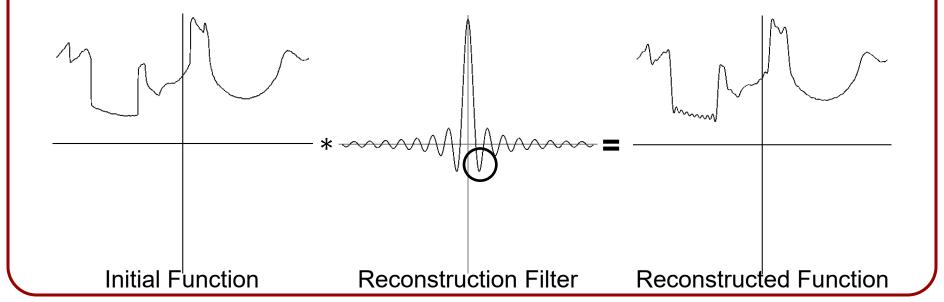
- The ideal filter for avoiding aliasing should have a power spectrum with values:
 - 1 at low frequencies
 - 0 at high frequencies
- The sinc function has such a power spectrum and is referred to as the ideal reconstruction filter:





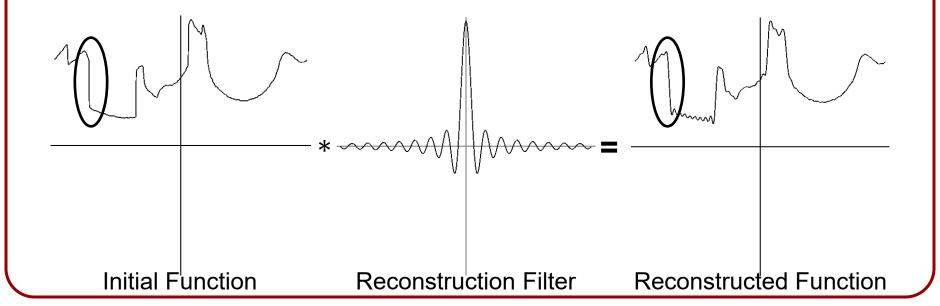
Limitations:

 Has negative values, giving rise to negative weights in the interpolation → can extrapolate values.



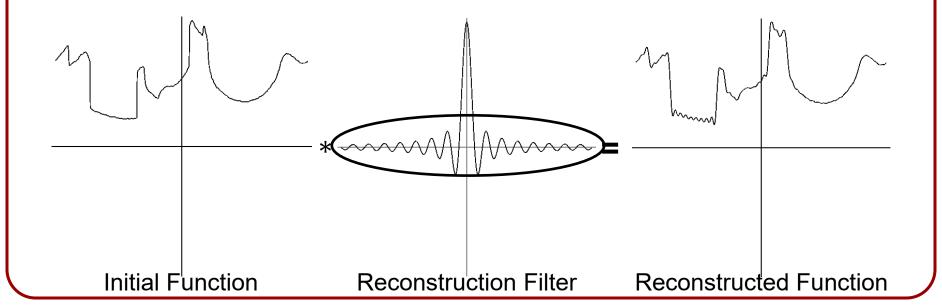
Limitations:

- Has negative values, giving rise to negative weights in the interpolation → can extrapolate values.
- Discontinuity in the frequency domain causes ringing near spatial discontinuities (Gibbs Phenomenon).



Limitations:

- Has negative values, giving rise to negative weights in the interpolation → can extrapolate values.
- Discontinuity in the frequency domain causes ringing near spatial discontinuities (Gibbs Phenomenon).
- The filter has large support so evaluation is slow.



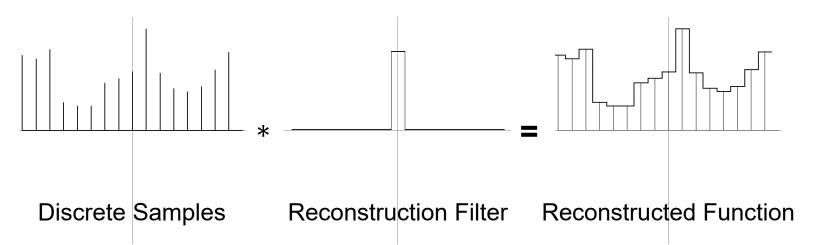
Summary

There are different ways to sample an image:

- Nearest Point Sampling
- Linear Sampling
- Gaussian Sampling
- Sinc Sampling

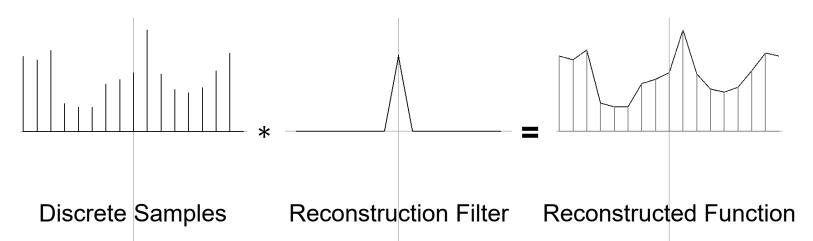
Summary – Nearest

- ✓ Can be implemented efficiently because the filter is nonzero in a very small region.
- ? Interpolates the samples.
- × Is discontinuous.
- Does not address aliasing, giving bad results when a high-frequency signal is under-sampled.
- Particularly bad when the output resolution is much lower than the input resolution.



