Direct Illumination

Michael Kazhdan

(601.457/657)

HB Ch. 14.1, 14.2
FvDFH 16.1, 16.2
Ray Casting

```cpp
Image RayCast( Camera camera , Scene scene , int width , int height )
{
    Image image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( scene , ray , hit );
    }
    return image;
}
```
Ray Casting

Image RayCast(Camera camera , Scene scene , int width , int height)
{
 Image image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(scene , ray , hit);
 }
 return image;
}
Illumination

• How do we compute radiance for a sample ray?

\[\text{image}[i][j] = \text{GetColor}(\text{scene}, \text{ray}, \text{hit}); \]
Goal

- Must derive models for ...
 - Emission at light sources
 - Direct light at surface point
 - Scattering between surfaces

- Desirable features …
 - Concise
 - Efficient to compute
 - Convincing
Overview

• Direct Illumination
 ◦ Emission at a light source
 ◦ Direct light at surface point

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Intersection Testing
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Lambertian Shading
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Phong Shading
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Reflections
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface point

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Modeling Light Sources

- $I_L(q, d, \lambda)$ describes the intensity of energy (I):
 - arriving at q,
 - from direction d,
 - with wavelength λ
Empirical Models

• Ideally measure irradiant energy for “all” situations
 ◦ Too much storage
 ◦ Difficult in practice

\[(q_x, q_y, q_z) \]
Simplified Light Source Models

- Simple mathematical models:
 - Point light
 - Directional light
 - Spot light
Point Light Source

- Models omni-directional point source
 - intensity I, (typically a three-channel value)
 - position $p = (p_x, p_y, p_z)$,
 - factors (k_c, k_l, k_q) for attenuation with distance (δ)

\[
\delta = \|(p_x, p_y, p_z) - (q_x, q_y, q_z)\|
\]

\[
I_L(q) = \frac{I}{k_c + k_l \cdot \delta + k_q \cdot \delta^2}
\]

The light hitting a surface point q comes in from direction $q - p$.
Directional Light Source

• Models point light source at infinity
 ◦ intensity I, (typically a three-channel value)
 ◦ direction $\vec{d} = (d_x, d_y, d_z)$

No attenuation with distance

$$k_c = 1, k_l = k_q = 0$$

The light hitting a surface point p comes in from direction d.
Spot Light Source

• Models point light source
 ◦ intensity I, (typically a three-channel value)
 ◦ position $p = (p_x, p_y, p_z)$,
 ◦ attenuation (k_c, k_l, k_q)

$$I_L(q) = \frac{I}{k_c + k_l \cdot \delta + k_q \cdot \delta^2}$$
Spot Light Source

- Models point light source with direction
 - intensity I, (typically a three-channel value)
 - position $p = (p_x, p_y, p_z)$,
 - attenuation (k_c, k_l, k_q)
 - direction $\vec{d} = (d_x, d_y, d_z)$
 - cut-off and drop-off (γ, α)

$$I_L(q) = \frac{I}{k_c + k_l \cdot \delta + k_q \cdot \delta^2}$$

How can we modify the intensity of a point light to decrease as γ increases?
Spot Light Source

- Models point light source with direction and fall-off
 - intensity I, (typically a three-channel value)
 - position $p = (p_x, p_y, p_z)$,
 - attenuation (k_c, k_l, k_q)
 - direction $\vec{d} = (d_x, d_y, d_z)$
 - cut-off and drop-off (γ, α)

\[I_L(q) = \begin{cases}
 \frac{I \cdot \langle \vec{d}, \vec{v} \rangle^\alpha}{k_c + k_l \cdot \delta + k_q \cdot \delta^2} & \text{if } \langle \vec{d}, \vec{v} \rangle > \cos \gamma \\
 0 & \text{otherwise}
\end{cases} \]
Spot Light Source

- Models point light source with direction and fall-off
 - intensity I, (typically a three-channel value)
 - position $p = (p_x, p_y, p_z)$,
 - attenuation (k_c, k_l, k_q)
 - direction $\vec{d} = (d_x, d_y, d_z)$
 - cut-off and drop-off (γ, α)

The light hitting a surface point q comes in from direction $q - p$.
Assumes that \vec{d} and \vec{v} are unit vectors!

$$I_L(q) = \begin{cases}
I \cdot \langle \hat{d}, \hat{v} \rangle^\alpha \\
\frac{k_c + k_l \cdot \delta + k_q \cdot \delta^2}{k_c + k_l \cdot \delta + k_q \cdot \delta^2} \\
0
\end{cases} \text{ if } \langle \hat{d}, \hat{v} \rangle > \cos \gamma$$
otherwise
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Transmissions
 ◦ Inter-object reflections
Modeling Surface Reflectance

