



# Image Filtering, Warping, and Morphing

Michael Kazhdan

(601.457/657)

#### **Outline**



- Image Filtering
- Image Warping
- Image Morphing

### **Image Filtering**



- What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
  - Blurring
  - Edge Detection
  - Etc.

#### **Multi-Pixel Operations**



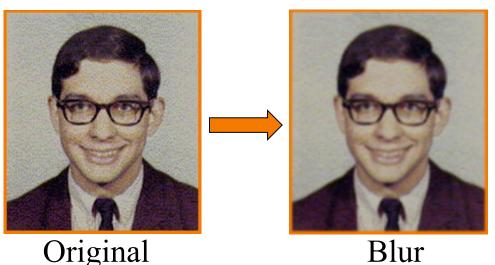
#### Stationary/Local Filtering

#### A general approach is to:

- 1. Define a *mask* of weights telling us how values at adjacent pixels should be combined to generate the new value.
- 2. Apply the (same) mask at every pixel.\*



- To blur across pixels, define a mask:
  - Whose entries sum to one
  - Whose value is larger near the center of the mask
  - Whose values are non-negative



Filter = 
$$\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16 \\ 2/& 4/& 2/\\ /16 & /16 & /16 \\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$$



Pixel(x,y): red = 36

green = 36

blue = 0



Original

Filter = 
$$\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16 \\ 2/& 4/& 2/\\ /16 & /16 & /16 \\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$$



| Pixel(x,y): red | = 36 |
|-----------------|------|
| green           | = 36 |
| blue            | = 0  |

Χ

x + 1

Original

| y - 1 | 36 | 109 | 146 |
|-------|----|-----|-----|
| У     | 32 | 36  | 109 |
| y + 1 | 32 | 36  | 73  |

x - 1

Pixel(x,y).red and its red neighbors

Filter = 
$$\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16\\ 2/& 4/& 2/\\ /16 & /16 & /16\\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$$



| Nev | v value | for | Pixel( | (x,y).red | = |              |
|-----|---------|-----|--------|-----------|---|--------------|
| (36 | * 1/16) | +   | (109   | * 2/16)   | + | (146 * 1/16) |
| (32 | * 2/16) | +   | (36    | * 4/16)   | + | (109 * 2/16) |
| (32 | * 1/16) | +   | (36    | * 2/16)   | + | (73 * 1/16)  |

Filter =  $\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16\\ 2/& 4/& 2/\\ /16 & /16 & /16\\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$ 

x - 1 x + 1

| y - 1 | 36 | 109 | 146 |
|-------|----|-----|-----|
| у     | 32 | 36  | 109 |
| y + 1 | 32 | 36  | 73  |

Pixel(x,y).red and its red neighbors



Original



#### New value for Pixel(x,y).red = 62.69



Original

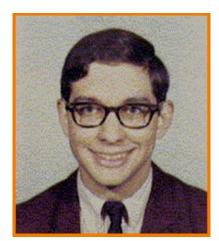
|       | x - 1 | X   | x + 1 |
|-------|-------|-----|-------|
| y - 1 | 36    | 109 | 146   |
| у     | 32    | 36  | 109   |
| y + 1 | 32    | 36  | 73    |

Pixel(x,y).red and its red neighbors

Filter = 
$$\begin{bmatrix} 1/& 2/& 1/\\ /16 & /16 & /16\\ 2/& 4/& 2/\\ /16 & /16 & /16\\ 1/& 2/& 1/\\ /16 & /16 & /16 \end{bmatrix}$$



#### New value for Pixel(x,y).red = 63



Original



Blur

| 1/16 | $\frac{2}{16}$ | $\begin{bmatrix} 1/16 \end{bmatrix}$ |
|------|----------------|--------------------------------------|
| 2/   | $\frac{1}{4}$  | 2/                                   |
| 716  | 716            | 716                                  |
| _/16 | 716            | <b>/</b> 16]                         |

Note: Though we quantized, we could have used another techniques (e.g. dithering)

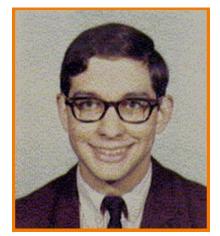


- Repeat for each color channel of each pixel.
- Keep source and destination separate to avoid drift.
- For boundary pixels, not all neighbors are used:
  - » Normalize the mask so the values sum to one, or
  - » Assume that the exterior values are black, or
  - » Assume the exterior values can be obtained by reflecting the image across the boundary, or
  - » Assume...



- Masks can have arbitrary size:
  - Can expand smaller masks by zero-padding

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 2 & 4 & 2 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} / 16 \iff \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} / 16$$



Original



Narrow Blur



- Masks can have arbitrary size:
  - Can expand smaller masks by zero-padding
  - Can use more non-zero entries to get a wider blur

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 2 & 4 & 2 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} / 16$$



Original



Narrow Blur



Wide Blur



A general way for defining the entries of a mask of size  $(2r + 1) \times (2r + 1)$  is to evaluate a Gaussian:

GaussianMask[
$$i$$
][ $j$ ]  $\sim e^{-\frac{(i-r)^2+(j-r)^2}{4r^2}}$   
 $i, j \in [0,2r]$ 

- r is the (integer) mask radius
- $0 \le i \le 2r$  is the horizontal position in the mask
- $0 \le j \le 2r$  is the vertical position in the mask
- Don't forget to normalize!

#### Note:

The center of the mask is at index (r, r).

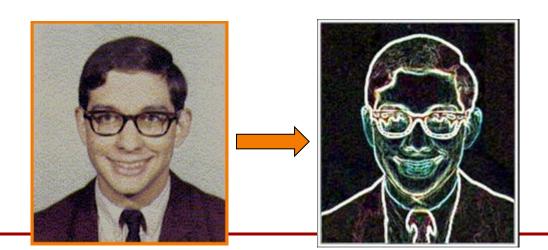


#### An edge is where the image is far from constant:

⇒ The difference between the value at the pixel and the average value of neighboring pixels is large (in absolute value)

#### Define a mask whose:

- Entries sum to zero
- Value is one at the center pixel



Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



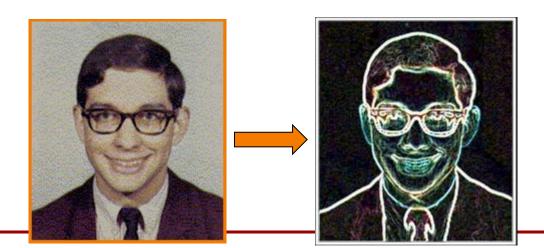
#### This is sometimes referred to as a Laplacian filter.

Pixels with large absolute values correspond to edges:

- Positive values: "upper" edges
- Negative values: "lower" edges

#### Define a mask whose:

- Entries sum to zero
- Value is one at the center pixel



Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



Pixel(x,y): red = 36

green = 36

blue = 0



Original

Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



| Pixel(x,y): red | = 36 |
|-----------------|------|
| green           | = 36 |
| blue            | = 0  |

x + 1

Original

| y - 1        | 36 | 109 | 146 |
|--------------|----|-----|-----|
| у            | 32 | 36  | 109 |
| <i>y</i> + 1 | 32 | 36  | 73  |

x - 1

Pixel(x,y).red and its red neighbors

Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



| New | value | for | <b>Pixel</b> | (x,y) | red = |
|-----|-------|-----|--------------|-------|-------|
|-----|-------|-----|--------------|-------|-------|

x + 1

$$(36 * -1/8) + (109 * -1/8) + (146 * -1/8)$$

$$(32 * -1/8) + (36 * 1) + (109 * -1/8)$$

$$(32 * -1/8) + (36 * -1/8) + (73 * -1/8)$$



Original

| y - 1 | 36 | 109 | 146 |
|-------|----|-----|-----|
| у     | 32 | 36  | 109 |
| y + 1 | 32 | 36  | 73  |

x - 1

Filter = 
$$\frac{1}{8} \begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{vmatrix}$$



#### New value for Pixel(x,y).red = -285/8



Original

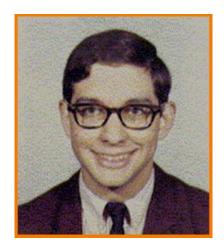
|       | x - 1 | X   | x + 1 |
|-------|-------|-----|-------|
| y - 1 | 36    | 109 | 146   |
| у     | 32    | 36  | 109   |
| y + 1 | 32    | 36  | 73    |

Pixel(x,y).red and its red neighbors

Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$



#### New value for Pixel(x,y).red = -35.625



Original



Detected Edges

Filter = 
$$\frac{1}{8}\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

#### Note:

Output values are not colors.