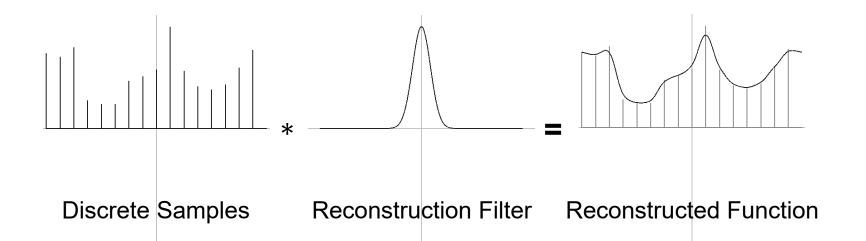
Summary – (Bi)linear

- ✓ Can be implemented efficiently because the filter is nonzero in a very small region.
- ? Interpolates the samples.
- * Is not smooth.
- Partially addresses aliasing, but still gives bad results when a high-frequency signal is under-sampled.
- Still bad when the output resolution is much lower than the input resolution.



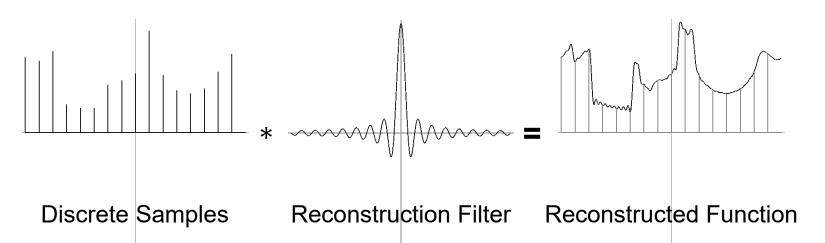
Summary – Gaussian

- Is slow to implement because the filter is non-zero in a large region.
- ? Does not interpolate the samples.
- ✓ Is smooth.
- ✓ Addresses aliasing by killing off high frequencies.
- ✓ Works well when the output resolution is much lower than the input resolution (by adapting the variance).



Summary – Sinc

- Is really slow to implement because the filter is non-zero, and large, in a large region.
- ? Interpolates the samples.
- * Assigns negative weights.
- * Ringing at discontinuities.
- ✓ Addresses aliasing by killing off high frequencies.
- ✓ Works well when the output resolution is much lower than the input resolution (by adapting the cut-off frequency).

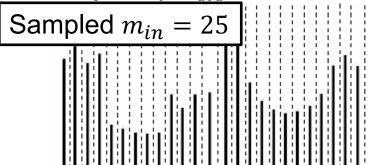


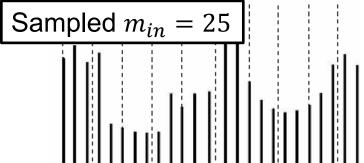
Given a source signal sampled at m_{in} positions, to get a destination image sampled at m_{out} positions:

- 1. Reconstruct:
 - a) Generate a function with bandwidth $m_{in}/2$.
 - b) Further filter the function to have frequency no larger than $m_{out}/2$.
- 2. Sample:

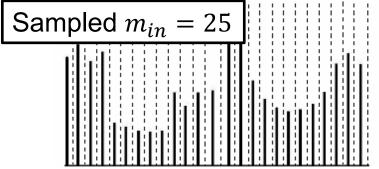
Evaluate the filtered function at the m_{out} positions.

