Accelerated Ray Casting

Michael Kazhdan

(601.457/657)

HB Ch. 14.1, 14.2
FvDFH 16.1, 16.2
Ray Casting

• Simple implementation:

```cpp
Image RayCast( Camera camera , Scene scene , int width , int height) {
    Image image( width , height );
    for( int j=0 ; j<height ; j++ ) for( int i=0 ; i<width ; i++ )
    {
        Ray< 3 > ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray Casting

• Simple implementation:

Image RayCast(Camera camera , Scene scene , int width , int height)
{
 Image image(width , height);
 for(int j=0 ; j<height ; j++) for(int i=0 ; i<width ; i++)
 {
 Ray< 3 > ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Ray-Triangle Intersection

1. Intersect ray with plane
2. Check if the point is inside the triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(p \), we get:
\[\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0 \]

Solution:
\[t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle} \]
Ray-Triangle Intersection

- Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

\(p \) is in the plane spanned by \(\{v_1, v_2, v_3\} \) iff.:

\[
\alpha + \beta + \gamma = 1
\]

\(p \) is inside the triangle with vertices \(\{v_1, v_2, v_3\} \) iff.:

\[
\alpha, \beta, \gamma \geq 0
\]
Ray-Triangle Intersection

We can compute the weights α, β, and γ by considering the ratios of signed areas:

$$\alpha = \frac{\langle (v_2-p) \times (v_3-p), \vec{n} \rangle / 2}{\langle (v_2-v_1) \times (v_3-v_1), \vec{n} \rangle / 2}$$

...and so on for β and γ.

where \vec{n} is a unit vector that is perpendicular to the triangle:

$$\vec{n} = \frac{(v_2-v_1) \times (v_3-v_1)}{|(v_2-v_1) \times (v_3-v_1)|}$$
Ray-Scene Intersection

A direct (naïve) approach:

Intersection `FindIntersection`(`Ray< 3 > ray, Scene scene`) {
 `{ min_t, min_shape } = { ∞, NULL }`
 for each primitive in scene {
 `t = Intersect(ray, primitive)`
 if(t>0 and t<min_t) {
 min_shape = primitive
 min_t = t
 }
 }
 return `{ min_t, min_shape }`
}

Complexity is $O(N)$ per ray, with N the number of primitives.
Overview

• Acceleration techniques
 ◦ Data Partitions
 » Bounding volume hierarchy (BVH)
 ◦ Space Partitions
 » Uniform (voxel) grid
 » Octree
 » Binary space partition (BSP) tree
Acceleration techniques

Both data and space partitions accelerate intersections testing by leveraging:

- **Grouping:**
 Discard groups of primitives that can be (easily) guaranteed to be missed by the ray.

- **Ordering:**
 Test (likely) nearer intersections first, allowing for early termination if there is a hit.
Space Partition: Bounding Volume

- Check for intersection with the bounding volume:
 - Bounding cubes
 - Bounding boxes
 - Bounding spheres
 - Etc.

Stuff that’s easy to intersect
Space Partition: Bounding Volume

• Check for intersection with the bounding volume
 ◦ If the ray misses the bounding volume, it can’t intersect its contents

Still need to check for intersections with shape.
Space Partition: BVH

• Build a bounding volume hierarchy (BVH)
 ◦ Each bounding volume stores (and encloses):
 » Child bounding volumes
 » A subset of shapes
Space Partition: BVH

- **Grouping:**

```cpp
Intersection FindIntersection( Ray< 3 > ray , BoundingBox< 3 > bBox )
{
    { min_t , min_shape } = { ∞ , NULL }

    if( !intersect( ray , bBox.boundingVolume ) )      // Test Bounding box
        return { ∞ , NULL }

    foreach shape in bBox                                // Test node's shape
    {
        t = Intersect( ray , shape )
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }

    for each child_bBox in bBox                           // Test node's children
    {
        ( t , shape ) = FindIntersection( ray , child_bBox )
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }

    return { min_t , min_shape }
}
```
Space Partition: BVH

- **Grouping:**
 Discard groups of primitives that can be (easily) guaranteed to be missed by the ray.
Space Partition: BVH

- **Grouping:**
 - Discard groups of primitives that can be (easily) guaranteed to be missed by the ray.

- Don’t need to test shapes A or B
- Need to test groups 1, 2, and 3
- Need to test shapes C, D, E, and F
Space Partition: BVH

- **Ordering:**

```cpp
Intersection FindIntersection( Ray< 3 > ray , BoundingBox< 3 > bBox )
{
    // Find intersections with the nearest shape stored in bBox
    ...
    // Find intersections with all child bounding box volumes
    ...
    // Sort child bounding box volume intersections front to back
    // and store distances to child bounding boxes in bv_t[]
    ...