⇒ Need to find a way to remap for visualization.

#### **Outline**

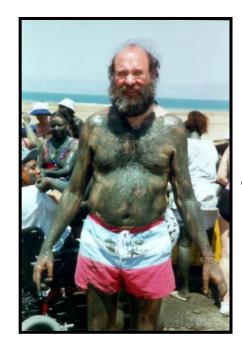


- Image Filtering
- Image Warping
- Image Morphing

#### **Image Warping**



- Move pixels of image
  - Mapping
  - Resampling



Source image



Warp

Destination image

#### **Overview**

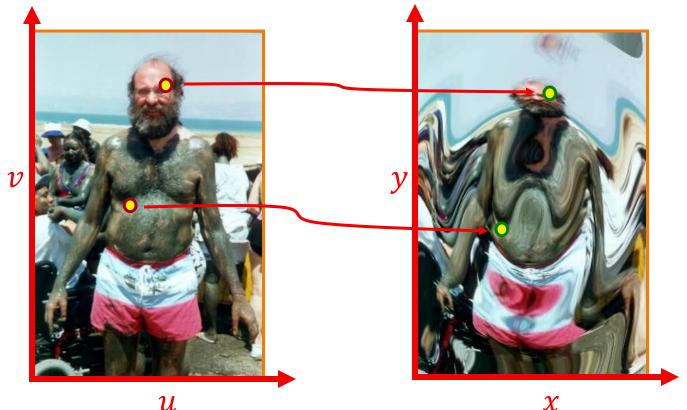


- Mapping
  - Forward
  - Inverse
- Resampling
  - Point sampling
  - Triangle filter
  - Gaussian filter

### **Mapping**



- Define transformation
  - Describe the destination  $(x, y) = \Phi(u, v)$  for every location (u, v) in the source



# **Example Mappings**

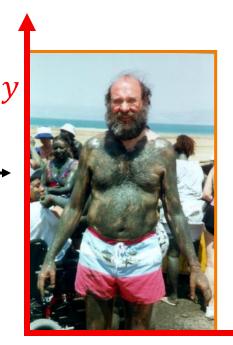


• Scale by  $\sigma$ :

$$\circ \ \Phi(u,v) = (\sigma u, \sigma v)$$



Scale  $\sigma = 0.8$ 

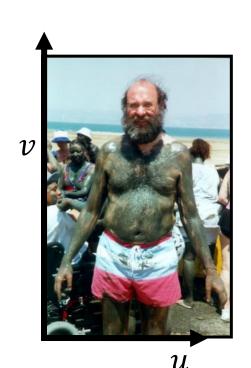


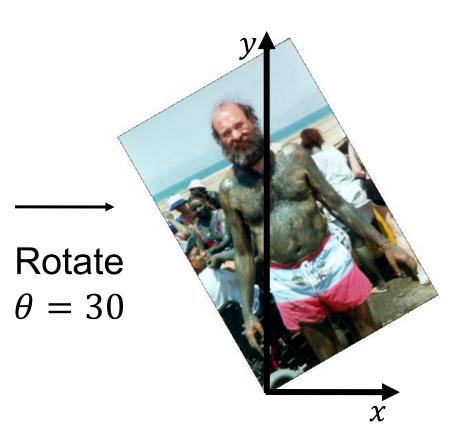
 $\chi$ 

#### **Example Mappings**



- Rotate by  $\theta$  degrees:
  - $\Phi(u,v) = (u\cos\theta v\sin\theta, u\sin\theta + v\cos\theta)$

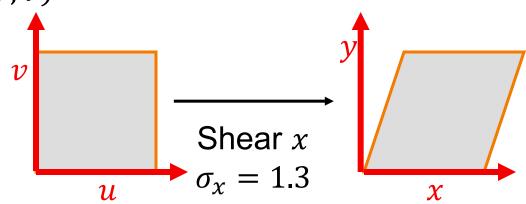




#### **Example Mappings**



• Shear in x by  $\sigma_x$ :



• Shear in y by  $\sigma_y$ :

$$\Phi(u,v) = (u,v+\sigma_y \cdot u)$$

$$v$$
Shear  $y$ 

$$\sigma_y = 1.3$$

### **Other Mappings**



• Any function of u and v:

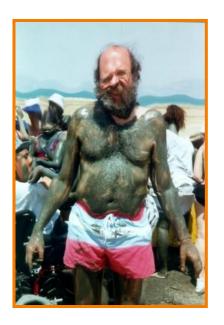
$$\circ \Phi(u,v) = \cdots$$



Fish-eye



"Swirl"



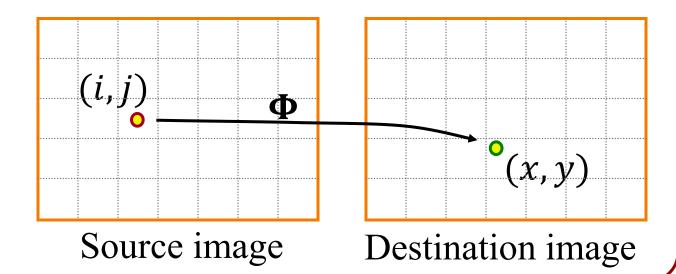
"Rain"

### Image Warping Implementation I



Forward mapping:

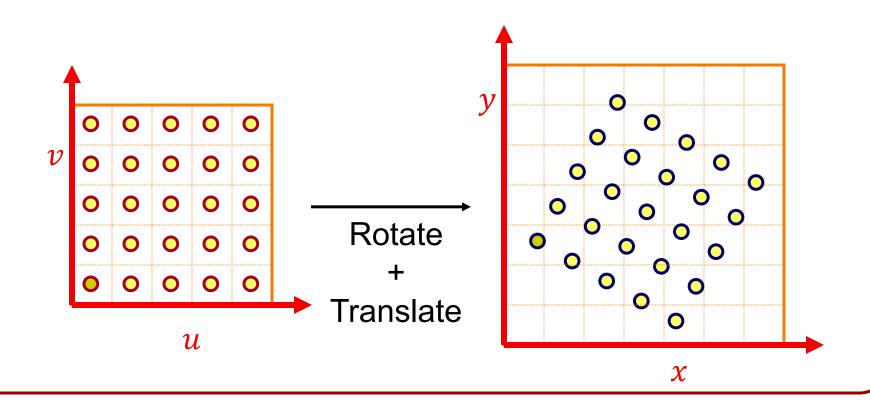
```
for( j=0 ; j<srcHeight ; j++ )
  for( i=0 ; i<srcWidth ; i++ )
    (x,y) = Φ(i,j);
  dst(x,y) = src(i,j);</pre>
```