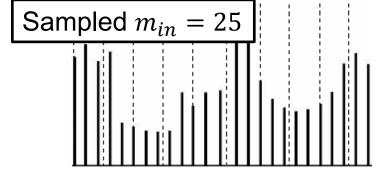
Example $(m_{in} = 25 \rightarrow m_{out} = 25/10)$:

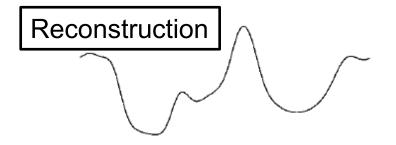


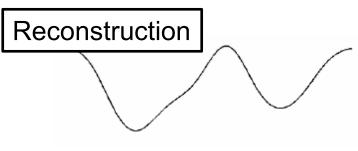


Example $(m_{in} = 25 \rightarrow m_{out} = 25/10)$:

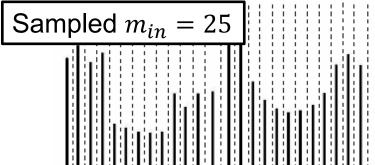


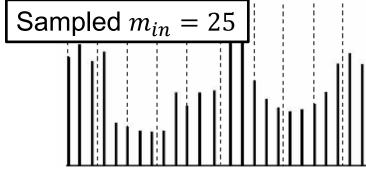


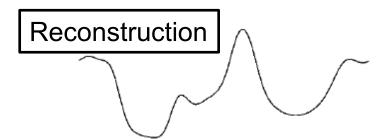


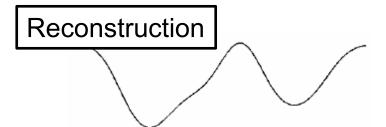


Example $(m_{in} = 25 \rightarrow m_{out} = 25/10)$:

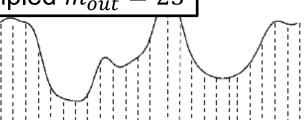








Sampled $m_{out} = 25$



Sampled
$$m_{out} = 10$$

Image Sampling (in Practice)

Given a source signal sampled at m_{in} positions, to get a destination image sampled at m_{out} positions:

- Resample the source image using a (Gaussian) filter whose width is determined by the number of input and output samples.
- This simultaneously:
 - 1. Reconstructs a band-limited function from the input samples
 - 2. Samples the band-limited function at the output positions

Gaussian Sampling

Recall:

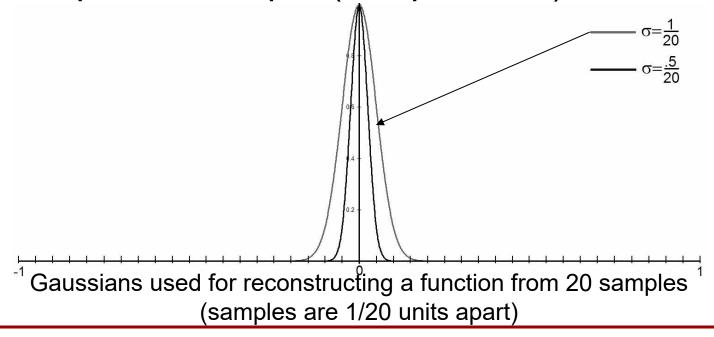
To avoid aliasing, we kill off the high-frequency components by convolving with a Gaussian because its power spectrum is:

- (approximately) one at low frequencies
- (approximately) zero at high frequencies

Gaussian Sampling (Rule of Thumb)

Q: What standard deviation should we use to sample the input?

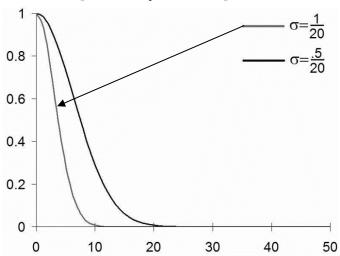
A: The standard deviation should be between 0.5 and 1.0 times the maximum sample spacing in the input **and** output (in input units).



Gaussian Sampling (Rule of Thumb)

Q: What standard deviation should we use to sample the input?

A: The standard deviation should be between 0.5 and 1.0 times the maximum sample spacing in the input **and** output (in input units).



Power spectra of the Gaussians used for reconstructing and sampling a function with 20 samples

Gaussian Sampling

Scaling Example:

Q: If we have data represented by $m_{in} = 20$ samples that we want to down-sample to $m_{out} = 5$ samples. What standard deviation should we use?

A: Distance between input samples (in input units): 1
Distance between output samples (in input units): 4

⇒ The standard deviation of the Gaussian used to sample the input should be between 2.0 and 4.0 (input units).

Gaussian Sampling

Scaling Example:

Q: If we have data represented by $m_{in} = 5$ samples that we want to up-sample to $m_{out} = 20$ samples. What standard deviation should we use?

A: Distance between input samples (in input units): 1
Distance between output samples (in input units): 0.25

⇒ The standard deviation of the Gaussian used to sample the input should be between 0.5 and 1.0 (input units).

Image Processing

- Quantization
 - Uniform quantization
 - Ordered dither
 - Random dither
 - Floyd-Steinberg dither
- Pixel operations
 - Compute luminance
 - Change contrast
 - Change saturation

- Filtering
 - Blurring
 - Edge-detection
- Morphing
 - Blending
 - Warp
- Sampling
 - Aliasing
 - Ideal filter