Parametric Curves

Michael Kazhdan

(601.457/657)

HB 10.6 -- 10.9
FvDFH 11.2
Parametric Curves

Given a 1D control lattice

• Compute a smooth curve passing through/near the control points
Parametric Surfaces

Given a 2D control lattice

• Compute a smooth surface passing through/near the control points

Very closely related to subdivision surfaces!

“Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values”. [Stam, 1998]
Goals

• Some attributes we would like to have:
 ◦ Local support
 ◦ Simple/predictable
 ◦ Continuous

• We’ll satisfy these goals using:
 ◦ Piecewise
 ◦ Polynomials
What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy *continuity constraints* across curve boundaries.
What is a Spline in CG?

Piecewise: the spline is a collection of parametric curves segments joined together.

Polynomial functions: each segment is a parametric polynomial curve.
A parametric curve in d-dimensions is defined by a collection of 1D functions of one variable giving the coordinates of points on the curve at each u value:

$$\Phi(u) = (x_1(u), \ldots, x_d(u))$$

$\Phi(u) = (\cos u, \sin u, u)$

Note: A parametric curve is not the graph of a function.

Courtesy of C.K. Shene
Derivatives

If $\Phi(u) = (x(u), y(u))$ is the parametric equation of a curve, the parametric derivative of the curve at a point u_0 is the vector:

$$\Phi'(u_0) = (x'(u_0), y'(u_0))$$

which points in a direction tangent to the curve.

Note:
The direction of the derivative is determined by the path that the curve traces out.

The magnitude of the parametric derivative is determined by the tracing speed.
Polynomials

A polynomial in the variable u is:

“An algebraic expression written as a sum of constants multiplied by different powers of a variable.”

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \cdots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

The constant a_k is referred to as the k-th coefficient of the polynomial P.

A polynomial $P(u)$ has degree n if for all $k > n$, the coefficients of the polynomial satisfy $a_k = 0$.
A polynomial in the variable \(u \) is:

“An algebraic expression written as a sum of constants multiplied by different powers of a variable.”

\[P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \cdots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k \]

A polynomial of degree \(n \) has \(n + 1 \) degrees of freedom.

Knowing \(n + 1 \) pieces of information about a polynomial of degree \(n \) should give enough information to reconstruct the coefficients.
Polynomials (Matrices)

\[P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \cdots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k \]

The polynomial \(P \) can be expressed as the matrix multiplication of a row vectors containing the powers of \(u \) and a column vector containing the coefficients:

\[
P(u) = (u^n \quad \cdots \quad u^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}
\]
Polynomials (1st Derivative Matrices)

\[P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \cdots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k \]

The derivative of the polynomial is:

\[P'(u) = a_1 + 2 \cdot a_2 \cdot u + \cdots + n \cdot a_n \cdot u^{n-1} = \sum_{k=1}^{n} k \cdot a_k \cdot u^{k-1} \]

So the derivative of polynomial \(P \) can be expressed as the matrix multiplication:

\[P'(u) = \begin{pmatrix} n \cdot u^{n-1} & (n-1) \cdot u^{n-2} & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_1 \\ a_0 \end{pmatrix} \]
Polynomials (Matrices)

Example:

Given the values of $P(u)$ at $n + 1$ different locations:

\[p_0 = P(u_0), \ldots, p_n = P(u_n) \]

\[p_0 = (u_0^n \ldots u_0^0) \cdot \begin{pmatrix} \vdots \\ a_n \\ \vdots \\ a_0 \end{pmatrix}, \ldots, p_n = (u_n^n \ldots u_n^0) \cdot \begin{pmatrix} \vdots \\ a_n \\ \vdots \\ a_0 \end{pmatrix} \]

We can stack into one linear system:

\[\begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} u_0^n \ldots u_0^0 \\ \vdots \ \ \ \ \ \ \ \ \vdots \\ u_n^n \ldots u_n^0 \end{pmatrix} \begin{pmatrix} \vdots \\ a_n \\ \vdots \\ a_0 \end{pmatrix} \]

\[P(u) = \sum_{k=0}^{n} a_k \cdot u^k \]
Polynomials (Matrices)