# **Forward Mapping**



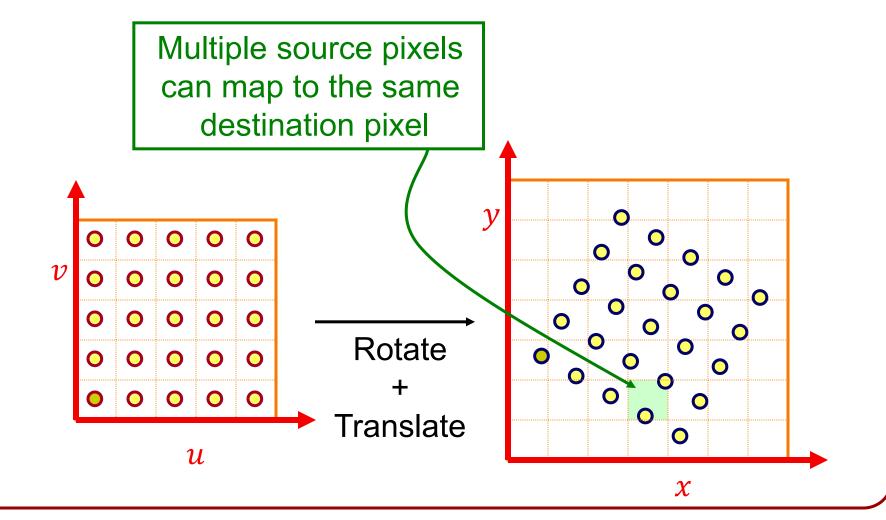
Iterate over source image



#### Forward Mapping – BAD!



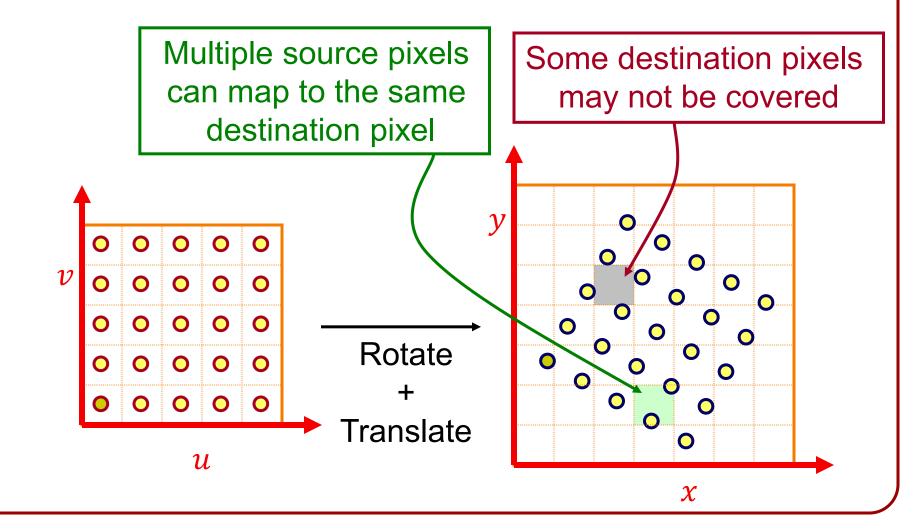
Iterate over source image



#### Forward Mapping – BAD!



Iterate over source image

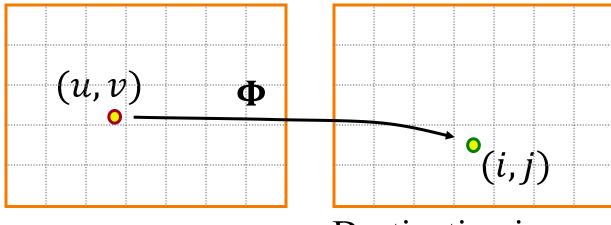


#### Image Warping Implementation II



Inverse mapping:

```
for( j=0 ; j<dstHeight ; j++ ) for( i=0 ; i<dstWidth ; i++ )  (u,v) = \Phi^{-1}(i,j);   dst(i,j) = src(u,v);
```



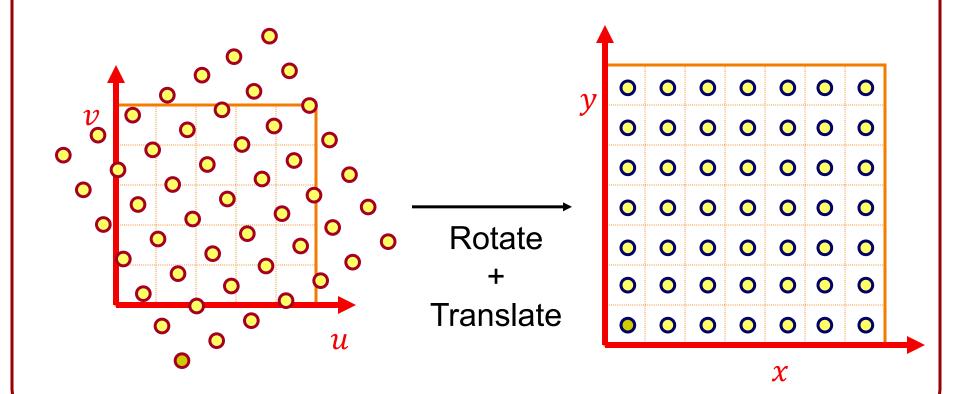
Source image

Destination image

# Image Warping Implementation II



- Inverse mapping:
  - ✓ A single value assigned to each destination pixel
  - Must resample source

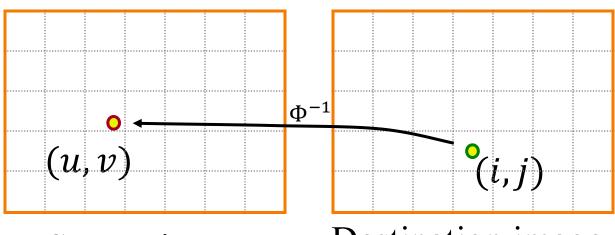


#### Resampling



• Evaluate source image at  $(u, v) = \Phi^{-1}(i, j)$ 

(u, v) does not usually have integer coordinates



Source image

Destination image

#### **Overview**



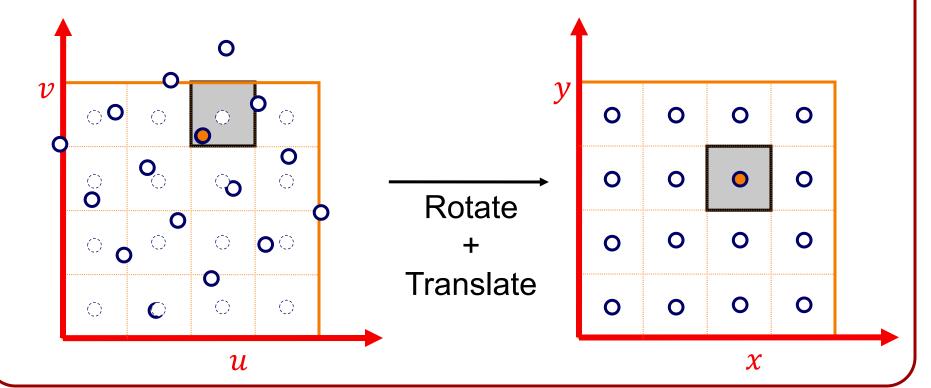
- Mapping
  - Forward
  - Inverse
- Resampling
  - Nearest Point Sampling
  - Bilinear Sampling
  - Gaussian Sampling

## **Nearest Point Sampling**



Take value at closest pixel (indexed by center):

