Last Class

Michael Kazhdan

(601.457/657)
Announcements

• The midterm has been graded
• Assignment 4 has been extended to 12/12
Syllabus

• Image Processing (2D)
• Rendering (3D)
• Modeling (3D)
• Animation (4D)
Syllabus: Image Processing

- Image Representation
 - Quantization & Aliasing
 - Sampling
 - Reconstruction

Original (8 bits) | Quantized (1 bit) | Random Dither (1 bit) | Ordered Dither (1 bit) | Floyd-Steinberg Dither (1 bit)
Syllabus: Image Processing

• Image Representation
 ◦ Quantization & Aliasing
 ◦ Sampling
 ◦ Reconstruction

Discrete Samples \ast Reconstruction Filter $=$ Reconstructed Function
Syllabus: Image Processing

• Image Representation
 ◦ Sampling
 ◦ Reconstruction
 ◦ Quantization & Aliasing

• Image Processing
 ◦ Filtering
 ◦ Warping
 ◦ Morphing
 ◦ Compositing
 ◦ Gradient Domain
Syllabus: Image Processing

- Image Representation
 - Sampling
 - Reconstruction
 - Quantization & Aliasing

- Image Processing
 - Filtering
 - Warping
 - Morphing
 - Compositing
 - Gradient Domain
Syllabus: Image Processing

• Image Representation
 ○ Sampling
 ○ Reconstruction
 ○ Quantization & Aliasing

• Image Processing
 ○ Filtering
 ○ Warping
 ○ Morphing
 ○ Compositing
 ○ Gradient Domain
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity

• 3D Rendering Pipeline
 ◦ Modeling transformations
 ◦ Viewing transformations
 ◦ Hidden surface removal
 ◦ Illumination, shading & textures
Syllabus: Modeling

• Representations of geometry
 ◦ Curves (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
 ◦ Reconstruction
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
 - Reconstruction
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
 - Reconstruction
Syllabus: Modeling

• Representations of geometry
 ◦ Curves (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
 ◦ Reconstruction
Syllabus: Modeling

• Representations of geometry
 ◦ Curves (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
 ◦ Reconstruction
Syllabus: Modeling

• Representations of geometry
 ◦ **Curves (splines)**
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
 ◦ Reconstruction
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
 - Reconstruction
Syllabus: Modeling

• Representations of geometry
 ○ Curves (splines)
 ○ **Surfaces** (meshes, splines, subdivisions)
 ○ Solids (voxels, CSG)
 ○ Reconstruction
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
 - Reconstruction

Iso-Value $= \delta_1$

Iso-Value $= \delta_2$
Syllabus: Modeling

• Representations of geometry
 ◦ Curves (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
 ◦ Reconstruction
Syllabus: Animation

• Key framing
 ◦ Kinematics
 ◦ Scene graphs
 ◦ Articulated figures

• Transformation
 ◦ Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Scene graphs
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

• Key framing
 ◦ Kinematics
 ◦ Scene graphs
 ◦ Articulated figures

• Transformation
 ◦ Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Scene graphs
 - Articulated figures

- Transformation
 - Interpolation/Blending

\[
\exp(Id, A) = \exp(A) = Id + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \ldots + \frac{1}{n!} A^n
\]
What Else Have We Learned?

- CG is hard
 - Lots of programming
 - Lots of math

- Simple things often work quite well!
 - Example: Illumination equation
 - Example: Key-frame interpolation

- Some things which seem simple, aren’t
 - Creating cool models
 - Getting them to behave well

- Still a lot left to do!
What Now?

• Every semester there is a reading seminar in computer graphics
 ◦ Informal
 ◦ Read and discuss one paper a week
 ◦ You are welcome to join