Example:

Given the values of $P(u)$ at $n + 1$ different locations:

$p_0 = P(u_0), \ldots, p_n = P(u_n)$

We can stack into one linear system, and invert:

\[
\begin{pmatrix}
 p_0 \\
 \vdots \\
 p_n
\end{pmatrix} = \begin{pmatrix}
 u_0^n & \cdots & u_0^0 \\
 \vdots & \ddots & \vdots \\
 u_n^n & \cdots & u_n^0
\end{pmatrix} \begin{pmatrix}
 a_n \\
 \vdots \\
 a_0
\end{pmatrix} \Rightarrow \begin{pmatrix}
 a_n \\
 \vdots \\
 a_0
\end{pmatrix} = \begin{pmatrix}
 u_0^n & \cdots & u_0^0 \\
 \vdots & \ddots & \vdots \\
 u_n^n & \cdots & u_n^0
\end{pmatrix}^{-1} \begin{pmatrix}
 p_0 \\
 \vdots \\
 p_n
\end{pmatrix}
\]
Parametric Polynomial Curves

Examples:

\[x(u) = u \]
\[y(u) = u \]
\[x(u) = \frac{u^2}{2} - 2 \]
\[y(u) = \frac{u^2}{2} - 2 \]
\[x(u) = \frac{u^3}{2} - 2u \]
\[y(u) = \frac{u^3}{2} - 2u \]
Parametric Polynomial Curves

Examples:

• When $x(u) = u$, the curve is the graph of $y(u)$.

\begin{align*}
x(u) &= u \\
y(u) &= u \\
\quad &= u^2 - 2 \\
x(u) &= \frac{u^2}{2} - 2 \\
y(u) &= \frac{u^3}{2} - 2u \\
\end{align*}
Parametric Polynomial Curves

Examples:

- When $x(u) = u$, the curve is the graph of $y(u)$.
- Different parametric equations can trace out the same curve.
Parametric Polynomial Curves

Examples:

- When $x(u) = u$, the curve is the graph of $y(u)$.
- Different parametric equations can trace out the same curve.
- As the degree gets larger, the complexity of the curve increases.
Parametric Curves (in \mathbb{R}^d)

Goal:

Given a sequence of points, $\{p_1, \cdots, p_m\} \subset \mathbb{R}^d$, define a parametric curve that passes through/near the points
Parametric Curves (in \mathbb{R}^d)

Direct Approach:

Solve for the $d \times m$ coefficients of a parametric polynomial curve of degree $m - 1$, passing through the points.

Limitations:

• No local control

• As the number of points increases:
 ◦ The dimension increases and the curve oscillates more
 ◦ Requires inverting a large linear system

Polynomial Fitting Demo
Piecewise parametric polynomials

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through/near the points.
Piecewise parametric polynomials

Approach:
Fit low-order polynomials to groups of points so that the combined curve passes through/near the points

Properties:
- **Local Control:**
 » Curve segments are local
- **Simplicity**
 » Curve segments are low-order polynomials
- **Continuity/Smoothness**
 » How do we guarantee smoothness?
What is a Spline in CG?

Continuity:

Within the parameterized domain, the polynomial functions are smooth.

The values/derivatives \(P_1(u) \quad u \in [0,1) \), \(P_2(u) \quad u \in [0,1) \), and \(P_3(u) \quad u \in [0,1) \) of the polynomial functions must satisfy continuity constraints across the curve boundaries.

\[
P_i(u) = \sum_{j=0}^{n} a_{ij} \cdot u^j
\]
Continuity/Smoothness

Continuity:

Values/derivatives of the two curves are equal where they meet.