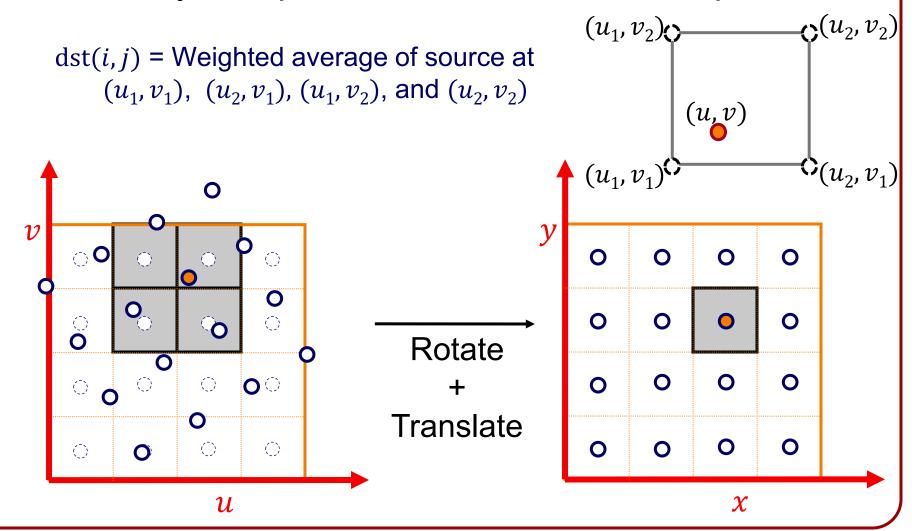
```
int intU = floor(u+0.5);
int intV = floor(v+0.5);
dst(i,j) = src(intU,intV);
```



## **Bilinear Sampling**



Bilinearly interpolate four closest source pixels



## **Linear Sampling**



Linearly interpolate two closest source pixels

```
dst(i) = linear interpolation of u_1 and u_2
```

```
u_1 \circ u_2
0 \le du \le 1
```

```
Given i, the pixel location in the target: u = \Phi^{-1}(i) u1 = floor(u); u2 = u1 + 1; du = u - u1; dst(i) = src(u1)*(1-du) + src(u2)*du;
```

## **Bilinear Sampling**



Bilinearly interpolate four closest source pixels

```
a = linear interpolation of src(u_1, v_1) and src(u_2, v_1)
    b = \text{linear interpolation of } \operatorname{src}(u_1, v_2) \text{ and } \operatorname{src}(u_2, v_2)
    dst(i, j) = linear interpolation of a and b
(\mathbf{u},\mathbf{v}) = \Phi^{-1}(\mathbf{i},\mathbf{j})
                                               (u_1, v_2) (u, v_2) (u_2, v_2)
u1 = floor(u), u2 = u1 + 1;
v1 = floor(v), v2 = v1 + 1;
                                                             (u, v)
du = u - u1;
a = src(u1,v1)*(1-du)
                                                (u_1, v_1) (u, v_1) (u_2, v_1)
   + src(u2,v1)*(du);
b = src(u1, v2) * (1-du)
   + src(u2, v2) *du;
dv = v - v1;
dst(i,j) = a*(1-dv) + b*dv;
```

## **Bilinear Sampling**



Bilinearly interpolate four closest source pixels

```
a = \text{linear interpolation of } \operatorname{src}(u_1, v_1) \text{ and } \operatorname{src}(u_2, v_1)
    b = \text{linear interpolation of } \operatorname{src}(u_1, v_2) \text{ and } \operatorname{src}(u_2, v_2)
    dst(i, j) = linear interpolation of a and b
(\mathbf{u},\mathbf{v}) = \Phi^{-1}(\mathbf{i},\mathbf{j})
                                                   (u_1, v_2), (u, v_2), (u_2, v_2)
u1 =
             Make sure to test that the pixels
       (u_1, v_1), (u_2, v_2), (u_1, v_2), \text{ and } (u_2, v_1)
                        are within the image.
                                                    \overline{(u_1, v_1)} (u, v_1) (u_2, v_1)
   + src(u2,v1)*( du);
b = src(u1, v2) * (1-du)
   + src(u2, v2) *du;
dv = v - v1;
dst(i,j) = a*(1-dv) + b*dv;
```

## **Gaussian Sampling**

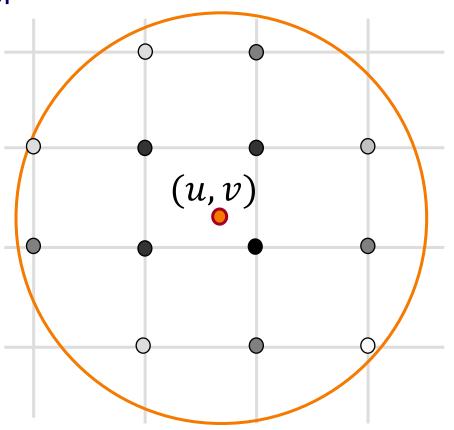


- Compute weighted sum of pixel neighborhood:
  - The blending weights are the <u>normalized</u> values of a Gaussian function.

#### Note:

In contrast to the blurring filter, this doesn't assume that the center is at an integer location.

⇒ Can't precompute a stencil in advance

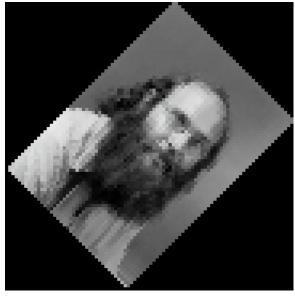


## Filtering Methods Comparison



- Trade-offs
  - Jagged edges versus blurring
  - Computation speed

We'll talk more about trade-offs next time.



Nearest



Bilinear



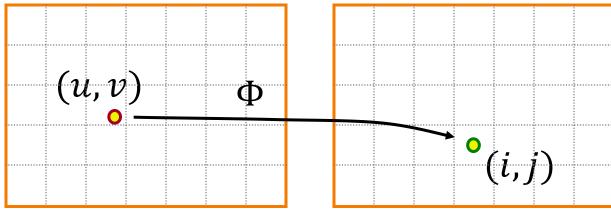
Gaussian

## Image Warping Implementation



Inverse mapping:

```
for( j=0 ; j<dstHeight ; j++ ) for( i=0 ; i<dstWidth ; i++ )  (u,v) = \Phi^{-1}(i,j);  dst(i,j) = resample_src(u,v,r);
```



Source image

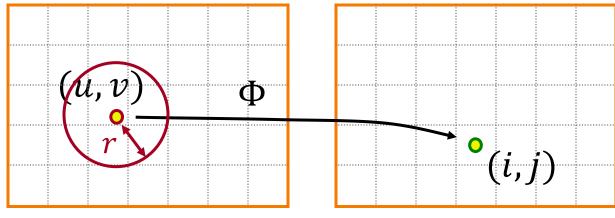
Destination image

## Image Warping Implementation



Inverse mapping:

```
for( j=0 ; j<dstHeight ; j++ )
  for( i=0 ; i<dstWidth ; i++ )
    (u,v) = Φ<sup>-1</sup>(i,j);
    dst(i,j) = resample_src(u,v,r);
```



Source image

Destination image

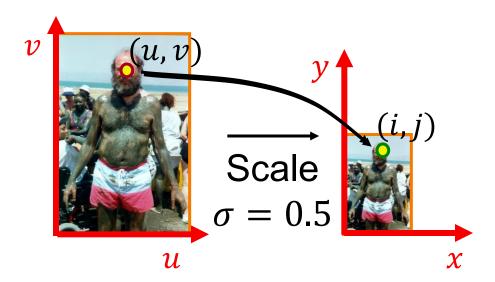
### **Example: Scale**



```
Scale( src , dst , \sigma ):
```

```
r \cong ?;
for(j=0; j<dstHeight; j++)
for(i=0; i<dstWidth; i++)
(u,v) = (i,j) / \sigma;
dst(i,j) = resample_src(u,v,r);
```

$$r = \frac{1}{\sigma}$$



### **Example: Rotate**



```
Rotate( src , dst , \theta ):
 r \cong ?;
 for( j=0 ; j<dstHeight ; j++ )</pre>
   for( i=0 ; i<dstWidth ; i++ )</pre>
      (u,v) = (i*cos(-\theta) - j*sin(-\theta)),
                   i*sin(-\theta) + j*cos(-\theta));
      dst(x,y) = resample src(u,v,r); y
                              (u, v)
       r = 1
```

