3D Rendering and Ray Casting

Michael Kazhdan

(601.457/657)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Rendering

• Generate an image from geometric primitives
Rendering

• Generate an image from geometric primitives

Geometric Primitives (3D) \rightarrow \text{Rendering} \rightarrow \text{Raster Image (2D)}
What issues must be addressed by a 3D rendering system?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Triangles
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

- Specifies a location
3D Point

• Specifies a location
 ◦ Represented by three coordinates
 ◦ Infinitely small

```c
struct Point3D {
    float x, y, z;
};
```

(x, y, z)

Origin
3D Vector

• Specifies a direction and a magnitude
3D Vector

• Specifies a direction and a magnitude
 ◦ Represented by three coordinates
 ◦ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ◦ Has no location

```c
struct Vector3D
{
    float dx, dy, dz;
};
```

$\vec{v} = (dx, dy, dz)$
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 - Has no location

- Dot product of two 3D vectors
 - $\vec{v}_1 \cdot \vec{v}_2 = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 - $\langle \vec{v}_1, \vec{v}_2 \rangle = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \cos \theta$

- Cross product of two 3D vectors
 - $\vec{v}_1 \times \vec{v}_2 = \text{Vector normal to } \nu_1 \text{ and } \nu_2$
 - $\|\vec{v}_1 \times \vec{v}_2\| = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \sin \theta$
Cross Product: Review

• Let $\vec{v}_1 = \vec{v}_2 \times \vec{v}_3$:
 - $dx_1 = dy_2 \cdot dz_3 - dz_2 \cdot dy_3$
 - $dy_1 = dz_2 \cdot dx_3 - dx_2 \cdot dz_3$
 - $dz_1 = dx_2 \cdot dy_3 - dy_2 \cdot dx_3$

• $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$ (remember “right-hand” rule)

• We can show:
 - $\vec{v} \times \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin \theta \cdot \vec{n}$,
 where \vec{n} is the unit vector normal to \vec{v} and \vec{w}
 - $\vec{v} \times \vec{v} = 0$
3D Line Segment

- Linear path between two points
3D Line Segment

- Use a linear combination of two points
 - Parametric representation:
 \[p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \]

```c
struct Segment3D {
    Point3D p1, p2;
};
```
3D Ray

- Line segment with one endpoint at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \]

```c
struct Ray3D {
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty) \]

```c
struct Line3D {
    Point3D p1;
    Vector3D v;
};
```
Surfaces in 3D

So far, we have represented geometry parametrically – defining a function which takes in a parameter and returns a position on the geometry.

Surfaces in 3D can also be represented by an implicit function. That is, a function $\Phi: \mathbb{R}^3 \rightarrow \mathbb{R}$ which:

- Equals zero on the surface
- Is positive outside the surface
- Is negative inside the surface

This makes it easy to evaluate if a point is on the surface.
3D Plane

• A linear combination of three points

p_1

p_2

p_3

Origin
3D Plane

- A linear combination of three points
 - Implicit representation:
 » \(\Phi(p) = ap_x + bp_y + cp_z - d = 0 \)
 » \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

  ```c
  struct Plane3D {
    Vector3D n;
    float d;
  };
  ```

- \(\vec{n} \) is the plane normal
 » (May be) unit-length vector
 » Perpendicular to plane

- \(d \) is the signed (weighted) distance of the plane from the origin.
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```c
struct Polygon3D
{
    Point3D *points;
    unsigned int npoints;
};
```

- Points are in counter-clockwise order
- Holes (use > 1 polygon struct)
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```c
struct Polygon3D {
    Point3D *points;
    unsigned int npoints;
};
```

Note: If the polygon has more than three points, the points don’t have to be coplanar, so the “inside” is not well defined.
3D Sphere

• All points at distance r from center point $c = (c_x, c_y, c_z)$

 - Implicit representation:
 » $\Phi(p) = \|p - c\|^2 - r^2 = 0$

 - Parametric representation:
 » $x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x$
 » $y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y$
 » $z(\theta, \phi) = r \cdot \sin \phi + c_z$