- C^0: function is continuous
 \[P_i(1) = P_{i+1}(0) \]
- C^1: function is continuous and 1st derivatives equal
 \[C^0 \text{ and } P'_i(1) = P'_{i+1}(0) \]
- C^2: function is continuous and 1st and 2nd derivatives are equal
 \[C^1 \text{ and } P''_i(1) = P''_{i+1}(0) \]
- C^k: function is continuous and ...
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

• Interpolating piecewise cubic polynomial, each specified by:
 ○ Start/end positions
 ○ Start/end tangents

• Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

• Interpolating piecewise cubic polynomial, each specified by:
 ◦ Start/end positions
 ◦ Start/end tangents

• Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Because end-points of adjacent curves have the same position and derivatives, the Hermite spline is C^1 by construction.
Specific Example: Hermite Splines

• Let \(P_k(u) = (x_k(u), y_k(u)) \) with \(0 \leq u \leq 1 \) be the polynomial curve for the section between control points \(\{p_k, \vec{t}_k\} \) and \(\{p_{k+1}, \vec{t}_{k+1}\} \).

• Boundary conditions are:
 - \(P_k(0) = p_k \)
 - \(P_k(1) = p_{k+1} \)
 - \(P_k'(0) = \vec{t}_k \)
 - \(P_k'(1) = \vec{t}_{k+1} \)

• Solve for the coefficients of the polynomials \(x_k(u) \) and \(y_k(u) \) that satisfy the boundary conditions.

Note: Since we have four constraints (per dimension) we need a cubic polynomial.
Specific Example: Hermite Splines

We can express the polynomials:

\[P_k(u) = a \cdot u^3 + b \cdot u^2 + c \cdot u + d \]

\[\downarrow \]

\[P'_k(u) = 3 \cdot a \cdot u^2 + 2 \cdot b \cdot u + c \]

Using the matrix representations:

\[
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\begin{pmatrix}
u^3 \\
u^2 \\
u \\
1
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 \cdot u^2 \\
2 \cdot u \\
1 \\
0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\]

By abuse of notation, we will think of the coefficients \(a, b, c,\) and \(d\) as \(d\)-dimensional vectors rather than scalars so that \(P_k(u)\) is a function taking values in \(\mathbb{R}^d\).
Specific Example: Hermite Splines

\[
P_k(u) = (u^3 \ u^2 \ u \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P_k'(u) = (3 \cdot u^2 \ 2 \cdot u \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]

The values/derivatives at the end-points are:

\[
p_k = P_k(0) = (0 \ 0 \ 0 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
\[P'_k(u) = (3 \cdot u^2 \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

The values/derivatives at the end-points are:

\[p_k = P_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
\[p_{k+1} = P_k(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P'_k(u) = (3 \cdot u^2 \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

The values/derivatives at the end-points are:

\[p_k = P_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_k = P'_k(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

\[p_{k+1} = P_k(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \ u^2 \ u \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P'_k(u) = (3 \cdot u^2 \ 2 \cdot u \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

The values/derivatives at the end-points are:

\[p_k = P_k(0) = (0 \ 0 \ 0 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_k = P'_k(0) = (0 \ 0 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

\[p_{k+1} = P_k(1) = (1 \ 1 \ 1 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_{k+1} = P'_k(1) = (3 \ 2 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

\[
\begin{align*}
\mathbf{p}_k &= \mathbf{P}_k(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\
\dot{\mathbf{t}}_k &= \mathbf{P}_k'(0) = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\
\mathbf{p}_{k+1} &= \mathbf{P}_k(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\
\dot{\mathbf{t}}_{k+1} &= \mathbf{P}_k'(1) = \begin{pmatrix} 3 & 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\end{align*}
\]

We can combine the equations into a single matrix expression:

\[
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\dot{\mathbf{t}}_k \\
\dot{\mathbf{t}}_{k+1}
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\]
Specific Example: Hermite Splines

\[
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}
= \begin{pmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\]

