Signal Processing
From Images to Surfaces

Ming Chuang, Fabian Prada, Alvaro Collet, Linjie Luo,
Benedict Brown, Szymon Rusinkiewicz, Hugues Hoppe

Estimating the Laplace-Beltrami Operator by Restricting 3D Functions. [Chuang et al., 2009]
Fast Mean-Curvature Flow via Finite Elements Tracking. [Chuang et al., 2011]
Interactive and Anisotropic Geometry Processing Using the Screened Poisson Equation. [Chuang et al., 2011]
Unconditionally Stable Shock Filters for Image and Geometry Processing. [Prada et al., 2015]
Motion Graphs for Unstructured Textured Meshes. [Prada et al., 2016]
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
2. Shock Filters
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
2. Shock Filters
3. Optical Flow

Source

Optical Flow Interpolation

Target

Moving Gradients: A Path Based Method for Plausible Image Interpolation. [Mahajan et al., 2009]
Outline

• Motivation

• **Processing Tools**
 – Screened Poisson Equation
 – Flow Fields/Lines

• Extensions to Signals on Surfaces

• Conclusion
1. **Screened Poisson Equation:**

Given a 2D domain \(\Omega \), a function \(g \), and a vector field \(\vec{v} \), solve for the function \(f \) minimizing:

\[
E(f) = \int_{\Omega} \alpha \| f - g \|^2 + \| \nabla f - \vec{v} \|^2
\]

- **value-fitting**
- **gradient-fitting**
1. **Screened Poisson Equation:**

Given a 2D domain Ω, a function g, and a vector field \vec{v}, solve for the function f minimizing:

$$E(f) = \int_{\Omega} \alpha \| f - g \|^2 + \| \nabla f - \vec{v} \|^2$$

$$\downarrow$$

$$(\alpha \cdot \mathbf{1} - \Delta)f = \alpha \cdot \mathbf{1} \cdot g - \text{div}(\vec{v})$$
2a. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v}, a flow-line of \vec{v} is a curve γ_p such that:

$$\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v} \left(\gamma_p(t) \right).$$
Image-Processing Tools

2b. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v}, the *advection* of a function f along \vec{v} is the function:

$$\text{Adv}_{\vec{v}}(f)(p) = f \left(\gamma_p (\vec{v}(p)) \right).$$
2c. Flow Fields/Lines:

Given..., for small \(t \) we have:

\[
[\text{Adv}_{t \cdot \vec{v}}(f)](p) - f(p) \approx f(p - t \vec{v}) - f(p) \\
\approx -t \cdot \langle \nabla f(p), \vec{v} \rangle
\]
2c. Flow Fields/Lines:

Given..., for small t we have:

$$[\text{Adv}_{t \cdot \vec{v}}(f)](p) - f(p) \approx f(p - t\vec{v}) - f(p) \approx -t \cdot \langle \nabla f(p), \vec{v} \rangle$$

The advection of the signal f along the vector field \vec{v} is described by the PDE:

$$\frac{\partial \text{Adv}_{t \cdot \vec{v}}(f)}{\partial t} = -\langle \nabla f, \vec{v} \rangle$$
1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\vec{v})\]

On a mesh:
Geometry-Processing Tools

1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}({\vec{v}})\]

On a mesh:

• \(f, g \rightarrow\) maps from vertices to real values
1. Screened Poisson Equation:

\[(\alpha \cdot \mathbf{1} - \nabla^2)f = \alpha \cdot \mathbf{1} \cdot g - \text{div}(\vec{v})\]

On a mesh:

- \(f, g \rightarrow\) maps from vertices to real values
- \(\vec{v} \rightarrow\) a map from triangles to tangent vectors
1. Screened Poisson Equation:

\[(\alpha \cdot \mathbf{1} - \Delta)f = \alpha \cdot \mathbf{1} \cdot g - \text{div}(\mathbf{v})\]

On a mesh:

- \(f, g\) → maps from vertices to real values
- \(\mathbf{v}\) → a map from triangles to tangent vectors
- \(\Delta\) → the cotan. Laplacian matrix
Geometry-Processing Tools

1. Screened Poisson Equation:
\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\hat{v})\]

On a mesh:

- \(f, g\) → maps from vertices to real values
- \(\hat{v}\) → a map from triangles to tangent vectors
- \(\Delta\) → the cotan. Laplacian matrix
- \(1\) → the mass-matrix
1. Screened Poisson Equation:

\[(\alpha \cdot \mathbf{1} - \Delta)f = \alpha \cdot \mathbf{1} \cdot g - \text{div}(\hat{\nu})\]

