Intersection and Acceleration

Michael Kazhdan
(601.457/657)

HB Ch. 14.1, 14.2
FvDFH 16.1, 16.2
Ray Casting

• Simple implementation:

```cpp
Image RayCast( Camera camera , Scene scene , int width , int height) {
    Image image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```

Ray casting equation:

\[
p_2 = \frac{p_1}{\cos \theta/2} - d \times \tan \theta/2 \]

Image features:
- Camera
- Scene
- Pixel coordinates
- Ray construction
- Intersection finding
- Color retrieval
Ray Casting

• Simple implementation:

```c++
Image RayCast( Camera camera , Scene scene , int width , int height )
{
    Image image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray-Triangle Intersection

1. Intersect ray with plane
2. Check if the point is inside the triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(p \), we get:
\[
\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0
\]

Solution:
\[
t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

\(p \) is in the plane spanned by \(\{v_1, v_2, v_3\} \) iff.:

\[
\alpha + \beta + \gamma = 1
\]

\(p \) is inside the triangle with vertices \(\{v_1, v_2, v_3\} \) iff.:

\[
\alpha, \beta, \gamma \geq 0
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:
\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:
\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 p^x \\
p^y \\
p^z
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}^{-1}
\begin{pmatrix}
 p^x \\
p^y \\
p^z
\end{pmatrix}
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

This will fail if the vertices \(\{v_1, v_2, v_3\} \) lie in a plane through the origin.

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]

\[
\Leftrightarrow
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}^{-1}
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 p^x \\
p^y \\
p^z
\end{pmatrix}
\]

\[
\begin{pmatrix}
 0 & v_2^x - v_1^x & v_3^x - v_1^x \\
0 & v_2^y - v_1^y & v_3^y - v_1^y \\
0 & v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 p^x - v_1^x \\
p^y - v_1^y \\
p^z - v_1^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]

\[
\begin{pmatrix}
 v_2^x - v_1^x & v_3^x - v_1^x \\
v_2^y - v_1^y & v_3^y - v_1^y \\
v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
p^x - v_1^x \\
p^y - v_1^y \\
p^z - v_1^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

$$\mathbf{p} = \mathbf{v}_1$$

$$\mathbf{v}_2 - \mathbf{v}_1$$

$$\mathbf{v}_3 - \mathbf{v}_1$$

$$\alpha \ \beta \ \gamma$$

This is an over-constrained system!
In general, we can’t express a 3D point as the linear combination of two 3D points.

This is not the general case!
A solution exists since \(\mathbf{p} \) is in the plane spanned by \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \)

After solving for \(\beta \) and \(\gamma \), we can set:

$$\alpha = 1 - \beta - \gamma$$

$$\begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix}$$

$$\begin{pmatrix} v_2^x - v_1^x & v_3^x - v_1^x \\ v_2^y - v_1^y & v_3^y - v_1^y \\ v_2^z - v_1^z & v_3^z - v_1^z \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x - v_1^x \\ p^y - v_1^y \\ p^z - v_1^z \end{pmatrix}$$
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform grids
 » Octrees
 » BSP trees
Ray-Scene Intersection

A direct (naïve) approach:

Intersection \textbf{FindIntersection}(\text{Ray} \; \text{ray}, \; \text{Scene} \; \text{scene})
{
 \{ \text{min}_t, \text{min}_\text{shape} \} = \{ \infty, \text{NULL} \}
 \text{for each primitive in scene }
 \{
 t = \text{Intersect}(\text{ray}, \text{primitive})
 \text{if} (t>0 \text{ and } t<\text{min}_t)
 \{
 \text{min}_\text{shape} = \text{primitive}
 \text{min}_t = t
 \}
 \}
 \text{return} \{ \text{min}_t, \text{min}_\text{shape} \}
}
Overview

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Space partitions
 » Uniform (voxel) grids
 » Octrees
 » BSP trees
Intersection Testing

Accelerated techniques try to leverage:

- **Grouping:**
 Discard groups of primitives that are guaranteed to be missed by the ray.

- **Ordering:**
 1. Test (likely) nearer intersections first
 2. Allow for early termination if there is a hit
Bounding Volumes

• Check for intersection with the bounding volume:
 ◦ Bounding cubes
 ◦ Bounding boxes
 ◦ Bounding spheres
 ◦ Etc.

Stuff that’s easy to intersect
Bounding Volumes

• Check for intersection with the bounding volume
 ◦ If the ray misses the bounding volume, it can’t intersect its contents

Still need to check for intersections with shape.
Bounding Volume Hierarchies

- Build hierarchy of bounding volumes
 - Bounding volume stores (and encompasses):
 - Child bounding volumes
 - A subset of shapes
Bounding Volume Hierarchies

• Grouping acceleration

```cpp
Intersection FindIntersection( Ray ray, Node node )
{
    { min_t , min_shape } = { \infty , NULL } 

    if( !intersect( ray , node.boundingVolume ) ) // Test Bounding box
        return { \infty , NULL } 

    foreach shape in node // Test node’s shape
    {
        t = Intersect( ray , shape ) 
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }

    for each child in node // Test node’s children
    {
        ( t , shape ) = FindIntersection( ray , child ) 
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }
    return { min_t , min_shape }
}
```
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect node contents only if you hit the bounding volume
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect node contents only if you hit the bounding volume

