Animating Transformations

Michael Kazhdan

(601.457/657)
Recall

Keyframe Animation:

• Interpolate variables describing keyframes to determine poses for character “in-between”
Articulated Figures

- In-betweening (rotation)
 - If you interpolate vertex positions (e.g. instead of angles) the geometry may get distorted.

![Good arm](image1.png) ![Bad arm](image2.png)
Recall

• In-betweening
 ◦ If you interpolate vertex positions (e.g. instead of angles) the geometry may get distorted.
 ◦ For articulating objects, transformations are a combination of translation and rotation
 » Translations are straight-forward:
 Use your favorite spline to fit a curve through/near the translations
 » How do we interpolate/approximate rotations?
Overview

• Orthogonal Transformations, Rotations, and SVD

• Interpolating/Approximating Points
 ○ Vectors
 ○ Unit-Vectors

• Interpolating/Approximating Transformations
 ○ Matrices
 ○ Rotations
 » SVD Factorization
 » Euler Angles
Orthogonal Transformations

What are orthogonal transformations?

• An orthogonal transformation O is a linear transformation that preserves angles:
 $$\langle v, w \rangle = \langle O(v), O(w) \rangle$$

Recall that the (standard) dot-product between two vectors can be expressed as a matrix multiplication:
 $$\langle v, w \rangle = v^T w$$
Orthogonal Transformations

What are orthogonal transformations?

• An orthogonal transformation O is a linear transformation that preserves angles:
 \[\langle v, w \rangle = \langle O(v), O(w) \rangle \]

This implies that:

\[
\begin{align*}
 v^T w &= (Ov)^T (Ow) \\
 &= v^T O^T Ow
\end{align*}
\]

Since this is true for all v and w, this means that:

\[O^T O = \text{identity} \iff O^T = O^{-1} \]
Orthogonal Transformations

What are orthogonal transformations?

• An orthogonal transformation O is a linear transformation that preserves angles:
 $$\langle v, w \rangle = \langle O(v), O(w) \rangle$$

• An orthogonal matrix O is a matrix whose transpose is its inverse.

• In 3D an orthogonal transformation can be specified by a 3×3 matrix.
Rotations

What are rotations?

A rotation is an orthogonal transformation that preserves orientation (i.e. has determinant +1).
Rotations

What are rotations?

• A rotation in 3D can also be specified by:
 ◦ its axis of rotation \mathbf{w} ($\|\mathbf{w}\| = 1$) and
 ◦ its angle of rotation θ
Rotations

What are rotations?

- A rotation in 3D can also be specified by:
 - its axis of rotation w ($\|w\| = 1$) and
 - its angle of rotation θ

Properties:

- The rotation corresponding to (θ, w) is the same as the rotation corresponding to $(-\theta, -w)$.
- The inverse of a rotation corresponding to (θ, w) is $(-\theta, w)$.
- Given rotations corresponding to (θ_1, w) and (θ_2, w), the product of the rotations corresponds to $(\theta_1 + \theta_2, w)$.
- Given a rotation corresponding to (θ, w), the rotation raised to the power α corresponds to $(\alpha \theta, w)$.
Rotations

What are rotations?

• A rotation in 3D can also be specified by:
 ◦ its axis of rotation \(w \) (\(\|w\| = 1 \)) and
 ◦ its angle of rotation \(\theta \)

Properties:

◦ The rotation corresponding to \((\theta, w)\) is the same as the rotation corresponding to \((-\theta, -w)\).
◦ How do we define the product of rotations corresponding to \((\theta_1, w_1)\) and \((\theta_2, w_2)\)?
◦ Given a rotation corresponding to \((\theta, w)\), the rotation raised to the power \(\alpha\) corresponds to \((\alpha \theta, w)\).
SVD

Any $n \times n$ matrix \mathbf{M} can be expressed in terms of its Singular Value Decomposition as:

$$\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$$

where:

- \mathbf{U} and \mathbf{V} are $n \times n$ orthogonal matrix
- \mathbf{D} is an $n \times n$ diagonal matrix (i.e. off-diagonals are 0)
 - Typically the diagonal entries are:
 - Non-negative
 - Decreasing
SVD

Applications:
- Aligning point-sets
- Finding the (pseudo-)inverse of a matrix
- Compression
SVD

Finding the Inverse of a Matrix:

If we have an $n \times n$ invertible matrix \mathbf{M}, we can use the SVD to compute the inverse of \mathbf{M}.