On a mesh:

- \(f, g \rightarrow\) maps from vertices to real values
- \(\hat{\nu} \rightarrow\) a map from triangles to tangent vectors
- \(\Delta \rightarrow\) the cotan. Laplacian matrix
- \(\mathbf{1} \rightarrow\) the mass-matrix
- \(\text{div} \rightarrow \nabla^\top \cdot \Lambda:\)
 - \(\Lambda:\) diagonal with triangle areas
 - \(\nabla:\) the gradient operator
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma_p'(t) = \mathbf{v} \left(\gamma_p(t) \right) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v}(\gamma_p(t)) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v}(\gamma_p(t)) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
Geometry-Processing Tools

2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \mathbf{v} \left(\gamma_p(t) \right) \]

Iteratively:

– Sample the flow field at \(p \).
– Take a small step in a straight line along the flow direction.
Outline

• Motivation
• Tools of the Trade
• **Extensions to Signals on Surfaces**
 – Gradient Domain [Poisson]
 – Shock Filters [Advection]
 – Optical Flow [Poisson + Advection]
• Conclusion
Gradient Domain (Stitching)

Different exposures \implies Seams in the panorama
Gradient Domain (Stitching)

• Copy interior gradients into \tilde{v}
• Set seam-crossing gradients to zero

$$f^{out} = \arg\min_{f:\Omega \rightarrow \mathbb{R}} \int \| \nabla f - \tilde{v} \|^2 dp$$

Image(s) courtesy of Uyttenaele
Gradient Domain (Stitching)

- Copy interior gradients into $\tilde{\nu}$
- Set seam-crossing gradients to zero

$$f^{out} = \arg\min_{f: \Omega \rightarrow \mathbb{R}} \int \| \nabla f - \tilde{\nu} \|^2 dp$$
Gradient Domain (Stitching)

- Copy interior gradients into \tilde{v}
- Set seam-crossing gradients to zero

$$f^{out} = \arg \min_{f: \Omega \to \mathbb{R}} \int \| \nabla f - \tilde{v} \|^2 dp$$
Gradient Domain (Sharpening)

- Fit input colors: \(g = f^{in} \)
- Scale (amplify) input gradients: \(\tilde{v} = \beta \cdot \nabla f^{in} \)

\[
f^{out} = \arg\min_{f:\Omega \to \mathbb{R}} \int_{\Omega} \alpha \| f - f^{in} \|^2 + \| \nabla f - \beta \cdot \nabla f^{in} \|^2
\]

\(\beta > 1 \)

Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. [Bhat et al. 2008]
Gradient Domain (Sharpening)

- Fit input colors: $g = f^{in}$
- Scale (amplify) input gradients: $\vec{v} = \beta \cdot \nabla f^{in}$

$$f^{out} = \underset{f: \Omega \to \mathbb{R}}{\text{argmin}} \int_{\Omega} \alpha \|f - f^{in}\|^2 + \|\nabla f - \beta \cdot \nabla f^{in}\|^2$$

value-fitting
gradient-fitting

$\beta < 1$
$\beta > 1$
Gradient Domain (Sharpening)

• Fit input colors: \(g = f^{in} \)
• Scale (amplify) input gradients: \(\mathbf{v} = \beta \cdot \nabla f^{in} \)

\[
f^{out} = \arg\min_{f: \Omega \rightarrow \mathbb{R}} \int_{\Omega} \alpha \left\| f - f^{in} \right\|^2 + \left\| \nabla f - \beta \cdot \nabla f^{in} \right\|^2
\]

Setting \(f^{in} \) to the positions of the vertices in 3D
Outline

• Motivation
• Tools of the Trade
• **Extensions to Signals on Surfaces**
 – Gradient Domain [Poisson]
 – **Shock Filters** [Advection]
 – Optical Flow [Poisson + Advection]
• Conclusion
Shock Filters

[Osher and Rudin, 1990]:
Progressively sharpen a signal so that:

• Extrema preserved
 – Zero derivative → value fixed

• Edges pronounced
 – Concave up → value decreases
 – Concave down → value increases
Shock Filters

[Osher and Rudin, 1990]:

Progressively sharpen a signal so that:

• Extrema preserved $\rightarrow \mathcal{F}$ vanishes with the gradient
• Edges pronounced $\rightarrow \mathcal{G}$ gives the sign w.r.t. the edge

\[\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f) \]

\[\mathcal{F}(f) = \|\nabla f\|^2 \]

\[\mathcal{G}(f) = -\frac{\partial^2 f}{\partial (\nabla f / \|\nabla f\|)^2} \] (Second derivative in the gradient direction)

Shock Filters

Method of Characteristics:

We can re-write the PDE:

\[
\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f) = -\langle \nabla f, H_f \cdot \nabla f \rangle
\]

This describes the advection of \(f \) along the flow:

\[
\mathbf{v} = H_f \cdot \nabla f
\]

\[
\mathcal{F}(f) = \| \nabla f \|^2
\]

\[
\mathcal{G}(f) = -\frac{\partial^2 f}{\partial (\nabla f / \| \nabla f \|)^2} = -\frac{1}{\| \nabla f \|^2} \langle \nabla f, H_f \cdot \nabla f \rangle
\]
Shock Filters

Method of Characteristics:

We can re-write the PDE:

\[
\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f)
\]

\[
= -\langle \nabla f, H_f \cdot \nabla f \rangle
\]

This describes the advection of f along the flow:

\[
\mathbf{\hat{v}} = H_f \cdot \nabla f = \frac{1}{2} \nabla \|\nabla f\|^2
\]

\[
\mathcal{F}(f) = \|\nabla f\|^2
\]

\[
\mathcal{G}(f) = -\frac{\partial^2 f}{\partial (\nabla f / \|\nabla f\|)^2} = -\frac{1}{\|\nabla f\|^2} \langle \nabla f, H_f \cdot \nabla f \rangle
\]
Shock Filters

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P$$

with

$$P = \|\nabla f\|^2$$

ShockAdvect(f, t)

1. $P \leftarrow \|\nabla f\|^2$ // potential
2. $\vec{v} \leftarrow \frac{1}{2} \nabla P$ // flow field
3. return Advect(f, \vec{v}, t)
Shock Filters

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P$$

with $P = \|\nabla f\|^2$

Intuitively:

Values are transported along flow lines of the potential’s gradient, moving from the (local) minima to maxima:

- [Minima] Critical points of f
- [Maxima] Edges of f

\Rightarrow “Piecewise constant” image with input extrema advected out to the edges.
Shock Filters

Sharpen f by advecting along the flow:

$$\tilde{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$
Shock Filters

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = ||\nabla f||^2$$
Shock Filters

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$

Setting f to the normals of the vertices
Outline

• Motivation
• Tools of the Trade
• Extensions to Signals on Surfaces
 – Gradient Domain [Poisson]
 – Shock Filters [Advection]
 – Optical Flow [Poisson + Advection]
• Conclusion
Video Textures:
Given a video, generate “a continuous, infinitely varying stream of video images”.

Video Textures. [Schödl, Szeliski, Salesin, and Essa, 2000]
Optical Flow

Extend video textures [Schödl et al., 2000] to 3D:
Optical Flow

Extend video textures [Schödl et al., 2000] to 3D:

– Identify similar windows in the video
– Interpolate geometries
– Interpolate textures
Optical Flow

Image Interpolation:

Target
Optical Flow

Image Interpolation (Linear):
- Linear interpolation causes ghosting.
Optical Flow

Image Interpolation (Advected):

– Estimate optical flow field.
Optical Flow

Image Interpolation (Advected):

– Estimate optical flow field.
– Advect forward/backward and blend.
Optical Flow

Brightness Constancy [Lucas and Kanade, 1981]:
Solve for ν that advects the source/target towards each other by minimizing:

$$E(\nu) = \|\text{Adv}_{-\nu}(f^t) - \text{Adv}_{\nu}(f^s)\|^2$$

$$\approx \| (f^t - f^s) + \langle \nabla(f^t + f^s), \nu \rangle \|^2$$

Estimate ν hierarchically (coarse-to-fine):

- Advance the source/target along ν
- Solve for the correcting flow
- Incorporate the correcting flow into ν
- Advance to the next level of the hierarchy
Optical Flow

Brightness Constancy [Lucas and Kanade, 1981]:
Solve for \tilde{v} that advects the source/target towards each other by minimizing:

$$E(\tilde{v}) = \text{Adv} - \tilde{v} \cdot f_t - \text{Adv} \cdot f_s^2 \approx f_t - f_s + \langle \nabla f_t + f_s, \tilde{v} \rangle^2$$

Smooth signals/vector-fields are implicitly mandated by working in a space that does not have high-frequencies.