 $\frac{(u,v)}{\text{Rotate}}$   $\theta = 30$ 

1

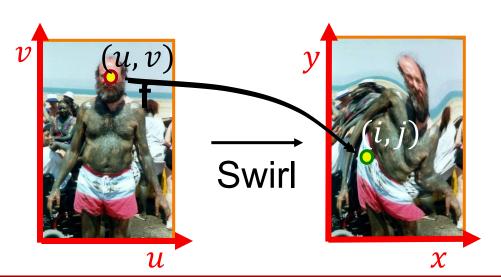
### **Example:**



### General( src , dst , $\Phi$ ):

```
 \begin{array}{l} r \cong ?; \\ \\ for(\ j=0\ ;\ j<dstHeight\ ;\ j++\ ) \\ \\ for(\ i=0\ ;\ i<dstWidth\ ;\ i++\ ) \\ \\ (u,v) = \Phi^{-1}(i,j); \\ \\ dst(i,j) = resample\_src(u,v,r); \\ \end{array}
```

r = ?



#### **Example:**



#### General( src, dst, $\Phi$ ):

```
 \begin{array}{l} r \cong ?; \\ \\ for(\ j=0\ ;\ j< dst Height\ ;\ j++\ ) \\ \\ for(\ i=0\ ;\ i< dst Width\ ;\ i++\ ) \\ \\ (u,v) = \Phi^{-1}(i,j); \\ \\ dst(i,j) = resample\_src(u,v,r); \\ \end{array}
```

Instead of using a fixed radius circle to sample the source, we can:

- 1. Have the radius change,
- 2. Use an ellipse.

For example, the parameters can be determined by looking at the derivative/Jacobean of  $\Phi$ .

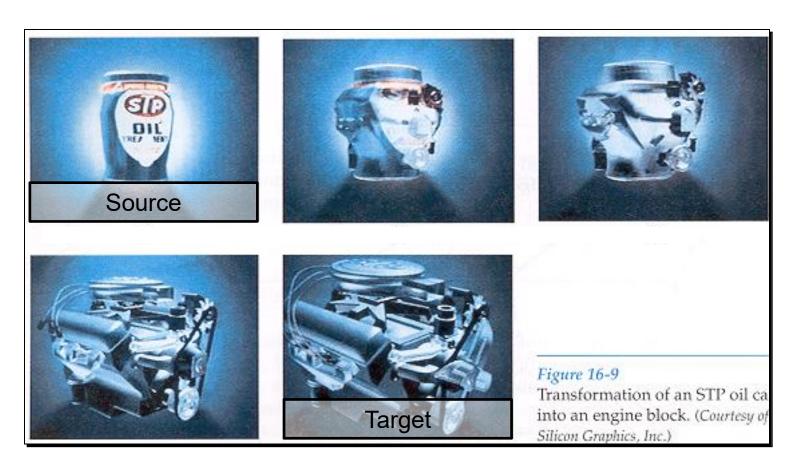
### **Outline**



- Image Filtering
- Image Warping
- Image Morphing

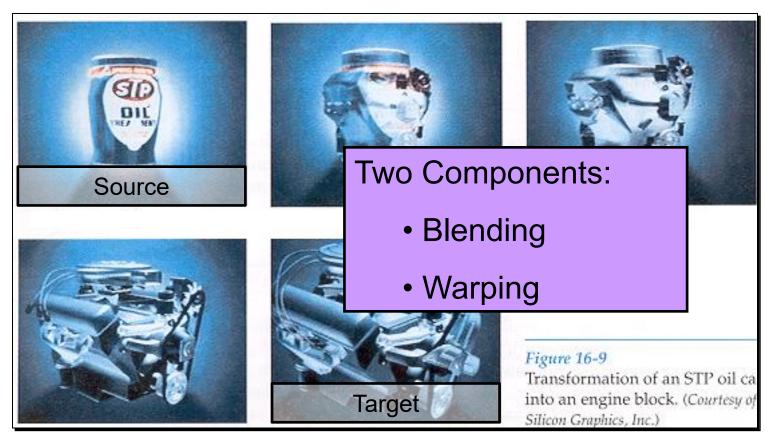


Animate transition between two images





Animate transition between two images

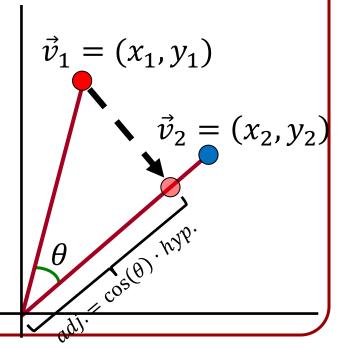




#### Recall (Inner Product):

- 1. For two vectors  $\vec{v}_1 = (x_1, y_1)$  and  $\vec{v}_2 = (x_2, y_2)$ , the inner product between  $\vec{v}_1$  and  $\vec{v}_2$  is:  $\langle \vec{v}_1, \vec{v}_2 \rangle \equiv x_1 \cdot x_2 + y_1 \cdot y_2 = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$
- ⇒ Gives the cosine of the angle between the two, scaled by the product of their lengths.
- $\Rightarrow$  Dividing by the length of  $v_2$  gives the signed length of the projection of  $v_1$  onto the line through  $v_2$ :

$$||v_1|| \cdot \cos \theta = \frac{\langle v_1, v_2 \rangle}{||v_2||}$$





#### Recall (Inner Product):

1. For two vectors  $\vec{v}_1 = (x_1, y_1)$  and  $\vec{v}_2 = (x_2, y_2)$ , the inner product between  $\vec{v}_1$  and  $\vec{v}_2$  is:  $\langle \vec{v}_1, \vec{v}_2 \rangle \equiv x_1 \cdot x_2 + y_1 \cdot y_2 = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$ 

2. For a vector  $\vec{v} = (x, y)$ , its 90° (CCW) rotation is:  $\vec{v}^{\perp} = (-y, x)$ 

This is the vector:

- With the same length as  $\vec{v}$ , and
- Which is perpendicular to  $\vec{v}$ :

$$\langle \vec{v}, \vec{v}^{\perp} \rangle = 0$$

In 2D, the perpendicular is unique up to sign (disambiguated with CCW vs CW).

In higher dimensions, there is a continuum of perpendicular vectors.



#### Recall (Inner Product):

1. For two vectors  $\vec{v}_1 = (x_1, y_1)$  and  $\vec{v}_2 = (x_2, y_2)$ , the inner product between  $\vec{v}_1$  and  $\vec{v}_2$  is:  $\langle \vec{v}_1, \vec{v}_2 \rangle \equiv x_1 \cdot x_2 + y_1 \cdot y_2 = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$ 

2. For a vector 
$$\vec{v} = (x, y)$$
, its 90° (CCW) rotation is:  $\vec{v}^{\perp} = (-y, x)$ 

3. The inner-product of two vectors is *isometry-invariant*: If  $\mathbf{R} \in \mathbb{R}^{2 \times 2}$  is a rotation/reflection, then:

$$\langle \mathbf{R}(\vec{v}_1), \mathbf{R}(\vec{v}_2) \rangle = \langle \vec{v}_1, \vec{v}_2 \rangle$$

