3D Polygon Rendering Pipeline

Michael Kazhdan
(601.457/657)

HB Ch. 12
FvDFH Ch. 6, 18.3
3D Polygon Rendering

• Many applications use (interactive) rendering of 3D polygons with direct illumination
3D Polygon Rendering

- Many applications use (interactive) rendering of 3D polygons with direct illumination

God of War
(Santa Monica Studio, 2018)
Ray Casting

• For each sample:
 ○ Construct ray from the camera into the scene
 ○ Find first surface intersected by ray through pixel
 ○ Compute color of sample based on surface radiance
 ↓
 ○ Send 2D pixels into the scene and get color
3D Polygon Rendering

• For each primitive:
 - Send 3D points to the camera and set the pixel color
3D Rendering Pipeline (for direct illumination)

3D Primitives
 - Modeling Transformation
 - Viewing Transformation
 - Lighting
 - Projection Transformation
 - Clipping
 - Viewport Transformation
 - Scan Conversion

Image

3D Model

2D Viewport
3D Rendering Pipeline (for direct illumination)

- 3D Primitives
- **Modeling Transformation**: Transform into 3D world coordinate system
- **Viewing Transformation**
- **Lighting**
- **Projection Transformation**
- **Clipping**
- **Viewport Transformation**
- **Scan Conversion**
- Image
3D Rendering Pipeline (for direct illumination)

- 3D Primitives
 - Modeling Transformation
 - Viewing Transformation
 - Lighting
 - Projection Transformation
 - Clipping
 - Viewport Transformation
 - Scan Conversion
 - Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system
3D Rendering Pipeline (for direct illumination)

- 3D Primitives
 - Modeling Transformation
 - Viewing Transformation
 - Lighting
 - Illuminate *vertices* using lighting and reflectance
 - Projection Transformation
 - Clipping
 - Viewport Transformation
 - Scan Conversion
 - Transform into 3D world coordinate system
 - Transform into 3D camera coordinate system
3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Viewport Transformation

Scan Conversion

Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate vertices using lighting and reflectance

Transform into 2D window coordinate system
3D Rendering Pipeline (for direct illumination)

1. 3D Primitives
2. Modeling Transformation
3. Viewing Transformation
4. Lighting
5. Projection Transformation
6. Clipping
7. Viewport Transformation
8. Scan Conversion
9. Image

- Transform into 3D world coordinate system
- Transform into 3D camera coordinate system
- Illuminate vertices using lighting and reflectance
- Transform into 2D window coordinate system
- Clip (parts of) primitives outside camera’s view
3D Rendering Pipeline (for direct illumination)

3D Primitives

- **Modeling Transformation**
- **Viewing Transformation**
- **Lighting**
- **Projection Transformation**
- **Clipping**
- **Viewport Transformation**
- **Scan Conversion**

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate vertices using lighting and reflectance

Transform into 2D window coordinate system

Clip (parts of) primitives outside camera’s view

Transform into 2D viewport coordinate system
3D Rendering Pipeline (for direct illumination)

3D Primitives

- Transform into 3D world coordinate system

Modeling Transformation

- Transform into 3D camera coordinate system

Viewing Transformation

- Illuminate vertices using lighting and reflectance

Lighting

- Transform into 2D window coordinate system

Projection Transformation

- Clip (parts of) primitives outside camera’s view

Clipping

- Transform into 2D viewport coordinate system

Viewport Transformation

- Draw pixels (includes texturing, hidden surface, etc.)

Scan Conversion

Image
Transformations

3D Primitives

- **Modeling Transformation**
 - Transform into 3D world coordinate system

- **Viewing Transformation**
 - Transform into 3D camera coordinate system
 - Illuminate vertices using lighting and reflectance

- **Lighting**

- **Projection Transformation**
 - Transform into 2D window coordinate system
 - Clip (parts of) primitives outside camera’s view

- **Clipping**

- **Viewport Transformation**
 - Transform into 2D viewport coordinate system

- **Scan Conversion**
 - Draw pixels (includes texturing, hidden surface, etc.)
Recall: Homogeneous Coordinates

