Computer Graphics
(601.457/657)

Prof. Misha Kazhdan
misha@cs.jhu.edu
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials
• Animating any of the above
Introduction: What is CG?

2D image processing

• 3D object representation & manipulation
• Simulating physical processes & materials
• Animating any of the above

http://paulbakaus.com/
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
 - Simulating physical processes & materials
 - Animating any of the above

“Incredibles 2” Disney / Pixar
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

Gringold et al. 2004
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above (4D)

Team Fortress 2: Meet the Heavy, Valve
Introduction: What is CG?

“You know it when you see it…”

http://www.creativecrash.com/tutorials/
Introduction: What is CG?

“You know it when you see it… maybe.”

http://www.creativecrash.com/tutorials/
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
Introduction: Applications

Entertainment

- Computer Aided Design
- Scientific Visualization
- Training & Education

“How to Train Your Dragon 3”
DreamWorks

“Control” Remedy
Remedy
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education

Completely virtual model built in 3D:
- Shorten the development period
- Shorten the learning curve
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education

Neutron Star Collision
Courtesy of David Bock

Flow Visualization
Roettger et al.

Aspirin in RasMol
Courtesy of Michael Friendly

The Visible Human
Courtesy of NLM
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Syllabus

• Image Processing (2D)
• Ray Tracing (3D)
• Rendering (3D)
• Modeling (3D)
• Animation (4D)
Syllabus

• Image Processing
 ◦ Quantization and Dithering
 ◦ Sampling
 ◦ Filters
 ◦ Warping, Morphing, and Compositing
Syllabus

• Ray Tracing
 ◦ Cameras
 ◦ Primitives
 ◦ Lights
 ◦ Spatial Data Structures
 ◦ Reflection, Transparency, and Refraction

• Rendering
 ◦ Coordinate Systems and Modeling Transformations
 ◦ Viewing transformations
 ◦ Shading
 ◦ Textures
 ◦ Visibility
 ◦ OpenGL
Syllabus

• Modeling
 ◦ Triangles
 ◦ Splines
 ◦ Subdivision Surfaces
 ◦ Procedural Models
 ◦ Point Based Models

• Animation
 ◦ Key-Framing
 ◦ Kinematics
 ◦ Dynamics
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Coursework

• NB: Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Coursework

• NB: Lots of work!

Exams (30%)
 • (Probably) two exams
 • Absolutely no excuses will be accepted for missing the exams. Not taking the exam at the scheduled time = 0!

• Programming assignments (60%)

• Class participation (10%)
Coursework

• NB: Lots of work!

• Exams (30%)

Programming assignments (60%)
 ○ Image Processing (15%)
 ○ Ray Tracing (15%)
 ○ OpenGL Rendering (15%)
 ○ Animation (15%)

• Class participation (10%)
Coursework

- NB: Lots of work!
- Exams (30%)

Programming assignments (60%)
 - Knowledge of C/C++ assumed!
 - Must be turned in by 23:59 on due date
 - 5 late days (combined)
 - Notify TA in your readme if you use a late day
 - Otherwise, late assignments receive NO credit

- Class participation (10%)
Coursework: Collaboration Policy

• You must write your own code
• You must reference sources of ideas/code

• It’s okay to:
 ○ Discuss ideas with other students
 ○ Get ideas from books, web sites, etc.
 ○ Get “support code” from books, web, etc.
 » REFERENCE IT

• It is not okay to:
 ○ Share code with other students
 ○ Copy code from other students
 ○ Use ideas or code from other sources without attribution
Coursework

• NB: Lots of work!
• Exams (30%)

Programming assignments (60%)
• Class participation (10%)

Bottom line:
If you don’t LOVE programming, don’t take this class!
Coursework

• NB: Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Miscellaneous

• Course web page:
 ◦ http://www.cs.jhu.edu/~misha/Fall20

• Piazza page:
 ◦ http://piazza.com/jhu/fall2020/600457657
 ◦ No required text book.
 ◦ Additional reading:
 » Computer Graphics: Principles and Practice in C
 Foley, van Dam, Feiner, and Hughes
 » Computer Graphics, C Version
 Hearn and Baker
 OpenGL
 Neider, Davis, and Woo
 » Fundamentals of Computer Graphics
 Shirley

• Will not cover GPU programming (e.g. shaders)
Miscellaneous

• Office hours:
 » Misha’s (Professor): Friday 12:00-1:00pm @ Zoom
 » Tommy’s (TA): Wednesday 12:00-1:00pm @ Zoom
 » Eugene’s (CA): Tuesday 6:00-7:00pm @ Zoom
 » Frank’s (CA): Thursday 9:00-10:00pm @ Zoom

• Keeping in touch:
 ◦ Email: cs457@cs.jhu.edu
 ◦ Note:
 » Do not send code snippets.
 » Do not ask us if your implementation is correct.
Assignment 1:

- Image Processing
- Due September 26 @ 11:59 pm
- Even if you won't start working on the code until later, download it and try compiling ASAP to make sure that things are correctly set up on your system.