Inverting, we get:

\[
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
p_k \\
p_{k+1} \\
\vec{t}_k \\
\vec{t}_{k+1}
\end{pmatrix}
\]
Specific Example: Hermite Splines

\[
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{t}_k \\
\mathbf{t}_{k+1}
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{pmatrix}
\]

Inverting, we get:

\[
\begin{pmatrix}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{t}_k \\
\mathbf{t}_{k+1}
\end{pmatrix}
=
\begin{pmatrix}
2 & -2 & 1 & 1 \\
3 & 3 & -2 & -1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{t}_k \\
\mathbf{t}_{k+1}
\end{pmatrix}
\]
Specific Example: Hermite Splines

\[
\begin{pmatrix}
a \\
b \\
c \\
d \\
\end{pmatrix} =
\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
p_k \\
p_{k+1} \\
\hat{t}_k \\
\hat{t}_{k+1} \\
\end{pmatrix}
\]

Using the fact that:

\[
P_k(u) = (u^3 \ u^2 \ u \ 1) \cdot \begin{pmatrix}
a \\
b \\
c \\
d \\
\end{pmatrix}
\]

We get:

\[
P_k(u) = (u^3 \ u^2 \ u \ 1) \underbrace{\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}}_{\text{parameters}} \underbrace{\begin{pmatrix}
p_k \\
p_{k+1} \\
\hat{t}_k \\
\hat{t}_{k+1} \\
\end{pmatrix}}_{\text{boundary info}}
\]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} \]

Multiplying out and rearranging terms, we get:

\[P_k(u) = p_k(2u^3 - 3u^2 + 1) + p_{k+1}(-2u^3 + 3u^2) + \hat{t}_k(u^3 - 2u^2 + u) + \hat{t}_{k+1}(u^3 - u^2) \]
Specific Example: Hermite Splines

\[P_k(u) = p_k(2u^3 - 3u^2 + 1) + p_{k+1}(-2u^3 + 3u^2) + \vec{t}_k(u^3 - 2u^2 + u) + \vec{t}_{k+1}(u^3 - u^2) \]

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

we can write \(P_k(u) \) as:

\[P_k(u) = H_0(u) \cdot p_k + H_1(u) \cdot p_{k+1} + H_2(u) \cdot \vec{t}_k + H_3(u) \cdot \vec{t}_{k+1} \]
Specific Example: Hermite Splines

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

Blending Functions

\[
P_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}
\]
Specific Example: Hermite Splines

Setting:

- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

When $u = 0$:

- $H_0(u) = 1$
- $H_1(u) = 0$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $P_k(0) = \mathbf{p}_k$

\[
P_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}
\]
Specific Example: Hermite Splines

Setting:

- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

When $u = 1$:
- $H_0(u) = 0$
- $H_1(u) = 1$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $P_k(1) = p_{k+1}$

\[P_k(u) = H_0(u) \cdot p_k + H_1(u) \cdot p_{k+1} + H_2(u) \cdot \tilde{t}_k + H_3(u) \cdot \tilde{t}_{k+1} \]
Specific Example: Hermite Splines

Setting:

- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

When $u = 0$:

- $H_0'(u) = 0$
- $H_1'(u) = 0$
- $H_2'(u) = 1$
- $H_3'(u) = 0$

So $P_k'(0) = \hat{t}_k$

\[
P_k'(u) = H_0'(u) \cdot p_k + H_1'(u) \cdot p_{k+1} + H_2'(u) \cdot \hat{t}_k + H_3'(u) \cdot \hat{t}_{k+1}
\]
Specific Example: Hermite Splines

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

When \(u = 1 \):

- \(H_0'(1) = 0 \)
- \(H_1'(1) = 0 \)
- \(H_2'(1) = 0 \)
- \(H_3'(1) = 1 \)

So \(P_k'(1) = \vec{t}_{k+1} \)

\[
P_k'(u) = H_0'(u) \cdot p_k + H_1'(u) \cdot p_{k+1} + H_2'(u) \cdot \vec{t}_k + H_3'(u) \cdot \vec{t}_{k+1}
\]
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Given the control points, how do we define the value of the tangents/derivatives?
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.

- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

• Interpolating piecewise cubic polynomial, each specified by four control points.

• Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Turn into a Hermite problem by iteratively constructing the curve between middle two points using adjacent points to define tangents.

Because the end-points of adjacent curves share the same position and derivatives, the Cardinal spline has C^1 continuity.
Specific Example: Cardinal Splines

• Let $P_k(u) = (x_k(u), y_k(u))$ with $0 \leq u \leq 1$ be the polynomial curve for the section between control points p_k and p_{k+1}.

• Boundary conditions are:
 - $P_k(0) = p_k$
 - $P_k(1) = p_{k+1}$
 - $P_k'(0) = s(p_{k+1} - p_{k-1})$
 - $P_k'(1) = s(p_{k+2} - p_k)$

• Solve for the coefficients of the polynomials $x_k(u)$ and $y_k(u)$ that satisfy the boundary conditions.

The parameter s controls looseness versus tightness of curve
Specific Example: Cardinal Splines

Recall:

The Hermite matrix determines the coefficients of the polynomial from the positions and the derivatives of the end-points:

\[
P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix}
\]
Specific Example: Cardinal Splines

We can express the boundary constraints as:

\[
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{t}_k \\
\mathbf{t}_{k+1}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
s(\mathbf{p}_{k+1} - \mathbf{p}_{k-1}) \\
s(\mathbf{p}_{k+2} - \mathbf{p}_k)
\end{pmatrix} =
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s & 0 & s & 0 \\
0 & -s & 0 & s
\end{pmatrix}\begin{pmatrix}
\mathbf{p}_{k-1} \\
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{p}_{k+2}
\end{pmatrix}
\]

So using the approach of Hermite spline, we get:

\[
\mathbf{P}_k(u) = (u^3 \quad u^2 \quad u \quad 1)\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s & 0 & s & 0 \\
0 & -s & 0 & s
\end{pmatrix}\begin{pmatrix}
\mathbf{p}_{k-1} \\
\mathbf{p}_k \\
\mathbf{p}_{k+1} \\
\mathbf{p}_{k+2}
\end{pmatrix}
\]

\[
\mathbf{M}_{\text{Hermite}}
\]
Specific Example: Cardinal Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s & 0 & s & 0 \\
0 & -s & 0 & s
\end{pmatrix} \begin{pmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{pmatrix} \]

Multiplying, we get the Cardinal matrix representation:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix}
-s & 2 - s & s - 2 & s \\
2s & s - 3 & 3 - 2s & -s \\
-s & 0 & s & 0 \\
0 & 1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{pmatrix} \]

\[M_{\text{Cardinal}} \]
Specific Example: Cardinal Splines

Setting:

\[C_0(u) = -su^3 + 2su^2 - su \]
\[C_1(u) = (2 - s)u^3 + (s - 3)u^2 + 1 \]
\[C_2(u) = (s - 2)u^3 + (3 - 2s)u^2 + su \]
\[C_3(u) = su^3 - su^2 \]

For \(s = 1/2 \):

\[P_k(u) = C_0(u) \cdot p_{k-1} + C_1(u) \cdot p_k + C_2(u) \cdot p_{k+1} + C_3(u) \cdot p_{k+2} \]
Specific Example: Cardinal Splines

Setting:

- $C_0(u) = -su^3 + 2su^2 - su$
- $C_1(u) = (2 - s)u^3 + (s - 3)u^2 + 1$
- $C_2(u) = (s - 2)u^3 + (3 - 2s)u^2 + su$
- $C_3(u) = su^3 - su^2$

Blending Functions

For $s = 1/2$:

$$P_k(u) = C_0(u) \cdot p_{k-1} + C_1(u) \cdot p_k + C_2(u) \cdot p_{k+1} + C_3(u) \cdot p_{k+2}$$