- Add a 4th coordinate to every 3D point
 - \((x, y, z, w)\) represents a point at location \(\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)\)
 - \((x, y, z, 0)\) represents a (directed) point at infinity
 - \((0, 0, 0,0)\) is not allowed
Recall: 3D Transformations

- Using homogenous coordinates, we have two types of transformations:
 - Affine
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix} = \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]
 - Projective
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
 \end{bmatrix} = \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 w
 \end{bmatrix}
 \]
Transformations

$$(x, y, z)$$

3D Object Coordinates

Modeling Transformation

3D World Coordinates

Viewing Transformation

3D Camera Coordinates

Projection Transformation

2D Window Coordinates

Window-to-Viewport Transformation

2D Viewport Coordinates

$$(x', y')$$

Transformations map points from one coordinate system to another.
Transformations

Modeling Transformation

(\(x, y, z\))

3D Object Coordinates

Viewing Transformation

3D World Coordinates

Projection Transformation

3D Camera Coordinates

Window-to-Viewport Transformation

2D Window Coordinates

2D Viewport Coordinates

\((x', y')\)

Modelview Transformations
Transformations

\[(x, y, z)\]

- 3D Object Coordinates
- Modeling Transformation
- 3D World Coordinates
- Viewing Transformation
- 3D Camera Coordinates
- Projection Transformation
- 2D Window Coordinates
- Window-to-Viewport Transformation
- 2D Viewport Coordinates

\[(x', y')\]
Viewing Transformation

- Canonical coordinate system
 - Convention is right-handed (looking down $-z$ axis)
 - Convenient for projection, clipping, etc.
Viewing Transformation

- The transformation, $T_{W\rightarrow C}$, taking us from world coordinates to camera coordinates should map:
 - The right vector to the x-axis: $(R_x, R_y, R_z, 0) \rightarrow (1,0,0,0)$
 - The up vector to the y-axis: $(U_x, U_y, U_z, 0) \rightarrow (0,1,0,0)$
 - The back vector to the z-axis: $(B_x, B_y, B_z, 0) \rightarrow (0,0,1,0)$
 - The eye position to the origin: $(E_x, E_y, E_z, 1) \rightarrow (0,0,0,1)$

How should we define this transformation/matrix?
Viewing Transformation

• Consider the inverse transformation, $T_{C \rightarrow W}$, taking us from camera coordinates to world coordinates:

$$(R_x, R_y, R_z, 0) \leftarrow (1,0,0,0)$$
$$(U_x, U_y, U_z, 0) \leftarrow (0,1,0,0)$$
$$(B_x, B_y, B_z, 0) \leftarrow (0,0,1,0)$$
$$(E_x, E_y, E_z, 1) \leftarrow (0,0,0,1)$$

• This is described by the matrix:

$$
\begin{pmatrix}
 x^w \\
 y^w \\
 z^w \\
 1
\end{pmatrix}
=
\begin{pmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{pmatrix}
$$

$T_{C \rightarrow W}$
Finding the Viewing Transformation

- The camera-to-world matrix:

\[
\begin{pmatrix}
x^w \\
y^w \\
z^w \\
1
\end{pmatrix} =
\begin{pmatrix}
R_x & U_x & B_x & E_x \\
R_y & U_y & B_y & E_y \\
R_z & U_z & B_z & E_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x^c \\
y^c \\
z^c \\
1
\end{pmatrix}
\]

\[T_{C\rightarrow W}\]

- The world-to-camera matrix is its inverse:

\[
\begin{pmatrix}
x^c \\
y^c \\
z^c \\
1
\end{pmatrix} =
\begin{pmatrix}
R_x & U_x & B_x & E_x \\
R_y & U_y & B_y & E_y \\
R_z & U_z & B_z & E_z \\
0 & 0 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
x^w \\
y^w \\
z^w \\
1
\end{pmatrix}
\]

\[T_{W\rightarrow C} = T_{C\rightarrow W}^{-1}\]
Transformations

\[(x, y, z)\]

1. **Modeling Transformation**
 - 3D Object Coordinates
2. **Viewing Transformation**
 - 3D World Coordinates
3. **Projection Transformation**
 - 3D Camera Coordinates
4. **Window-to-Viewport Transformation**
 - 2D Window Coordinates
 - 2D Viewport Coordinates

\[(x', y')\]
Taxonomy of Projections

Planar geometric projections

Parallel
- Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation
- Axonometric
- Isometric