    // Process intersections for each intersected child bBox
    {
        { t , shape } = FindIntersection( ray , child_bBox )
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }
    return { min_t , min_shape }
}```
Space Partition: BVH

• **Ordering:**

Intersection `FindIntersection( Ray< 3 > ray , BoundingBox< 3 > bBox )`
{
  // Find intersections with the nearest shape stored in bBox
  ...
  // Find intersections with all child bounding box volumes
  ...
  // **Sort** child bounding box volume intersections front to back
  // and store distances to child bounding boxes in `bv_t[]`
  ...

  // Process intersections
  for each intersected child bBox
  {
    if( min_t< bv_t[child_bBox] ) break
    { t , shape } = `FindIntersection( ray , child_bBox )`
    if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
  }
  return { min_t , min_shape }
}
Space Partition: BVH

- **Ordering:**
  Test (likely) nearer intersections first, allowing for early termination if there is a hit.
Space Partition: BVH

• **Ordering:**
  Test (likely) nearer intersections first, allowing for early termination if there is a hit.

- Don’t need to test shapes A, B, D, E, or F
- Need to test groups 1, 2, and 3
- Need to test shape C
Overview

- Acceleration techniques
  - Data partitions
    - Bounding volume hierarchy (BVH)
  - Space Partitions
    - Uniform (Voxel) grid
    - Octree
    - Binary space partition (BSP) tree
Space Partitions: Uniform Grid

- Construct uniform grid over the scene
  - Store a list of (pointers to) intersected primitive with each grid cell

- A primitive may belong to multiple cells
- A cell may have multiple primitives
Space Partitions: Uniform Grid

- Trace rays through grid cells
  - Fast
  - Incremental

Only check primitives in intersected grid cells
Space Partitions: Uniform Grid

- Potential problem:
  - How choose suitable grid resolution?

Too little benefit if grid is too coarse

Too much cost if grid is too fine
Overview

• Acceleration techniques
  ◦ Data Partitions
    » Bounding volume hierarchy (BVH)
  ◦ Space Partitions
    » Uniform (Voxel) grid
    » Octree
    » Binary space partition (BSP) tree
Space Partition: Octree

- Think of a voxel grid hierarchically as a tree.
  - The root node is the entire region
  - Each node has eight children obtained by subdividing the parent into eight equal regions
Space Partition: Octree

- Think of a voxel grid hierarchically as a tree.
  - The root node is the entire region
  - Each node has eight children obtained by subdividing the parent into eight equal regions
Space Partition: Octree

- Think of a voxel grid hierarchically as a tree.
  - The root node is the entire region
  - Each node has eight children obtained by subdividing the parent into eight equal regions
Space Partition: Octree

- Think of a voxel grid hierarchically as a tree.
  - The root node is the entire region
  - Each node has eight children obtained by subdividing the parent into eight equal regions
Space Partition: Octree

• In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).
Space Partition: Octree

• In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).
Space Partition: Octree

- In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).
Space Partition: Octree

• In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).
Space Partition: Octree

• In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).
Space Partition: Octree

- In an octree, we subdivide adaptively (e.g. only refining cells containing more than one shape).

Efficiently tracing a ray through an octree is trickier than tracing a ray through a regular grid!
Overview

- Acceleration techniques
  - Data Partitions
    - Bounding volume hierarchy (BVH)
  - Space Partitions
    - Uniform (Voxel) grid
    - Octree
    - Binary space partition (BSP) tree
      - $k$-D tree
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: \( k \)-D Trees

- Alternate between splitting along the \( x \)-axis, \( y \)-axis, and \( z \)-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: $k$-D Trees

- Alternate between splitting along the $x$-axis, $y$-axis, and $z$-axis.

Note:
- Either primitives need to be split, or they belong to multiple nodes.