```c
struct Sphere3D {
    Point3D center;
    float radius;
};
```
Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.
3D Geometric Primitives

- More detail on 3D modeling later in course
 - Point
 - Line segment
 - Triangle
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the viewing device described in a computer?
Camera Models

- The most common model is pin-hole camera
 - All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
- Depth of field
- Motion blur
- Lens distortion

View plane
Eye position (focal point)
Camera Parameters

• What are the parameters of a camera?
Camera Parameters

• Position
 ◦ Eye position: Point3D eye

• Orientation
 ◦ View direction: Vector3D view
 ◦ Up direction: Vector3D up

• Aperture
 ◦ Field of view angle: float xFov, yFov
 ◦ Resolution of film plane: int width, height
 ◦ Distance of film plane
 ◦ (Orientation of film plane)
Other Models: Depth of Field

Close Focused

Distance Focused

P. Haeberli
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Brostow & Essa
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.

Photograph is right side up
Overview

• 3D scene representation
• 3D viewer representation

• Ray Casting
 ◦ Where are we looking?
 ◦ What do we see?
 ◦ How does it look?
Ray Casting

• For each sample …
 ◦ **Where**: Construct ray from eye through view plane
 ◦ **What**: Find **first** surface intersected by ray through pixel
 ◦ **How**: Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```cpp
Image RayCast( Camera camera , Scene scene , int width , int height)
{
    Image image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray Casting

Where?

```cpp
Image RayCast( Camera camera , Scene scene , int width , int height )
{
    Image image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Constructing a Ray Through a Pixel

- Up direction
- View Plane
- Back
- Right
- p_0
- \vec{v}
- $p[i][j]$
Constructing a Ray Through a Pixel

The ray originates at p_0 (the eye position of the camera). So the equation for the ray is:

$$\text{Ray}(t) = p_0 + t \cdot \vec{v}$$
If the ray passes through the point \(p[i][j] \), then the solution for (unit) \(\vec{v} \) is:

\[
\vec{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}
\]
If \(p[i][j] \) represents the \((i, j)\)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ Where is the i-th pixel, $p[i]$, with $i \in [0, \text{height})$?

θ = field of view angle (given)
d = distance to view plane (arbitrary = you pick)
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0

 Where is the i-th pixel, $p[i]$, with $i \in [0, \text{height})$?

$\theta =$ field of view angle (given)
$d =$ distance to view plane (arbitrary = you pick)

$$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan\frac{\theta}{2} \cdot \text{up}$$

$$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan\frac{\theta}{2} \cdot \text{up}$$
Constructing Ray Through a Pixel

- **2D Example:** Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$, with $i \in [0, \text{height})$?

 $\theta = \text{field of view angle (given)}$
 $d = \text{distance to view plane (arbitrary = you pick)}$

\[
p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}
\]
\[
p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}
\]
\[
p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot (p_2 - p_1)
\]
Constructing Ray Through a Pixel

- 2D Example:

 The ray passing through the \(i\)-th pixel is defined by:

 \[
 \text{Ray}(t) = p_0 + t \cdot \vec{v}
 \]

 - \(p_0\): camera position
 - \(\vec{v}\): direction to the \(i\)-th pixel:

 \[
 \vec{v} = \frac{p[i] - p_0}{\|p[i] - p_0\|}
 \]
 - \(p[i]\): \(i\)-th pixel location:

 \[
 p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)
 \]

 - \(p_1\) and \(p_2\) are the endpoints of the view plane:

 \[
 p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta/2 \cdot \text{up}
 \]

 \[
 p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta/2 \cdot \text{up}
 \]
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{\text{height}}{\text{width}}$
Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{\text{height}}{\text{width}}$

The horizontal field of view angle, θ_h, satisfies:

$$\frac{\tan(\theta_v/2)}{\tan(\theta_h/2)} = ar$$
Ray Casting

Where?

Image RayCast(Camera camera , Scene scene , int width , int height)
{
 Image image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Ray Casting

What?

```c
Image RayCast( Camera camera , Scene scene , int width , int height)  
{  
    Image image( width , height );  
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )  
    {  
        Ray ray = ConstructRayThroughPixel( camera , i , j );  
        Intersection hit = FindIntersection( ray , scene );  
        image[i][j] = GetColor( hit );  
    }  
    return image;  
}  
```
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p \), we get:
\[
\Phi(t) = \|p_0 + t \cdot \vec{v} - c\|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
 a \cdot t^2 + b \cdot t + c = 0
\]
where:
\[
 a = 1
\]
\[
 b = 2\langle \vec{v}, p_0 - c \rangle
\]
\[
 c = \|p_0 - c\|^2 - r^2
\]
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p \), we get:

\[\Phi(t) = \|p_0 + t \cdot \vec{v} - c\|^2 - r^2 = 0 \]