Oblique
- Cabinet
- Cavalier

Perspective
- One-point
- Two-point
- Three-point

Other
Projection

- Two general classes of projections, which shoot rays from the scene, through the window:
 - Parallel Projection:
 » Rays converge at a point at infinity and are parallel
 - Perspective “Projection”:
 » Rays converge at a finite point, giving rise to perspective distortion
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation
 - Axonometric

Oblique
 - Cabinet
 - Cavalier

One-point

Two-point

Three-point

Perspective

Other

FvDFH Figure 6.13
Parallel Projection

- Center of projection is at infinity
 - Direction of projection (DoP) same for all points
Parallel Projection

- Parallel lines remain parallel
- Proportions are preserved (no foreshortening)
- Angles are not preserved
- Less realistic looking
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic

Top (plan)

Front elevation

Axonometric

Side elevation

Isometric

Oblique

Cabinet

Cavalier

One-point

Two-point

Three-point

Perspective

Other

Other
Orthographic Projections

- DoP perpendicular to view plane

Angel Figure 5.5
Orthographic Projections

- DoP perpendicular to view plane

- Lines perpendicular to the view plane vanish
- Faces parallel to the view plane are un-distorted.
Orthographic Projections

• DoP perpendicular to view plane
 ○ Maps a point in 3D space to the \((x, y)\)-plane, through the origin, by projecting out the \(z\)-component:
 \[(x^c, y^c, z^c) \rightarrow (x^c, y^c, 0)\]
 ○ In terms of the matrix representation:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x^c \\
 y^c \\
 z^c
 \end{bmatrix}
 \]
Orthographic Projections

• DoP perpendicular to view plane
 ○ Maps a point in 3D space to the \((x, y)\)-plane, through the origin, by projecting out the \(z\)-component:
 \[(x^c, y^c, z^c) \rightarrow (x^c, y^c, 0)\]
 ○ In terms of the matrix representation:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x^c \\
 y^c \\
 z^c
 \end{bmatrix}
 \]
 ○ Or, in homogenous coordinates:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0 \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
 \end{bmatrix}
 \]
Taxonomy of Projections

Planar geometric projections

Parallel
- Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation
- Axonometric
- Isometric
- Other

Oblique
- Cabinet
- Cavalier
- Other

Perspective
- One-point
- Two-point
- Three-point

Other
Oblique Projections

• DoP not perpendicular to view plane

\[(x^s, y^s) = (x^c, y^c) + L(\cos \phi, \sin \phi) \]

\(x^c \)
\(y^c \)
\(z \)
\(L \)
\(\phi \)

\(\phi = 45^\circ \)
\(L = 1 \)

\(\phi = 45^\circ \)
\(L = 1/2 \)

Cavalier

Cabinet

• \(\phi \) is the angle of the projection of the view plane’s normal with the \(x \)-axis

• \(L \) is the length of the projection of the view plane’s normal
Parallel Projection Matrix

- General parallel projection transformation:

\[
\begin{bmatrix}
 x^s \\ y^s \\ 0 \\ 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & L \cos \phi & 0 \\
 0 & 1 & L \sin \phi & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x^c \\ y^c \\ z^c \\ 1
\end{bmatrix}
\]

H&B Figure 12.21
Parallel Projection Matrix

- General parallel projection transformation:

\[
\begin{bmatrix}
1 & 0 & L \cos \phi & 0 \\
0 & 1 & L \sin \phi & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x^c \\ y^c \\ z^c \\ 1
\end{bmatrix} =
\begin{bmatrix}
x^s \\ y^s \\ 0 \\ 1
\end{bmatrix}
\]

Note:
This matrix represents an affine transformation
Parallel Projection View Volume
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
- Top (plan)
- Front elevation
- Side elevation
- Axonometric
- Isometric

Oblique
- Cabinet
- Cavalier

One-point

Two-point

Three-point

Perspective

Other
Perspective “Projection”

- Map points onto “view plane” along “projectors” emanating from “center of projection” (CoP)
Perspective Projection

- How many vanishing points?