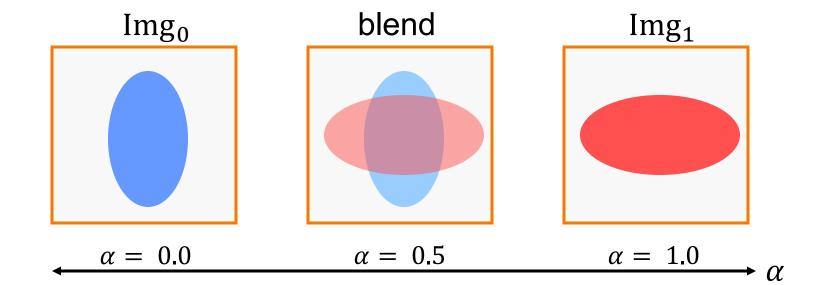
⇒ In particular:

$$\left\langle \vec{v}_1^{\perp}, \vec{v}_2^{\perp} \right\rangle = \left\langle \vec{v}_1, \vec{v}_2 \right\rangle$$

## Image Morphing: Blending

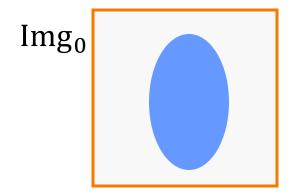


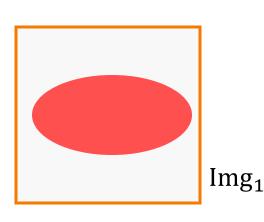
Blend **colors** using an  $\alpha$ -blend ( $\alpha \in [0,1]$ ): blend $(i,j,\alpha) = (1-\alpha) \cdot \operatorname{Img}_0(i,j) + \alpha \cdot \operatorname{Img}_1(i,j)$ 





Deform Img<sub>0</sub> so its **shape** matches that of Img<sub>1</sub>...





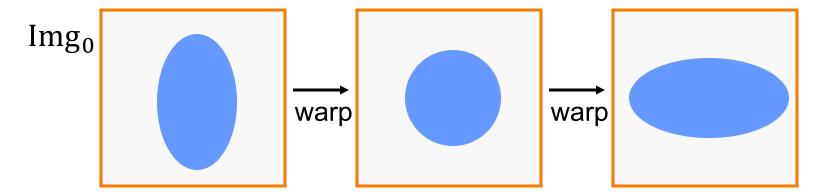
$$\alpha = 0.0$$

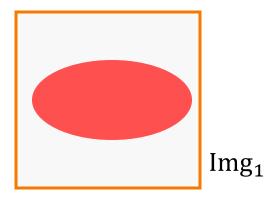
$$\alpha = 0.5$$

$$\alpha = 1.0$$



Deform Img<sub>0</sub> so its **shape** matches that of Img<sub>1</sub>...





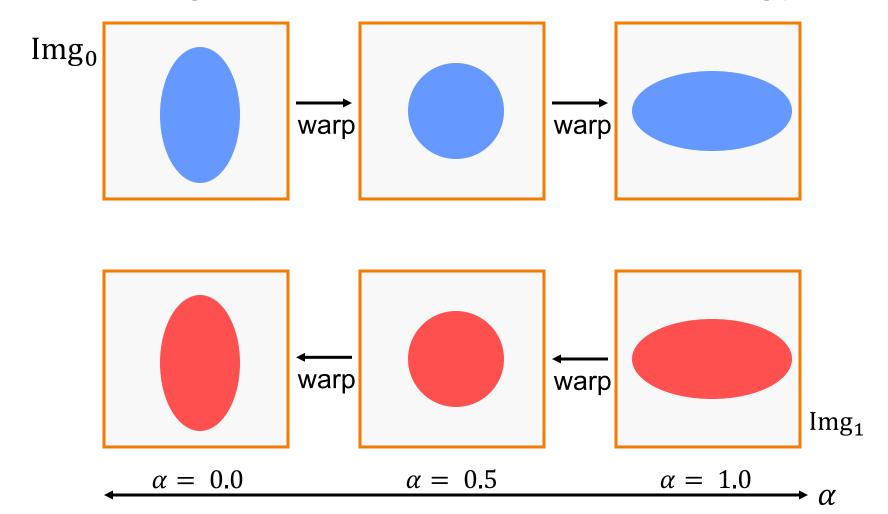
$$\alpha = 0.0$$

$$\alpha = 0.5$$

$$\alpha = 1.0$$

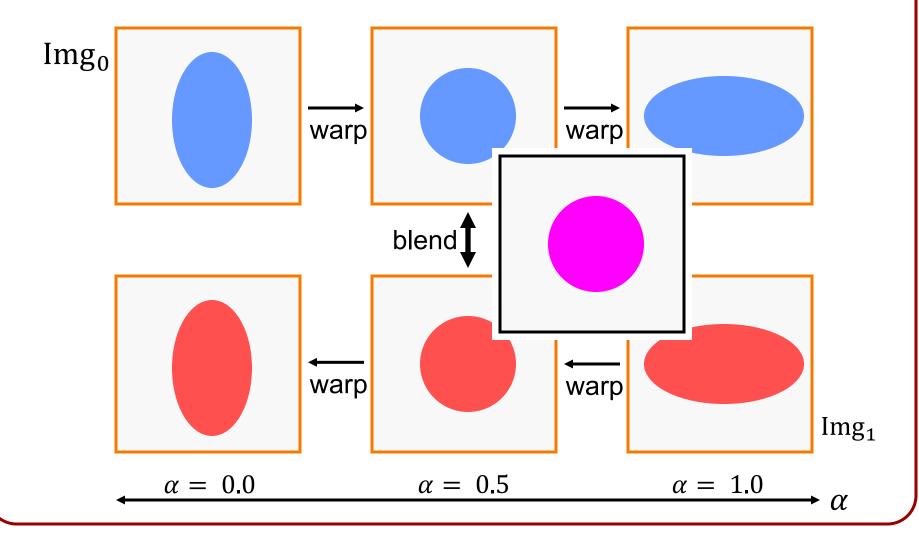


Deform Img<sub>1</sub> so its **shape** matches that of Img<sub>0</sub>...



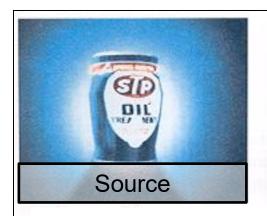
# Image Morphing: Warping + Blending

... then blend colors





- The warping step is the hard one
  - Aim to align features in images











How do we specify the mapping for the warp?

Silicon Graphics, Inc.)

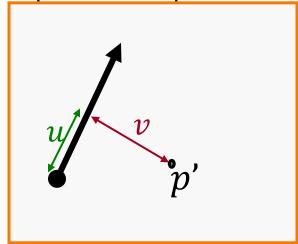
# Challenge:

Given p in the destination, what is the corresponding source location?

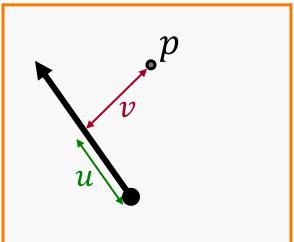
#### Approach:

- Define a pair of corresponding lines in the source and target
- Describe p relative to the destination line

Map the description to the source



Source image



**Destination image** 

u is a signed <u>fraction</u> v is a signed <u>length</u> (in pixels)

How do we calculate v (perp. pixel distance)?

#### Recall:

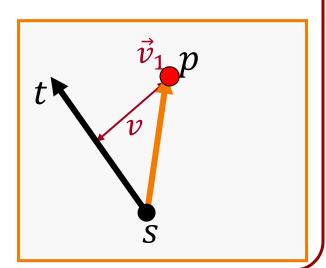
The signed length of  $\vec{v}_1$  projected onto  $\vec{v}_2$  is:

$$\frac{\langle \vec{v}_1, \vec{v}_2 \rangle}{\|\vec{v}_2\|}$$

In our case we want:

 The signed length of the direction from the start of the segment to p:

$$\vec{v}_1 = p - s$$



How do we calculate v (perp. pixel distance)?

