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Surface Reconstruction



Motivation

3D Scanners are ubiquitous (and cheap)
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Motivation

Merged scans typically consist of un/semi-
structured sets of points that need to be 
connected into a single (water-tight) model.
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Related Work

Classification:

• Approach:

– Computational Geometry

– Implicit Surfaces

• Input:

– Oriented vs. Unoriented Points

– Structured vs. Unstructured Data

• Output:

– Water-tight vs. Surface with Boundary



Related Work

Classification:

• Computational Geometry (Unoriented Points)

– Use input to partition space

– Use a subset of the partition to define the shape

• Implicit Surfaces (Oriented Points)

– Fit implicit function to the input

– Extract iso-surface
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• Introduction

• Preliminaries

– Convex Hulls

– Delaunay Triangulations

– Voronoi Diagrams

– Medial Axes

• A sampling of methods

• Why is reconstruction hard?



Computational Geometry

Convex Hulls:

A set 𝑆 is convex if for any two points
𝑎, 𝑏𝑆, the line segment between 𝑎
and 𝑏 is also in 𝑆.
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[Notes courtesy of Alliez]



Computational Geometry

Convex Hulls:

A set 𝑆 is convex if for any two points
𝑎, 𝑏𝑆, the line segment between 𝑎
and 𝑏 is also in 𝑆.

The convex hull of a set of points is
the smallest convex set containing 𝑆.

[Notes courtesy of Alliez]
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Computational Geometry

Triangulation:

A triangulation of a set of sites/points 𝑆 a 
decomposition of the convex hull of the points 
into triangles, whose vertex set is the set of 
sites/points.

– There are many ways to
triangulate the set 𝑆.

– Not all are equally “good”
(e.g. can have skinny
triangles with small angles)

[Notes courtesy of Alliez]

𝑆



Computational Geometry

Delaunay Triangulation:

A Delaunay Triangulation of a set of sites/points 
𝑆 is a triangulation with of 𝑆 such that the 
circumscribing circle of any triangle contains no 
other site in 𝑆*.

Compactness Property:

This triangulation maximizes
the minimum angle.

[Notes courtesy of Alliez][*Assuming general position]



Computational Geometry

Voronoi Diagrams:

The Voronoi Diagram of 𝑆 is a partition of space 
into regions VD(𝑠) (𝑠𝑆) such that all points in 
VD(𝑠) are closer to 𝑠 than any other sites in 𝑆.

– Edges are equidistant from
the two sites in the
incident cells.

– For each edge point there is
an empty circle, centered at
the point, only touching the
sites in the two incident cells.

[Notes courtesy of Alliez]



Computational Geometry

[Notes courtesy of Alliez]

Voronoi Diagrams:

The Voronoi Diagram of 𝑆 is a partition of space 
into regions VD(𝑠) (𝑠𝑆) such that all points in 
VD(𝑠) are closer to 𝑠 than any other sites in 𝑆.

– Vertices are equidistant from
three (or more) sites in
the incident cells.

– For a vertex, we can draw an
empty circle, centered at the
vertex, that just touches the
sites in the three (or more) incident cells.



Computational Geometry

Voronoi Diagrams:

The Voronoi Diagram of 𝑆 is a partition of space 
into regions VD(𝑠) (𝑠𝑆) such that all points in 
VD(𝑠) are closer to 𝑠 than any other sites in 𝑆.

Duality:

Each Voronoi vertex is in
one-to-one correspondence
with a Delaunay triangle.

[Notes courtesy of Alliez]



Computational Geometry

Medial Axis:

For a shape (curve/surface) a Medial Ball is a 
circle/sphere that only meets the shape 
tangentially, in at least two points.



Computational Geometry

Medial Axis:

For a shape (curve/surface) a Medial Ball is a 
circle/sphere that only meets the shape 
tangentially, in at least two points.

The centers of all such balls make
up the medial axis/skeleton.



Computational Geometry

Observation in 2D*:

For a reasonable point sample, the medial axis is 
well-sampled by the Voronoi vertices.

*In 3D, this is only true for a subset of the Voronoi vertices – the poles.
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– Crust
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Computational Geometry

Implicit Surfaces



Space Partitioning

Given a set of points, we can construct the 
Delaunay triangulation.

If we could label each triangle as inside/outside, 
then the surface of interest is the set of edges 
that lie between inside and outside triangles.



Space Partitioning

Q: How should we assign labels?

A: Spectral Partitioning [Kolluri et al. 2004]

1. Local: Assign a weight to each (interior) edge 
indicating if the two triangles should have the 
same label.

2. Global: Evenly partition the
triangles minimizing
the sum of the weights
along partitioning edges.



Space Partitioning

Assigning Edge Weights:

Q: When are triangles on opposite sides of an 
edge likely to have the same label?