Number of vanishing points determined by number of axes parallel to the window

Angel Figure 5.10
Perspective Projection

- Not all parallel lines remain parallel!
Perspective Projection

- What are the coordinates of the point resulting from projection of \((x^c, y^c, z^c)\) onto the camera screen plane a unit distance along the \(z\)-axis?
Perspective Projection

- For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha x^c, \alpha y^c, \alpha z^c)\) map to the same location.
Perspective Projection

• For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha x^c, \alpha y^c, \alpha z^c)\) map to the same location.

• Since we want the position on the window that intersects the line from \((x^c, y^c, z^c)\) to the origin:

\[
(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)
\]
Perspective Projection Matrix

\[(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1\right)\]

We can’t represent this with a \(3 \times 3\) matrix!

With homogenous coordinates, we can write this as:

\[(x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1\right) \equiv (x^c, y^c, z^c, z^c)\]

In matrix form, this gives:

\[
\begin{bmatrix}
 x^s \\ y^s \\ 1
\end{bmatrix}
\equiv
\begin{bmatrix}
 x^c \\ y^c \\ z^c \\ 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x^c \\ y^c \\ z^c \\ 1
\end{bmatrix}
\]
Perspective Projection Matrix

\[(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1\right)\]

We can’t represent this with a 3 × 3 matrix!

With homogenous coordinates, we can write this as:

\[(x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1\right) \equiv (x^c, y^c, z^c, z^c)\]

Note: This matrix represents a projective transformation

\[
\begin{bmatrix}
 x^S \\
 y^S \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]
Perspective Projection View Volume

Back Plane

Front Plane

Frustum View Volume

window

Projection Reference Point

z_v
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
- Top (plan)
- Front elevation
- Side elevation

Axonometric
- Isometric

Oblique
- Cabinet
- Cavalier

Perspective

One-point

Two-point

Three-point

Other

Other

FVFHP Figure 6.10
Classical Projections

Front elevation

Elevation oblique

Plan oblique

Isometric

One-point perspective

Three-point perspective
Perspective vs. Parallel

• Perspective projection
 ✓ Size varies inversely with distance - looks realistic
 ✓ Angles are preserved on faces parallel to the view plane
 ✗ Distance are not preserved

• Parallel (orthographic) projection
 ✓ Parallel lines remain parallel
 ✓ Angles and distance are preserved on faces parallel to the view plane
 ✗ Less realistic looking
 ✓ Good for exact measurements
Transformations

\[(x, y, z)\]

- **Modeling Transformation**
- **Viewing Transformation**
- **Projection Transformation**

- **3D Object Coordinates**
- **3D World Coordinates**
- **3D Camera Coordinates**

2D Viewport Coordinates

Window-to-Viewport Transformation

\[(x', y')\]

Window

- \([w_x, w_y]\)

Viewport

- \([v_x, v_y]\)

\[V = \text{viewport transform}\]

\[
V = \begin{bmatrix}
1 & 0 & v_x^1 \\
0 & 1 & v_x^2 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
w_x^2 - w_x^1 \\
w_y^2 - w_y^1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -w_x^1 \\
0 & 1 & -w_y^1 \\
0 & 0 & 1
\end{bmatrix}
\]

Note that this may scale non-uniformly.
3D Rendering Pipeline (for direct illumination)

\[(x, y, z)\] → 3D Object Coordinates

- Modeling Transformation

\rightarrow 3D World Coordinates

- Viewing Transformation

\rightarrow 3D Camera Coordinates

- Projection Transformation

\rightarrow 2D Window Coordinates

- Window-to-Viewport Transformation

\rightarrow 2D Viewport Coordinates

\[(x', y')\]
Transformations

\[
I = I_E + \sum_L \left[K_A \cdot I_L^A + \left(K_D \cdot \langle \hat{N}, \hat{L} \rangle + K_S \cdot \langle \hat{V}, \hat{R} \rangle^n \right) \cdot I_L \right]
\]
Vertex processing

- Originally, vertex processing was fixed
- Now this can be/is programmed in the vertex shader