Expressing \mathbf{M} in terms of its SVD gives:

$$\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$$

where:

- \mathbf{U} and \mathbf{V} are $n \times n$ orthogonal matrix,
- \mathbf{D} is an $n \times n$ diagonal matrix
Finding the Inverse of a Matrix:

\[M = U D V^T \]

We can express \(M^{-1} \) as:

\[M^{-1} = (UDV^T)^{-1} = (V^T)^{-1}D^{-1}U^{-1} \]

\[= VD^{-1}U^T \]

Since:

- \(U \) is an orthogonal transformation, \(U^{-1} = U^T \).
- \(V \) is an orthogonal transformation, \(V^{-1} = V^T \).
SVD

Solving Linear Systems:

\[M^{-1} = VD^{-1}U^\top \]

Since \(D \) is a diagonal matrix:

\[D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 & 0 \\
0 & \lambda_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & 0 \\
0 & 0 & \cdots & 0 & \lambda_n
\end{pmatrix} \Rightarrow \quad D^{-1} = \begin{pmatrix}
\frac{1}{\lambda_1} & 0 & \cdots & 0 & 0 \\
0 & \frac{1}{\lambda_2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \frac{1}{\lambda_{n-1}} & 0 \\
0 & 0 & \cdots & 0 & \frac{1}{\lambda_n}
\end{pmatrix} \]

Note that this is not necessarily an efficient way to invert a matrix.
Overview

• Orthogonal Transformations, Rotations, and SVD

• Interpolating/Approximating Points
 ◦ Vectors
 ◦ Unit-Vectors

• Interpolating/Approximating Transformations
 ◦ Matrices
 ◦ Rotations
 » SVD Factorization
 » Euler Angles
Vectors

Given a collection of n control points $\{p_0, \ldots, p_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the points.
Vectors

Given a collection of \(n \) control points \(\{ \mathbf{p}_0, \ldots, \mathbf{p}_{n-1} \} \), define a curve \(\Phi(t) \) that approximates/interpolates the points.

Linear Interpolation:

- Interpolating
- \(C^0 \) continuous

\[
\Phi_k(t) = (1 - t)\mathbf{p}_k + t \cdot \mathbf{p}_{k+1}
\]
Vectors

Given a collection of n control points $\{p_0, \ldots, p_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the points.

Catmull-Rom Splines (Cardinal Splines with $t = 0$):

- Interpolating
- C^1 continuous

\[
\Phi_k(t) = CR_0(t) \cdot p_{k-1} + CR_1(t) \cdot p_k + CR_2(t) \cdot p_{k+1} + CR_3(t) \cdot p_{k+2}
\]
Vectors

Given a collection of n control points $\{p_0, \ldots, p_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the points.

Uniform Cubic B-Splines:
- Approximating
- C^2 continuous

\[
\Phi_k(t) = B_{0,3}(t) \cdot p_{k-1} + B_{1,3}(t) \cdot p_k + B_{2,3}(t) \cdot p_{k+1} + B_{3,3}(t) \cdot p_{k+2}
\]
Unit-Vectors

What if we add the constraint that the points \(\{ \mathbf{p}_0, \ldots, \mathbf{p}_{n-1} \} \) and the curve \(\Phi(t) \) have to lie on the unit circle/sphere (\(\| \mathbf{p}_i \| = 1 \), \(\| \Phi(t) \| = 1 \))?

We can’t interpolate/approximate the points as before, because the in-between points don’t have to lie on the unit circle/sphere!

\[
\Phi(t) = (1 - t)\mathbf{p}_0 + t\mathbf{p}_1
\]
Unit-Vectors

What if we add the constraint that the points \(\{ p_0, \ldots, p_{n-1} \} \) and the curve \(\Phi(t) \) have to lie on the unit circle/sphere (\(\| p_i \| = 1, \| \Phi(t) \| = 1 \))?

We can normalize the in-between points by sending them to the closest circle/sphere point:

\[
\Phi(t) = \frac{\Phi(t)}{\| \Phi(t) \|}
\]

\[
\tilde{\Phi}(t) = (1 - t)p_0 + tp_1
\]
Curve Normalization

Limitations:
Curve Normalization

Limitations:

• The normalized curve is not always well defined.

\[\Phi(t) = (1 - t)p_0 + tp_1 \]
Curve Normalization

Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on the original curve, does not mean that they will be uniformly distributed on the normalized one.

\[
\phi(t) = (1 - t)p_0 + tp_1
\]

\[
\tilde{\phi}(t) = \frac{\phi(t)}{\|\phi(t)\|}
\]
Curve Parameterization

- Define a parameterization of the circle/sphere.
- Compute the parameters of the end-points;
- Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):