- $R_S(p, \overrightarrow{d^{in}}, \lambda^{in}, \overrightarrow{d^{out}}, \lambda^{out})$ describes the fraction of incident energy (R) at the surface (S),
 - arriving at point p
 - from direction $\overrightarrow{d^{in}}$,
 - with incoming wavelength λ^{in},
 - with outgoing wavelength λ^{out},
 - leaving in direction $\overrightarrow{d^{out}}$
Empirical Models

• Ideally measure radiant energy for all combinations of incident angles, all surface positions, and all combinations of incoming and outgoing wavelengths
 - Too much storage
 - Difficult in practice
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”

Based on model proposed by Phong
Simple Reflectance Model

• Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Diffuse Reflection

• Assume surface reflection is viewer independent, i.e. the surface reflects equally in all directions
 ◦ Examples: chalk, clay
Diffuse Reflection

- How much light is reflected?
 - Only depends on angle of incident light
 - aka “Lambertian”
Diffuse Reflection

• How much light is reflected?
 ◦ Only depends on angle of incident light
 \[dL = dA \cdot \cos \theta \]
Diffuse Reflection

Lambertian model:

- cosine law: \(\cos \theta = \langle \vec{N}, \vec{L} \rangle \), with \(\vec{N} \) and \(\vec{L} \) unit vectors
- \(K_D \) is surface property
- \(I_L \) is incoming light

\[
I_D = K_D \cdot \langle \vec{N}, \vec{L} \rangle \cdot I_L
\]
Diffuse Reflection

• Light/surface properties have RGB components!
 ◦ Need to run calculation below on EACH color channel
 ◦ This holds true for all lighting calculations

\[
I_D^C = K_D^C \cdot \langle \hat{N}, \hat{L} \rangle \cdot I_L^C, \quad C \in \{R, G, B\}
\]
Diffuse Reflection

- Assume surface reflects equally in all directions
 - Examples: chalk, clay
Simple Reflectance Model

• Simple analytic model:
 ◦ diffuse reflection +
 ◦ specular reflection +
 ◦ emission +
 ◦ “ambient”
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: metals, shiny apples
Specular Reflection

How much light is seen?

Depends on how well the:
 ◦ reflected direction, and
 ◦ direction to the viewer

line up.

\[\mathbf{V} \quad \mathbf{R} \quad \mathbf{L} \quad \mathbf{N} \quad \theta \quad \theta \]
Specular Reflection

Phong Model:

- \(\cos(\alpha) = \langle \vec{V}, \vec{R} \rangle \) describes how aligned the reflected and view directions are
- \(n \) describes the specularity of the surface
 - \(n = 0 \): the surface is Lambertian
 - \(n \to \infty \): the surface is a mirror

This is a physically-motivated hack!

\[I_S = K_S \cdot \langle \vec{V}, \vec{R} \rangle^n \cdot I_L \]
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: metals, shiny apples
Simple Reflectance Model

• Simple analytic model:
 ◦ diffuse reflection +
 ◦ specular reflection +
 ◦ emission +
 ◦ “ambient”
Emission

Represents light emanating uniformly from a surface that cannot be described by the three light sources

\[\text{Emission} \neq 0 \]
Emission

\[I_E = I_E \]

Emission \(\neq 0 \)
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Ambient Term

• Represents reflection from all indirect illumination

This is a hack (avoids complexity of global illumination)!
Ambient Term

- Represents reflection from all indirect illumination

\[I_A = K_A \cdot I_L^A \]

Typically \(K_A = K_D \) describe the “color” of the surface.
Simple Reflectance Model

- **Simple analytic model:**
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”

 ![Diagram showing light positions and dependencies]

 - Light position dependent
 - Light + viewer position dependent
Simple Reflectance Model

• Simple analytic model:
 ○ diffuse reflection +
 ○ specular reflection +
 ○ emission +
 ○ “ambient”

- Light position dependent
- Light + viewer position dependent
Surface Illumination Calculation

- Single light source:

\[
I = I_E + K_A \cdot I_L^A + \left(K_D \cdot \langle \vec{N}, \vec{L} \rangle + K_S \cdot \langle \vec{V}, \vec{R} \rangle^n \right) \cdot I_L
\]
Surface Illumination Calculation

• Multiple light source:

\[I = I_E + \sum_L \left[K_A \cdot I_L^A + \left(K_D \cdot \langle \vec{N}, \vec{L} \rangle + K_S \cdot \langle \vec{V}, \vec{R}^n \rangle \right) \cdot I_L \right] \]