Estimate \tilde{v} hierarchically (coarse-to-fine):

- Advance the source/target along \tilde{v}
- Solve for the correcting flow
- Incorporate the correcting flow into \tilde{v}
- Advance to the next level of the hierarchy
Optical Flow

Scale Space Formulation:
Smooth solutions are explicitly encouraged by:

– Smoothing the source and target at each level:

\[
E(\tilde{f}^s/t) = \left\| \tilde{f}^s/t - f^s/t \right\|^2 + \frac{\alpha}{4l} \left\| \nabla \tilde{f}^s/t \right\|^2
\]

fitting term
level-weighted smoothness term
Optical Flow

Scale Space Formulation:
Smooth solutions are explicitly encouraged by:

– Smoothing the source and target at each level:

\[E(\tilde{f}^s/t) = \|\tilde{f}^s/t - f^s/t\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{f}^s/t\|^2 \]

– Incorporating a smoothness term in the energy:

\[E(\tilde{v}) = \|\text{Adv}_{\tilde{v}}(\tilde{f}^s) - \text{Adv}_{-\tilde{v}}(\tilde{f}^t)\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{v}\|^2 \]

 prominence constancy term

 level-weighted smoothness term
Optical Flow

Scale Space Formulation:

Smooth solutions are explicitly encouraged by:

– Smoothing the source and target at each level:
\[
E(\tilde{f}^{s/t}) = \|\tilde{f}^{s/t} - f^{s/t}\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{f}^{s/t}\|^2
\]

– Incorporating a smoothness term in the energy:
\[
E(\tilde{v}) = \|\text{Adv}_{\tilde{v}}(\tilde{f}^{s}) - \text{Adv}_{-\tilde{v}}(\tilde{f}^{t})\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{v}\|^2
\]

Solve two Poisson equations per level.*

*In the second, the Laplacian is the vector-field (Hodge) Laplacian.
Optical Flow

Texture Interpolation:

Source Target Synthesized
Optical Flow

Texture Interpolation:

Source

Target

Synthesized
Optical Flow

Texture Interpolation:

Source | Target | Synthesized
Optical Flow

Texture Interpolation:

Source

Target

Synthesized

Optical Flow Field
Optical Flow

Texture Interpolation:

Linear Blend

Optical Flow Blend
Outline

• Motivation
• Tools of the Trade
• Extensions to Signals on Surfaces
• Conclusion
Conclusion

Extend fundamental image-processing operators to the context of surfaces
[Differential Operators / Flows]

Much of the heavy lifting has already been done for us

Well-established image-processing techniques carry over
[Gradient Domain / Shock Filters / Optical Flow]
Conclusion

Working with images makes simple things easier.

Fixed stencil Laplacian / Gradient / Divergence
Parallelization / Out-of-Core Streaming
Fast Fourier Transform
Conclusion

Working with images makes simple things easier.

Working with meshes makes hard things easier.

\[
f^{\text{out}} = \arg\min_{f: \Omega \to \mathbb{R}} \int_{\Omega} \alpha \| f - f^{\text{in}} \|^2 + \| \nabla f - \beta \cdot \nabla f^{\text{in}} \|^2
\]

\[
\beta = 0 \\
\alpha = 1
\]

\[
\beta = 0 \\
\alpha = |\kappa_1| + |\kappa_2|
\]

Setting \(\alpha \) be a **spatially varying** weighting function
Conclusion

Working with images makes simple things easier.

Working with meshes makes hard things easier.

\[f_{\text{out}} = \arg\min_{f: \Omega \to \mathbb{R}} \nabla f_{\text{in}}^2 + \beta \cdot \nabla f_{\text{in}}^2 \]

\[\alpha = |\kappa_1| + |\kappa_2| \]

Setting \(\alpha \) be a spatially varying weighting function.
Midterm

Content:
Everything that we have covered since Spring break:

– Subdivision Surfaces
– Spline Curves/Surfaces
– Procedural Models
– Solid Models
– 3D Scanning
– Surface Reconstruction
– Animation
– Image Stitching
– Shape Matching
Midterm

Format:
• Short answer questions only
• No essays
• No True/False
• No multiple choice