Solve quadratic equation:

\[a \cdot t^2 + b \cdot t + c = 0 \]

where:

Generally, there are two solutions to the quadratic equation, giving two points of intersection, \(p \) and \(p' \). Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:

\[\vec{n} = \frac{p - c}{\|p - c\|} \]
Ray-Sphere Intersection

• More generally, if the shape is given as the set of points \(p \) satisfying:

\[
\Phi(p) = 0
\]

for some function \(\Phi: \mathbb{R}^3 \to \mathbb{R} \), then the normal of the surface will be parallel to the gradient.
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 » Triangle
Ray-Triangle Intersection

1. Intersect ray with plane
2. Check if the point is inside the triangle
Ray: $p(t) = p_0 + t \cdot \vec{v}, \; (0 \leq t < \infty)$

Plane: $\Phi(p) = \langle p, \vec{n} \rangle - d = 0$

Substituting for p, we get:

$$\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0$$

Solution:

$$t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}$$

What are the implications of $\langle \vec{v}, \vec{n} \rangle = 0$?
Ray-Triangle Intersection I

- Check for point-triangle intersection algebraically:
 - Generate planes through the ray source and each edge
 - Check if the point of intersection is above each of these planes

For each edge:
\[\vec{n}_i = (v_{i+1} - p_0) \times (v_i - p_0) \]

if \(\langle p - p_0, \vec{n}_i \rangle < 0 \)
return FALSE

Return TRUE
In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

\(p \) is in the plane spanned by \(\{v_1, v_2, v_3\} \) if and only if (iff.):

\[
\alpha + \beta + \gamma = 1
\]

\(p \) is inside the triangle with vertices \(\{v_1, v_2, v_3\} \) iff.:

\[
\alpha, \beta, \gamma \geq 0
\]
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha v_1 + \beta v_2 + \gamma v_3$$

To get α, β, γ, solve the system:

$$\begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix}$$
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\quad \Leftrightarrow \quad
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}^{-1}
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha v_1 + \beta v_2 + \gamma v_3$$

To get α, β, γ, solve the system:

$$
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix} =
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\iff
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix} =
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}^{-1}
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
$$

This will fail if the vertices $\{v_1, v_2, v_3\}$ lie in a plane through the origin.
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[\begin{align*}
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
&=
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix} \\
\begin{pmatrix}
0 & v_2^x - v_1^x & v_3^x - v_1^x \\
0 & v_2^y - v_1^y & v_3^y - v_1^y \\
0 & v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
&=
\begin{pmatrix}
p^x - v_1^x \\
p^y - v_1^y \\
p^z - v_1^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z \\
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma \\
\end{pmatrix}
=
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 v_2^x - v_1^x & v_3^x - v_1^x \\
 v_2^y - v_1^y & v_3^y - v_1^y \\
 v_2^z - v_1^z & v_3^z - v_1^z \\
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \gamma \\
\end{pmatrix}
=
\begin{pmatrix}
 p^x - v_1^x \\
 p^y - v_1^y \\
 p^z - v_1^z \\
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

This is an over-constrained system!
In general, we can’t express a 3D point as the linear combination of two 3D points.

This is not the general case!
A solution exists since \(p \) is in the plane spanned by \(\{v_1, v_2, v_3\} \)

After solving for \(\beta \) and \(\gamma \), we can set:

\[
\alpha = 1 - \beta - \gamma
\]

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z \\
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma \\
\end{pmatrix}
=
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 v_2^x - v_1^x & v_3^x - v_1^x \\
 v_2^y - v_1^y & v_3^y - v_1^y \\
 v_2^z - v_1^z & v_3^z - v_1^z \\
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \gamma \\
\end{pmatrix}
=
\begin{pmatrix}
 p^x - v_1^x \\
 p^y - v_1^y \\
 p^z - v_1^z \\
\end{pmatrix}
\]
Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
 ◦ Similar to sphere

• Box
 ◦ Intersect 3 front-facing planes, return closest

• Convex (planar) polygon
 » Find the intersection of the ray with the plane
 » Check that the intersection is above every triangle generated by the ray source and polygon edges.

• Concave (planar) polygon
 ◦ Same plane intersection
 ◦ More complex point-in-polygon test