Limitation:
- The splitting planes still have to be axis-aligned.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- With a Binary Space Partition (BSP) we recursively partition space by planes

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- With a Binary Space Partition (BSP) we recursively partition space by planes
  - Generate a tree structure where the leaves store the shapes.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• With a Binary Space Partition (BSP) we recursively partition space by planes
  ○ Generate a tree structure where the leaves store the shapes.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• With a Binary Space Partition (BSP) we recursively partition space by planes
  ◦ Generate a tree structure where the leaves store the shapes.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- With a Binary Space Partition (BSP) we recursively partition space by planes
  - Generate a tree structure where the leaves store the shapes.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• With a Binary Space Partition (BSP) we recursively partition space by planes
  ○ Generate a tree structure where the leaves store the shapes.

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Point Intersection

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Point Intersection
  ◦ Recursively test what side we are on

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Point Intersection
  ◦ Recursively test what side we are on
    » Left of 1 (root) → 2

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Point Intersection
  - Recursively test what side we are on
    » Left of 2 → 4

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Point Intersection
  - Recursively test what side we are on
    - Right of 4 → Test B

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Point Intersection
  ◦ Recursively test what side we are on
    » Missed B. No intersection!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Point Intersection
  ◦ Recursively test what side we are on
    » Missed B. No intersection!

Worst-case / Expected complexity: proportional to the depth of the tree
Space Partition: BSP Tree

Observation:

Assume we are given a ray:

$$r: (-\infty, \infty) \rightarrow \mathbb{R}^3$$

and a plane $P$ (assuming not parallel).

- There exists a time $t^* \in (-\infty, \infty)$ at which the ray passes through the plane:
  $$r(t^*) \in P.$$
Space Partition: BSP Tree

Observation:

Assume we are given a ray:

\[ r: (-\infty, \infty) \rightarrow \mathbb{R}^3 \]

and a plane \( P \) (assuming not parallel).

- There exists a time \( t^* \in (-\infty, \infty) \) at which the ray passes through the plane:
  \[ r(t^*) \in P. \]

- This partitions the line containing the ray in two parts:
  - Back: \( r(t) \) with \( t \in (-\infty, t^*) \)
  - Front: \( r(t) \) with \( t \in (t^*, \infty) \)
Space Partition: BSP Tree

- Example: Ray Intersection 1
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Ray Intersection 1
  ◦ Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to the left of 1

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 1
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to the right of 2

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Ray Intersection 1
  ◦ Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Intersection with C. Done!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Ray Intersection 2
  ◦ Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to the left of 1

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to the right of 2

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Ray Intersection 2
  ◦ Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Missed C. Recurse!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    - Test half to left of 2

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    - No half to right of 4. Recurse!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

• Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to left of 4

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Missed A. Recurse!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Test half to right of 1

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    - No half to right of 3. Recurse!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- **Example: Ray Intersection 2**
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    - Test half to left of 3

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Intersection with D. Done!

Note: Arrows denote the “right” side of the splitting plane.
Space Partition: BSP Tree

- Example: Ray Intersection 2
  - Recursively split the ray and test both halves, testing the back part first. Stop once you hit something:
    » Intersection with D. Done!

  
  ![Diagram](image)

  Note: Arrows denote the “right” side of the splitting plane.

  Worst-case: \( O(N) \)
  Expected: \( O(\bar{D}) \) with \( \bar{D} \) the average depth of the tree

  How should we choose the splitting planes?
Space Partition: BSP Tree

Intersection `RayTreeIntersect( Ray ray< 3 > , Node node )`
{
  if ( Node is a leaf ) return intersection of closest primitive in cell, or NULL if none
  else
  {
    // Find splitting plane and near and far children
    near_child = child of node that contains the start (r(−∞))
    far_child = other child of node

    // Recurse down near child first
    isect = `RayTreeIntersect( ray , near_child )`
    if( isect ) return isect  // If there's a hit, we are done

    // If there is no hit, test the far child
    return `RayTreeIntersect( ray , far_child )`
  }
}
Acceleration Techniques

- **Data Partitions**
  - Bounding volume hierarchy (BVH)

- **Space Partitions**
  - Uniform (voxel) grid
  - Octree
  - Binary space partition (BSP) tree

**Note:**

- All are independent of the viewer position
- All need to be adapted if the geometry changes/animates