A: If the triangles are on the same side, their 
circumscribing circles intersect deeply.

Use the angle of intersection
to set the weight.

Large Weight Small Weight
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Implicit Surfaces



Crust [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a 
point set sampling a curve, the curve should be 
(approximately) a subset of the Delaunay edges.

Q: How do we determine which edges to keep?

A: Two types of edges:

1. Those connecting adjacent
points on the curve

2. Those traversing.

Discard those that traverse.



Crust [Amenta et al. 1998]

Observation:

Edges that traverse cross the medial axis.

– Although we don’t know the medial axis, we can 
sample it with the Voronoi vertices.

– Edges that traverse must be
near the Voronoi vertices.

– We say an edge does not
traverse if we can draw a
circle through its endpoints
empty of Voronoi vertices.



Crust [Amenta et al. 1998]

Algorithm:

1. Compute the Delaunay triangulation.

2. Compute the Voronoi vertices

3. Keep all edges for which there is a circle that 
contains the edge but no
Voronoi vertices.

Note:
As opposed to the previous approach, it is not
obvious that this will generate a closed, manifold
curve/surface.
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Implicit Surface Reconstruction

Key Idea:

– Use the point samples to define a function 
whose value at each sample positions is zero.

– Extract the zero level set. [Lorensen and Cline, 1987]

Sample Points 𝐹(𝑥, 𝑦) = 0

F(x,y)<0

F(x,y)>0

F(x,y) =0

>0

<0

0



… Unorganized Points [Hoppe et al. 1992]

• Compute a local signed distance function by 
using the sample normals to define a local 
linear approximation to the function.

• Blend the linear approximations.

• Extract the zero level
(where defined).



… Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?



… Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?

A1: Fit a line to the neighbors of each point.



… Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?

A1: Fit a line to the neighbors of each point.

This doesn’t guarantee a consistent orientation!

For the orientation to be
consistent, neighboring
points should point in
the same direction.



… Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?

A1: Fit a line to the neighbors of each point.

A2: Build a (Euclidian) minimal spanning tree 
and propagate the orientation from a root.



… Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?

A1: Fit a line to the neighbors of each point.

A2: Build a (Euclidian) minimal spanning tree 
and propagate the orientation from a root.
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Poisson Reconstruction [Kazhdan et al. 2006]

Reconstruct the indicator function of the surface 
and then extract the boundary.

Q: How to fit the function to the samples?

Indicator function

0

1

0

0
0

0

1

1

Oriented points



Indicator gradient

0 0

0

0

0

0

Poisson Reconstruction [Kazhdan et al. 2006]

Reconstruct the indicator function of the surface 
and then extract the boundary.

Q: How to fit the function to the samples?

A: Normals are samples of function’s gradients.

Oriented points



Poisson Reconstruction [Kazhdan et al. 2006]

To fit a scalar field 𝐹 to the gradients 𝑉 solve:

∇𝐹 = 𝑉

 This is an over-constrained problem, so there 
is (usually) no solution.

Oriented points Indicator gradient

0 0

0

0

0

0



Poisson Reconstruction [Kazhdan et al. 2006]

To fit a scalar field 𝐹 to the gradients 𝑉 solve:

∇𝐹 = 𝑉

 This is an over-constrained problem, so there 
is (usually) no solution.

✓Solve for the best (least-squares) solution:

arg min
𝐹

∇𝐹 − 𝑉
2

 

⇒ Taking the divergence, this becomes:
∇ ⋅ ∇𝐹 − 𝑉 = 0 ⇔  Δ𝐹 = ∇ ⋅ 𝑉



Poisson Reconstruction [Kazhdan et al. 2006]

Algorithm:

1. Transform samples into a vector field.

2. Fit a scalar-field to the gradients.

3. Extract the isosurface.
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Why is Reconstruction Hard?

The point-set is often the result of:

• Scanning

• Registering

• Etc.

Individual Scans Registered Scans Reconstructed Model

[Image courtesy of Bolitho]



Why is Reconstruction Hard?

[Image courtesy of Berger et al.]

Susceptible to:

• Scanning

– Nonuniform sampling

– Grazing angles

– Scanner noise

– Imprecise estimates

• Registering

– Misalignment

– Non-linear camera model



Practical Concerns

• Performance in the presence of bad data

• Interpolating vs. approximating

• Efficiency of reconstruction

• Quality guarantees

• Manifold / water-tight

• Incorporation of prior knowledge
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