- Parameterize: \((\cos \theta, \sin \theta)\)
Curve Parameterization

- Define a parameterization of the circle/sphere.
- Compute the parameters of the end-points;
- Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):
- Parameterize: \((\cos \theta, \sin \theta)\)
- Compute:
 \[p_0 = (\cos \theta_0, \sin \theta_0) \]
 \[p_1 = (\cos \theta_1, \sin \theta_1) \]
Curve Parameterization

- Define a parameterization of the circle/sphere.
- Compute the parameters of the end-points;
- Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):

- **Parameterize:** \((\cos \theta, \sin \theta)\)
- **Compute:**
 \[
 \mathbf{p}_0 = (\cos \theta_0, \sin \theta_0) \\
 \mathbf{p}_1 = (\cos \theta_1, \sin \theta_1)
 \]
- **Set:**
 \[
 \Phi(t) = (\cos((1 - t)\theta_0 + t\theta_1), \sin((1 - t)\theta_0 + t\theta_1))
 \]
Curve Parameterization

- Define a parameterization of the circle/sphere.
- Compute the parameters of the end-points;
- Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):
- Parameterize: \((\cos \theta, \sin \theta)\)
- Compute:
 \[p_0 = (\cos \theta_0, \sin \theta_0) \]
 \[p_1 = (\cos \theta_1, \sin \theta_1) \]
- Set:
 \[\Phi(t) = (\cos((1-t)\theta_0 + t\theta_1), \sin((1-t)\theta_0 + t\theta_1)) \]

Note:
- Parameter may not be unique.
- There may not be a good parameterization.
Overview

Interpolating/Approximating

• Orthogonal Transformations, Rotations, and SVD

• Interpolating/Approximating Points
 ◦ Vectors
 ◦ Unit-Vectors

• Interpolating/Approximating Transformations
 ◦ Matrices
 ◦ Rotations
 › SVD Factorization
 › Euler Angles
Matrices

Given a collection of n matrices $\{\mathbf{M}_0, \ldots, \mathbf{M}_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the matrices.
Matrices

Given a collection of \(n \) matrices \(\{\mathbf{M}_0, \ldots, \mathbf{M}_{n-1}\} \), define a curve \(\Phi(t) \) that approximates/interpolates the matrices.

As with vectors:

- **Linear Interpolation**:
 \[
 \Phi_k(t) = (1 - t)\mathbf{M}_k + t \cdot \mathbf{M}_{k+1}
 \]

- **Catmull-Rom Interpolation**:
 \[
 \Phi_k(t) = CR_0(t) \cdot \mathbf{M}_{k-1} + CR_1(t) \cdot \mathbf{M}_k + CR_2(t) \cdot \mathbf{M}_{k+1} + CR_3(t) \cdot \mathbf{M}_{k+2}
 \]

- **Uniform Cubic B-Spline Approximation**:
 \[
 \Phi_k(t) = B_{0,3}(t) \cdot \mathbf{M}_{k-1} + B_{1,3}(t) \cdot \mathbf{M}_k + B_{2,3}(t) \cdot \mathbf{M}_{k+1} + B_{3,3}(t) \cdot \mathbf{M}_{k+2}
 \]
Rotations

What if we add the constraint that the matrices \(\{M_0, \ldots, M_{n-1}\} \) and the values of the curve \(\Phi(t) \) have to be rotations?

We can’t interpolate/approximate the matrices as before, because the in-between matrices don’t have to be rotations!

We could try to normalize, by mapping every matrix \(\Phi(t) \) to the nearest rotation.
Challenge

Given a matrix \mathbf{M}, what is the closest rotation \mathbf{R}?
SVD Factorization

Given a matrix \mathbf{M}, what is the closest rotation \mathbf{R}?

Singular Value Decomposition (SVD) allows us to express \mathbf{M} as a diagonal matrix, multiplied on the left/right by orthogonal transformations $\mathbf{O}_1/\mathbf{O}_2$:

$$
\mathbf{M} = \mathbf{O}_1 \begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{pmatrix} \mathbf{O}_2
$$

Because the λ_i are positive, the closest orthogonal transform \mathbf{O} to \mathbf{M} is:

$$
\mathbf{O} = \mathbf{O}_1 \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \mathbf{O}_2
$$
SVD Factorization

Given a matrix \mathbf{M}, what is the closest rotation \mathbf{R}?