#### Recall:

The signed length of  $\vec{v}_1$  projected onto  $\vec{v}_2$  is:

$$\frac{\langle \vec{v}_1, \vec{v}_2 \rangle}{||\vec{v}_2||}$$

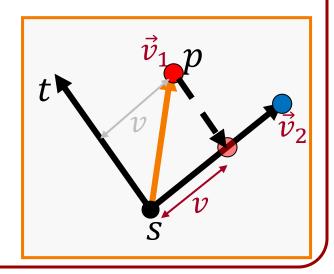
#### In our case we want:

 The signed length of the direction from the start of the segment to p:

$$\vec{v}_1 = p - s$$

 Projected onto the perpendicular of the direction from the start of the segment to the end:

$$\vec{v}_2 = (t-s)^{\perp}$$



How do we calculate v (perp. pixel distance)?

#### Recall:

The signed length of  $\vec{v}_1$  projected onto  $\vec{v}_2$  is:

$$\frac{\langle \vec{v}_1, \vec{v}_2 \rangle}{\|\vec{v}_2\|}$$

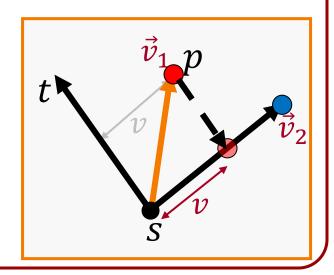
In our case we want:

 The signed length of the direction from the start of the segment to p:

$$\vec{v}_1 = p - s$$

 Projected onto the perpendicular of the direction from the start of the segment to the end:

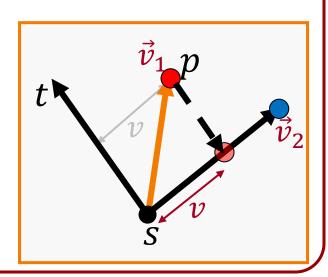
$$\vec{v}_2 = (t-s)^{\perp}$$



How do we calculate v (perp. pixel distance)?

This gives:

$$v = \frac{\langle \overline{p-s}, \overline{(t-s)^{\perp}} \rangle}{\|(t-s)^{\perp}\|}$$



How do we calculate u (par. **fractional** distance)?

#### Similarly:

The signed projected length is:

$$\tilde{u} = \frac{\langle \overline{p-s}, \overline{t-s} \rangle}{\|t-s\|}$$

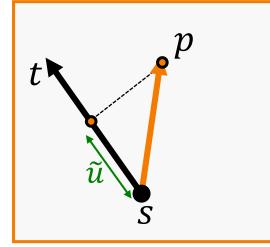


How do we calculate u (par. **fractional** distance)?

#### Similarly:

 The fractional signed projected length is obtained by dividing by the length of the segment:

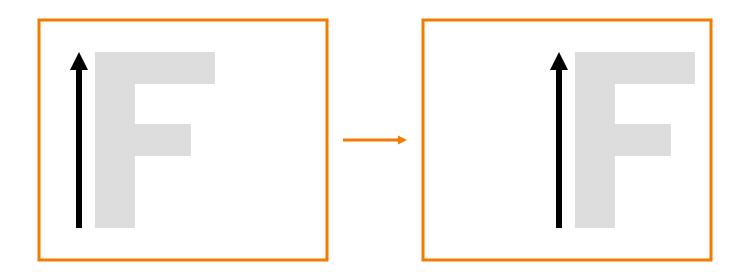
$$u = \frac{\langle \overline{p-s}, \overline{t-s} \rangle}{\|t-s\|} \cdot \frac{1}{\|t-s\|}$$



## Warping with One Line Pair



What happens to the "F"?

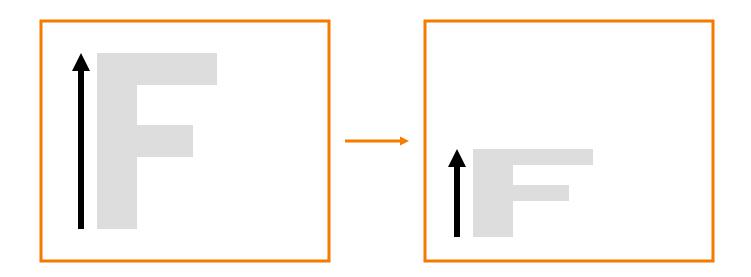


Translation!

## Warping with One Line Pair



What happens to the "F"?

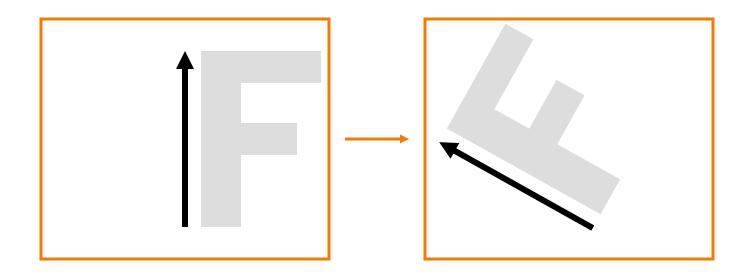


Non-uniform scale!

## Warping with One Line Pair



What happens to the "F"?

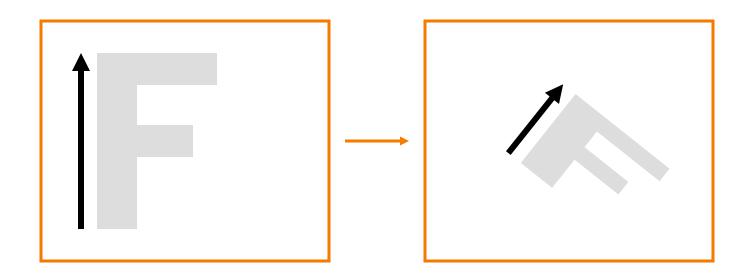


Rotation!

#### Warping with One Line Pair



What happens to the "F"?



What types of <u>affine</u> transformations can't be specified?

### Warping with One Line Pair



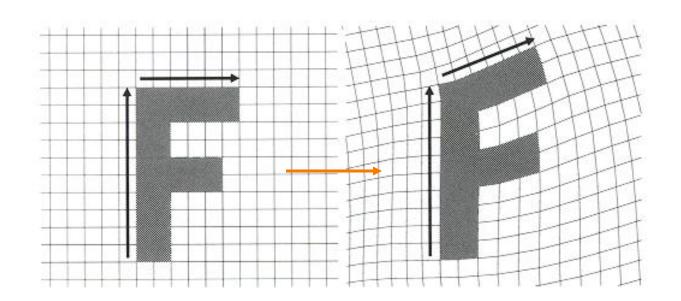
Can't specify arbitrary scales, skews, mirrors, angular changes...



