Surface Reconstruction

Michael Kazhdan

(601.457/657)

Motivation

3D Scanners are ubiquitous (and cheap)

[Images courtesy of Rusinkiewicz, Strecha, createdigitalmotion.com, and NextEngine]

Motivation

Merged scans typically consist of un/semistructured sets of points that need to be connected into a single (water-tight) model.

Related Work

 planar contours. Computers.and Graphics, 11:393\{408, 1987.

.../... [403]

Related Work

Classification:

- Approach:
- Computational Geometry
- Implicit Surfaces
- Input:
- Oriented vs. Unoriented Points
- Structured vs. Unstructured Data
- Output:
- Water-tight vs. Surface with Boundary

Related Work

Classification:

- Computational Geometry (Unoriented Points)
- Use input to partition space
- Use a subset of the partition to define the shape
- Implicit Surfaces (Oriented Points)
- Fit implicit function to the input
- Extract iso-surface

Outline

- Introduction
- Preliminaries
- Convex Hulls
- Delaunay Triangulations
- Voronoi Diagrams
- Medial Axes
- A sampling of methods
- Why is reconstruction hard?

Computational Geometry

Convex Hulls:
A set S is convex if for any two points $a, b \in S$, the line segment between a and b is also in S.

Computational Geometry

Convex Hulls:
A set S is convex if for any two points $a, b \in S$, the line segment between a and b is also in S.

The convex hull of a set of points is the smallest convex set containing S.

Computational Geometry

Triangulation:
A triangulation of a set of sites/points S a decomposition of the convex hull of the points into triangles, whose vertex set is the set of sites/points.

- There are many ways to triangulate the set S.
- Not all are equally "good" (e.g. can have skinny triangles with small angles)

Computational Geometry

Delaunay Triangulation:

A Delaunay Triangulation of a set of sites/points S is a triangulation with of S such that the circumscribing circle of any triangle contains no other site in S^{*}.

Compactness Property:
This triangulation maximizes the minimum angle.

Computational Geometry

Voronoi Diagrams:

The Voronoi Diagram of S is a partition of space into regions $\mathrm{VD}(s)(s \in S)$ such that all points in $\mathrm{VD}(s)$ are closer to s than any other sites in S.

- Edges are equidistant from the two sites in the incident cells.
- For each edge point there is an empty circle, centered at the point, only touching the
 sites in the two incident cells.

Computational Geometry

Voronoi Diagrams:

The Voronoi Diagram of S is a partition of space into regions $\mathrm{VD}(s)(s \in S)$ such that all points in $\mathrm{VD}(s)$ are closer to s than any other sites in S.

- Vertices are equidistant from three (or more) sites in the incident cells.
- For a vertex, we can draw an empty circle, centered at the vertex, that just touches the
 sites in the three (or more) incident cells.

Computational Geometry

Voronoi Diagrams:
The Voronoi Diagram of S is a partition of space into regions $\mathrm{VD}(s)(s \in S)$ such that all points in $\mathrm{VD}(s)$ are closer to s than any other sites in S.

Duality:

Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle.

Computational Geometry

Medial Axis:
For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.

Computational Geometry

Medial Axis:
For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.
The centers of all such balls make up the medial axis/skeleton.

Computational Geometry

Observation in 2D*:
For a reasonable point sample, the medial axis is well-sampled by the Voronoi vertices.

Outline

- Introduction
- Preliminaries
- A sampling of methods
- Space Partitioning
- Crust

Computational Geometry

- ... from Unorganized Points
- Poisson Reconstruction

Implicit Surfaces

- Why is reconstruction hard?

Space Partitioning

Given a set of points, we can construct the Delaunay triangulation.
If we could label each triangle as inside/outside, then the surface of interest is the set of edges that lie between inside and outside triangles.

Space Partitioning

Q: How should we assign labels?
A: Spectral Partitioning [Kolluri et al. 2004]

1. Local: Assign a weight to each (interior) edge indicating if the two triangles should have the same label.
2. Global: Evenly partition the triangles minimizing the sum of the weights along partitioning edges.

Space Partitioning

Assigning Edge Weights:
Q: When are triangles on opposite sides of an edge likely to have the same label?
A: If the triangles are on the same side, their circumscribing circles intersect deeply. Use the angle of intersection to set the weight.

Large Weight

Outline

- Introduction
- Preliminaries
- A sampling of methods
$\left.\begin{array}{l}\text { - Space Partitioning } \\ \text { - Crust }\end{array}\right]$ Computational Geometry
- ... from Unorganized Points
- Poisson Reconstruction

Implicit Surfaces

- Why is reconstruction hard?