Singular Value Decomposition (SVD) allows us to express \mathbf{M} as a diagonal matrix, multiplied on the left/right by orthogonal transformations \mathbf{O}_1/\mathbf{O}_2:

$$\mathbf{M} = \mathbf{O}_1 \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \mathbf{O}_2$$

Because the λ_i are positive, the closest orthogonal transform \mathbf{O} to \mathbf{M} is:

$$\mathbf{O} = \mathbf{O}_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{O}_2$$

In standard SVD factorization, the diagonal values are positive, and ordered from largest to smallest.

The orthogonal transformations \mathbf{O}_1 and \mathbf{O}_2 are not necessarily rotations.

To get a rotation, we need to make the product have determinant 1.
SVD Factorization

Given a matrix \mathbf{M}, what is the closest rotation \mathbf{R}?

Singular Value Decomposition (SVD) allows us to express \mathbf{M} as a diagonal matrix, multiplied on the left/right by orthogonal transformations \mathbf{O}_1 and \mathbf{O}_2:

$$ \mathbf{M} = \mathbf{O}_1 \boldsymbol{\lambda} \mathbf{O}_2 $$

Because the λ_i are positive, the closest orthogonal transform \mathbf{O} to \mathbf{M} is:

$$ \mathbf{R} = \mathbf{O}_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(\mathbf{O}_1 \cdot \mathbf{O}_2) \end{pmatrix} \mathbf{O}_2 $$

In standard SVD factorization, the diagonal values are positive, and ordered from largest to smallest.

The orthogonal transformations \mathbf{O}_1 and \mathbf{O}_2 are not necessarily rotations.

To get a rotation, we need to make the product have determinant 1.
Euler Angles

Every rotation matrix \mathbf{R} can be expressed as:

- some rotation about the z-axis, multiplied by
- some rotation about the y-axis, multiplied by
- some rotation about the x-axis:

$$
\mathbf{R}(\theta, \phi, \psi) = \mathbf{R}_z(\psi)\mathbf{R}_y(\phi)\mathbf{R}_x(\theta)
$$

The angles (θ, ϕ, ψ) are called the Euler angles.
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each \mathbf{M}_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 » Linear Interpolation:
 - $\theta_k(t) = (1 - t)\theta_k + t \cdot \theta_{k+1}$
 - $\phi_k(t) = (1 - t)\phi_k + t \cdot \phi_{k+1}$
 - $\psi_k(t) = (1 - t)\psi_k + t \cdot \psi_{k+1}$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each \mathbf{M}_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - Linear Interpolation
 - Catmull-Rom Interpolation:
 - $\theta_k(t) = CR_0(t) \cdot \theta_{k-1} + CR_1(t) \cdot \theta_k + CR_2(t) \cdot \theta_{k+1} + CR_3(t) \cdot \theta_{k+2}$
 - $\phi_k(t) = CR_0(t) \cdot \phi_{k-1} + CR_1(t) \cdot \phi_k + CR_2(t) \cdot \phi_{k+1} + CR_3(t) \cdot \phi_{k+2}$
 - $\psi_k(t) = CR_0(t) \cdot \psi_{k-1} + CR_1(t) \cdot \psi_k + CR_2(t) \cdot \psi_{k+1} + CR_3(t) \cdot \psi_{k+2}$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each \mathbf{M}_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - Linear Interpolation
 - Catmull-Rom Interpolation
 - Uniform Cubic B-Spline Approximation:

$$\begin{align*}
\theta_k(t) &= B_{0,3}(t) \cdot \theta_{k-1} + B_{1,3}(t) \cdot \theta_k + B_{2,3}(t) \cdot \theta_{k+1} + B_{3,3}(t) \cdot \theta_{k+2} \\
\phi_k(t) &= B_{0,3}(t) \cdot \phi_{k-1} + B_{1,3}(t) \cdot \phi_k + B_{2,3}(t) \cdot \phi_{k+1} + B_{3,3}(t) \cdot \phi_{k+2} \\
\psi_k(t) &= B_{0,3}(t) \cdot \psi_{k-1} + B_{1,3}(t) \cdot \psi_k + B_{2,3}(t) \cdot \psi_{k+1} + B_{3,3}(t) \cdot \psi_{k+2}
\end{align*}$$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each \mathbf{M}_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - Linear Interpolation
 - Catmull-Rom Interpolation
 - Uniform Cubic B-Spline Approximation
- Set the value of the in-between matrix to:

$$\Phi_k(t) = \mathbf{R}_z(\theta_k(t))\mathbf{R}_y(\phi_k(t))\mathbf{R}_x(\psi_k(t))$$

Note that to blend rigid transformations, we want to do the standard blend of the translation component and the constrained blend of the rotation.