#### Warping with Multiple Line Pairs



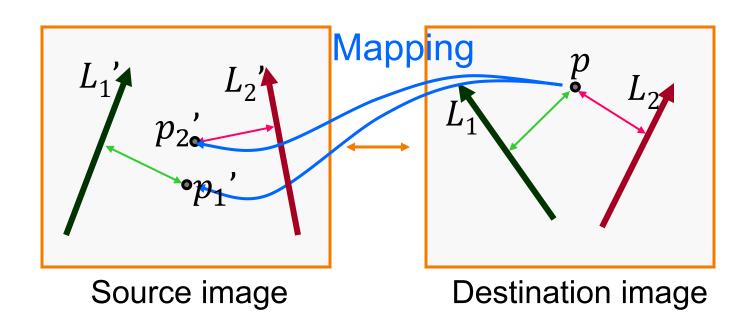
Use weighted combination of points defined by each pair of corresponding lines



### Warping with Multiple Line Pairs



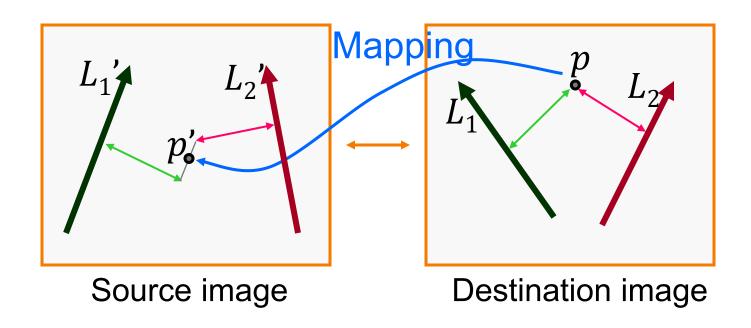
Use weighted combination of points defined by each pair of corresponding lines



### Warping with Multiple Line Pairs



Use weighted combination of points defined by each pair of corresponding lines



p' is a weighted average

### Weighting Effect of Each Line Pair



Given a set of line pairs  $\{L_{in}[0], ..., L_{in}[N]\}$  and  $\{L_{out}[0], ..., L_{out}[N]\}$ , to weight the contribution of each line pair, [Beier & Neely, 1992] use:

weight[i](p) 
$$\sim \left(\frac{\operatorname{length}[i]^c}{a + \operatorname{dist}[i](p)}\right)^b$$

#### where:

- length[i] is the length of line  $L_{out}[i]$
- dist[i](p) is the distance from p to  $L_{out}[i]$
- a (small),  $b \in [0.5,2.0]$ ,  $c \in [0.0,1.0]$  are constants that control the warp

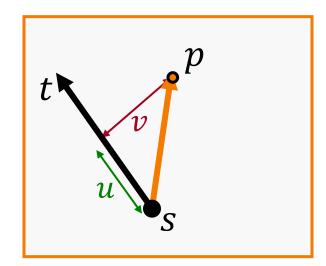
Note: The "~" indicates "up to a constant". Need to normalize so weights sum to 1.

### Feature-Based Warping



How do we calculate the unsigned distance from a point p to the line segment from s to t?

$$\operatorname{dist}(p) = \begin{cases} |v| & \text{if } u \in [0,1] \\ ||p-s|| & \text{if } u < 0 \\ ||p-t|| & \text{if } u > 1 \end{cases}$$



### Warping



#### Input:

Source image

Set of corresponding line segment pairs in source and target

#### Goal:

Warp the source image to a target image

#### Solution:

Iterating over each pixel in the target

- For each pair of line segments
  - » Compute the corresponding position in the source
  - » Compute the weights
- Average to get the final source position
- Sample the source (at the source position) to get the target color

#### Warping: Pseudocode

```
Warp(Img_{src}, L_{src}[N], L_{tat}[N])
    foreach target pixel p_{trat}:
        p_{src} = (0,0)
        sum = 0
        for i = 0 to N:
            q_{src} = p_{trgt} transformed by (L_{src}[i], L_{trgt}[i])
            p_{src} += q_{src} * weight[i]( p_{trat})
            sum += weight[i](p_{trat})
        p_{src} /= sum
        Img_{trqt}(p_{trqt}) = Img_{src}(p_{src})
    return Img<sub>trat</sub>
```

### Morphing



#### Input:

Source and target images Set of corresponding line segment pairs in source and target Interpolation time  $\alpha \in [0,1]$ 

#### Goal:

The morph of the source to the target at time  $\alpha$ 

#### Solution:

- $\circ$  Compute the  $\alpha$ -weighted average of the of line segments (by averaging the end-points)
- Warp the source using the source and averaged line segments
- Warp the target using the target and averaged line segments
- Compute the  $\alpha$ -blend of the warped images

#### Morphing: Pseudocode



```
Morph(Img_0, L_0[N], Img_1, L_1[N], \alpha)
    foreach i \in \{1,...,N\}:
          L_{\alpha}[i] = line \alpha-th of the way from L_{0}[i] to L_{1}[i]
     Warp_0 = Warp(Img_0, L_0[], L_\alpha[])
                                                            -warp
     Warp_1 = Warp(Img_1, L_1[], L_{\alpha}[])
    return (1-\alpha)^* Warp<sub>0</sub> + \alpha^* Warp<sub>1</sub>
                                                            -\alpha-blend
```

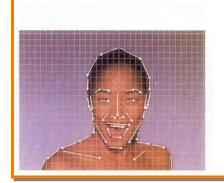


 $Img_0$ 



Warp<sub>0</sub>

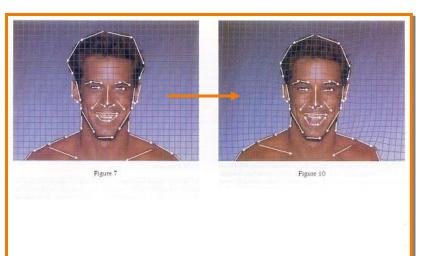
Img<sub>1</sub>



Warp<sub>1</sub>

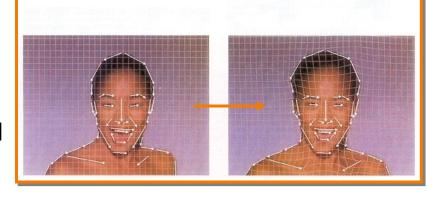


 $Img_0$ 



Warp<sub>0</sub>

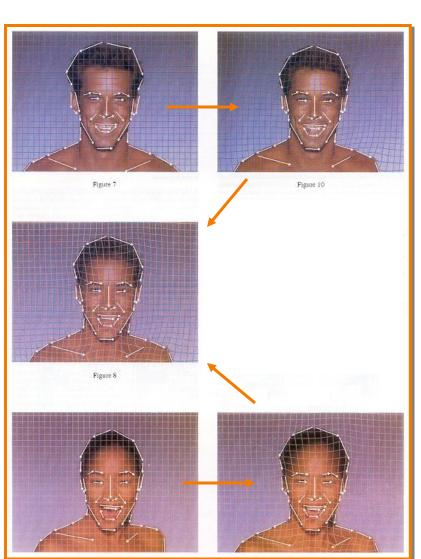
Img<sub>1</sub>



Warp<sub>1</sub>







Warp<sub>0</sub>

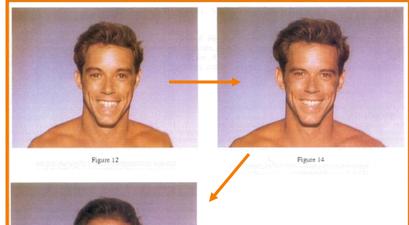
Img₁

Result

Warp<sub>1</sub>



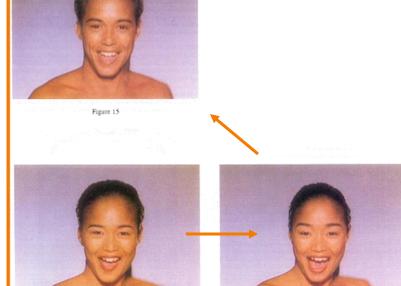




Warp<sub>0</sub>

Result





Warp<sub>1</sub>

### Full Morph Animation: Pseudocode



```
Animate( Img_0 , L_0[N] , Img_1 , L_1[N] , Imgs_{out}[T+1] ) { for each t \in \{0,...,T\}: Imgs_{out}[t] = Morph(Img_0 , L_0[N] , Img_1 , L_1[N] , t/T ) }
```

#### Morphing



Check out Michael Jackson's "Black or White" video at:

https://www.youtube.com/watch?v=pTFE8cirkdQ



Or the earlier Plymouth Voyager commercial at: <a href="https://www.youtube.com/watch?v=0b939O7dGqQ">https://www.youtube.com/watch?v=0b939O7dGqQ</a>