Crust [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a point set sampling a curve, the curve should be (approximately) a subset of the Delaunay edges.
Q: How do we determine which edges to keep?
A: Two types of edges:

1. Those connecting adjacent points on the curve
2. Those traversing.

Discard those that traverse.

Crust [Amenta et al. 1998]

Observation:

Edges that traverse cross the medial axis.

- Although we don't know the medial axis, we can sample it with the Voronoi vertices.
- Edges that traverse must be near the Voronoi vertices.
- We say an edge does not traverse if we can draw a circle through its endpoints empty of Voronoi vertices.

Crust [Amenta et al. 1998]

Algorithm:

1. Compute the Delaunay triangulation.
2. Compute the Voronoi vertices
3. Keep all edges for which there is a circle that contains the edge but no Voronoi vertices.

Note:

As opposed to the previous approach, it is not obvious that this will generate a closed, manifold curve/surface.

Outline

- Introduction
- Preliminaries
- A sampling of methods
- Space Partitioning
- Crust
- ... from Unorganized Points
- Poisson Reconstruction
- Why is reconstruction hard?

Implicit Surface Reconstruction

Key Idea:

- Use the point samples to define a function whose value at each sample positions is zero.
- Extract the zero level set. [Lorensen and Cline, 1987]

Sample Points

... Unorganized Points [Hoppe et al. 1992]

- Compute a local signed distance function by using the sample normals to define a local linear approximation to the function.
- Blend the linear approximations.
- Extract the zero level (where defined).

... Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?

... Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?
A1: Fit a line to the neighbors of each point.
... Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?
A1: Fit a line to the neighbors of each point.
This doesn't guarantee a consistent orientation!

For the orientation to be consistent, neighboring points should point in the same direction.

... Unorganized Points [Hoppe et al. 1992]

Q: How do we get the normals?
A1: Fit a line to the neighbors of each point.
A2: Build a (Euclidian) minimal spanning tree and propagate the orientation from a root.

... Unorganized Points [Hoppe et al. 1992]
Q: How do we get the normals?
A1: Fit a line to the neighbors of each point.
A2: Build a (Euclidian) minimal spanning tree and propagate the orientation from a root.

Outline

- Introduction
- Preliminaries
- A sampling of methods
- Space Partitioning
- Crust
- ... from Unorganized Points
- Poisson Reconstruction
-Implicit Surfaces
- Why is reconstruction hard?

Poisson Reconstruction [Kazhdan et al. 2006]

Reconstruct the indicator function of the surface and then extract the boundary.
Q: How to fit the function to the samples?

Oriented points

Indicator function

Poisson Reconstruction [Kazhdan et al. 2006]

Reconstruct the indicator function of the surface and then extract the boundary.
Q: How to fit the function to the samples?
A: Normals are samples of function's gradients.

Oriented points

Indicator gradient

Poisson Reconstruction [Kazhdan et al. 2006]

To fit a scalar field F to the gradients \vec{V} solve:

$$
\nabla F=\vec{V}
$$

\mathbf{x} This is an over-constrained problem, so there is (usually) no solution.

Oriented points

Indicator gradient

Poisson Reconstruction [Kazhdan et al. 2006]

To fit a scalar field F to the gradients \vec{V} solve:

$$
\nabla F=\vec{V}
$$

\mathbf{x} This is an over-constrained problem, so there is (usually) no solution.
\checkmark Solve for the best (least-squares) solution:

$$
\underset{F}{\arg \min }\|\nabla F-\vec{V}\|^{2}
$$

\Rightarrow Taking the divergence, this becomes:

$$
\nabla \cdot(\nabla F-\vec{V})=0 \Leftrightarrow \Delta F=\nabla \cdot \vec{V}
$$

Poisson Reconstruction [Kazhdan et al. 2006]

Algorithm:

1. Transform samples into a vector field.
2. Fit a scalar-field to the gradients.
3. Extract the isosurface.

Outline

- Introduction

- Preliminaries
- A sampling of methods
- Why is reconstruction hard?

Why is Reconstruction Hard?

The point-set is often the result of:

- Scanning
- Registering
- Etc.

Why is Reconstruction Hard?

Susceptible to:

- Scanning
- Nonuniform sampling
- Grazing angles
- Scanner noise
- Imprecise estimates
- Registering
- Misalignment
- Non-linear camera model

(c) Noisy data

(d) Misaligned scans

Practical Concerns

- Performance in the presence of bad data
- Interpolating vs. approximating
- Efficiency of reconstruction
- Quality guarantees
- Manifold / water-tight
- Incorporation of prior knowledge