- Don’t need to test shapes A or B
- Need to test groups 1, 2, and 3
- Need to test shapes C, D, E, and F
Bounding Volume Hierarchies

- Grouping + Ordering acceleration

```cpp
Intersection FindIntersection( Ray ray , Node node )
{
    // Find intersections with the nearest shape stored in the node
    ...
    // Find intersections with all child node bounding volumes
    ...
    // Sort child bounding volume intersections front to back
    // and store distances to child bounding boxes in bv_t[]
    ...
    // Process intersections
    for each child node whose bounding box is intersected
    {
        { t , shape } = FindIntersection( ray , child )
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }
    return { min_t , min_shape }
}
```
Bounding Volume Hierarchies

• Grouping + Ordering acceleration

```
Intersection FindIntersection( Ray ray , Node node )
{
    // Find intersections with the nearest shape stored in the node
    ...
    // Find intersections with all child node bounding volumes
    ...
    // Sort child bounding volume intersections front to back
    // and store distances to child bounding boxes in bv_t[]
    ...

    // Process intersections
    for each child node whose bounding box is intersected
    {
        if( min_t<bv_t[child] ) break
        { t , shape } = FindIntersection( ray , child )
        if( t>0 && t<min_t ) { min_t , min_shape } = { t , shape }
    }
    return { min_t , min_shape }
}
```
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect nodes only if you haven’t hit anything closer
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect nodes only if you haven’t hit anything closer

- Don’t need to test shapes A, B, D, E, or F
- Need to test groups 1, 2, and 3
- Need to test shape C
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle

 » Acceleration techniques
 - Bounding volume hierarchies
 - Spatial partitions
 - Uniform (Voxel) grids
 - Octrees
 - BSP trees
Uniform (Voxel) Grid

• Construct uniform grid over the scene
 ◦ Index primitives according to overlaps with grid cells

• A primitive may belong to multiple cells
• A cell may have multiple primitives
Uniform (Voxel) Grid

• Trace rays through grid cells
 ○ Fast
 ○ Incremental

Only check primitives in intersected grid cells
Uniform (Voxel) Grid

- Potential problem:
 - How choose suitable grid resolution?

 Too much cost if grid is too fine

 Too little benefit if grid is too coarse
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle

» Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform (Voxel) grids
 » Octrees
 » BSP trees
Octrees

- Think of a voxel grid hierarchically as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions

[Diagram of an octree structure with a root node and three levels of subdivision]
Octrees

- Think of a voxel grid hierarchically as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- Think of a voxel grid hierarchically as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

• Think of a voxel grid hierarchically as a tree.
 ◦ The root node is the entire region
 ◦ Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
• Adaptively determines grid resolution.
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
- Adaptively determines grid resolution.

Efficiently tracing a ray through an adaptive octree is trickier than tracing a ray through a regular grid!
Overview

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform (Voxel) grids
 » Octrees
 » BSP trees
 – k-D trees
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
\textit{k-D Trees}

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.

Note:
- Either primitives need to be split, or they belong to multiple nodes.

Limitation:
- The splitting planes still have to be axis-aligned.
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 ○ Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 ◦ Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Example: Point Intersection
Binary Space Partition (BSP) Tree

- Example: Point Intersection
 - Recursively test what side we are on
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Left of 1 (root) → 2
Binary Space Partition (BSP) Tree

- Example: Point Intersection
 - Recursively test what side we are on
 » Left of 2 → 4
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Right of 4 → Test B
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Missed B. No intersection!
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Missed B. No intersection!

Worst-case / Expected complexity: proportional to the depth of the tree
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to the left of 1
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to the right of 2
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 1
 ○ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Intersection with C. Done!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to the left of 1

```
1
  2
  3
  4
  5
```

```
A
B
C
D
E
F
```
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ○ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to the right of 2
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Missed C. Recurse!
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to left of 2
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to left of 4
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Missed A. Recurse!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » No half to right of 4.
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to right of 1
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to left of 3
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Intersection with D. Done!
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Intersection with D. Done!

Worst-case: Proportional to the number of nodes in the tree
Expected: substantially faster

How should we choose the splitting planes?
Binary Space Partition (BSP) Tree

Intersection `RayTreeIntersect` (Ray ray, Node node)
{
 if (Node is a leaf) return intersection of closest primitive in cell, or NULL if none else
 {
 // Find splitting plane and near and far children
 near_child = child of node that contains the origin of ray
 far_child = other child of node

 // Recurse down near child first
 isect = RayTreeIntersect (ray, near_child)
 if(isect) return isect // If there's a hit, we are done

 // If there is no hit, test the far child
 return RayTreeIntersect (TrimRay(ray, node.plane), far_child)
 }
}
Acceleration Techniques

- Bounding volume hierarchies
- Space partitions
 - Uniform (voxel) grids
 - Octrees
 - BSP trees

Note:
- All are independent of the viewer position
- All need to be adapted if the geometry changes/animates